
, , 1–36 ()
c© Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Efficient Interval Linear Equality Solving in

Constraint Logic Programming

C.K. CHIU AND J.H.M. LEE jlee@cse.cuhk.edu.hk

Department of Computer Science and Engineering, The Chinese University of Hong Kong,
Shatin, N.T., Hong Kong SAR, P.R. China

Editor:

Abstract. Existing interval constraint logic programming languages, such as BNR Prolog, work
under the framework of interval narrowing and are deficient in solving systems of linear constraints
over real numbers, which constitute an important class of problems in engineering and other ap-
plications. In this paper, we suggest to separate linear equality constraint solving from inequality
and non-linear constraint solving. The implementation of an efficient interval linear constraint
solver, which is based on the preconditioned interval Gauss-Seidel method, is proposed. We show
how the solver can be adapted to incremental execution and incorporated into a constraint logic
programming language already equipped with a non-linear solver based on interval narrowing.
The two solvers share common interval variables, interact and cooperate in a round-robin fash-
ion during computation, resulting in an efficient interval constraint arithmetic language CIAL.
The CIAL prototypes, based on CLP(R), are constructed and compared favorably against several
major interval constraint logic programming languages.

Keywords: Interval linear equalities, incremental execution, constraint logic programming

1. Introduction

The current status of Prolog arithmetic suffers from two deficiencies. First, the
system predicate “is” [53] is functional in nature. It is incompatible with the re-
lational paradigm of logic programming. Second, real numbers are approximated
by floating-point numbers. Roundoff errors induced by floating-point arithmetic
destroy the soundness [37] of computation. The advent of constraint logic pro-
gramming [29] presents a solution to the first problem but the implementation of
CLP languages, such as CLP(R) [30], are mostly based on floating-point arithmetic.
The second problem remains.

The languages CAL [2] and RISC-CLP(R) [28] use symbolic algebraic methods to
refrain from floating-point operations. Algebraic methods guarantee the soundness
of numerical computation but they are time-consuming.

Previous efforts in the sub-symbolic camp, such as BNR Prolog [46], employ in-
terval methods [41] and belong to the family of consistency techniques [38]. The
main idea is to narrow the set of possible values of the variables of arbitrary real
constraints using approximations of arc-consistency [9]. We collectively call these
techniques interval narrowing. Interval narrowing has been shown to be applica-
ble to critical path scheduling [46], X-ray diffraction crystallography [48], boolean
constraint solving [8], and disjunctive constraint solving [8, 50]. However, interval
narrowing can suffer from the “early quiescence” problem [18], in which case the

2 C.K. CHIU AND J.H.M. LEE

algorithm stops before reaching a good approximation of the set of possible solu-
tions. This is usually a result of the interaction and coupling of the variables in
the constraint system, and can happen to both linear and non-linear systems. This
paper addresses the early quiescence problem for linear constraint systems.

For example, interval narrowing fails to solve such simple systems as “{X + Y =
5, X−Y = 6}.” Cleary [15] proposes a form of case analysis technique [54], domain
splitting , as a remedy. Domain splitting partitions an interval into two, visits one,
and visits the other upon backtracking. This backtracking tree search is expensive
to perform. Furthermore, interval narrowing may sometimes fail or take a long
time to detect inconsistency of linear systems. Thus, interval narrowing is opted
for improvement in terms of efficiency.

Our work is motivated by the inadequacy of interval narrowing for interval linear
constraint solving. The goal is to design a sound and efficient interval linear con-
straint solving method for CLP languages. We suggest to separate linear equality
constraint solving from inequality and non-linear constraint solving. This sepa-
ration calls for an employment of two constraint solvers: a linear solver and a
non-linear solver. Assuming the existence of an efficient non-linear solver, we aim
to design and implement an interval linear solver in such a way that it (1) can
handle interval linear systems efficiently and (2) can handle a mixture of interval
linear and non-linear constraints by cooperating with an interval non-linear solver
efficiently. We propose the use of the preconditioned interval Gauss-Seidel method
as the backbone of an efficient linear equality solver. The method, as originally
designed, works only on linear systems with square coefficient matrices. Even im-
posing such a restriction, a naive incorporation of the traditional preconditioning
algorithm in a CLP language incurs a high worst-case time complexity of O(n4),
where n is the number of variables in the linear system. We generalize the algorithm
for general linear systems with m constraints and n variables, and give a novel incre-
mental adaptation of preconditioning of O(n2(n + m)) complexity. The non-linear
solver employs interval narrowing with splitting to solve inequalities and non-linear
constraints. The two solvers interact and cooperate in a round-robin fashion during
computation, resulting in a new efficient interval CLP system, CIAL (for Constraint
Interval Arithmetic Language).

The paper is organized as follows. Section 2 reviews related work. Section 3
defines notations and contains preliminaries on interval arithmetic. Section 4 out-
lines the limitations of interval narrowing and interval splitting. Section 5 presents
the implementation of an efficient linear solver and its correctness and complexity
results. Section 6 describes the design of our new interval CLP system CIAL. The
architecture of CIAL and the interaction among modules are explained. Section 7
describes the benchmarking results. Section 8 summarizes our contributions and
sheds light on further work.

2. Related Work

Prolog III [16], CAL [2], and RISC-CLP(R) [28] use symbolic algebraic methods
to solve arithmetic constraints. Prolog III1 employs a simplex algorithm to handle

EFFICIENT INTERVAL LINEAR EQUALITY SOLVING IN CLP 3

arithmetic over rational numbers. CAL computes over two domains: the real num-
bers and Boolean algebra with symbolic values. Constraints are solved by using the
Buchberger algorithm for computing Gröbner bases [10]. RISC-CLP(R) deals with
non-linear arithmetic constraints by using Gröbner basis and Partial Cylindrical
Algebraic Decomposition [27, 11].

In the sub-symbolic camp, Cleary [15] introduces “logical arithmetic,” a relational
version of interval arithmetic, into Prolog. He describes distinct algorithms, one
for each kind of constraint over intervals, that narrow intervals associated with a
constraint by removing values that do not satisfy the constraint. A constraint relax-
ation cycle is needed to coordinate the execution of the narrowing algorithms for a
network of constraints. BNR Prolog [46] and its sequel CLP(BNR) [8] provide rela-
tional interval arithmetic in a way that is loosely based on Cleary’s pre-publication
idea, differing somewhat in particulars. Sidebottom and Havens [50] design and
implement a version of relational interval arithmetic in the constraint reasoning
system Echidna [24]. Based on hierarchical consistency techniques [39], Echidna
can handle unions of disjoint intervals. Sidebottom [51] describes the use of projec-
tion constraints for compiling and optimizing constraint propagation in the numeric
and Boolean domains. He shows that all the constraints available in CLP(BNR)
can be directly expressed by projection constraints without applying constraint
decomposition. Also, the user can program different constraint propagation meth-
ods for different constraints. Lhomme [36] analyzes the complexity of consistency
techniques for numeric CSP’s and proposes partial consistency techniques, whose
complexities can be tuned by adjusting the bound width of the resulting intervals.
Lee and van Emden [34, 35] generalize Cleary’s algorithms for narrowing intervals
constrained by any relations p on I(IR)n. They also show how the generalized al-
gorithm can be incorporated in CLP(R) [30] and CHIP [19] in such a way that the
languages’ logical semantics is preserved. Lee and Lee [33] propose an integration
of constraint interval arithmetic into logic programming at the Warren Abstract
Machine (WAM) [3] level. Benhamou et al [7] and Van Hentenryck et al [56] re-
place the usual interval narrowing operator of previous interval CLP languages by
an operator based on the interval Newton method to speed up non-linear constraint
solving. This work on interval Newton leads to Numerica [57, 55], a modeling lan-
guage for stating and solving global optimization problem. Numerica allows the
expression of problems in a notation close to the way that they are stated in text-
books or scientific papers, and provides guarantees about correctness, convergence,
and completeness. Chiu and Lee [13] use generalized interval Gaussian elimination
to improve the efficiency of interval linear equality constraint solving.

3. Notations and Preliminaries

Constraints in CIAL are over real numbers. An interval is represented by an appro-
priate pair of inequality constraints bounding the value of a variable occurring in a
constraint or a logical-valued expression, which represents an unknown real number.
We denote this kind of variable by such typewriter-like upper case letters as X, Y
and Z. For example, {X > 3, X ≤ 6} denotes the relation X ∈ (3, 6]. Mathematical

4 C.K. CHIU AND J.H.M. LEE

interval variables (or constants) referring to non-empty floating-point intervals are
denoted by upper (or lower) case letters with superscript I , while real variables (or
constants) are denoted by ordinary upper (or lower) case letters.

Upper case letters in boldface denote matrices, e.g. A = (aij),B
I = (bI

ij), etc.

Column vectors are denoted by arrowed letters, such as ~X = (X1, . . . , Xn)T , where
the superscript T indicates the transpose of a matrix. We overload the

∑

symbol
to denote summation in the real, floating-point, and interval domains. The ex-
act meaning of the symbol can be inferred from the context of where the symbol
appears.

The rest of this section provides the theoretical background to this paper. The ba-
sics of interval arithmetic are presented. We then describe the syntax and semantics
of ICLP(R) language [34], which is the language basis of CIAL.

3.1. Interval Arithmetic Notations

The books [41, 42, 4] provide good introduction to interval analysis. Let IR be
the set of real numbers and IF a set of floating-point numbers, which include the
element 0. Mathematically, a real interval is a segment, possibly infinite, of the real
line and can be defined by an ordered pair of real numbers a ≤ b, where a is the
lower bound and b is the upper bound. For those intervals without upper bound or
lower bound, we use the symbols −∞ and +∞ as bounds respectively. Note that
−∞ and +∞ can only be used with open bounds. An interval is represented by the
usual mathematical notation, such as [1, 10) which denotes the set {x | 1 ≤ x < 10}.
We differentiate between real intervals and floating-point intervals. The bounds of
the elements of the former are real numbers; while the bounds of elements of the
latter are restricted to floating-point numbers.

The set of real intervals I(IR), induced by IR, is defined by

I(IR) = {(a, b] | a ∈ IR ∪ {−∞}, b ∈ IR} ∪ {[a, b) | a ∈ IR, b ∈ IR ∪ {+∞}}∪

{[a, b] | a, b ∈ IR} ∪ {(a, b) | a ∈ IR ∪ {−∞}, b ∈ IR ∪ {+∞}}.

The set of floating-point intervals I(IF), induced by IF , is defined similarly. We can
verify that I(IF) ⊂ I(IR).

If · ∈ {+,−,×, /}, the corresponding floating-point interval operations are de-
noted by

AI �BI = {a · b | a ∈ AI , b ∈ BI}.

In the case of interval division, �, we assume that BI does not contain 0.
We formally express outward-rounding by ξ : I(IR)→ I(IF). If J I is a non-empty

real interval,

ξ(JI) =
⋂

{JI′

∈ I(IF) | JI ⊆ JI′

}.

The outward-rounding function gives the tightest floating-point interval containing
JI .

EFFICIENT INTERVAL LINEAR EQUALITY SOLVING IN CLP 5

Cleary [15] introduces “logical arithmetic,” which is a relational version of inter-
val arithmetic, by defining distinct primitive arithmetic constraints over intervals.
The values of intervals that do not satisfy a constraint are eliminated by apply-
ing interval reduction [32] on the constraint. Interval reduction applies only to
individual constraints. In practice, there is usually more than one constraint in a
relational interval arithmetic system, resulting in a constraint network. The con-
straints interact with one another by sharing intervals. A relaxation algorithm [15],
which is similar to the arc-consistency algorithm AC-3 [38], is used to coordinate
the execution of interval reduction to narrow the intervals in a constraint network.
An interval constraint is stable if all bounds of its variables remain unchanged after
interval reduction is applied on the constraint; otherwise the constraint is active. A
network is stable if all constraints in the network are stable. Lee and van Emden [35]
show that the relaxation algorithm always terminates, in which case the constraint
network is either shown to be inconsistent, or reduced to stability. By interval
narrowing , we refer to the relaxation algorithm plus interval reduction operators
defined for each type of primitive constraint in the network.

3.2. Syntax and Semantics

The language framework of CIAL is based on ICLP(R) [34]. We give the syntax
and semantics of ICLP(R) in the following.

ICLP(R) and CLP(R) share the same syntax and declarative semantics [29, 30].
An interval constraint in CIAL is expressed as,

X1 ∈ II
1 , · · · , Xn ∈ II

n, p(X1, . . . , Xn),

where p is a relation on IRn and Xi ∈ II
i is an appropriate pair of inequalities.

The operational semantics is based on the generalizedMχ derivation [32], which is
shown in the following.

Let P be an interval CLP program and Gp be a goal in the form ?- ~Σ, ~Θ, ~∆,

where ~Σ is a set of stable constraints, ~Θ is a set of active constraints, ~∆ is a set
of atoms2, and “?-” is a symbol to indicate a goal or query in constraint logic
programming. Initially ~Σ is empty. Without loss of generality, an initial goal G0

is always of the form ?- G, where G is an atom. A derivation step that reduces a
goal Gp to another Gp+1 follows:

• γ ∈ ~∆ and the program P contains a rule3 H:- ~Θ′ , ~∆′ , such that the head
atom H can be unified with γ using substitution θ, i.e. Hθ = γθ. G

′

is

?- ((~Σ
⋃

~Θ), ~Θ′ , (~∆ \ γ)
⋃

~∆′)θ.

• Gp+1 is G
′

with (~Σ
⋃

~Θ)θ replaced by Fnf ((~Σ
⋃

~Θ)θ), where Fnf is a normal
function that maps from set of constraints to set of constraints in such a way
that

6 C.K. CHIU AND J.H.M. LEE

P |=Mχ
∃((~Σ

⋃

~Θ)θ)⇔ P |=Mχ
∃(Fnf ((~Σ

⋃

~Θ)θ))

where P |=Mχ
F means that the formula F is a logical consequence of P .

Theorem 1 [32] If C ′ is obtained from C using interval reduction on p, where
C is X1 ∈ II

1 , . . . , Xn ∈ II
n, p(X1, . . . , Xn) and C ′ is X1 ∈ II′

1 , . . . , Xn ∈ II′

n ,
p(X1, . . . , Xn), then |=Mχ

∃(C)⇔|=Mχ
∃(C ′).

Theorem 1 shows that interval reduction transforms an interval constraint into
another one with the same solution space. Interval narrowing, which performs
interval reduction repeatedly on interval constraints in a constraint network, is
therefore a normal-form function.

A generalizedMχ derivation is a sequence of goals, possibly infinite. A derivation
is successful if it is finite and the last goal is empty; finitely-failed if it is finite but
the last goal has one or more atoms. The generalized Mχ derivation ends with a
floundered goal if the last goal has one or more stable constraints. Floundered goal
gives “incomplete” solutions and should be interpreted as conditional answers [58].

Suppose a non-empty goal ?- ~Σ, ~Θ, ~∆ is derived from an initial goal ?- G and θ
is a composition of all the substitutions. The rule (G:- ~Σ, ~Θ, ~∆)θ is a conditional
answer to the original goal.

4. Limitations of Interval Narrowing

Interval narrowing with splitting is a common constraint solving technique used in
interval constraint logic programming languages [35, 33, 8, 46]. Recent results [12]
reveal that this technique is deficient in solving general systems of linear constraints.
We summarize the results here. Readers may refer to [12] for detailed analysis.

Interval narrowing can be classified as a fixed-point iterative method. Whether
it converges to reasonable sharp solutions depends highly on the initial bounds of
variables and the form of interval constraints. An obvious example is that interval
narrowing fails to narrow any variables in the simple system {X = Y, X = −Y }
with initial bounds X, Y ∈ [−50, 50]. Interval splitting [15] is a divide-and-conquer
algorithm for obtaining sharper interval solutions. It partitions an interval into
two, visits one, and visits the other upon backtracking. The efficiency of this
technique depends on the interval subdivision method and search strategy. In
general, interval narrowing with splitting is both time and storage consuming. Thus
it is impractical to use the combined technique on general system of interval linear
constraint solving. Chiu [12] justifies this claim by experiments on solving a set of
randomly generated systems of linear constraints of the form

A ~X = ~b, where A = (aij), ~X = (Xi),~b = (bi), aij 6= 0, bi 6= 0,

and Xi ∈ [−10000, 10000]

for 1 ≤ i, j ≤ n

with BNR Prolog [47], CLP(BNR) [8], Echidna [50] and ICL [33]. All the above
interval-narrowing-based systems fail to solve (either the program halts abruptly

EFFICIENT INTERVAL LINEAR EQUALITY SOLVING IN CLP 7

with trail/stack overflow or fails to give solutions with width less than 1) linear
systems with rank greater than 5. The performance of interval narrowing with
splitting has not been improved significantly when 20% to 40% of the coefficients
are replaced by zeros randomly. Even for sparse linear systems with 60% zero-
coefficients, only those of rank less than 11 can be handled.

Another deficiency of interval narrowing with splitting is its inability to detect
inconsistency. As stated in section 3.2, answers obtained from interval narrowing
should be regarded as conditional. A set of inconsistent constraints can be narrowed
to become stable without inconsistency being found. A simple example is

A + 1 = D (C1)
A + B = D (C2)
A, D ∈ [0,∞)
B ∈ (−∞, 0].

Equations (C1) and (C2) imply B = 1, which contradicts the fourth constraint
B ∈ (−∞, 0]. This inconsistency, however, cannot be detected by interval nar-
rowing even when interval splitting is applied [12]. Besides the incompleteness of
inconsistency detection, this example exhibits another important shortcoming of
interval narrowing. Both the lower bounds of variable A and D are narrowed to-
wards +∞ in the narrowing process. However, since the lower bounds move in
increment of 1 in each narrowing step, interval narrowing may take a long time to
stablize.

Benhamou et al [7] and Van Hentenryck et al [56] show an improvement on interval
narrowing. The results are implemented in the Newton language. Chiu [12] shows
that their improvement applies only to interval non-linear constraint solving. With
linear constraints, the Newton procedure [7] degenerates to interval narrowing.

5. An Efficient Interval Linear Solver

Motivated by the deficiencies of interval narrowing, our goal is to design a good
linear solver, which should satisfy the following criteria:

1. The linear solver must be amenable to efficient incremental execution. The
complexity of adding and solving a new constraint should be affected more by
the form of the new constraint, rather than of the constraints already collected
in the linear solver [40].

2. Linear constraint solving in the linear solver must be substantially more efficient
than interval narrowing.

3. Solutions given by the solver must be sound and accurate. The former criterion
implies that the real solutions should always fall into the answer intervals. To
satisfy the latter, the widths of answer intervals should be less than a reasonable
small value.

We propose the use of the preconditioned interval Gauss-Seidel method as the
backbone of such a linear constraint solver. The method, as originally designed,

8 C.K. CHIU AND J.H.M. LEE

works only on linear systems with square coefficient matrices. Even imposing such
a restriction, a naive incorporation of the traditional preconditioning algorithm in
a CLP language incurs a high worst-case time complexity of O(n4), where n is the
number of variables in the linear system. We generalize the algorithm for general
linear systems with m constraints and n variables, and give a novel incremental
adaptation of preconditioning of O(n2(n + m)) complexity. The efficiency of the
incremental preconditioned interval Gauss-Seidel method is demonstrated using
large-scale linear systems.

5.1. The Basic Interval Gauss-Seidel Method

In many applications, we have some crude bounds on the solution of a linear system

AI ⊗ ~XI = ~bI . Such a system can be solved efficiently by using some iterative
methods. The interval Gauss-Seidel method is one being widely-used in interval
computation [44].

Let the i-th equation in AI ⊗ ~XI = ~bI be

n
∑

j=1

(aI
ij ⊗XI

j) = bI
i where i ∈ {1, . . . , n}

and we have initial bounds on all variables. The interval Gauss-Seidel method
works by updating each variable XI

i by

XI
i ← ((bI

i 	

n
∑

j=1,j 6=i

(aI
ij ⊗XI

j))� aI
ii)

⋂

XI
i

in an iterative fashion. If, at any step, any variable becomes the empty interval,
then we conclude that the system has no solution.

In an iterative method, a system usually takes more than one iteration cycle
to converge. In addition, since we are considering constraint solving in a single
processor machine, only one equation can be examined at a time in sequence. The
previously computed values can be used as soon as they are available. Assuming
that variable updates are coordinated in a naive round-robin fashion, a sequential
version of the interval Gauss-Seidel method [5] is suggested to be

X
I(k)
i ← ((bI

i 	

j=i−1
∑

j=1

(aI
ij ⊗X

I(k)
j)	

j=n
∑

j=i+1

(aI
ij ⊗X

I(k−1)
j))� aI

ii)
⋂

X
I(k−1)
i .

The superscript (k − 1) of X
I(k−1)
i indicates that the variable is obtained in the

(k − 1)-st iteration cycle. The interval Gauss-Seidel method terminates when all
variables remain unchanged after an iteration or when the difference between the
new and the last computed values of each variable is less than a user-defined number.

The following definitions and lemma state the convergence criterion of a linear
system using the interval Gauss-Seidel method.

EFFICIENT INTERVAL LINEAR EQUALITY SOLVING IN CLP 9

Definition 1. [44] A sequence of intervals converges iff both the lower and upper
bounds converge.

Definition 2. [44] The hull of the solution set of a linear system is the set of
tightest intervals that enclose the solution of the linear system.

Definition 3. [44] The magnitude of an interval II = [l, u] is defined as mag(II) =
max(|l|, |u|), while its mignitude is defined as mig(II) = min(|l|, |u|), where |a|
denotes the absolute value of a real number a. An interval matrix AI = (aI

ij) is
said to be strictly diagonally dominant if

mig(aI
ii) >

n
∑

k=1,k 6=i

mag(aI
ik) for i = 1, . . . , n.

Lemma 1 [44] The interval Gauss-Seidel method is guaranteed to converge to the
hull of the solution set of a linear system if the coefficient matrix of the linear
system is strictly diagonally dominant.

If floating-point interval arithmetic is employed, the solutions obtained are usually
slightly wider than the hull of the solution set since outward-rounding is made.

5.2. Preconditioning

As stated in Lemma 1, the interval Gauss-Seidel method always converges to the
hull of the solution set on a system with strictly diagonally dominant coefficient
matrix, but this criterion may not be satisfied in a general system. Hence, one may
attempt to transform the system into an equivalent system in the sense that the
new system contains all solutions of the original system, but is strictly diagonally
dominant. Preconditioning effects such a transformation.

Preconditioning is usually done by multiplying a suitable point matrix P to the

original system. Instead of solving AI⊗ ~XI = ~bI , we deal with the following system:

P⊗AI ⊗ ~XI = P⊗ ~bI . (1)

We call P the preconditioner . Hansen [22] suggests the inverse mid-point matrix
as preconditioner. Let Ǎ denote the mid-point matrix of AI. We define

ǎij = (lij + uij)/2 where AI = ([lij , uij]) and Ǎ = (ǎij)

for i, j = 1, 2, . . . , n.

We compute the inverse of Ǎ using, say, row reduction. The real-valued Ǎ−1 is
used as the preconditioner P in equation (1).

Since preconditioning involves many interval multiplications, small errors will be
introduced due to interval dependency [44, pages 118–119] and outward-rounding.

10 C.K. CHIU AND J.H.M. LEE

A preconditioned system usually has slightly wider solutions than the original sys-
tem and these additional pseudo-solutions are called overestimation [43]. Overesti-
mation destroys the completeness of inconsistency detection in the interval Gauss-
Seidel method, since an inconsistent system of constraints may become consistent
after preconditioning. Readers may refer to [43, 44] for detailed analysis.

5.3. Incremental Execution

Solvers in constraint logic programming languages must be amenable to efficient
incremental execution. The preconditioned interval Gauss-Seidel method, as origi-
nally designed, however, operates in batch mode: all constraints are collected before
solving takes place. To adapt the preconditioned interval Gauss-Seidel method for
incremental execution, we need to consider the incremental update of precondi-
tioner , detection of inconsistency and redundancy , and application of precondition-
ing . We present the details of the stated issues in the following.

5.3.1. Incremental Update of Preconditioner We adopt the inverse mid-point
matrix preconditioner, as stated in Section 5.2. Assume that we have a collection
of m interval linear equalities of n variables. The mid-point coefficient matrix Ǎ is
thus an m× n matrix. The entries in Ǎ, which are mid-points of intervals, cannot
be represented exactly on a computer in general. We can simply round them to
their nearest floating-point numbers. The small errors introduced in the mid-point
matrix do not affect the convergence of the preconditioned system significantly.

Constraints are generated and submitted to the constraint solver incrementally
in a constraint logic programming language. The linear system in the solver does
not necessarily have a square matrix in general. We present how the preconditioner
can be computed from such a rectangular matrix.

For the case where n < m, it implies that some equalities are either redundant or
inconsistent to the system. Those equalities will be located by another algorithm
using a heuristic (to be discussed in Section 5.3.2) and they should not be used in
the calculation of the inverse. We disregard this case.

Otherwise, we have n ≥ m. We define a corresponding rectangular identity matrix
J by

J = (jkl), where jkl = 1 for k = l, jkl = 0 for k 6= l

for 1 ≤ k ≤ m and 1 ≤ l ≤ n.

The preconditioner P is computed (to be explained in the next paragraph and
described in details in Algorithm 1) by row reducing the combined matrix [Ǎ|J] until
the first m columns of Ǎ becomes the identity matrix I. The required preconditioner
P resides in the first m columns of the original J matrix. Note that P is an m×m
matrix. Therefore, the row reduced matrix has the form [I|U|P|Z], where I is the
m×m identity matrix, U is an m× (n−m) matrix to be used for future update of
the preconditioner, Z is an m× (n−m) zero matrix. We call [I|U|P|Z] the IUPZ
matrix .

EFFICIENT INTERVAL LINEAR EQUALITY SOLVING IN CLP 11

To construct the IUPZ matrix incrementally, we adapt a variant of the familiar
incremental Gaussian elimination procedure used in CLP(R) [40]. Assume that we
have a collection of r interval linear equalities of n variables with r < n. When a new
linear equality, whose mid-point coefficients are denoted by mr+1,l, is added, the
IUPZ matrix, X = (xkl) for 1 ≤ k ≤ r, 1 ≤ l ≤ n, is updated incrementally as shown
in Algorithm 1. Step 3 of the algorithm chooses the largest of xr+1,l for r+2 ≤ l ≤ n

1. The IUPZ matrix X is augmented to r + 1 rows by appending an extra row
where

xr+1,l = mr+1,l for 1 ≤ l ≤ n
xr+1,l = 0 for n + 1 ≤ l ≤ 2n and l 6= n + r + 1
xr+1,l = 1 for l = n + r + 1.

2. (Forward substitution) We subtract the (r+1)-st row of X from suitable multi-
ples of the first r rows such that the first r columns of the (r+1)-st row become
zeros.

3. (Pivoting) We interchange the (r + 1)-st column of X with a column chosen
from the (r + 1)-st to n-th columns, say the s-th, such that xr+1,r+1 ≥ xr+1,l

for r + 2 ≤ l ≤ n.

We also have to interchange the (n+r+1)-st column with the (n+s)-th column
accordingly. All interchanges are recorded to guarantee that their associated
variables in the constraints can be identified.

4. (Row Normalization) We divide all the elements in the (r + 1)-st row by a
suitable value such that xr+1,r+1 becomes 1.

5. (Backward substitution) We subtract the first r rows of X from suitable mul-
tiples of the (r + 1)-st row such that the (r + 1)-st columns of the first r rows
become zeros.

Algorithm 1. Incremental Update Procedure for the IUPZ Matrix

and performs pivoting to make xr+1,r+1 as large as possible. This pivoting step is
necessary since xr+1,r+1 is used as the divisor in the row normalization operation in
Step 4. A larger normalizer can help suppress the magnitude of normalized entries
in the (r + 1)-st row. The updated (r + 1) × (r + 1) preconditioner resides in the
(n + 1)-st to (n + r + 1)-st columns of the IUPZ matrix X.

An alternative to Algorithm 1 is to use linear programming to compute the width
optimal preconditioner [31, chapter 3].

5.3.2. Detection of Inconsistency and Redundancy There is no general method
to detect redundancy in an iterative method, especially in the interval context.

12 C.K. CHIU AND J.H.M. LEE

Inconsistency is revealed if an empty intersection is produced by applying the pre-
conditioned Gauss-Seidel method directly to the system. However, overestimation
prevents us from detecting all possible inconsistency.

In the implementation of an interval linear constraint solver, we must not use
inconsistent or redundant constraints in computing the preconditioner. Intuitively,
a system with redundant or inconsistent constraints often has more constraints
than the number of unknown variables. Selecting the “wrong” subset of equalities
for preconditioning produces a poor preconditioner in the sense that the execution
of the preconditioned system will terminate prematurely and fail to return sharp
intervals that correspond to the actual answers of the system. In the worst case,
the initial intervals of the variables are returned as answers un-narrowed. It is
important to note that the guaranteed inclusion property of interval methods still
holds although the answers returned may be of no practical use.

We use a simple heuristic to locate inconsistent and redundant equalities. Incre-
mental calculation of a matrix inverse involves forward substitution. If we find that
after forward substitution on, say, the (r+1)-st constraint during the calculation of
the inverse of the mid-point coefficient matrix Ǎ, all its remaining n− r coefficient
mid-points are less than a small user-defined value, say 10−10, then we conclude
that the (r + 1)-st constraint is either “redundant” or “inconsistent.” Inconsistent
and redundant constraints are both regarded as fruitless to preconditioning and will
not be employed in the preconditioning process.

Note that our proposed method is only a heuristic. Constraints concluded to be
redundant or inconsistent may indeed be independent and consistent. We cannot
simply conclude that the system is inconsistent. It is also improper to disregard
these constraints since it can result in excessively relaxed answer constraints. Cur-
rent practice in our implementation is to transfer these constraints to another solver,
which employs interval narrowing for constraint solving, for further scrutiny, in the
hope that the solver may narrow some intervals or reveal inconsistency. Thus, com-
putation results given by our system are interpreted as conditional answers [58, 12].

Lemma 2 Assume that we have a linear system with m equalities of n variables.
The incremental preconditioner update algorithm with inconsistency and redun-
dancy detection has worst-case time complexity O(n2(n + m)).

Proof: We consider the most complicated case where there are n independent and
consistent constraints (“independent constraints” for short), and (m− n) inconsis-
tent/redundant constraints. The incremental algorithm is invoked once a constraint
is added.

Assume that there are already i independent constraints in the solver. The addi-
tion of a new independent constraint involves (2n− i + 1)ic1 operations in forward
substitution, (2n− i)c2 operations in row normalization, and (2n− i)ic1 operations
in backward substitution, where c1 and c2 are constants and denote the cost of each
operation in forward substitution and normalization respectively. The incremental
update algorithm thus takes

∑n−1
i=0 ((4n− 2i+ 1)ic1 + (2n− i)c2) operations to add

n independent constraints.

EFFICIENT INTERVAL LINEAR EQUALITY SOLVING IN CLP 13

The detection of an inconsistent or redundant constraint takes (2n − i + 1)ic1

operations since it involves only forward substitution. The worst case scenario
occurs when all inconsistent/redundant constraints arrive after (n−1) independent
constraints have been added. This way the function f(i) = (2n− i+1)ic1 where i ∈
{1, . . . , n−1} is maximized. The heuristic thus takes (2n−(n−1)+1)(n−1)c1(m−n)
operations to locate (m− n) inconsistent/redundant constraints.

The complexity of the incremental preconditioner update algorithm with incon-
sistency and redundancy detection has worst-case time complexity

(n + 2)(n− 1)(m− n)c1 +
n−1
∑

i=0

((4n− 2i + 1)ic1 + (2n− i)c2) = O(n2(n + m)).

5.3.3. Incremental Application of Preconditioning We apply preconditioning only
in the cases where the number of variables is more than or equal to the number
of constraints. Extra constraints should have been moved to another solver in
the phase of inconsistency and redundancy detection. The application of precon-
ditioning involves multiplication of a point preconditioner matrix and an interval
coefficient matrix, which is of O(r2n) complexity4, where r and n are the number
of collected constraints and the number of variables respectively. Without incre-
mental application, we need to re-compute the preconditioned system from scratch
whenever new equalities are added in a derivation step. In the worst case (i.e. when
only exactly one new equality is collected in each derivation step and the entire
preconditioner is modified), the whole preconditioning application has complexity
O(n4). We give an incremental adaptation of preconditioning application of order
O(n3).

Let O
′

⊗ A
′
I ⊗ ~XI = O

′

⊗ ~b′I be a preconditioned system with r constraints
and n variables, where r < n. Without loss of generality, we assume that one
new equality is added to the system. Our goal is to make use of the previously

calculated O
′

⊗A
′
I and O

′

⊗ ~b′I to compute some parts of the new preconditioned

system P⊗AI⊗ ~XI = P⊗ ~bI . Note that AI differs from A
′
I by only an extra last

row.
Consider the computation of P⊗AI. We partition the new preconditioner P, the

new coefficient matrix AI, and their product as shown in Figure 1. The product
matrix RI can be calculated by the following equations:

RI

1 = O⊗AI

1 ⊕ L⊗AI

3 RI

2 = O⊗AI

2 ⊕ L⊗AI

4

RI

3
= M⊗AI

1
⊕N⊗AI

3
RI

4
= M⊗AI

2
⊕N⊗AI

4
.

(2)

All terms in (2), except O⊗AI

1
and O⊗AI

2
, can be calculated in O(r2) or O(r(n−r))

time. We concentrate on the computation of O⊗AI

1
and O⊗AI

2
.

The row reduced IUPZ matrix has the form [I|U|O′|Z] before a new constraint
is added. Let O

′

= (o
′

kl) for 1 ≤ k, l ≤ r and (uk) be the first column of U. When
a new constraint is added, the IUPZ matrix is depicted in the following.

14 C.K. CHIU AND J.H.M. LEE

P(r+1)×(r+1) AI
(r+1)×n P(r+1)×(r+1) ⊗ AI

(r+1)×n

RI

1r×r

RI

31×r

RI

2r×(n−r)

RI

41×(n−r)

AI

1r×r

AI

31×r

AI

2r×(n−r)

AI

41×(n−r)

=

Or×r

M1×r

Lr×1

N1×1

⊗

Figure 1. Partitioning of P, AI, and P ⊗ AI

1 0 · · · 0 u1 · · ·
0 1 · · · 0 u2 · · ·
· · · · · · · · · · · · · · · · · ·
0 0 · · · 1 ur · · ·

ǎr+1,1 ǎr+1,2 · · · ǎr+1,r ǎr+1,r+1 · · ·

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

o
′

11 o
′

12 · · · o
′

1r 0 · · ·

o
′

21 o
′

22 · · · o
′

2r 0 · · ·
· · · · · · · · · · · · · · · · · ·

o
′

r1 o
′

r2 · · · o
′

rr 0 · · ·
0 0 · · · 0 1 · · ·

If the new constraint is independent and consistent to the system, we should
have the following intermediate state after row normalization of the incremental
preconditioner update procedure:

1 0 · · · 0 u1 · · ·
0 1 · · · 0 u2 · · ·
· · · · · · · · · · · · · · · · · ·
0 0 · · · 1 ur · · ·
0 0 · · · 0 1 · · ·

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

o
′

11 o
′

12 · · · o
′

1r 0 · · ·

o
′

21 o
′

22 · · · o
′

2r 0 · · ·
· · · · · · · · · · · · · · · · · ·

o
′

r1 o
′

r2 · · · o
′

rr 0 · · ·
t1 t2 · · · tr tr+1 · · ·

where ti’s are some intermediate values. The updated (r+1)×(r+1) preconditioner
P is

P =

o
′

11 − u1t1 o
′

12 − u1t2 · · · o
′

1r − u1tr −u1tr+1

o
′

21 − u2t1 o
′

22 − u2t2 · · · o
′

2r − u2tr −u2tr+1

· · · · · · · · · · · · · · ·

o
′

r1 − urt1 o
′

r2 − urt2 · · · o
′

rr − urtr −urtr+1

t1 t2 · · · tr tr+1

. (3)

What we have described is the analytic solution of P, which depends by no means
on the mode, real or floating-point, of the arithmetic operators. Assuming that we
are using real (interval) arithmetic, we can establish the following equality and
inclusion relationships. We decompose the upper-left r × r sub-matrix O of P as
follows.

O = O
′

−

u1

u2

. . .
ur

× (t1 t2 . . . tr). (4)

EFFICIENT INTERVAL LINEAR EQUALITY SOLVING IN CLP 15

It follows that O⊗AI

1
and O⊗AI

2
can be approximated5 by

O⊗AI

1
⊆ O

′

⊗AI

1
	

u1

u2

. . .
ur

⊗ ((t1 t2 . . . tr)⊗AI

1
) (5)

O⊗AI

2
⊆ O

′

⊗AI

2
	

u1

u2

. . .
ur

⊗ ((t1 t2 . . . tr)⊗AI

2
) (6)

using the subdistributivity6 and associativity7 [41] properties of interval arithmetic.
Unfortunately, none of (4), (5), and (6) hold under floating-point (interval) arith-
metic since associativity and subdistributivity are no longer guaranteed.

The right-hand-sides of (5) and (6) contain O
′

⊗AI

1
and O

′

⊗AI

2
, slight supersets

of which are available from the previous preconditioned system. The multiplication
of an 1 × r vector and an r × r (or r × (n − r)) matrix is an O(r2) (or O(r(n −
r))) operation. Thus the computation of the right-hand-sides of (5) and (6) are
of O(r2) and O(r(n − r)) complexity respectively. We adapt this more efficient
method to precondition the system instead of using P as defined in (3). In the
following we state the preconditioning procedure before justifying the correctness of
the procedure.

We first widen each component of the floating-point vector (u1, u2, . . . , ur)
T by

a small amount, say 1e−12. The result is an interval vector (uI
1, u

I
2, . . . , u

I
r)

T . We
define CI

1
and CI

2
as follows:

CI

1 = O
′

⊗AI

1 	

uI
1

uI
2

. . .
uI

r

⊗ ((t1 t2 . . . tr)⊗AI

1)

CI

2 = O
′

⊗AI

2 	

uI
1

uI
2

. . .
uI

r

⊗ ((t1 t2 . . . tr)⊗AI

2).

We modify the left-hand-side of the preconditioned system by replacing the calcu-
lation of RI

1 and RI
2 in (2). The new calculation is:

RI

1
= CI

1
⊕ L⊗AI

3
RI

2
= CI

2
⊕ L⊗AI

4
.

We call the new left-hand-side of the preconditioned system KI ⊗ ~XI . The next

step is to find an appropriate floating-point preconditioner P′ to multiply ~bI , the
criterion being that P′ ⊗r AI ⊆ KI, where the symbol ⊗r denotes the real interval
multiplication. We first define the notion of inward-rounding : if J I is a non-empty
real interval, the inward-rounding function η : I(IR)→ I(IF) is defined as

η(JI) =
⋃

{J
′I ∈ I(IF)|J

′I ⊆ JI}.

16 C.K. CHIU AND J.H.M. LEE

We propose P′ to be P with the O part (as shown in Figure 1) replaced by Onew

defined as follows:

Onew ∈ O
′

	i

uI
1

uI
2

. . .
uI

r

⊗i (t1 t2 . . . tr) (7)

where the symbol 	i and ⊗i denote the inward-rounded interval subtraction and
multiplication respectively.

Lemma 3

Onew ⊗r AI

1 ⊆ O
′

⊗AI

1 	

uI
1

uI
2

. . .
uI

r

⊗ ((t1 t2 . . . tr)⊗AI

1).

Onew ⊗r AI

2 ⊆ O
′

⊗AI

2 	

uI
1

uI
2

. . .
uI

r

⊗ ((t1 t2 . . . tr)⊗AI

2).

Proof: From equation (7), we have

Onew ∈ O
′

	i

uI
1

uI
2

. . .
uI

r

⊗i (t1 t2 . . . tr).

Let the symbols ⊗r and 	r denote the real interval multiplication and subtraction
respectively. It follows that

Onew ⊗r AI

1
⊆ (O

′

	i

uI
1

uI
2

. . .
uI

r

⊗i (t1 t2 . . . tr))⊗r AI

1

⊆ (O
′

	r

uI
1

uI
2

. . .
uI

r

⊗r (t1 t2 . . . tr))⊗r AI

1

⊆ O
′

⊗r AI

1
	r (

uI
1

uI
2

. . .
uI

r

⊗r (t1 t2 . . . tr))⊗r AI

1

= O
′

⊗r AI

1
	r

uI
1

uI
2

. . .
uI

r

⊗r ((t1 t2 . . . tr)⊗r AI

1
)

EFFICIENT INTERVAL LINEAR EQUALITY SOLVING IN CLP 17

⊆ O
′

⊗AI

1
	

uI
1

uI
2

. . .
uI

r

⊗ ((t1 t2 . . . tr)⊗AI

1
).

Similarly, we can show

Onew ⊗r AI

2 ⊆ O
′

⊗AI

2 	

uI
1

uI
2

. . .
uI

r

⊗ ((t1 t2 . . . tr)⊗AI

2).

By Lemma 3, P′ satisfies the criterion that P′ ⊗r AI ⊆ KI. The definition
of Onew also explains why we need to widen the components of the (u1, . . . , ur)

T

vector: this is to facilitate the computation using inward-rounding so that there will
be less chance of “rounding inwardly” into empty intervals. Experiments show that
each element in the resultant matrix at the right-hand-side of (7) usually contains
several floating-point numbers so that the matrix Onew can be easily found. In
the case where some elements in the resultant matrix are empty intervals, we can
further widen the vector (u1, u2, . . . , ur)

T .

Therefore, the preconditioned system is KI ⊗ ~XI = P′ ⊗ ~bI . The following
lemma and theorem state the correctness result of our incremental preconditioning
procedure.

Lemma 4 Given two systems AI ⊗ ~XI = ~bI and KI ⊗ ~XI = P⊗~bI . Assume that
~x1

I and ~x2
I are the solutions of the two systems accordingly. If P ⊗r AI ⊆ KI,

then ~x1
I ⊆ ~x2

I .

Proof: Let ~x′
I

be the solutions of P ⊗r AI ⊗ ~XI = P ⊗r
~bI . Traditional non-

incremental preconditioning guarantees that ~x1
I ⊆ ~x′

I
. Since P ⊗r AI ⊆ KI and

P ⊗r
~bI ⊆ P ⊗~bI , from the inclusion monotonicity of interval arithmetic [41], we

know that ~x′
I
⊆ ~x2

I . It follows that ~x1
I ⊆ ~x2

I .

Theorem 2 Assume that we have a linear system with m equalities of n vari-
ables. The incremental preconditioning algorithm has worst-case time complexity
of O(n2(n + m)). All solutions of an interval linear system are preserved in the
incremental preconditioned system.

Proof: The algorithm consists of incremental update of preconditioner (with
inconsistency and redundancy detection) and incremental application of precondi-
tioning. As stated in Lemma 2, the preconditioner update procedure has worst-case
time complexity of O(n2(n + m)).

The preconditioned system is updated incrementally in either O(r2) or O(r(n−r))
time whenever the (r + 1)-st new independent equality is added. In the worst

18 C.K. CHIU AND J.H.M. LEE

case, there are n independent equalities and only one of them is collected in each
derivation step. The incremental application of preconditioning procedure thus has
time complexity of

∑n−1
r=0 r2 (or

∑n−1
r=0 r(n − r)) = O(n3).

It follows that the whole incremental preconditioning algorithm has worst-case
time complexity O(n2(n + m)).

From Lemmas 3 and 4, the incremental preconditioning algorithm preserves all
solutions of an interval linear system.

5.3.4. Interval Propagation The incremental preconditioning algorithm performs
only constraint transformations. The domains of the interval variables are then nar-
rowed by the interval Gauss-Seidel method.

In the interval Gauss-Seidel method, interval propagation proceeds unidirection-
ally from non-diagonal variables to diagonal variables. Such a propagation fails to
narrow some variables of systems which have more unknown variables than con-
straints. To maximize infeasible value elimination, we modify the interval propa-
gation in the interval Gauss-Seidel method as follows. Consider the i-th constraint

n
∑

j=1

(aI
ij ⊗XI

j) = bI
i where i ∈ {1, . . . , m}

in a linear system of m constraints and n variables, variables are updated by

XI
k ← ((bI

i 	
n

∑

j=1,j 6=k

(aI
ij ⊗XI

j))� aI
ik)

⋂

XI
k for k = i and m + 1, . . . , n.

(8)

This step is effective since the IUPZ matrix is diagonally dominant only in the
first m columns. Thus the entry aI

ik for k = m + 1, . . . , n is not necessarily small
as compared to the numerator (although aI

ik is typically of tiny magnitude for
k = 1, . . . , m and k 6= i).

The invocation of constraints in the linear constraint solver may not be organized
in a round-robin fashion. We discuss the details in Section 6.4.

6. Design of CIAL

We extend ICLP(R) [34], which is an extension of CLP(R) with interval narrow-
ing, with our proposed efficient linear constraint solver, resulting in a new interval
constraint logic programming system, CIAL (for Constraint Interval Arithmetic
Language). The syntax and semantics of CIAL are almost identical to those of
ICLP(R), except that the relational symbol “=” is replaced by “=:=”. In this sec-
tion, we describe the modules of CIAL and explain how they interact. Unification
between interval variables and other types of data, and decomposition of interval
constraints will also be discussed.

EFFICIENT INTERVAL LINEAR EQUALITY SOLVING IN CLP 19

6.1. The CIAL Architecture

Figure 2 gives an overview of the CIAL architecture. The input and the engine

 Linear
 Solver

 Solver
Interface

CIAL Solver

Input

Engine

Non−linear
 Solver

(A)

(C) (B)

(D)

(E)

Figure 2. An CIAL Architecture

components are adaptation of a Prolog interpreter. Their functions include unifi-
cation, goal reduction, and delivery of constraints collected at each derivation step
to the solver interface. The interface in turn decomposes and distributes the con-
straints to the linear solver and the non-linear solver accordingly. In the following,
we describe each component of the architecture and the interaction between the
two solvers in more detail.

6.2. The Inference Engine

The structure of the engine resembles that of a standard structure-sharing Pro-
log interpreter [3]. Equations between Prolog terms are handled by a standard
unification algorithm. Since constraints in CIAL are over real numbers , variables
occurring in constraints denote unknown real numbers. We refer to those variables
as interval variables. The introduction of interval variables calls for an extension
of the standard unification algorithm.

6.2.1. Interval Variables A variable X in a constraint becomes an interval vari-
able when it is involved in such simple inequality constraints as “X > 3, X ≤ 6,” or
such equality constraints as “X + 2 ∗ Y =:= Z, X ∗ X =:= Y.” In the first example,
we say that the interval (3, 6] is associated with the variable X. Semantically, an

20 C.K. CHIU AND J.H.M. LEE

interval variable is an ordinary variable occurring in a constraint or a logical-valued
expression. We distinguish interval variables from variables occurring in constraints
or logical-valued expressions purely for implementation efficiency.

ITAG

.

.

.

.

.

ITAG

Point to
constraint
list

Point to
constraint
list

.

.

 .
 .

.

.

.

.

Upper Bound (u)

Lower Bound (l)

OOOO
An interval variable with
associated interval (u,l)

An interval variable with
associated interval (− ,)

Figure 3. The Heap Representations of Interval Variables

Resembling domain variables in finite-domain languages [54], e.g. CHIP [1, 19],
an interval variable is represented as a variable with an associated interval. Its heap
representation is shown in Figure 3, where ITAG is a new tag introduced for interval
variables. Each interval variable in CIAL keeps a list of constraints in which the
variable appears. When an interval variable is narrowed, we can locate and wake up
its related constraints efficiently via the constraint list. By waking up a constraint,
we mean moving the constraint from the passive list to the active list. This list is
important since interval variables are modified often during computation.

6.2.2. Extended Unification Algorithm Additional binding mechanisms are de-
fined for unification between:

• an interval variable and a free variable
We simply bind the free variable to the interval variable. No constraint solver
will be invoked.

• an interval variable and an interval variable
To unify two interval variables X and Y, we compute the intersection of their
associated intervals. If the intersection J I is non-empty, we choose one of X and
Y (for efficiency reasons, we choose the variable which does not require trailing,
if possible), say X, and bind it to the other, Y in this case. Then we replace the

EFFICIENT INTERVAL LINEAR EQUALITY SOLVING IN CLP 21

associated interval of the chosen variable X by the intersection J I . Otherwise,
failure is reported.

• an interval variable and a number
We treat a number as an interval variable, the associated interval of which
has the number as closed upper and lower bounds. Thus, unification between a
number and an interval variable can be performed in the same way as unification
between two interval variables.

• an interval variable and other terms
Failure is reported.

When two interval variables are unified successfully, their constraint lists are merged
and all related constraints are waked up.

6.3. The Solver Interface and Constraint Decomposition

The design of the CIAL solver interface is similar to that of CLP(R) [30]. The solver
interface is called from the inference engine whenever a constraint contains an arith-
metic term. If the input constraint contains any number that cannot be represented
exactly as a floating-point number, the number will be first outward-rounded to an
interval. The constraint is then simplified by evaluating the arithmetic expression.
For example, the constraint “3+9-2*X=:=Y+4*X” is simplified to “12=:=Y+6*X.” If
the simplified constraint is an equality with only one variable, it is resolved in the
interface according to the extended unification algorithm. In all other cases, the
input constraint will be decomposed and then distributed to the linear and the
non-linear constraint solver accordingly.

CLP(R) differentiates between directly solvable constraints and hard constraints
[40]. The former are solved by either Gaussian elimination (for linear equalities)
or Simplex method (for linear inequalities) once they are collected, while the latter
are delayed from consideration until they become linear. We do otherwise in CIAL.
We do not delay any constraint. Once constraints are collected in a derivation step,
they will be narrowed in either the linear or the non-linear solvers. To maximize
the efficiency of constraint solving, we classify constraints into three categories.

An interval is non-narrowable if its width is less than a user-defined value or if
it cannot be further split in the underlying floating-point system (i.e. when the
lower and upper bounds of the interval are “adjacent” in the floating-point line).
Otherwise the interval is narrowable. A variable is non-narrowable if its associated
interval is non-narrowable. Otherwise, the variable is narrowable. A constant is
either a floating-point number or a non-narrowable variable. A narrowable variable
is a linear term. The multiplication of several terms is also a linear term if it
involves only constants and at most one linear term. Otherwise, the product is
a non-linear term. A linear constraint contains only summation of linear terms
and constants, while a non-linear constraint contains only summation of non-linear
terms and constants. A constraint is mixed if it contains both linear and non-linear
terms.

22 C.K. CHIU AND J.H.M. LEE

In CIAL, a linear constraint goes directly to the linear constraint solver without
being pre-processed. A non-linear constraint is first partitioned into a set of convex
primitives, as described in [15], and then delivered to the non-linear solver. For a
mixed constraint, we decompose it into a linear constraint and a set of non-linear
constraints. The resultant constraints are handled as ordinary linear or non-linear
constraints. The decomposition procedure is shown in Algorithm 2.

1. We linearize a mixed constraint by replacing all non-linear terms, each by a
temporary variable. Each of the non-linear terms and its corresponding tempo-
rary variable are associated by the relational symbol “=:=”, resulting in a new
non-linear constraint.

2. The linearized constraint is in the form,

f(X1, · · · , Xn) =:= c +

j
∑

k=1

(sk × Tk),

where f(X1, · · · , Xn) is a linear arithmetic term involving only program/query
variables, Xi’s are program/query variables, c is a constant, Tk’s are the tem-
porary variables introduced to replace non-linear terms, and sk = 1 or −1 for
k = 1, 2, · · · , j.

3. The linearized constraint is then partitioned into two by separating the pro-
gram/query variables from the temporary variables,

f(X1, · · · , Xn) =:= c + T0 and T0 =:=

j
∑

k=1

(sk × Tk).

4. We pass the constraint f(X1, · · · , Xn) =:= c + T0 to the linear solver. The

constraint T0 =:=
∑j

k=1(sk × Tk) and all non-linear constraints are partitioned
into primitives and they are delivered to the non-linear solver.

Algorithm 2. Constraint Decomposition Procedure

To improve the efficiency of linear constraint solving, we pass the linear constraint
T0 =:=

∑j

k=1(sk × Tk) to the non-linear solver instead of the linear solver. Interval
linear constraint solving usually involves variable elimination [20, 23, 44], which is

a time consuming process. If we deliver the constraint T0 =:=
∑j

k=1(sk×Tk) to the
linear solver, the temporary variables Tk, for k = 1, 2, . . . , j, are unique there and
they can never be eliminated. Thus, such a delivery does not help to give sharper
results, but only increases the number of operations unnecessarily.

We illustrate our constraint decomposition procedure by considering the following
query,

EFFICIENT INTERVAL LINEAR EQUALITY SOLVING IN CLP 23

?- 3 ∗ X + 5 ∗ Y− (X + Y) ∗ (6− Z) + Z ∗ Z =:= 10,
X + Y =:= 20, X ∗ Y ∗ Z =:= 12.

The underlined constraints are generated during decomposition.

1. The first constraint is linearized and we have

3 ∗ X + 5 ∗ Y− T1 + T2 =:= 10, T1 =:= (X + Y) ∗ (6− Z), T2 =:= Z ∗ Z,

X + Y =:= 20, X ∗ Y ∗ Z =:= 12.

Note that the term (X + Y) ∗ (6− Z) should not be further translated into

6 ∗ X + 6 ∗ Y− Z ∗ (X + Y)

which introduces one more occurrence of the variables X and Y. Such a transla-
tion aggravates the effect of the variable dependency problem [21].

2. We minimize the number of temporary variables in the linearized constraint,

3 ∗ X + 5 ∗ Y− T1 + T2 =:= 10,

by partitioning it into two,

3 ∗ X + 5 ∗ Y + T0 =:= 10, T0 =:= −T1+ T2, T1 =:= (X + Y) ∗ (6− Z),
T2 =:= Z ∗ Z, X + Y =:= 20, X ∗ Y ∗ Z =:= 12.

3. We further decompose the two non-linear constraints,

T1 =:= (X + Y) ∗ (6− Z), X ∗ Y ∗ Z =:= 12,

into a set of convex primitive constraints.

3 ∗ X + 5 ∗ Y + T0 =:= 10, T0 =:= −T1+ T2, T4 =:= X + Y, T5 =:= 6− Z,
T1 =:= T4 ∗ T5, T2 =:= Z ∗ Z, X+ Y =:= 20, X ∗ Y =:= T3, T3 ∗ Z =:= 12.

4. The linear constraints,

3 ∗ X + 5 ∗ Y + T0 =:= 10, X+ Y =:= 20,

are passed to the linear constraint solver, while the others,

T0 =:= −T1 + T2, T4 =:= X + Y, T5 =:= 6− Z, T1 =:= T4 ∗ T5,
T2 =:= Z ∗ Z, X ∗ Y =:= T3, T3 ∗ Z =:= 12,

are delivered to the non-linear constraint solver.

24 C.K. CHIU AND J.H.M. LEE

6.4. The Linear and the Non-linear Solvers

In traditional interval constraint logic programming languages, all interval con-
straints are solved under a uniform framework, interval narrowing. To improve
the efficiency of interval constraint solving, we separate linear equality constraint
solving from inequality and non-linear constraint solving in CIAL.

CIAL consists of two constraint solvers, a linear constraint solver and a non-linear
constraint solver. The former is responsible only for linear equality constraints.
Non-linear constraints and inequalities belong to the latter. The linear constraint
solver is based on the incremental preconditioned interval Gauss-Seidel method;
while the non-linear constraint solver employs interval narrowing with splitting as
the constraint solving technique.

The employment of more than one solver in CIAL calls for an interaction scheme.
We explain in Algorithm 3 how the two solvers cooperate in one constraint solving
step. Letters in parentheses refer to the labels in Figure 2. Steps 2 and 5-6 corre-
spond to the preconditioning phase and the interval propagation phase respectively
in the linear constraint solving.

A non-linear primitive constraint is sent to the linear solver only when the con-
straint becomes linear and it does not contain any temporary variable. Primitive
constraints with temporary variables always stay in the non-linear solver since they
usually cannot help to eliminate any variable in the constraints in the linear solver.

Theorem 3 The constraint solving step in Algorithm 3 always terminates. The
system is either inconsistent or stable.

Proof: The input constraints are finite. It implies that the invocations of the
constraint decomposition (Step 1) and the preconditioning (Step 2) procedures are
finite. Algorithm 3 halts either when the value of a variable becomes empty or both
the lists LA and NA become empty. In the former case, the system is inconsistent.
For the latter case, we observe that the size of the lists LA and NA decreases after
each iteration unless variables are narrowed. However, the precision of a floating-
point system is finite and no variables can be narrowed indefinitely. Therefore, both
the lists LA and NA must become empty after a finite number of iterations. All
constraints become stable. Thus the system is stable.

7. Benchmarkings

In order to demonstrate the feasibility of our proposal, we have constructed several
CIAL prototypes using the C programming language. Since CIAL has much in
common with CLP(R) on the surface, we decide to use CLP(R) as the backbone
of our implementation and try to adopt as much original CLP(R) code as possible.
It turns out that only the Prolog engine part of CLP(R) can be re-used in our
implementation. The solver interface and the two solvers are implemented from
scratch. We also modify the unification algorithm of the Prolog engine to cope with
unification between interval variables and other terms. All the implementations are
based on CLP(R) Version 1.2.

EFFICIENT INTERVAL LINEAR EQUALITY SOLVING IN CLP 25

Let LA and NA be two active lists which contain active constraints in the linear
and the non-linear solvers respectively.

1. A new interval constraint will be resolved in the solver interface if possible.
Otherwise, if the constraint is non-linear or mixed, it is decomposed into a
conjunction of primitive constraints, or a linear constraint and a conjunction of
primitive constraints respectively (A).

2. The linear constraint is sent to the linear solver. The preconditioner and the
preconditioned system are updated incrementally to include the new linear con-
straint. All modified preconditioned constraints are appended to the active list
LA (B).

3. The set of primitive constraints is sent to the non-linear solver and appended
to NA (C).

4. After all constraints in a derivation step are collected, the linear constraint
solver will be invoked first.

5. Assume that we have collected r linear equality constraints of c variables. Re-
move a preconditioned linear constraint from the active list LA, say the k-th
one of the linear system, the value of the k-th, and the (r + 1)-st to the c-th
variables are updated using equation (8). If any of the variables becomes empty,
the constraint solving step fails. Otherwise, if any of the variables is changed,
the constraints in both solvers that share that variable will be appended to LA
and NA accordingly (D).

6. Repeat step 5 until LA becomes empty.

7. In the non-linear solver, we apply interval narrowing [15] to make all the con-
straints there become stable. If interval narrowing fails, the constraint solving
step fails. Otherwise, if a variable is further narrowed and it is also involved in
some linear constraints, those constraints will be appended to LA (E).

8. Repeat steps 5 to 7 in a round-robin fashion until both LA and NA become
empty.

Algorithm 3. Interaction Scheme for the Two Solvers

26 C.K. CHIU AND J.H.M. LEE

CIAL (Alpha) [13] employs generalized interval Gaussian elimination in its lin-
ear solver. The proposed preconditioned interval Gauss-Seidel method has been
incorporated into CIAL 1.x [14]. The CIAL 1.0 (Beta) solver lacks incremental
execution. Although the preconditioner is constructed incrementally, the precondi-
tioned system (multiplying the preconditioner and the interval coefficient matrix)
are re-computed at every derivation step. The solver in CIAL 1.1 contains the
proposed incremental preconditioning algorithm. CIAL 1.1a differs from CIAL 1.1
in two ways. First, the time-consuming C library call ieee flags(), which serves
to set rounding directions and detecting floating-point exceptions, is replaced by
assembly code. Second, similar to other CLP(Interval) languages, all intervals in
CIAL 1.1a consist of closed bounds. We abandon the bound type calculation since
the type information is insignificant in most cases and its calculation is costly.
All the prototypes use interval narrowing with splitting in solving inequality and
non-linear constraints.

We compare our four CIAL prototypes with BNR Prolog v3.1.0 [6, 47], CLP(BNR)
(or BNR Prolog v4.2.3) [45, 8], Echidna Version 0.947 beta [52, 50], ICL [33], and
CLP(R) Version 1.2 [26, 30] over four numerical examples of various types: analysis
of a simple DC circuit, inconsistent simultaneous equations, the ball collision prob-
lem [28], and large systems of linear equations. The examples range from purely
linear constraints, to a mixture of linear and non-linear constraints, and to purely
non-linear constraints. BNR Prolog runs on an Apple Mac II (∼ 2 VAX MIPS with
5MB Ram) and the other systems run on a SUN SPARCstation 10 model 30 (∼ 49
VAX MIPS with 32MB Ram).

7.1. Analysis of DC Circuit

Electrical engineering is an important application area for constraint logic program-
ming [25]. Consider the simple DC circuit in Figure 4. We are interested in the
currents passing through the resistors.

Assume that V = 10 volts and Ri = i Ω for i = 1, 2, · · · , 9. The following system
of linear equations are obtained from nodal and mesh analysis.

Is − I1 − I2 − I8 = 0 , I1 = 10

−Is + I1 + I7 = 0 , 2I2 − 3I3 − 8I8 = 0

I2 + I3 − I5 = 0 , 3I3 + 5I5 − 9I9 = 0

−I3 − I4 + I8 − I9 = 0 , −4I4 + 6I6 + 9I9 = 0

I4 + I6 − I7 = 0 , −I1 + 4I4 + 7I7 + 8I8 = 0

I5 − I6 + I9 = 0

There are 11 linear equations but only 10 unknown variables. The redundant
equation cannot be located in advance, however. CIAL (Alpha) gives the following
results in 1.11s.

EFFICIENT INTERVAL LINEAR EQUALITY SOLVING IN CLP 27

+

−

V
R6

4R

2R

7R

3R
5R

1R

8R 9R

8I 9I

6I

2I 5I

4I

3I

7I

1I

Is

Is

Figure 4. A Simple DC Circuit

Is ∈ (10.8282985772, 10.8282985773) I5 ∈ (0.2572597934, 0.2572597935)
I1 ∈ [10.0000000000, 10.0000000000] I6 ∈ (0.2962385499, 0.2962385500)
I2 ∈ (0.5690898460, 0.5690898461) I7 ∈ (0.8282985772, 0.8282985773)
I3 ∈ (−0.3118300527,−0.3118300526) I8 ∈ (0.2592087312, 0.2592087313)
I4 ∈ (0.5320600272, 0.5320600273) I9 ∈ (0.0389787565, 0.0389787566)

CLP(R) responds in less than 1/60 second. CLP(R)’s efficiency over CIAL (Al-
pha) is due to the fact that generalized interval operations are time-consuming [13].
The solutions given by CLP(R) are, however, unsound.

With initial value [-100,100] for all variables, all the CIAL 1.x prototypes give
the same results8 as in CIAL (Alpha) and in less than 1/60 second.

By splitting 4 variables (Is, I1, I2, I3), ICL exits abruptly after 2 minutes of ex-
ecution; Echidna (in high precision) and BNR Prolog cannot terminate in 2 and
24 hours respectively. CLP(BNR) cannot give any solution (except I1) with width
less than 100, although all variables are specified to split. A more sophisticated use
of the precision(n) operator [52] in Echidna is to start with a coarse precision
and fine tune the precision while guiding the search simultaneously. This requires
a lot of insight into the problem itself. Adopting an iterative refinement approach,
anonymous referee C [49] uses Echidna to solve this problem in under 30 minutes
with 4 decimal places of accuracy.

This example demonstrates the inability of interval narrowing with splitting to
solve even small systems of linear constraints.

GlobSol9 is a self-contained Fortran 90 package that finds all, rigorously verified,
solutions to constrained and unconstrained global optimization problems, as well
as all, rigorously verified, solutions to algebraic systems of equations. Users need to
input only the objective and constraints, in a Fortran 90 program using, essentially,
standard Fortran syntax. GlobSol is also able to solve the DC Circuit problem

28 C.K. CHIU AND J.H.M. LEE

although with 14 splits. This is not surprising since GlobSol employs a wealth of
other interval and numerical techniques, such as an innovative method of finding
approximate feasible points, epsilon inflation in verification, set complementation
techniques to avoid large clusters of boxes, in addition to constraint propagation
and the interval Newton methods. While GlobSol is a powerful tool geared for
solving global optimization problems, it is based on the imperative programming
paradigm. In the DC Circuit example, CIAL requires little programming because
of its declarative nature. Users only have to state the 11 equalities and constraint
solving is performed automatically. In GlobSol, a small amount of algorithmic
programming in Fortran is still needed. The other major difference is that GlobSol
operates in batch mode: all constraints must be collected in one go before execution
begins. The design of CIAL caters to the incremental nature of the execution of
constraint logic programs.

7.2. Inconsistent Simultaneous Equations

The following ad hoc constraint system is obviously inconsistent, since B and C

should be equal and with value either 1 or -2 according to the first three constraints.
Neither value is, however, consistent with the initial bound of B.

A + C = D

A + B = D

C(C + 1) = 2

A ∈ (0,∞), B ∈ (−∞,−5)

With interval splitting on all variables, CLP(BNR) returns “yes;” ICL and BNR
Prolog do not terminate in 1 hour; Echidna returns “yes” with default precision and
exits abruptly with high precision. CLP(R) gives “maybe” with answer constraints.

All four CIAL prototypes can detect the inconsistency without using splitting but
with the cooperation of two solvers.

It is interesting to find that given the constraint C (C + 1) = 2, none of CLP(BNR),
BNR Prolog, and Echidna can calculate the value of C without using splitting, even
when the initial guess [-100,100] is given.

7.3. Collision Problem

The collision problem and the following program are adopted from [28]. This ex-
ample demonstrates the non-linear constraint solving ability of CIAL. The program
describes two objects, one stationary cubic wall and a ball moving along a quadratic
space curve. It tries to find the time that the ball hits the wall.

% object A/3 describes the shape of the wall

object A(X,Y,Z) :-

X <= 0, Y <= 0, Z <= 0.

% object B/3 describes the shape of the ball

object B(X,Y,Z) :-

EFFICIENT INTERVAL LINEAR EQUALITY SOLVING IN CLP 29

X2 + Y2 + Z2 =:= 1.

% center B/4 gives the position of the center of the ball

% at time T

center B(T,Cx,Cy,Cz) :-

Cx =:= T2 - 10, Cy =:= 2*T - 10,

Cz =:= T2 - 7*T + 10.

% object B moving/4 gives the point (X,Y,Z) that is in the

% ball at time T

object B moving(T,X,Y,Z) :-

center B(T,Cx,Cy,Cz), object B(X-Cx,Y-Cy,Z-Cz).

Given the following query,

?- T >= 0, object A(X,Y,Z), object B moving(T,X,Y,Z).,

all CIAL prototypes give the result,

T ∈ (1.6972243622, 3.3166247904).

It is the same as the results obtained from RISC-CLP(Real) [28], which employs
symbolic algebraic method for constraint solving.

{

T <= 3,
T2 − 7T+ 9 <= 0.

or

{

T >= 3,
T2 − 11 <= 0.

RISC-CLP(Real) cannot solve the above quadratic equations. We use some sym-
bolic algebra packages to solve the two systems. The union of the answers is

T ∈ (1.6972243622, 3.3166247904).

CIAL cannot give this sharp result if we do not use the square [12] primitive
constraint.

Both BNR Prolog, CLP(BNR), and ICL return similar results as CIAL. This is
predictable since their solvers are also based on interval narrowing. Echidna returns
a wide answer at low precision and exits abruptly at higher precision.

For efficiency reason, CLP(R) does not provide non-linear constraint solving. All
non-linear arithmetic constraints are classified as hard constraints, which will be
considered only when they become linear [40]. In this example, since no non-linear
constraints can become linear, they are delayed indefinitely. The output of CLP(R)
is

0 <= T, X <= 0, Y <= 0, Z <= 0,

- t12 * t12 - (Y - 2*T + 10) * (Y - 2*T + 10) + 1 = t10 * t10,

- t12 + Z + 7*T - 10 = T * T, - t10 + X + 10 = T * T.

30 C.K. CHIU AND J.H.M. LEE

7.4. Discussion

The last example on large-scale linear systems is beyond the capability of the in-
terval narrowing based systems, i.e. ICL, BNR Prolog, CLP(BNR), and Echidna.
We compare only the four CIAL prototypes and CLP(R). Before going into the
last example, we give a brief discussion on the previous benchmarking results.

The CIAL solvers subsume the constraint transformation (Preconditioning or
Gaussian elimination) and the interval narrowing technology. CLP(R) delays non-
linear constraints from consideration and interval narrowing fails to handle even
small system of linear constraints, as shown in Section 7.1. Thus, CLP(R), BNR
Prolog, CLP(BNR), Echidna, and ICL are deficient in solving mixtures of linear and
non-linear constraints. A simple example can be obtained by adding the constraint
Ix(Ix − 1) = Is to the system in Section 7.1.

7.5. Large Systems of Simultaneous Equations

We compare our four CIAL prototypes among themselves and against CLP(R)
over larger scale systems and incremental execution. A randomly generated linear
system of rank n is embedded in a program of n + 1 predicates.

The top level predicate t/0 sets the initial bounds [−10000, 10000] for all variables
and calls predicate p1/n. Each subsequent predicate pi/n submits one constraint
with n variables to the solver and calls p(i + 1)/n. That means that the pi/n
predicates form a “chain” and one constraint is added to the constraint solver in
each derivation step. This call pattern exercises the incrementality of the linear
solver to the fullest extent. For example, the program for rank 50 looks like the
following:

t :-

X0>= -10000,X0<=10000,

X1>= -10000,X1<=10000,
...

...

X49>= -10000,X49<=10000,

1 randomly generated constraint with 50 variables,
p1(X0,X1,X2,...,X49).

p1(X0,X1,X2,...,X49) :-

1 randomly generated constraint with 50 variables,
p2(X0,X1,X2,...,X49).

...
...

...

p48(X0,X1,X2,...,X49) :-

1 randomly generated constraint with 50 variables,
p49(X0,X1,X2,...,X49).

p49(X0,X1,X2,...,X49) :-

1 randomly generated constraint with 50 variables.

EFFICIENT INTERVAL LINEAR EQUALITY SOLVING IN CLP 31

Table 1. Computation Time and Speedup

Rank CIAL 1.0 (Beta) CIAL 1.1 Speedup CIAL 1.1a CLP(R)

10 0.35s 0.35s 1.00 0.19s 0.01s
20 2.87s 2.20s 1.30 1.69s 0.08s
30 12.99s 8.28s 1.57 4.07s 0.35s
40 38.50s 24.33s 1.58 11.22s 0.93s
50 85.06s 48.94s 1.74 22.50s 2.51s
60 171.73s 92.74s 1.85 45.04s 6.19s
70 371.58s 198.71s 1.87 76.38s 8.93s
80 544.25s 283.93s 1.92 122.47s 17.52s
90 838.93s 417.11s 2.01 180.68s 34.56s
100 1259.81s 607.91s 2.07 272.62s 39.07s

Table 1 shows the computation time for problems of size ranging from 10 to 100.
As expected, CIAL 1.1 exhibits good speedup over CIAL 1.0 (Beta) as the problem
size grows. Although solutions given by CIAL 1.1 are slightly wider than those of
CIAL 1.0 (Beta), solutions of CIAL 1.1 contain 8 decimal places of accuracy on
average. The timing of CIAL 1.1a should not be compared against that of CIAL
1.0 (Beta) to measure speedup since the former involves no bound type calculation.
We list the timing of CIAL 1.1a only to demonstrate the raw speed of CIAL, and
the inefficiency of bound type calculation and the C library call ieee flags(). The
corresponding timing for CLP(R) for each problem is also given. CLP(R) responds
in about 10∼40 times faster than the CIAL 1.x’s. At the time of implementation
and because of our choice of implementation language (for compliance with the
CLP(R) implementation), we could not adopt the best possible interval arithmetic
implementations, such as the one available in the Sun Forte Fortran 95 compiler10.
All our CIAL implementations are based on a home-grown rudimentary library of
interval arithmetic operations. The solutions given by CLP(R), however, suffer
from rounding errors. Many solutions given by CLP(R) fall out of the interval
solutions returned by the CLP(Interval) systems in test at around the fourth or
fifth decimal place. CIAL (Alpha) fails to return answer intervals of useful width
on linear systems of rank greater than 30.

8. Concluding Remarks

8.1. Summary and Contributions

In this paper, we have discussed the deficiencies of interval narrowing with splitting.
Our experiments show that interval narrowing based systems fail to solve even small
problems efficiently and effectively. Thus interval narrowing with splitting is im-

32 C.K. CHIU AND J.H.M. LEE

practical in solving general interval constraints over the real domain. We propose to
separate linear equality constraint solving from inequality and non-linear constraint
solving. We have extended and generalized the traditional preconditioned interval
Gauss-Seidel method, resulting in the incremental preconditioned interval Gauss-
Seidel method. This technique has been implemented in the linear constraint solver
of our new interval constraint logic programming system, CIAL (for Constraint In-
terval Arithmetic Language), which shares the same declarative and operational
semantics as those of ICLP(R) [34]. We have designed an architecture for CIAL
and established the interaction among the modules in the architecture. Unification
between interval variables and other terms is handled in an extended unification
algorithm. Input arithmetic constraints are decomposed into linear equalities and a
set of convex primitive constraints. The former is handled by the linear solver, while
we apply interval narrowing on the latter in the non-linear solver. We have con-
structed several CIAL prototypes and compared them with several major interval
constraint logic programming languages.

The contribution of our work is three-fold. First, we have derived an efficient
interval linear equality solver for incremental execution in interval CLP languages.
Its correctness has been established. Also, the solving method has worst-case time
complexity of O(n2(m+n)) complexity where m and n are the number of constraints
and variables respectively. Our complexity is the same as that of the incremental
Gaussian elimination used in CLP(R). Solutions given by the incremental pre-
conditioned interval Gauss-Seidel method are, however, slightly wider than those
obtained from the non-incremental method. Our large scale experiments show that
solutions given by this incremental method still reach 8 decimal places of accuracy
in general.

Second, we have shown how an interval linear solver can be incorporated into a
system which has already had a non-linear solver based on interval narrowing. We
have derived a constraint decomposition procedure and an interaction scheme for
the two solvers. Input constraints are divided into two categories, which will be
sent to two solvers accordingly. The two solvers share common variables, interact
in a round-robin fashion, and cooperate towards solving a system of numerical
constraints. We have shown the termination of the interaction scheme.

Third, we have constructed several prototypes of CIAL and compared them with
one another, as well as with several existing interval constraint logic programming
languages. Of the four prototypes, CIAL 1.1 (Beta) and CIAL 1.1a have been
shown to be the most efficient one in solving large scale linear systems. In the
comparisons of CIAL and other existing systems, CIAL is competitive in various
aspects: all prototypes are substantially more efficient and can solve more classes
of problems than any other existing systems when used alone.

8.2. Future Work

A number of questions remain to be investigated. The linear solver can only handle
linear equalities. It would be interesting to investigate how linear inequalities can
be accommodated.

EFFICIENT INTERVAL LINEAR EQUALITY SOLVING IN CLP 33

On the theoretical side, it would be interesting to study the level of interval con-
sistency attainable in the incremental preconditioned interval Gauss-Seidel method.
It should reach a consistency level falling between box consistency and hull consis-
tency [7].

Concerning implementations, our CIAL prototypes have much to be desired.
First, the CIAL architecture is rudimentary. Further optimizations, such as the
techniques used for CLP(R), might be applicable to CIAL. Second, the current
prototypes implement constraint solvers as independent modules separate from the
Prolog engine. Communications between the solvers and the Prolog engine incur
high overhead. Backtracking also becomes a costly operation. We expect that
the work of Lee and Lee [33] can be used as basis to integrate the interval con-
straint solving and the Prolog engine at the Warren Abstract Machine (WAM)
level. Third, the built-in constraints in CIAL are limited. To apply CIAL on real-
life problems (e.g. scheduling), more relations, such as max/2, min/2, sin/1 [45],
should be provided.

To establish the practicality of our approach, we need to try CIAL on more real-
life applications, e.g. job shop scheduling, process planning, assembly line balanc-
ing, temporal and spatial reasoning, multiagent planning, finite element modeling,
circuit design, etc.

Acknowledgments

We thank Spiro Michaylov, Roland Yap, and Tak-wai Lee for numerous discussions
and critical comments. We are indebted to insightful comments by anonymous
referees of ILPS94, ICLP95, the Journal of Logic Programming, and the Reliable
Computing Journal. R. Baker Kearfott has been most helpful and patient in deal-
ing with our submission to Reliable Computing. Access to CLP(R), BNR Prolog,
CLP(BNR), Echidna, and ICL is gratefully acknowledged. This research is sup-
ported in part by RGC Earmarked Grant (CUHK 70/93E) from the University
Grants Committee, and postgraduate studentships from The Chinese University of
Hong Kong and the Fundação Macau.

Notes

1. Prolog III provides the option of using floating-point arithmetic, although the default is rational
arithmetic.

2. If p is an n-ary predicate symbol (a function returning true or false) and t1, . . . , tn are terms,
then p(t1, . . . , tn) is an atom or atomic formula [37]. While terms denote objects, atoms denote
relations among terms.

3. A rule in an interval constraint logic program has the form H:- ~Θ′

, ~∆′ , where H is an atom,
~Θ′ is a set of constraints, ~∆′ is a set of atoms, and :- is a symbol to mean “if.” The rule

reads if ~Θ′ and ~∆′ are true, then H is also true.

4. We do not consider such special divide-and-conquer square matrix multiplication algorithms as
Strassen’s algorithm (O(n2.81)) [17]. Those algorithms usually introduce multiple occurrences
of variables and require the dimension of the matrix to be a power of 2. The latter can double
the storage in the worst case.

34 C.K. CHIU AND J.H.M. LEE

5. A floating-point number a can be regarded as a point interval [a, a]. Thus O can be regarded
as a matrix of point intervals.

6. AI ⊗ (BI ⊕ CI) ⊆ AI ⊗ BI ⊕ AI ⊗ CI .

7. (AI ⊗ BI) ⊗ CI = AI ⊗ (BI ⊗ CI).

8. CIAL 1.1a always gives closed bounds in its answers.

9. http://www.mscs.mu.edu/~globsol/

10.http://www.sun.com/forte/fortran/interval/

References

1. A. Aggoun and N. Beldiceanu. Overview of the CHIP compiler system. In Proceedings of
the Eighth International Conference on Logic Programming, pages 775–789, Paris, France,
1991.

2. A. Aiba, K. Sakai, Y. Sato, D.J. Hawley, and R. Hasegawa. Constraint logic programming
language CAL. In Proceedings of the International Conference on Fifth Generation Com-
puter Systems 1988, pages 263–276, Tokyo, Japan, 1988.

3. H. Äıt-Kaci. Warren’s Abstract Machine: A Tutorial Reconstruction. The MIT Press, 1991.

4. G. Alefeld and J. Herzberger. Introduction to Interval Computations. Academic Press, 1983.

5. R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,
C. Romine, and H. van der Vorst. Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods. Society for Industrial & Applied Mathematics, 1993.

6. Bell-Northern Research Ltd. BNR Prolog Reference Manual, 1988.

7. F. Benhamou, D. McAllester, and P. Van Hentenryck. CLP(Intervals) revisited. In Logic
Programming: Proceedings of the 1994 International Symposium, pages 124–138, Ithaca,
USA, 1994.

8. F. Benhamou and W.J. Older. Applying interval arithmetic to real, integer and boolean
constraints. Journal of Logic Programming, 32:1–24, 1997.

9. C. Bessiere. Arc-consistency and arc-consistency again. AI Journal, 65(1):179–190, 1994.

10. B. Buchberger. Gröbner bases: An algorithmic method in polynomial ideal theory. In N.K.
Bose, editor, Recent Trends in Multidimensional Systems Theory, chapter 6. D. Riedel Publ.
Comp., 1983.

11. B. Buchberger and H. Hong. Speeding-up quantifier elimination by Gröbner bases. Technical
Report 91-06.0, Research Institute for Symbolic Computation, Johannes Kepler University,
A-4040 Linz, Austria, 1991.

12. C.K. Chiu. Interval linear constraint solving in constraint logic programming. Master’s
thesis, Department of Computer Science, The Chinese University of Hong Kong, Shatin,
Hong Kong, 1994.

13. C.K. Chiu and J.H.M. Lee. Towards practical interval constraint solving in logic program-
ming. In Logic Programming: Proceedings of the 1994 International Symposium, pages
109–123, Ithaca, USA, 1994.

14. C.K. Chiu and J.H.M. Lee. Interval linear constraint solving using the preconditioned in-
terval Gauss-Seidel method. In Proceedings of the 12th International Conference on Logic
Programming, pages 17–31, Kanagawa, Japan, 1995.

15. J.G. Cleary. Logical arithmetic. Future Computing Systems, 2(2):125–149, 1987.

16. A. Colmerauer. An introduction to Prolog III. Communications of the ACM, 33(7):69–90,
July 1990.

17. T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. The MIT Press,
eighth edition, 1992.

18. E. Davis. Constraint propagation with interval labels. Artificial Intelligence, 32:281–331,
1987.

19. M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and F. Berthier. The
constraint logic programming language CHIP. In Proceedings of the International Conference
on Fifth Generation Computer Systems, pages 693–702, Tokyo, Japan, 1988.

EFFICIENT INTERVAL LINEAR EQUALITY SOLVING IN CLP 35

20. D.M. Gay. Solving interval linear equations. SIAM Journal on Numerical Analysis,
19(4):858–870, 1982.

21. E. Hansen. Global Optimization using Interval Analysis. Marcel Dekker, Inc., 1992.
22. E.R. Hansen. Interval arithmetic in matrix computations. SIAM Journal on Numerical

Analysis, 2:308–320, 1965.
23. E.R. Hansen. Bounding the solution of interval linear equations. SIAM Journal on Numerical

Analysis, 29(5):1493–1503, October 1992.
24. W.S. Havens, S. Sidebottom, J. Jones, M. Cuperman, and R. Davison. Echidna constraint

reasoning system: Next-generation expert system technology. Technical Report CSS-IS TR
90-09, Centre for Systems Science, Simon Fraser University, Burnaby, B.C., Canada, 1990.

25. N. Heintze, S. Michaylov, and P. Stuckey. CLP(R) and some electrical engineering problems.
Journal of Automated Reasoning, 9(2):231–260, October 1992.

26. N.C. Heintze, J. Jaffar, S. Michaylov, P.J. Stuckey, and R.H.C. Yap. The CLP(R) Program-
mer’s Manual Version 1.2. IBM Thomas J Watson Research Center, 1992.

27. H. Hong. Improvements in CAD-Based Quantifier Elimination. PhD thesis, The Ohio State
University, 1990.

28. H. Hong. Non-linear real constraints in constraint logic programming. In Proceedings of
the Second International Conference on Algebraic and Logic Programming, pages 201–212,
1992.

29. J. Jaffar and J-L. Lassez. Constraint logic programming. In Proceedings of the 14th ACM
POPL Conference, pages 111–119, Munich, January 1987.

30. J. Jaffar, S. Michaylov, P.J. Stuckey, and R.H.C. Yap. The CLP(R) language and system.
In ACM Transactions on Programming Languages and Systems, volume 14, pages 339–395,
1992.

31. R.B. Kearfott. Rigorous Global Search, Continuous Problems. Kluwer Academic Publishers,
1996.

32. J.H.M. Lee. Numerical Computation As Deduction In Constraint Logic Programming. PhD
thesis, Department of Computer Science, Logic Programming Laboratory, University of Vic-
toria, Victoria, Canada, 1992.

33. J.H.M. Lee and T.W. Lee. A WAM-based abstract machine for interval constraint logic
programming. In Proceedings of the Sixth IEEE International Conference on Tools with
Artificial Intelligence, pages 122–128, New Orleans, USA, 1994.

34. J.H.M. Lee and M.H. van Emden. Adapting CLP(R) to floating-point arithmetic. In Pro-
ceedings of the International Conference on Fifth Generation Computer Systems 1992, vol-
ume 16, pages 996–1003, Tokyo, Japan, 1992.

35. J.H.M. Lee and M.H. van Emden. Interval computation as deduction in CHIP. Journal of
Logic Programming, 16:255–276, 1993.

36. O. Lhomme. Consistency techniques for numeric CSPs. In Proceedings of the 13th Interna-
tional Joint Conference on Artificial Intelligence, 1993.

37. J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, second edition, 1987.
38. A.K. Mackworth. Consistency in networks of relations. AI Journal, 8(1):99–118, 1977.
39. A.K. Mackworth, J.A. Mulder, and W.S. Havens. Hierarchical arc consistency: Exploiting

structured domains in constraint satisfaction problems. Computational Intelligence, 1:118–
126, 1985.

40. S. Michaylov. Design and Implementation of Practical Constraint Logic Programming Sys-
tems. PhD thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA,
U.S.A, August 1992.

41. R.E. Moore. Interval Analysis. Prentice-Hall, 1966.
42. R.E. Moore. Methods and Applications of Interval Analysis. SIAM, 1979.
43. A. Neumaier. Overestimation in linear interval equations. SIAM Journal on Numerical

Analysis, 24(1):207–214, February 1987.
44. A. Neumaier. Interval Methods for Systems of Equations. Cambridge University Press, 1990.
45. W. Older. Constraints in BNR Prolog. Technical Report Draft 01, Software Engineering

Centre, Bell-Northern Research, Ottawa, Canada, 1993.
46. W. Older and A. Vellino. Extending Prolog with constraint arithmetic on real intervals. In

Proceedings of the Canadian Conference on Computer & Electrical Engineering, Ottawa,
Canada, 1990.

36 C.K. CHIU AND J.H.M. LEE

47. W. Older and A. Vellino. Constraint arithmetic on real intervals. In A. Colmerauer and
F. Benhamou, editors, Constraint Logic Programming: Selected Research, pages 175–196.
MIT Press, 1992.

48. W.J. Older. The application of relational arithmetic to X-ray diffraction crystallography.
Technical Report 89001, Software Engineering Centre, Bell-Northern Research, Ottawa,
Canada, 1989.

49. Journal of Logic Programming Referee C. Personal communication, November 1995.
50. G. Sidebottom and W.S. Havens. Hierarchical arc consistency for disjoint real intervals in

constraint logic programming. Computational Intelligence, 8(4):601–623, 1992.
51. G.A. Sidebottom. A Language for Optimizing Constraint Propagation. PhD thesis, School

of Computer Science, Simon Fraser University, November 1993.
52. S. Sidebottom, W. Havens, and S. Kindersley. Echidna Constraint Reasoning System (Ver-

sion 1): Programming Manual. Expert Systems Laboratory, Simon Fraser University, British
Columbia, Canada, 2.0 edition, 1992.

53. L. Sterling and E. Shapiro. The Art of Prolog. The MIT Press, second edition, 1994.
54. P. Van Hentenryck. Constraint Satisfaction in Logic Programming. The MIT Press, London,

England, 1989.
55. P. Van Hentenryck. A general introduction to Numerica. Artificial Intelligence, 103(1–

2):209–235, 1998.
56. P. Van Hentenryck, D. McAllester, and D. Kapur. Solving polynomial systems using a branch

and prune approach. SIAM Journal on Numerical Analysis, 34(2), 1997.
57. P. Van Hentenryck, L. Michel, and D. Kapur. Numerica: a Modeling Language for Global

Optimization. The MIT Press, 1997.
58. P. Vasey. Qualified answers and their application to transformation. In Proceedings of the

Third International Logic Programming Conference, pages 425–432, 1986.

