
Algebraic Properties of CSP Model Operators?Y.C. Law and J.H.M. LeeDepartment of Computer Science and EngineeringThe Chinese University of Hong KongShatin, N.T., Hong Kong SAR, Chinafyclaw,jleeg@cse.cuhk.edu.hk1 IntroductionThe task at hand is to tackle Constraint Satisfaction Problems (CSPs) de�nedin the sense of Mackworth [4]. This paper aims to take a �rst step towards aCSP-based module systems for constraint programming languages and modelingtools. The call for such a system is two-fold. First, most existing constraint pro-gramming languages have some sort of module systems, but these systems aredesigned for the underlying languages. Thus these module systems facilitate theconstruction of large constraint programs in a particular language, but not ofCSP models. Second, a module system designed for CSP models with clear andclean semantics should allow us to reason the properties of CSP models declar-atively without actually solving the CSPs. As a �rst attempt, we introduce sixoperators for manipulating and transforming CSP models: namely intersection,union, channeling, induction, negation, and complementation. For each operator,we give its syntactic construction rule, de�ne its set-theoretic meaning, and alsoexamine its algebraic properties, all illustrated with examples where appropri-ate. Our results show that model intersection and union form abelian monoidsrespectively among others.The rest of the paper is organized as follows. Section 2 provides the basicde�nitions relating to CSP models. In Section 3, we examine the de�nitions andproperties of the six operators in details. Section 4 gives further algebraic proper-ties, which allow us to identify possible algebraic structures of the operators. Wesummarize and shed light on possible future direction of research in Section 5.2 From Viewpoints to CSP ModelsThere are usually more than one way of formulating a problem P into a CSP.Central to the formulation process is to determine the variables and the do-mains (associated sets of possible values) of the variables. Di�erent choicesof variables and domains are results of viewing the problem P from di�er-ent angles/perspectives. We de�ne a viewpoint to be a pair (X;DX ), where? The work described in this paper was substantially supported by a grant from theResearch Grants Council of the Hong Kong Special Administrative Region (Projectno. CUHK4183/00E).



X = fx1; : : : ; xng is a set of variables, and DX is a set containing, for everyx 2 X, an associated domain DX (x) giving the set of possibles values for x.A viewpoint V = (X;DX ) de�nes the possible assignments for variables inX.An assignment in V (or in U � X) is a pair hx; ai, which means that variable x 2X (or U ) is assigned the value a 2 DX (x). A compound assignment in V (or inU � X) is a set of assignments fhxi1; a1i; : : : ; hxik; akig, where fxi1; : : : ; xikg �X (or U ) and aj 2 DX (xij ) for each j 2 f1; : : : ; kg. Note the requirement thatno variables may be assigned more than one value in a compound assignment.Given a set of assignments �, we use the predicate cmpd(�; V ) to ensure that� is a compound assignment in V . A complete assignment in V is a compoundassignment fhx1; a1i; : : : ; hxn; akig for all variables in X.When formulating a problem P into a CSP, the choice of viewpoints is notarbitrary. Suppose sol(P ) is the set of all solutions of P (in whatever notationsand formalism). We say that viewpoint V is proper for P if and only if we can�nd a subset S of the set of all possible complete assignments in V so that thereis a one-one mapping between S and sol(P ). In other words, each solution ofP must correspond to a distinct complete assignment in V . We note also thataccording to our de�nition, any viewpoint is proper with respect to a problemthat has no solutions.A constraint can be considered a predicate that maps to true or false. Thesignature sig(c) � X, which is the set of variables involved in c, de�nes thescope of c. We abuse terminology by saying that the compound assignmentfhxi1; a1i; : : : ; hxik; akig also has a signature: sig(fhxi1 ; a1i; : : : ; hxik ; akig) =fxi1; : : : ; xikg. Given a compound assignment � such that sig(c) � sig(�), theapplication of � to c, c�, is obtained by replacing all variables in c by the cor-responding values in �. If c� is true, we say � satis�es c, and � violates c oth-erwise. In addition, the negation :c of a constraint c is de�ned by the fact that(:c)� = :(c�) for all compound assignments � in X � sig(c). We overload the: operator so that it operates on both constraints and boolean expressions.A CSP model M (or simplymodel hereafter) of a problem P is a pair (V;C),where V is a proper viewpoint of P and C is a set of constraints in V for P .Note that, in our de�nition, we allow two constraints to be on the same setof variables: ci; cj 2 C and sig(ci) = sig(cj ). A solution of M = (V;C) is acomplete assignment � in V so that c� = true for every c 2 C. Since M isa model of P , the constraints C must be de�ned in such a way that there isa one-one correspondence between sol(M ) and sol(P ). Thus, the viewpoint Vessentially dictates how the constraints of P are formulated (modulo solutionequivalence).3 Operators over CSP ModelsWe are interested in operators in the space of CSP models. In this section,we introduce several such operators and give the set-theoretic semantics andproperties of these operators. In the rest of the presentation, we assume M1 =(V1; CX1) and M2 = (V2; CX2), V1 = (X1; DX1) and V2 = (X2; DX2).



Model intersection forms conjuncted models by essentially conjoining con-straints from constituent models. A solution of a conjuncted model must thusalso be a solution of all of its constituent models. More formally, the conjunctedmodel M1 \M2 is ((X1 [X2; DX1[X2 ); CX1 [CX2), where for all x 2 X1 [X2,DX1[X2 (x) =8<:DX1 (x) if x 2 X1 ^ x =2 X2DX2 (x) if x =2 X1 ^ x 2 X2DX1 (x) \DX2 (x) otherwiseWe overload the \ operator so that it operates on CSP models as well as sets. Aconsequence of the de�nition is that every solution of a conjuncted model mustsatisfy all constraints in its constituent models.Model union deals with choices in constraint processing. The result is a dis-juncted model , which allows solutions of any one of the constituent models tobe extended to solutions of the disjuncted model. More formally, the disjunctedmodel M1 [M2 is ((X1 [X2; DX1[X2 ); fc1 _ c2jc1 2 CX1 ^ c2 2 CX2g), wherefor all x 2 X1 [X2,DX1[X2 (x) =8<:DX1 (x) if x 2 X1 ^ x =2 X2DX2 (x) if x =2 X1 ^ x 2 X2DX1 (x) [DX2 (x) otherwiseWe overload the [ operator so that it operates on CSP models as well as sets.The strength of the combined whole may well be more than the sum of thestrength of the individuals. This is the case with the solution set of a disjunctedmodel with respect to its constituent models.Cheng et al. [1] de�ne a channeling constraint c to be a constraint, wheresig(c) 6� X1, sig(c) 6� X2, and sig(c) � X1 [X2. We note in the de�nition thatthe constraints in the two models are immaterial. Channeling constraints relateactually viewpoints but not models. Suppose there is a set Cc of channelingconstraints connecting the viewpoints V1 and V2. Model channeling combinesM1 and M2 using Cc to form a channeled model, which is M1 \M2 plus thechanneling constraints Cc. More formally, the channeled model M1 Cc./ M2 is((X1 [X2; DX1[X2 ); CX1 [ CX2 [Cc), where for all x 2 X1 [X2,DX1[X2 (x) =8<:DX1 (x) if x 2 X1 ^ x =2 X2DX2 (x) if x =2 X1 ^ x 2 X2DX1 (x) \DX2 (x) otherwiseGiven two models M1 and M2. The channeled model M1 Cc./ M2 is more con-strained than the conjuncted model M1 \M2. A solution of M1 Cc./ M2 mustsatisfy all constraints in M1 and M2 plus the channeling constraints Cc.Model induction [3] is a method for systematically generating a new modelfrom an existing model, using another viewpoint and channeling constraints. Wenote that a model M1 contains two types of constraints: the explicit constraintsas stated in CX1 and the implicit constraints for enforcing valid variable as-signments. Given a set of channeling constraints de�ning a total and injective



function f from the possible assignments in V1 to those in V2. The core of modelinduction is a meaning-preserving transformation from constraints in modelM1,both implicit and explicit (CX1), using f to generate constraints CX2 in view-point V2. Due to space limitation, readers are referred to Law and Lee [3] for thedetailed de�nition of model induction.Model negation takes a model as input and generates a negated model bynegating all constraints in the original model. Given a model M = (V;C), theviewpoint of the negated model remains unchanged. For each constraint c 2 C,the negated constraint :c is in the negated model. Thus :M = (V; f:cjc 2 Cg).We overload also the : operator so that it operates on CSP models as well asboolean expressions. Since we negate all constraints, solutions of the negatedmodel :M consist of all complete assignments that violate all constraints in M .Unfortunately, solutions of :M cannot be constructed from solutions of M , butnegation does neutralize each other by the fact that (:(:c))� = :((:c)�) =:(:(c�)) = c�.Model complementation provides an alternative means to handle negativeinformation. The complemented model M of a modelM contains the same view-point as M . The only constraint in M is the negation of the conjunction of allconstraints in M . Solutions of M thus violates at least one constraint in M .More formally, if M = (V;C), then M = (V; f:(VC)g), where :(VC) is equiv-alent to Wf:cjc 2 Cg. Solutions of M and M partition the set of all possiblecomplete assignments for (the viewpoint of) M . By de�nition, complementationalso annihilates the e�ect of another.4 Algebraic StructuresIn this section, we identify the algebraic structures of some of the introducedoperators. In the following,M = (V;C), M1, and M2 denote CSP models. E; =((;; ;); ;) is the empty CSP , which consists of no variables and no constraints.E? = ((;; ;); ffalseg) is the contradictory CSP , which has also no variablesand only the constant false as constraint. The empty CSP is a satis�able CSPwith the empty assignment ; as its solution, while the contradictory CSP isunsatis�able with no solutions. A monoid [2] (G;�) is a nonempty set G togetherwith a binary operation � on G which is associative, and there exists an identityelement e 2 G such that a� e = e� a = a for all a 2 G. A monoid is said to beabelian if � is commutative. Let M be the set of all CSP models.Table 1 summarizes the common algebraic properties of some of the intro-duced model operators. Except for the distributivity of union over intersection,we skip the proof of the other straightforward properties. As we can see, (M;\)forms an abelian monoid with the empty CSP E; as the identity element. Modelintersection is also idempotent sinceM\M =M . Similarly, (M;[) forms also anabelian monoid with the contradictory CSP E? as the identity element. Besides,taking the union of any model and the empty CSP E; vanishes the constraintsin the disjuncted model, which has all complete assignments as solutions. Bothintersection and union fail to be a group due to the lack of inverse elements.



Table 1. Algebraic Properties of Some Model Operators�M1 \M2 =M2 \M1 � M1 [ (M2 \M3) = (M1 [M2) \ (M1 [M3)� (M1 \M2) \M2 =M1 \ (M2 \M3)�M \E; =M � M1 Cc./ M2 =M2 Cc./ M1�M \M =M � (M1 Cc1./ M2) Cc2./ M3 =M1 Cc1./ (M2 Cc2./ M3)� M1 ;./ M2 =M1 \M2�M1 [M2 =M2 [M1� (M1 [M2) [M3 =M1 [ (M2 [M3) � :(M1 \M2) = :M1 \ :M2�M [E? =M�M [E; = (V; ;)5 Concluding RemarksA good module system should be compositional and be based on a rich algebra ofmodel operators. We introduce six such operators and examine their properties.The work as reported is insu�cient to form a practical model algebra, but shouldserve to shed light on the design of future CSP-based module systems.We believe that we are the �rst to propose a systematic study of modeloperators and their algebraic properties. It is a purpose of the paper to arouseinterest in this important new direction of research. There is plenty of scope forfuture work. First, it would be interesting to look for other useful operators, andeven perhaps to re�ne the de�nition of the proposed operators. In particular, wefocus on satis�able models, and relatively little is known about the negation andcomplementation operators. Second, much work is needed to design a practicaland yet versatile module system, based on an algebra (even if there is one), inconstraint-based interactive problem-solving tools and constraint programminglanguages. Third, the work suggests the possible notions of \reusable modelcomponents" and \model patterns," which can serve as the brick and mortar forand save much e�ort in the construction of huge and complex CSP models.References1. B.M.W. Cheng, K.M.F. Choi, J.H.M. Lee, and J.C.K. Wu. Increasing constraintpropagation by redundant modeling: an experience report. Constraints, 4(2):167{192, 1999.2. T.W. Hungerford. Algebra. Springer-Verlag, 1974.3. Y.C. Law and J.H.M. Lee. Model induction: a new source of CSP model redundancy.In Proceedings of the 18th National Conference on Arti�cial Intelligence, 2002.4. A.K. Mackworth. Consistency in networks of relations. AI Journal, 8(1):99{118,1977.


