Algebraic Properties of CSP Model Operators*

Y.C. Law and J.H.M. Lee

Department of Computer Science and Engineering
The Chinese University of Hong Kong
Shatin, N.T., Hong Kong SAR, China

{yclaw, jlee}@cse.cuhk.edu.hk

1 Introduction

The task at hand is to tackle Constraint Satisfaction Problems (CSPs) defined
in the sense of Mackworth [4]. This paper aims to take a first step towards a
CSP-based module systems for constraint programming languages and modeling
tools. The call for such a system is two-fold. First, most existing constraint pro-
gramming languages have some sort of module systems, but these systems are
designed for the underlying languages. Thus these module systems facilitate the
construction of large constraint programs in a particular language, but not of
CSP models. Second, a module system designed for CSP models with clear and
clean semantics should allow us to reason the properties of CSP models declar-
atively without actually solving the CSPs. As a first attempt, we introduce six
operators for manipulating and transforming CSP models: namely intersection,
union, channeling, induction, negation, and complementation. For each operator,
we give its syntactic construction rule, define its set-theoretic meaning, and also
examine its algebraic properties, all illustrated with examples where appropri-
ate. Our results show that model intersection and union form abelian monoids
respectively among others.

The rest of the paper is organized as follows. Section 2 provides the basic
definitions relating to CSP models. In Section 3, we examine the definitions and
properties of the six operators in details. Section 4 gives further algebraic proper-
ties, which allow us to identify possible algebraic structures of the operators. We
summarize and shed light on possible future direction of research in Section 5.

2 From Viewpoints to CSP Models

There are usually more than one way of formulating a problem P into a CSP.
Central to the formulation process is to determine the variables and the do-
mains (associated sets of possible values) of the variables. Different choices
of variables and domains are results of viewing the problem P from differ-
ent angles/perspectives. We define a viewpoint to be a pair (X, Dx), where

* The work described in this paper was substantially supported by a grant from the
Research Grants Council of the Hong Kong Special Administrative Region (Project
no. CUHK4183/00E).

X = {a1,...,2,} is a set of variables, and Dy is a set containing, for every
z € X, an associated domain Dx (z) giving the set of possibles values for .

A viewpoint V' = (X, Dx) defines the possible assignments for variables in X
An assignment in V (orin U C X)) is a pair (z, a), which means that variable z €
X (or U) is assigned the value a € Dx(z). A compound assignment in V (or in
U C X) is a set of assignments {{(z;,,a1),..., (x5, ar)}, where {z;,,...,2;,} C
X (or U) and a; € Dx (;,) for each j € {1,...,k}. Note the requirement that
no variables may be assigned more than one value in a compound assignment.
Given a set of assignments 6, we use the predicate empd(f, V') to ensure that
is a compound assignment in V. A complete assignment in V is a compound
assignment {{(x1,a1),...,{xn, ar)} for all variables in X.

When formulating a problem P into a CSP, the choice of viewpoints is not
arbitrary. Suppose sol(P) is the set of all solutions of P (in whatever notations
and formalism). We say that viewpoint V is proper for P if and only if we can
find a subset S of the set of all possible complete assignments in V' so that there
is a one-one mapping between S and sol(P). In other words, each solution of
P must correspond to a distinct complete assignment in V. We note also that
according to our definition, any viewpoint is proper with respect to a problem
that has no solutions.

A constraint can be considered a predicate that maps to true or false. The
signature sig(c) C X, which is the set of variables involved in ¢, defines the
scope of ¢. We abuse terminology by saying that the compound assignment
{5, a1), ..., (x4, ax)} also has a signature: sig({{ws,,a1),...,{(xi,,ar)}) =
{iy, ...,z }. Given a compound assignment ¢ such that sig(c) C sig(d), the
application of 8 to ¢, cf, is obtained by replacing all variables in ¢ by the cor-
responding values in 6. If ¢f is true, we say 6 satisfies ¢, and 6 violates ¢ oth-
erwise. In addition, the negation —c¢ of a constraint ¢ is defined by the fact that
(me)f = =(ef) for all compound assignments 6 in X D sig(c). We overload the
- operator so that it operates on both constraints and boolean expressions.

A CSP model M (or simply model hereafter) of a problem P is a pair (V, C),
where V' is a proper viewpoint of P and C'1s a set of constraints in V for P.
Note that, in our definition, we allow two constraints to be on the same set
of variables: ¢;,¢; € C and sig(c;) = sig(e;). A solution of M = (V,C) is a
complete assignment 6 in V so that c8 = true for every ¢ € C. Since M 1is
a model of P, the constraints C' must be defined in such a way that there is
a one-one correspondence between sol(M) and sol(P). Thus, the viewpoint V
essentially dictates how the constraints of P are formulated (modulo solution
equivalence).

3 Operators over CSP Models

We are interested in operators in the space of CSP models. In this section,
we introduce several such operators and give the set-theoretic semantics and
properties of these operators. In the rest of the presentation, we assume M; =

(Vl,CXl) and Mz = (VZ,CX2), V1 = (XlaDXl) and V2 = (XZ,DX2).

Model intersection forms conjuncted models by essentially conjoining con-
straints from constituent models. A solution of a conjuncted model must thus
also be a solution of all of its constituent models. More formally, the conjuncted
model My N M5 is (X1 U X2, Dx,ux,), Cx, UCx,), where for all z € X; U X3,

DX1($) ifl‘EX1/\l‘¢X2
DXlUX2(x): DX2(x) lf$¢X1A$EX2
Dx,(x) N Dx,(z) otherwise

We overload the N operator so that it operates on CSP models as well as sets. A
consequence of the definition is that every solution of a conjuncted model must
satisfy all constraints in its constituent models.

Model union deals with choices in constraint processing. The result is a dis-
guncted model, which allows solutions of any one of the constituent models to
be extended to solutions of the disjuncted model. More formally, the disjuncted
model My U Ms is ((X1 U X, Dx,ux,),{c1 Vealer € Cx, Aea € Cx,}), where
for all # € X1 U X5,

Dx,(z) ifeeXiAe ¢ X,
DXlUX2(x): DX2(x) lf$¢X1AxEX2
Dx,(x) U Dx,(z) otherwise

We overload the U operator so that it operates on CSP models as well as sets.
The strength of the combined whole may well be more than the sum of the
strength of the individuals. This is the case with the solution set of a disjuncted
model with respect to its constituent models.

Cheng et al. [1] define a channeling constraint ¢ to be a constraint, where
sig(c) € Xq, sig(e) € Xa, and sig(c) C X1 U X3. We note in the definition that
the constraints in the two models are immaterial. Channeling constraints relate
actually viewpoints but not models. Suppose there is a set €. of channeling
constraints connecting the viewpoints V; and V5. Model channeling combines
My and M5 using C. to form a channeled model, which 1s M; N Ms plus the

channeling constraints C.. More formally, the channeled model M; gf] My 1s
(X1 U X9, Dx,ux,),Cx, UCx, UC,), where for all € X; U X5,

Dx,(z) ifeeXiAe ¢ X,
DXlUX2(x): DX2(x) lf$¢X1A$EX2
Dx,(x) N Dx,(z) otherwise

Given two models M7 and M,. The channeled model M, gﬁ M5 1s more con-

strained than the conjuncted model M; N My. A solution of M gf] M- must
satisfy all constraints in My and M, plus the channeling constraints C..

Model induction [3] is a method for systematically generating a new model
from an existing model, using another viewpoint and channeling constraints. We
note that a model M; contains two types of constraints: the explicit constraints
as stated in C'x, and the implicit constraints for enforcing valid variable as-
signments. Given a set of channeling constraints defining a total and injective

function f from the possible assignments in V} to those in V5. The core of model
induction i1s a meaning-preserving transformation from constraints in model My,
both implicit and explicit (Cx,), using f to generate constraints Cx, in view-
point V5. Due to space limitation, readers are referred to Law and Lee [3] for the
detailed definition of model induction.

Model negation takes a model as input and generates a negated model by
negating all constraints in the original model. Given a model M = (V, (), the
viewpoint of the negated model remains unchanged. For each constraint ¢ € C'
the negated constraint —e is in the negated model. Thus =M = (V| {—c|c € C}).
We overload also the = operator so that it operates on CSP models as well as
boolean expressions. Since we negate all constraints, solutions of the negated
model =M consist of all complete assignments that violate all constraints in M.
Unfortunately, solutions of =M cannot be constructed from solutions of M, but
negation does neutralize each other by the fact that (=(—c¢))d = =((—¢)f) =
—(=(eh)) = cb.

Model complementation provides an alternative means to handle negative
information. The complemented model M of a model M contains the same view-
point as M. The only constraint in M is the negation of the conjunction of all
constraints in M. Solutions of M thus violates at least one constraint in M.
More formally, if M = (V,C), then M = (V, {=(A C)}), where =(/A\ C) is equiv-
alent to \/{=c|e € C}. Solutions of M and M partition the set of all possible
complete assignments for (the viewpoint of) M. By definition, complementation
also annihilates the effect of another.

4 Algebraic Structures

In this section, we identify the algebraic structures of some of the introduced
operators. In the following, M = (V, (), My, and M, denote CSP models. Ey =
((0,0),0) is the empty CSP, which consists of no variables and no constraints.
E; = ((0,0),{false}) is the contradictory CSP, which has also no variables
and only the constant false as constraint. The empty CSP is a satisfiable CSP
with the empty assignment) as its solution, while the contradictory CSP is
unsatisfiable with no solutions. A monoid [2] (G, ®) is a nonempty set G together
with a binary operation @ on G which is associative, and there exists an identity
element e € (G such that a ® e = e ® a = a for all @ € G. A monoid is said to be
abelian if © is commutative. Let M be the set of all CSP models.

Table 1 summarizes the common algebraic properties of some of the intro-
duced model operators. Except for the distributivity of union over intersection,
we skip the proof of the other straightforward properties. As we can see, (M,N)
forms an abelian monoid with the empty CSP Ejy as the identity element. Model
intersection is also idempotent since MNM = M. Similarly, (M, U) forms also an
abelian monoid with the contradictory CSP E as the identity element. Besides,
taking the union of any model and the empty CSP Ej vanishes the constraints
in the disjuncted model, which has all complete assignments as solutions. Both
intersection and union fail to be a group due to the lack of inverse elements.

Table 1. Algebraic Properties of Some Model Operators

0M10M2:M20M1 OM1U(M20M3):(M1UMQ)O(M1UM3)
o(MlﬁMQ)ﬁMQZMlﬁ(MQOMg)
e MAEy=M o My 5§ My = My 55 M,
Ceq Cey Ceq Cey
e MNM=M O(M1[><1M2)[><1M3:M1[><1(M2[><1M3)

oMll;quQ:MlﬁMQ
OM1UM2:M2UM1
O(Ml UMQ)UMg,:M1U(M2UM3)O"(MlmMQ):_'Mlm_'MQ
e MUE, =M

OMUE@Z(V,@)

5 Concluding Remarks

A good module system should be compositional and be based on a rich algebra of
model operators. We introduce six such operators and examine their properties.
The work as reported is insufficient to form a practical model algebra, but should
serve to shed light on the design of future CSP-based module systems.

We believe that we are the first to propose a systematic study of model
operators and their algebraic properties. It is a purpose of the paper to arouse
interest in this important new direction of research. There is plenty of scope for
future work. First, it would be interesting to look for other useful operators, and
even perhaps to refine the definition of the proposed operators. In particular, we
focus on satisfiable models, and relatively little is known about the negation and
complementation operators. Second, much work is needed to design a practical
and yet versatile module system, based on an algebra (even if there is one), in
constraint-based interactive problem-solving tools and constraint programming
languages. Third, the work suggests the possible notions of “reusable model
components” and “model patterns,” which can serve as the brick and mortar for
and save much effort in the construction of huge and complex CSP models.

References

1. BM.W. Cheng, K.M.F. Choi, J.H.M. Lee, and J.C.K. Wu. Increasing constraint
propagation by redundant modeling: an experience report. Constraints, 4(2):167—
192, 1999.

2. T.W. Hungerford. Algebra. Springer-Verlag, 1974.

3. Y.C. Law and J.H.M. Lee. Model induction: a new source of CSP model redundancy.
In Proceedings of the 18th National Conference on Artificial Intelligence, 2002.

4. A K. Mackworth. Consistency in networks of relations. Al Journal, 8(1):99-118,
1977.

