
An Execution Scheme for Interactive

Problem-Solving in Concurrent Constraint

Logic Programming Languages

Jimmy H.M. Lee and Ho-fung Leung
Department of Computer Science and Engineering

The Chinese University of Hong Kong
Shatin, N.T., Hong Kong, China

Facsimile: +852 2603 5024
Email: {jlee, lhf}@cse.cuhk.edu.hk

Abstract

Van Emden’s incremental queries address the inadequacy of cur-
rent Prolog-style querying mechanism in most logic programming sys-
tems for interactive problem-solving. In the context of constraint logic
programming, incremental queries involve adding new constraints or
deleting old ones from a query after a solution is found. This pa-
per presents an implementation scheme IQ of incremental queries in
Constraint Pandora, which defines a class of non-deterministic concur-
rent constraint logic programming languages. We use Van Hentenryck
and Le Provost’s scheme (VHLP-scheme hereafter), a re-execution
approach, as a starting point. Re-execution is costly in concurrent
languages, in which process creation and inter-process communica-
tions are common operations. The main idea of IQ is that the basic
trail unwinding operation used in backtracking is more efficient than
re-execution in reaching an execution context along a recorded exe-
cution path. We modify the conventional trail-unwinding operation
in such a way that constraints are used actively to prune the search
space. Analysis shows that the IQ-scheme is at least as efficient as

1

the VHLP-scheme in sequential systems and is much more efficient in
concurrent systems. We show the feasibility of our proposal by incor-
porating the IQ-scheme into IFD-Constraint Pandora, an instance of
Constraint Pandora supporting interval and finite domain constraint
solving. Our preliminary results agree with that of theoretical analy-
sis.

Keywords: Incremental Execution, Concurrent Constraint Logic Program-
ming

1 Introduction

Most logic programming systems adopt the Prolog-style querying mechanism,

which is unsuitable for interactive problem-solving, such as database and

spreadsheet applications. Users have to work in the “planned” or “batch”

mode [5]: make sure you have available in advance all constraints and process

them all in one go. If you forgot something, then you will discover this when

you have reconstructed the solution from the output, and you can have another

try. Of course, a user can still use Prolog as a pseudo-interactive language by

entering a new and improvised, but often redundant, query at each problem-

solving step. This is hardly a satisfactory alternative both in terms of human

ergonomics and computing usage. First, the users have to manage and re-

enter (not necessarily by typing) the complete, and possibly large, set of

constraints every time. This is both tedious and error-prone. Second, Prolog

starts an independent computation for each query, discarding the possibility

of using results of the previous ones.

In interactive problem-solving, users usually do not know how to go about

solving a problem. They may have to rely on intermediate results to suggest

2

the next step in the problem-solving process. In some cases, the users do

not even have a clear definition of the problem at hand to start with. This

happens often in such applications as scheduling and budgeting. Van Emden

proposes incremental queries1 [29], a new querying framework for Prolog.

According to this framework, users can enter a query by increments, which

consist of one or more goals. After an increment is entered, Prolog displays an

answer, which is the result of, not the increment but, the query accumulated

so far. The intermediate answers displayed can assist the user in composing

and tuning the next increment of the query. In this framework, variables

with the same identifiers in different increments denote the same variable.

Thus increments are continuations of the same query.

In his paper, Van Emden [?] points out that incremental queries are use-

ful for nondeterministic goals such as interactively constructing a timetable

that satisfies a set of constraints expressed as incremental queries. Van Hen-

tenryck and Le Provost [35] suggest that incremental queries are desirable

for adaptation of an existing solution to include new information, modifi-

cation of a solution to include priorities and preferences, as well as general

interactive problem solving.

We are interested in incorporating an efficient incremental querying mech-

anism into Constraint Pandora [16], which defines a family of non-deterministic

concurrent constraint logic programming languages. Constraint Pandora is

essentially a concurrent version of the CLP scheme [13] based on the exe-

cution model of Pandora [1]. Unlike the committed-choice concurrent logic

1Also called incremental execution and incremental search by other authors [3, 4, 35].

3

languages, such as Parlog [11], GHC [28], and Concurrent Prolog [23], Con-

straint Pandora supports both don’t-know and don’t-care non-determinisms,

allowing the generation of multiple answers to a query.

In order to avoid the overhead of process creation and inter-process com-

munication, we minimize re-execution and propose to use computation con-

text that is saved along an execution path. Such context can be recovered

conveniently by unwinding the trail, a basic operation provided by backtrack-

ing. Van Hentenryck and Le Provost [35] criticize backtracking as the source

of thrashing behavior [18] due to bad backtrack points and passive use of

constraints. We show otherwise: conventional backtracking can be modified

in such a way that constraints are used actively to prune search space.

We compare our scheme with that of Van Hentenryck and Le Provost [35]

(VHLP-scheme hereafter). For addition of constraints, our scheme arrives at

the same “best” backtrack point as the VHLP-scheme. Deletion of con-

straints is difficult to handle. While the VHLP-scheme starts re-execution

from scratch, our scheme starts from a safety-guaranteed intermediate execu-

tion context, located using oracles. What is described is a scheme for efficient

implementation of incremental queries; hence the name IQ. To demonstrate

the feasibility of our proposal, we have incorporated IQ in IFD-Constraint

Pandora, an instance of Constraint Pandora with finite and interval domain

constraints. Preliminary results support our theoretical analysis.

The paper is organized as follows. In section 2, we review related work.

Section 3.1 gives the syntax and operational semantics of Constraint Pan-

dora. The Constraint Pandora search tree and its skeleton version, which

are important analysis tools in latter parts of the paper, are also introduced.

4

An abstract definition of incremental queries and the related terminology are

presented in section 3.2. Before we embark on our method, a brief review of

the VHLP-scheme is given in section 4. In section 5, we show how the IQ

scheme handles addition and deletion of constraint in an incremental query-

ing session before comparing our results with the VHLP-scheme in section 6.

In section 7, we introduce IFD-Constraint Pandora and discuss the imple-

mentation issues in incorporating IQ into IFD-Constraint Pandora. We end

the section with preliminary benchmarking results. Section 8 contains the

concluding remarks of the research and sheds light on future work.

2 Related Work

Work in incremental query processing in logic programming can be divided

into two camps: functionality and efficient implementation.

2.1 Functionality

The original incremental queries proposal [29], intended as solution to the

problem of doing computer graphics interactively and yet without appeal to

side effects, considers only addition of constraints. Van Emden et al. [31, 30]

refine the method in such a way that users can specify either addition or

deletion of goals in increments. They also show how incremental queries

couple well with a spreadsheet user-interface for logic programs. Ohki et

al. [22] generalize incremental queries so that users are allowed, in addition

to entering queries incrementally, to modify queries and programs, and to

5

act as a part of the inference engine. Users can help the system by giving a

solution for a part of the problem, such as assigning a solution to an unbound

variable. On backtracking, the system is able to query the user for alterna-

tives of the previous interaction. Cheng et al. [5] incorporate incremental

queries in the TuplePipes dataflow query model. Again, addition, deletion,

and modification of goals are considered. Together with a table (as in rela-

tional databases) user-interface, the result is a deductive databases system.

Chatalic [4] also allows the user to modify the program during execution of

an incremental query. Fages et al. [10] present a theoretical analysis of in-

cremental queries in constraint logic programming, which considers addition

and deletion of both goals and constraints.

2.2 Efficient Implementation

A naive approach to implement of incremental queries is to execute the accu-

mulated query from scratch after each increment is entered. This approach

induces much redundant computation but is adequate for prototyping pur-

pose. An efficient implementation should make use of the computation con-

text of previous increments as much as possible, but is complicated by the

presence of backtracking in the execution mechanism of logic programming

languages. For addition of constraints or goals, if a given increment cannot

be solved in the current context, the system should propagate backtracking

to previous increments. In the case of deletion, the system should be able to

recover the previous discarded execution paths in previous increments which

are made possible again by the deletion.

6

Van Emden et al. [30] propose an intelligent backtracking scheme for in-

cremental queries and implement it in a Prolog meta-interpreter. Van Emden

and Rosenblueth [31] incorporate the scheme in a WAM-like Prolog machine

and implement it at the emulator level. Chatalic [3] uses the meta-interpreter

of [30] as a starting point and increases its efficiency by coroutining [21]. It

uses the assert and retract meta-calls to keep track of backtracking infor-

mation. Chatalic [4] improves upon his own work by extending the meta-

interpreter with goal dependency analysis. The aforementioned work is for

Prolog.

Van Hentenryck and Le Provost [35] propose the VHLP-scheme for incre-

mental queries in the context of constraint logic programming. Their scheme

allows incremental addition and deletion of, not goals but, constraints only.

The lack of backtrack points in the execution of a constraint allows for an

efficient scheme based on oracles (or execution paths) and re-execution. Ma-

her and Stuckey [20] also use execution paths to guide the re-execution of

goals but their approach relies on users to decide where to backtrack.

3 Background

3.1 Constraint Pandora

In this subsection, we describe Constraint Pandora. The CLP scheme [13] is a

special case of Constraint Pandora and the results shown in this paper apply

equally well to sequential CLP languages. Section 3.1.1 gives the syntax of

Constraint Pandora, followed by a presentation of the operational semantics

7

in section 3.1.2. Section 3.1.3 defines Constraint Pandora search tree and its

skeleton version, which are important tools in the analysis of our method.

3.1.1 The Language

Constraint Pandora [16] defines a family of non-deterministic concurrent

CLP languages, obtained by augmenting Pandora [1] with the capacity of

constraint-solving. As in the CLP scheme, a different constraint domain

yields a different instance of Constraint Pandora language. A Constraint

Pandora program syntactically resembles a Pandora program, except that

constraints are allowed in clause guards as well as clause bodies. Using the

terminology of [19], the constraints in clause guards are ask -constraints and

those in clause bodies are tell -constraints. Intuitively speaking, we check the

constraint store for entailment of ask-constraints, and tell-constraints are

“assimilated” into the constraint store.

A clause in Constraint Pandora is of the form

H ← Cask : B,Ctell

where H is an atom called the clause head , Cask a (possibly empty) conjunc-

tion of ask-constraints, B a (possibly empty) conjunction of atoms called

the body goals, and Ctell a (possibly empty) conjunction of tell-constraints.

While the unification goals (including the matching goals (<=/22) are seen

as system predicates in Pandora, in Constraint Pandora they are seen as

2<=/2 is a system predicate in Parlog (and Pandora). The goal T <= X fails if and only

if T and X are not unifiable, and succeeds if and only if T and X can be unified without

binding any variables in T. Otherwise, the goal suspends.

8

constraints in the Herbrand Universe. Cask are collectively called the guard

and B and Ctell are collectively called the body . Intuitively, a clause denotes

the logical relation that “Cask and B and Ctell implies H.”

3.1.2 Operational Semantics

Constraint Pandora belongs to the family of concurrent logic programming

languages [6] and is related to the ALPS framework [19]. As in Pandora,

“goal” is synonymous with “process” in the constraint version. The exe-

cution of Constraint Pandora programs can be abstracted to a sequence of

derivation steps. A derivation step is a transition from an execution state to

another. An execution state of Constraint Pandora consists of a process pool

P , which is a multiset of processes, and a constraint store S, which is a set of

constraints. Intuitively, the process pool contains all processes spawned dur-

ing execution, and the constraint store contains the tell-constraints generated

during execution.

A Constraint Pandora query is of the form

← B,Ctell

where B is a conjunction of body goals, and Ctell is a conjunction of tell-

constraints. Initially, the process pool and the constraint store contain all

the goals and all the constraints in the query respectively. It is assumed that

a constraint solver exists, which constantly monitors the constraint store.

This constraint solver has two functions. First, it reports inconsistency when

there is any, and then causes a failure in the execution. Second, it solves the

constraint variables whenever possible. In the process pool, processes are

9

classified into two kinds. A don’t-know process executes only if it has at

most one candidate clause.3 If it does not have a candidate clause, a failure

occurs. If it has more than one candidate clause, then it suspends. A don’t-

care process executes whenever it finds a candidate clause. In other words,

the don’t-know processes use a more “prudent” Andorra-like commit law [37],

while the don’t-care processes use a more “eager” Parlog-like commit law [11].

There are two kinds of derivation steps. When a process executes, it

“commits” to a candidate clause (for a don’t-know process, the candidate

clause), generates the tell-constraints in the clause body, spawns the processes

in the clause body, and then terminates. The newly generated constraints

and processes are added to the constraint store and process pool respectively.

The old process is removed from the process pool.

Another kind of derivation steps occurs when every process in the system

suspends. The execution state is then said to be a deadlock . If the system

deadlocks and there is no don’t-know process in the system, a failure occurs.

Otherwise, a deadlock handler is invoked to select one of the don’t-know

processes, based on which a choice point is set up. The candidate clauses of

the selected don’t-know processes are then tried in turn. We assume that the

deadlock handler employs a fixed computation rule and clause ordering [17]

3A clause H ← Cask : B,Ctell is a candidate clause of a process A if and only if

Cask ∧ (A = H) is entailed (validated) by the constraint store S. This condition can be

formally expressed as [19]:

∀xg[S |= ∃xl[Cask ∧ (A = H)]]

where xg are the global variables in S and xl the local variables in Cask and H.

10

in the selection of body goals and the trying of rules at each step of the

computation. When failure occurs, the execution state will be restored to

that of the most recent choice point, and an untried candidate clause will be

tried. If all candidate clauses at the choice point have been tried, then a new

failure occurs.

The execution of a Constraint Pandora query

Q =← B,Ctell

succeeds if and only if it reaches a state in which the constraint store is

consistent and the process pool is empty. Let P be the Constraint Pandora

program for the query and D the underlying constraint domain. Suppose the

constraints in the constraint store at the end of a successful execution is S ′.

The soundness of Constraint Pandora [16] guarantees that

P,D |= (∀)(S ′ ⇒ Ctell ∧B).

We call S ′ a solution to the query Q.

3.1.3 Constraint Pandora Search Tree

A Constraint Pandora search tree (CPS-tree) is a tree in which each node

is an execution state. The root of the tree is the initial execution state

corresponding to the query. An execution state is a child of another if and

only if the former is obtained from the latter by a derivation step. Obviously,

every node in the tree has at most one child, except that a deadlock state

might have more than one child.

There are three possible kinds of leaves:

11

• a leaf with an empty process pool and a consistent constraint store

• a leaf with an inconsistent constraint store, and

• a leaf with only suspended don’t-care processes in its process pool.

The first kind of leaves corresponds to successful executions. The solution of

a successful execution is the constraint store in the leaf. The other two kinds

correspond to a failure.

A skeleton Constraint Pandora search tree (skeleton CPS-tree) is a “re-

duced” CPS-tree. Intuitively, a skeleton CPS-tree is obtained from a CPS-

tree by concentrating on the root, the deadlock nodes, and the leaves, and

ignoring the rest. A skeleton CPS-tree T ′ of a CPS-tree T is defined as

follows:

• The root of T ′ is the same as that of T .

• If N is the root or a deadlock node in T ′, and (N,N1, . . . , Nk,M) is a

path in T , and N1, . . . , Nk (k ≥ 0) are not deadlock nodes, and M is a

deadlock node or a leaf in T , then M is a child of N in T ′.

• There are not any other nodes in T ′.

It is important to realize that Constraint Pandora is a generalization of

the CLP scheme. A Constraint Pandora clause become an CLP clause when

the guard is empty. The queries for both Constraint Pandora and CLP have

the same form. Operationally speaking, since we allow only one process to

spawn at each derivation step, the execution strategy of Constraint Pandora

is similar to the generalized SLD-resolution as defined in [35]. Furthermore,

12

the skeleton CPS-tree is the same as the CPS-tree and the generalized SLD-

tree. In this regard, our method is also suitable to sequential CLP languages.

3.2 Incremental Queries and Preliminaries

In this subsection, we follow the style of [35] in defining incremental queries

in the context of Constraint Pandora and the relevant terminology. Since

skeleton CPS-tree has the same format as a generalized SLD-tree, proper-

ties of the generalized SLD-tree [35] hold also for the former. We state the

properties without proof.

We observe that succession of queries in an interactive problem-solving

session are usually modification of each other. We define an incremental

query sequence to be a sequence of queries of the form

(← B,C1), (← B,C2), . . . , (← B,Ci), (← B,Ci+1), . . .

where, without loss of generality, Ci+1 is obtained from Ci by either adding or

deleting a constraint. In practice, queries in an incremental query sequence

are entered in order. Given a program P and an incremental query sequence

Q1, Q2, . . . , Qn, by an incremental query , we mean finding the first solutions

θ1, θ2, . . . , θn to Q1, Q2, . . . , Qn respectively in such a way that computation

results from Q1, Q2, . . . , Qi−1 are re-used as much as possible to obtain the

solution to each Qi (2 ≤ i ≤ n).

In the following, we define a labeling for (skeleton) CPS-tree and an

ordering for the labels. We assign to every clause in a program a label. The

labels for each of the clauses of the same procedure are unique, and there

13

is a total ordering “<” among them. Let T be a (skeleton) CPS-tree. The

nodes of T can be labeled as follows:

• The root node is labeled with the empty string ǫ.

• If T has node N with label L and N has m children associated with

clauses i1, . . . , im, we assign L.i1, . . ., L.im as labels to the children

respectively, where “.” is the string concatenation operator.

A string L1 is lexicographically smaller than or equal to string L2, denoted

by L1 � L2, if and only if one of the following three conditions holds:

• L1 is ǫ.

• L1 = n.L
′
1, L2 = m.L

′
2, and n < m.

• L1 = n.L
′
1, L2 = n.L

′
2, and L

′
1 � L

′
2.

Intuitively, L1 � L2 means that the node with label L1 is to the “left” of the

node with label L2 in a (skeleton) CPS-tree. We see that the first solution

plays an important role in the definition of incremental queries. Let P be

a program, Q a query, and T the (skeleton) CPS-tree of Q with respect to

P . The first success leaf in T for Q with respect to P has label L such

that for any success leaf with label L′, L � L′. Since the label of a node in

a (skeleton) CPS-tree denotes the computation path from the root to that

node, we abuse notation by identifying a node with its label throughout this

paper.

We are now ready to present some properties of the (skeleton) CPS-

tree as adapted from [35]. The following properties concern the addition of

constraints.

14

Property 3.1: Let P be a program. Suppose Q1 =← B,C1 and Q2 =←

B,C2 are two queries to P such that

D |= (∀)(C2 ⇒ C1).

If L1 and L2 are the first success leaves of Q1 and Q2 respectively, then

L1 � L2.

The next property is a corollary to property 3.1.

Property 3.2: Let L be the first success leaf of query Q =← B,C1. If

D |= (∀)(C2 ⇒ C1), then there is no solution of Q′ =← B,C2 with label

L′ � L.

The next property concerns the deletion of constraints.

Property 3.3: Let P be a program. If Q1 =← B,C1 and Q2 =← B,C2

are two queries to P such that

D |= (∀)(C2 ⇒ C1),

then any solution to Q2 is also a solution to Q1. The first success leaf to Q2

is, however, not necessarily the first success leaf to Q1.

4 The VHLP-Scheme Revisited

4.1 The Original VHLP-Scheme

The idea of the VHLP-scheme [35] is based on the following observations.

Consider the search tree produced using the Prolog computation rule and

15

selection function. Suppose the first successful derivation is found for the

current query. Property 3.2 shows that this first successful derivation is the

“leftmost” one among all others. Now consider the addition of a constraint

to the current query. The new successful derivation will either be the same

as the current one or occurs to the “right” of the current one (property

3.1). Likewise, after deletion of a constraint from the current query, the new

successful derivation will either be the same as the current one or occurs

to the “left” of the current one (property 3.3). Here we are abusing the

terminologies when we talk about “left” and “right,” as the search tree in

general changes significantly after the addition or deletion of constraints.

We describe VHLP-scheme as follows. Denote the sequence of queries

resulted from the previous operations of constraint additions and deletions

as ← B,Ci, i = 0, 1, 2, . . ., where B is a multiset of atoms and Ci the set of

constraints in the query, respectively. The original query is ← B,C0. Ci+1

is either Ci ∪ {c} or Ci \ {c} where c is a single constraint. An oracle O(Ci)

that records the execution path is associated with each successful derivation

of query ← B,Ci. One representation of O(Ci), which we employ in this

paper, is the label of the success leaf.

To add a constraint c to Ci, the execution re-starts from the root, with

a new query ← B,Ci ∪ {c}, and follows the oracle O(Ci) (i.e. selecting the

same clauses) until a failure occurs. Then the execution backtracks to the

most recent choice point and proceeds to the next branch to the right, in the

same way as Prolog would.

If Ci+1 is Ci \ {c}, the execution also re-starts from the root. However,

16

the oracle it follows will be

O =
i
max
k=1
{O(Ck) | Ck ⊆ Ci+1}

where “max” is determined by the lexicographic order of the oracles. This

deletion procedure essentially turns a constraint deletion problem into a con-

straint addition problem by examining only oracles O(Ck) where Ck ⊆ Ci+1.

The “maximal” oracle O chosen is the one that achieves the best pruning,

as determined by lexicographic order of string labels.

4.2 The VHLP-Scheme in Nondeterministic Concur-

rent Constraint Logic Programming

The VHLP-scheme is designed for sequential constraint logic programming

languages, such as CHIP [9] or CLP(R) [14]. It shows how to use previous

oracles to guide re-execution. This prevents the re-execution from entering

the computation paths that are deemed to fail. Hence the overhead of re-

execution is reduced.

However, this scheme is in general not efficient for Constraint Pandora.

Constraint Pandora is a process-oriented concurrent language. Re-execution

from the initial query implies repeating all the overhead of process creation,

suspension, scheduling, termination, etc. Therefore, the effect of using oracles

in Constraint Pandora to reduce the amount of computation in re-execution

is not as drastic as in sequential backtracking-based languages.

In the VHLP-scheme the oracles are used to guide the re-execution. How-

ever, it is not difficult to observe that both O(Ci) and O usually have a com-

17

mon prefix with O(Ci+1). The choice point corresponding to the point where

O(Ci+1) and O(Ci) start to differ can hence be seen as an intelligent back-

track point. If the execution rolls back to this point (instead of re-executing

from scratch up to this point), then a lot of execution context “above” this

point can be re-used instead of being re-computed. This is the main idea of

the IQ-scheme.

5 The IQ Scheme

The IQ-scheme that we are proposing is based on backtracking. Backtrack-

ing is often portrayed as pessimistic and the cause of thrashing behavior in

the literature. We are going to show otherwise. One aim of incremental

queries is to re-use previous computation context as much as possible. In

a backtracking-based language, execution context is saved on the trail at

every step along an execution path so that execution can be unwound to a

particular point upon backtracking. These various contexts may be expen-

sive to build, particularly in a nondeterministic concurrent CLP language.

The VHLP-scheme simply ignores this useful resources while the unwinding

mechanism is inherent in a backtracking-based language. In the following, the

discussion on the IQ scheme is based on the skeleton CPS-tree since backtrack

points appear only in deadlock nodes.

18

5.1 Addition of Constraints

Suppose we are in an interactive problem-solving session and we have solved

up to query Qi =← B,Ci in the incremental query sequence. The new goal

Qi+1 =← B,Ci+1 is obtained from Qi by adding constraints. Without loss of

generality, we assume that Ci+1 = Ci∪{c}, where c is a single constraint. As

suggested in [35], there exists no solution to Qi+1 with a computation path

lexicographically smaller than the path that leads to the first solution ofQi by

property 3.1. Suppose θi is the first solution of Qi. If θi∪{c} is consistent, we

are done and the new solution θi+1 is the union. Otherwise, we need to locate

the cause of failure, backtrack, and re-execute from there. Unfortunately,

conventional backtracking may explore many unrelevant choice points before

locating the one that causes the failure. Van Hentenryck and Le Provost [35]

regard this drawback as due to bad backtrack points and inactive use of

constraints.

The IQ-scheme modifies conventional backtracking as depicted in figure 1.

Suppose the length of the execution path of Qi is l and the content of the

constraint store after the kth (0 ≤ k ≤ l) derivation step is Sk. Note that

S0 = Ci and Sl = θi. In most implementations, Sk can be obtained from

Sk+1 by unwinding the trail along the execution path of Qi. We first test the

consistency of Sl ∪{c}. If the union is consistent, then it is the first solution

of Qi+1. Otherwise, starting from Sl−1, we unwind the trail to the first Sk

such that Sk ∪ {c} is consistent. Standard execution resumes from the most

recent backtrack point, say CH, of the (k + 1)st derivation step.

The IQ-scheme uses the added constraint c actively at each derivation

19

?
� ^

?
Sk ∪ {c} is consistent

Sk+1 ∪ {c} is inconsistent

step k

CH

Figure 1: The Most Recent Backtrack Point CH

step to determine if it is “worthwhile” to backtrack at that derivation step.

We shall prove subsequently that the backtrack point CH obtained by IQ is

the same as the optimal one obtained by the VHLP-scheme. Let us illustrate

the IQ-scheme with a small scheduling example exerted from [35] with the

Constraint Pandora program in figure 2. The numbers at the end of each

clause are the clause labels. The variables take their values from 1 to 6, are

all different, and obey simple precedence constraints. Additional constraints

are entered by users in an incremental querying session. Suppose the initial

query is Q0 =← schedule(X1, X2, X3, X4, X5, X6). The first solution to Q0

is {X1 = 6, X2 = 5, X3 = 1, X4 = 2, X5 = 3, X6 = 4}. Consider the case

when the user adds the constraint X3 6= 1. In the conventional backtracking

20

approach, the new constraint is added into the execution context of the

first solution. Backtracking will take place for the goals gen(X6), gen(X5),

and gen(X4) before reaching the backtrack points of gen(X3). The VHLP-

scheme will follow the oracle of the Q0, which is 1.6.5.1.2.3.4, until the prefix

1.6.5.1 (the third choice point) is reached, where failure is detected. Standard

backtracking execution is resumed at the fourth choice point. Using the IQ-

scheme, we unwind the trail backward through 4, 3, 2, 1, and then 5, where

consistency is detected. Standard execution is resumed at the choice point

at 5, the same point as the VHLP-scheme.

5.2 Deletion of Constraints

Deletion of constraints is difficult to handle since the first solution to the new

query can be to the “left” of first solution of the current query by property 3.3.

Re-execution is unavoidable but it should be minimized. The VHLP-scheme

re-executes from the beginning of the new query. The IQ-scheme detects and

unwinds to a “safe” state, where re-execution starts. We follow the VHLP-

scheme to build oracles for the evaluation of each increment in an incremental

query sequence, i.e. the computation path leading to a solution is stored.

We use O(Ck) to denote the oracle of the execution of query Qk.

For deletion of constraint, we assume Ci+1 = Ci\{c}. The VHLP-scheme

picks an oracle prior to O(Ci) that has the best pruning, i.e.

O =
i
max
j=1
{O(Cj) |Cj ⊆ Ci+1},

where “max” uses the lexicographical ordering on strings. Property 3.2 guar-

antees that there is no solution to the new goal with a computation path

21

smaller than O. We compute the common prefix of O and O(Ci). Suppose

O(Ci) = L1.p.L2 and L1.p is the common prefix of O and O(Ci). The IQ

scheme unwinds along O(Ci) up to the execution context of p. Suppose that

the constraint store at that point is S = C ∪ Ci. We replace Ci by Ci+1 in

S and then proceed with oracle O in the same way as for additions in the

VHLP-scheme. While the VHLP-scheme always starts re-execution from the

beginning of a computation, L1 is usually non-empty and re-execution along

L1 is eliminated.

The IQ-scheme combines the best of both re-execution and backtrack-

ing by using previous execution oracles and last query’s execution context,

eliminating the need for re-execution as much as possible.

5.3 Correctness of the IQ Scheme

In this section we shall prove the correctness of the IQ scheme. Theorem 5.1

establishes the correctness of the algorithm for addition of constraints, while

theorem 5.2 establishes the correctness of the algorithm for deletion of con-

straints.

Theorem 5.1: Let L1 be the label of the first success leaf of Q1 =← B,C1

and L2 be the label of the first success leaf of Q2 =← B,C1 ∪ {c}. Suppose

the new constraint c is added after the node labelled L1 is reached. The node

labelled L2 will eventually be reached.

Proof: Since C1 ∪ {c} ⇒ C1, by Property 3.1, we have L1 � L2. Let L be

the (possibly empty) common prefix of L1 and L2 so that L1 = L.n1.Q1 and

L2 = L.n2.Q2. Obviously, the constraint stores in the nodes labelled by L

22

and its prefixes are consistent, whether the root of the search tree is Q1 or

Q2. In the IQ scheme, addition of the new constraint c after the node labelled

L1 is reached requires the resumption of standard execution from the node

labelled L after c is added to the constraint store of the node. Therefore, the

node labelled L2 will eventually be reached as L1 � L2.

Theorem 5.2: Let L1 be the label of the first success leaf of Q1 =←

B,C1 ∪ {c} and L2 be the label of the first success leaf of Q2 =← B,C1.

Suppose the constraint c is deleted after the node labelled L1 is reached.

The node labelled L2 will eventually be reached.

Proof: Since C1 ∪ {c} ⇒ C1, by Property 3.1, we have L2 � L1. Let L

be the (possibly empty) common prefix of L1 and L2 so that L1 = L.n1.Q1

and L2 = L.n2.Q2. Obviously, the constraint stores in the nodes labelled by

L and its prefixes are consistent, whether the root of the search tree is Q1

or Q2. In the IQ scheme, deletion of the existing constraint c after the node

labelled L1 is reached requires the resumption of standard execution from

the node labelled L after c is removed from the constraint store of the node.

Therefore, the node labelled L2 will eventually be reached as L2 � L1.

6 Comparison with the VHLP-Scheme

In this section we compare the IQ-scheme with the VHLP-scheme. We show

that the IQ-scheme is more efficient than the VHLP-scheme even in sequential

CLP languages, while the latter is not suitable in concurrent CLP languages.

23

6.1 Addition of Constraints

The following theorem shows an important property of the skeleton CPS-tree.

Theorem 6.1: Let (N0, N1, . . . , Nl) be the execution path of the skeleton

CPS-tree corresponding to the successful derivation of a query Q =← B,C,

where N0 is the root of the tree and Nl is a leaf and Ni = 〈Pi, Si〉, 0 ≤ i ≤ l.

Let c be a constraint. Then there exists a j, 0 ≤ j ≤ l + 1, such that the

Si1 ∪ {c} is consistent for all i1, 0 ≤ i1 < j, and Si2 ∪ {c} is inconsistent for

all i2, j ≤ i2 ≤ l.

Proof: By the definition of skeleton CPS-tree, Ni is reached from Ni−1 by

a sequence of derivation steps. Hence Si ⊇ Si−1 for all i (0 ≤ i ≤ l). Now

consider c. There are three cases:

1. Sl ∪ {c} is consistent.

Since Sl ⊇ Si1 , Si1 ∪ {c} is also consistent, for all i1 (0 ≤ i1 ≤ l).

Therefore j = l + 1.

2. Sl ∪ {c} is inconsistent but S0 ∪ {c} is consistent.

(a) Obviously, there exists a j′, 0 < j′ ≤ l such that Sj′ ∪ {c} is

inconsistent and Sj′−1 ∪ {c} is consistent.

(b) Since Si2 ⊇ Sj′ for all i2 (j
′ ≤ i2 ≤ l), we have Si2 ∪ {c} =

(Sj′ ∪ {c}) ∪ (Si2 \ Sj′) is inconsistent for all i2 (j
′ ≤ i2 ≤ l). On

the other hand, since Sj′−1 ⊇ Si1 for all i1 (0 ≤ i1 ≤ j
′ − 1), we

have Si1 ∪ {c} = (Sj′−1 ∪ {c}) \ (Sj′−1 \ Si1) inconsistent, for all i1

(0 ≤ i1 ≤ j′ − 1).

24

(c) Hence we have j = j′.

3. Sl ∪ {c} is inconsistent and S0 ∪ {c} is inconsistent.

In this case trivially j = 0.

Figure 3 helps to visualize the proof of theorem 6.1. We now compare

the IQ-scheme and the VHLP-scheme based on theorem 6.1. In the VHLP-

scheme, after the addition of a constraint c to the current query Q =← B,C,

the re-execution follows the oracle O(C) until node Nj where the re-execution

encounters the first failure. Then the re-execution backtracks to Nj−1 (if

j > 0, or it fails) and then proceeds from Nj−1 without any oracle. The IQ-

scheme does this in a different way. The execution is unwound from the leaf

Nl until the node Nj−1. Then c is added to Cj−1 and the execution re-starts

from Nj−1. Therefore these two schemes selects the same “re-start point.”

6.2 Deletion of Constraints

Deletion in the IQ-scheme follows the same principles in the VHLP-scheme.

In the VHLP-scheme, re-execution follows the oracle O =
i
max
k=1
{O(Ck) |

Ck ⊆ Ci+1}, where Ci+1 = Ci \ {c} is the new set of constraints, from the

root of the tree. The first portion of O, which is the common prefix of O

and O(Ci), exists in the system. In the IQ-scheme we unwind the execution

to the choice point that corresponds to the end of this common prefix and

re-start from that choice point. The worst case scenario occurs only when O

has no common prefix with O(Ci). In that case, the IQ-scheme also starts

25

execution from the root. Thus the IQ-scheme is at least as efficient as the

VHLP-scheme.

6.3 The IQ-Scheme and the VHLP-Scheme: an Eval-

uation

As discussed above, these two schemes select the same “re-start point.” How-

ever, the IQ-scheme is more efficient than the VHLP-scheme in a number of

aspects, especially in a Constraint Pandora language.

It is easy to see that the IQ-scheme makes use of not only the previ-

ous execution paths (the “oracles”), but also the previous execution con-

text. Denote the “re-start point” as Nj−1, the IQ scheme re-uses the nodes

N0, N1, . . . , Nj−1, which already exist in the system, instead of re-creating

them from scratch as in the VHLP-scheme.

In a concurrent constraint logic programming language such as Constraint

Pandora, unwinding is usually much cheaper than re-execution. Bahgat [1]

describes a backtracking-based Pandora Abstract Machine (PAM) for multi-

processors designed based on [7]. In the PAM not all updates to the system

are trailed. Only those updates that need to be undone in order to re-

store to the previous choice point are trailed. These are called “conditional

updates.” Others, which are “unconditional updates,” are not trailed nor

undone upon backtracking. Intuitively they are due to the deterministic ex-

ecution of processes and will be automatically undone when the “conditional

updates” are undone. It is not difficult to imagine that thousands of reduc-

tion take place between two choice points in the execution of a Constraint

26

Pandora program, most of which incur unconditional updates (i.e., updates

that need not be trailed and undone upon backtracking) [1] to the process

pool and the constraint store. Unwinding from a choice point to a previous

one is definitely much cheaper than re-executing the thousands of reductions,

which involve creation and execution of processes, setting up choice points

and environments, as well as assimilating constraints. This argument also

applies in sequential constraint logic programming languages such as CHIP

and CLP(R).

However, it should be noted that whether the IQ-scheme is more efficient

than the VHLP-scheme for a particular program and query depends on the

position of Nj . In general, the VHLP-scheme is more efficient for smaller

j, and the IQ-scheme is more efficient for larger j. In the average case, say

j = l
2
, the IQ-scheme is better than the VHLP-scheme as unwinding l

2
steps

is cheaper than re-executing l
2
steps.

7 IQ in IFD-Constraint Pandora

Efficiency of the IQ-scheme in a (concurrent) constraint logic programming

language depends on efficient implementation of the constraint addition and

deletion operations. Constraint addition amounts to testing the satisfiability

(and also computing the solved form) of a previously consistent constraint

store augmented with a new set of constraints. Since constraint addition is

a frequent step in the normal execution, we can basically adopt the exist-

ing constraint addition and assimilation mechanism for constraint addition

in the IQ-scheme. Constraint deletion concerns the (re)computation of a

27

solved form of a previously consistent constraint store after a set of con-

straints is deleted from the store. The difficulty of this operation varies with

the underlying constraint domain. Huynh and Marriott [27] and Helm et

al. [12] develop efficient incremental constraint deletion algorithms for linear

equalities and inequalities. In this section, we present a realization of the IQ-

scheme in an instance of Constraint Pandora with interval and finite domain

constraints.

Lee and van Emden [15] show that the domain reduction operator used

for interval domain constraint is an instance of LAIR of CHIP [33] and that

the lookahead-efficient computation rule is a constraint relaxation algorithm

similar to AC-3 [18]. Following this approach, we generalize FD-Constraint

Pandora [16] to handle also interval domain constraints. We call the extended

language IFD-Constraint Pandora, which can be regarded as a concurrent

version of ICHIP [15]. IFD-Constraint Pandora features the notion of do-

mains and domain variables [32], abbreviated as d-variables. A domain is

either a non-empty finite set of constants or a non-empty interval of real

numbers, whose bounds are floating-point numbers. Each d-variable has the

form XD, where D is the associated domain of XD. A constraint in IFD-

Constraint Pandora contains only ground terms and d-variables. Figure 4

contains a IFD-Constraint Pandora program that solves the 4-queens prob-

lem. The “::/2” predicate declares d-variables and their associated domains.

In this example, we declare the domains of all d-variables as {1, 2, 3, 4}.

28

7.1 IFD-Constraint Pandora

Each derivation step in Constraint Pandora consists of two substeps: (1)

generation of new processes and constraints and (2) assimilation of the new

constraints into the constraint store. Substep (1) is shared by all instances

of Constraint Pandora. Each distinguished instance of Constraint Pandora,

however, has a unique substep (2). In the following, we use ~D to denote

a vector (D1, . . . , Dn) of n elements. The constraint assimilation step of

IFD-Constraint Pandora is shown in algorithm 5, which is executed once

in each derivation step after new constraints are generated. Algorithm 5

is an adaptation of the consistency algorithm AC-3 [18]. The core of the

algorithm is the domain restriction operation REVISE(). Given a constraint

p, the domain restriction operation removes inconsistent values from the

domains of d-variables appearing in p. The REVISE() subprogram differs for

different kinds of constraints. The subprogram can be as simple as functions

that enforce node- and arc-consistency [18], or it can also be as complex as

the algorithms behind the atmost and accumulate constraints in CHIP [34,

36, 26]. For example,

Node-consistency: REVISE(even(X{1,2,3,4,5}), ({1, 2, 3, 4, 5})) = ({2, 4})

Interval Arc-consistency: REVISE(X [1,5]+Y [3,6] = 10, ([1, 5], [3, 6])) =

([4, 5], [5, 6]).

where the notation “[x, y]” denotes a close interval between x and y. We

leave the implementation of REVISE() unspecified and assume appropriate

implementation that satisfies contractance, correctness, monotonicity , and

idempotence defined in the sense of Benhamou and Older [2]. Algorithm 5 is

29

thus an efficient procedure for coordinating the application of REVISE() on

constraints in a given set of constraints.

Algorithm 5 resembles a classical iterative numerical-approximation tech-

nique called “relaxation” [24], which was adopted in a constraint system in

[25]. In relaxation, we make an initial guess at the values of the unknowns and

then estimate the error of the guess. New guesses are then made using the

original guess and the error estimate. This process is repeated until the error

is sufficiently small or satisfies a certain termination criterion. In algorithm 5,

the initial guess is the input domains. Errors are values in the domains that

cannot satisfy the relation associated with the constraint. New domains are

computed by removing the inconsistent values. These pruned domains are

better approximations of the originals in the sense that they provide more

accurate inclusions of the answers. Numerical relaxation may fail to converge

or terminate even when the constraints have a solution. Algorithm 5 does

not suffer from this problem as shown by the following theorem.

Theorem 7.1: Algorithm 5 always terminates.

Proof: Algorithm 5 halts either when domain restriction of a constraint

fails or the set A becomes empty. In the former case, the set of constraints is

inconsistent. For the latter case, we observe that the size of set A decreases

after each iteration of the algorithm unless domains of d-variables are pruned

and constraints are moved from P to A. However, the number of possible

domains are finite since the precision of a floating-point system. Thus domain

restriction cannot occur. Therefore, set A must become empty after a finite

number of iterations.

30

7.2 Effective Points for Constraints

“All constraints are equal, but some constraints are more equal than others.”

Operationally, we differentiate between two types of constraints. A con-

straint takes effect if, during execution of algorithm 5, REVISE() has used

it to prune domains of its associated d-variables, resulting in a substitution

which might be propagated to the other constraints in the constraint store.

These activities occur in lines 10–18 of algorithm 5. This notion of effective-

ness of a constraint is important in the deletion of constraint. Suppose the

constraint store denotes a conjunction of constraints C. We can compute

C \ {c} by simply removing c from the constraint store if c has not taken

effect in the store. Otherwise, removing a constraint that has taken effect

involves trailing of bindings and undoing substitutions.

To illustrate the concept of effectiveness, we use the 4-queens program

in figure 4, which works by generating the necessary disequality constraints

“ 6=/2” to prohibit the queens to be on the same row, positive diagonals, and

negative diagonals. The indomain/1 predicate is then used to enumerate el-

ements in the domains of d-variables and instantiate d-variables to find solu-

tions, by augmenting tree searching with constraint propagation. By virtue of

the test-and-generate paradigm in constraint programming, the indomain/1

predicate is defined to execute only after all other predicates either suspend

or terminate. Suppose the initial query is “?- queens([X1,X2,X3,X4]).”

Let us examine the constraint store right before the first indomain/1 process

starts execution. There are a total of 18 constraints in the store, listed as

follows.

31

X1 6= X2

X1 6= X2 + 1

X1 6= X2 - 1

X1 6= X3 X2 6= X3

X1 6= X3 + 2 X2 6= X3 + 1

X1 6= X3 - 2 X2 6= X3 - 1

X1 6= X4 X2 6= X4 X3 6= X4

X1 6= X4 + 3 X2 6= X4 + 2 X3 6= X4 + 1

X1 6= X4 - 3 X2 6= X4 - 2 X3 6= X4 - 1

None of these constraints can eliminate values from the domains of the associ-

ated d-variables. Thus, no constraints have taken effect yet. Each d-variable

has associated domain {1, 2, 3, 4}. Suppose indomain(X1) is now executed

and causes X1 to be bound to 1. This instantiation triggers algorithm 5

to initiate a sequence of constraint propagation. For example, the value 1

is eliminated from the domain of X2 by REVISE() using the constraint “X1

6= X2.” This is the first time that the constraint “X1 6= X2” prunes the

domains of its d-variables. Thus “X1 6= X2” takes effect and this effect is

propagated to other constraints involving variable X2.

We are now ready to define the notion of effectiveness formally. Consider

the execution of an IFD-Constraint Pandora program. Let N be a non-leaf

node in a CPS-tree and N ′ be one of its children. If, during the execution of

algorithm 5 in the derivation step from N to N ′, the domain of a d-variable

in the constraint store is pruned as a result of application of REVISE() using

a constraint c in the constraint store of N , then N is said to be the action

32

point of the constraint c. If N is an action point of c and all of its ancestors

in the CPS-tree are not, then N is said to be the effective point of c, and is

denoted Ec.

7.3 An Approximation to IQ

We assume an IFD-Constraint Pandora implementation scheme similar to

those presented in [1, 16] in the following presentation. In constraint addition,

a modified trail-unwinding operation is required. At each unwinding step,

we extract the constraint store at the choice points, submit the newly added

constraint to the constraint store and exercise algorithm 5 for constraint

assimilation. This unwinding process starts from the leaf node corresponding

to the current success execution, and is repeated until either the root of the

CPS-tree is reached or consistency is detected. Thus we can adhere to the

IQ-scheme faithfully with addition of constraints.

With deletion of constraints, we compute the common prefix of O and

O(Ci) and unwind the execution to the choice pointN that corresponds to the

end of this common prefix (note that N is a choice point as we are considering

a skeleton CPS-tree). Assume that Ci+1 = Ci \ {c} and the constraint store

S at N is C ∪ Ci for some set of constraints C. Since constraints in S are

fully assimilated, we cannot simply remove c from S to obtain C ∪ Ci+1 in

general. It is safe to do so only if c has not taken effect at N . We present an

approximation to IQ for constraint deletion:

• if one of the ancestors of N is an effective point Ec for constraint c, then

– if Ec is not the root node of the CPS-tree, we further unwind the

33

trail to the first choice point N ′ at or above Ec, remove c from the

constraint store,

– otherwise, unwind to the root node and remove c from the con-

straint store,

• otherwise, remove c from the constraint store of N .

After the removal of c from the constraint store, we proceed with oracle

O in the same way as for additions in the VHLP-scheme. To support the

approximate IQ-scheme for deletion of constraints, we only have to tag the

constraints when they take effect during execution.

Figure 6 illustrates the approximate IQ-scheme pictorially. SupposeQi =←

B,Ci and Qi+1 =← B,Ci+1, where Ci+1 = Ci \ {c}. The branch ending with

segments 1, 2, and 3 corresponds to the oracle O(Ci). Without loss of gener-

ality, we assume that the first solution of Qi+1 occurs to the “left” of Qi, thus

ending with segments 1, 2, and 4. Therefore, the node connecting branch

segments 2, 3, and 4 is the theoretically best re-start point. As explained,

the IQ-scheme may not be able to locate the perfect re-start point. Suppose

that the IQ re-start point is at the node labeled NIQ. If the effective point

Ec of constraint c occurs in segment 1, then we have to further unwind to the

node N ′IQ before it is safe to remove c from the constraint store. If Ec occurs

in either segment 2 or 3, then we can remove c from the constraint store at

NIQ.

34

7.4 Preliminary Results

We present here some results of applying the IQ-scheme to three well-known

constraint satisfaction problems to illustrate the performance of the scheme:

graph-coloring, n-queens and car-sequencing. The results obtained are sum-

marized in tables 1, 2 and 3 respectively. In these tables, nV HLP is the

number of derivation steps needed to re-execute from the root of the tree to

the restart point NIQ
4 and nIQ is the number of unwinding steps to reach

NIQ. It is shown in these tables that the performance of the IQ-scheme is

better than that of the VHLP-scheme.

The graph coloring problem problem is to find an assignment of colors

to the nodes in a graph such that the two nodes do not have the same color

if they are connected by an edge. The graph consists of 11 nodes and there

are 4 different colors to be used. The program first declares for each node

a d-variable with an initial domain that contains all four colors. These d-

variables are named X1, X2, ..., X11 and the colors 1, 2, 3 and 4 in the

following presentation. Then the program sets up disequality constraints for

each edge. After the solution to the initial query is found, we repeatedly

perform addition and deletion of constraints to test the performance of the

IQ-scheme. The results are summarized in table 1.

We also evaluate the performance of the IQ-scheme using a 10-queens

problem, in which 10 queens are to be placed on a 10× 10 chessboard such

that they do not attack one another. Each of the domain variables Q1, Q2,

..., Q10 denotes the column position of the queen placed in row 1, 2, ...,

4In these particular programs, NIQ = N
′

IQ.

35

Query Increment Constraint nV HLP nIQ

Q1 - - - -

Q2 add X3=2 328 9

Q3 add X9=4 335 2

Q4 add X10 6=2 336 1

Q5 delete X9=4 335 0

Q6 add X2 6=3 328 7

Q7 add X9=4 335 1

Q8 delete X2 6=3 328 5

Q9 delete X9=4 332 0

Q10 add X2 6=3 328 7

Q11 add X6=3 331 5

Q12 delete X2 6=3 328 5

Table 1: Benchmark results for Graph Coloring Problem

10, respectively. Disequality constraints are set up such that Qi 6= Qj and

Qi 6= Qj±|i−j| for all i, j ∈ {1, . . . , 10}. Addition and deletion of constraints

are performed after the first solution is found and the results are summarized

in table 2.

The car-sequencing problem is the third problem we use to evaluate the

performance of the IQ-scheme. The problem instance that we use is an IFD-

Constraint Pandora re-implementation of the problem instance presented in

36

Query Increment Constraint nV HLP nIQ

Q1 - - - -

Q2 add Q3 6=6 263 4

Q3 add Q1=2 261 6

Q4 delete Q3 6=6 262 4

Q5 add Q6 6=2 266 0

Q6 add Q6 6=1 266 0

Q7 delete Q1=2 266 0

Q8 delete Q6 6=1 266 0

Q9 delete Q6 6=2 266 0

Table 2: Benchmark results for 10-queens Problem

a previous paper [8]. In the problem we are to determine a sequence of 10

cars to be manufactured. These cars belong to six different classes. Each

class of car requires 1 to 3 out of 5 available options. The assembly line has

a capacity constraint for each of these options, which varies from 1 out of 5

to 2 out of 3. The main domain variables are C1, C2, ..., C10 such that Ci

(1 ≤ i ≤ 10) denotes the class (1, 2, ..., or 6) of the ith car in the sequence.

Again, we perform some constraint addition and deletion operations after

the first solution is found. The results are presented in table 3.

The main reason for the difference between the performance of these two

schemes is largely due to a unique characteristic of the Andorra class of con-

37

Query Increment Constraint nV HLP nIQ

Q1 - - - -

Q2 add C2=3 127 1

Q3 add C1 6=1 126 3

Q4 add C4 6=1 130 0

Q5 delete C2=3 126 4

Q6 delete C1 6=1 126 4

Table 3: Benchmark results for Car Sequencing Problem

current logic programming languages: that is, there are usually a large num-

ber of deterministic derivation steps between two consecutive choice points.

The overhead of unwinding one step backward is clearly much less than

replaying these large number of derivation steps. In our graph-coloring pro-

gram, the execution proceeds for 327 derivation steps before the first choice

point is created. Similar phenomenon is observed in the 10-queens problem

(261 derivation steps) and the car-sequencing problem (126 derivation steps).

The advantages of the IQ-scheme is especially noticeable in concurrent con-

straint logic programming languages, in which most of the choice points are

created for the “labeling” process, while only few choice points are set up

during constraint establishment.

38

8 Concluding Remarks

User-interface of (constraint) logic programming systems is an aspect that

cannot be ignored. Incremental queries, which has applications in spread-

sheet, databases, budgeting, scheduling, etc., is an important example. In-

cremental queries can be used in constraint optimization problems, which

involve global search. Most logic programming languages tackle optimization

by using higher-order predicates, such as the minimize/2 predicate in CHIP.

With incremental queries, users can post the original constraint satisfaction

problem and the cost function in the initial query. The result displayed after

each increment helps the users to adjust the cost constraints in subsequent in-

crements. The flexibility in incremental queries allows the users to guide the

optimization search by adding stronger constraints or deleting undesirable

ones.

In this paper, we have presented an efficient execution scheme IQ to

implement incremental queries for CLP languages, especially the concurrent

family of languages. The IQ-scheme makes use of oracles as well as previous

execution context to minimize re-execution, resulting in a higher efficiency

than the VHLP-scheme in both the sequential and concurrent cases. There

are three major differences between the IQ-scheme and the VHLP-scheme.

First, the IQ-scheme is designed for concurrent constraint logic programming

languages based on the skeleton CPS-tree. The VHLP-scheme is designed

for sequential constraint logic programming languages based on an SLD-tree.

Second, the main technique used in the IQ-scheme is unwinding while that in

the VHLP-scheme is re-execution. Third, the IQ-scheme makes use of both

39

previous execution paths and execution context, while the VHLP-scheme

does not make use of the latter.

A prototype of the IQ-scheme for IFD-Constraint Pandora has been built

using CHIP to demonstrate the feasibility of our approach. Preliminary re-

sults are encouraging. Future work includes exploring efficient implementa-

tion techniques for the IQ-scheme on different Constraint Pandora instances.

We have intentionally avoided tying the IQ-scheme to a particular instance of

Constraint Pandora. It is expected, however, that the structure of constraint

domain can be exploited in the implementation of the IQ-scheme.

References

[1] R. Bahgat. Non-Deterministic Concurrent Logic Programming in Pan-
dora. World Scientific Publishing, 1992.

[2] F. Benhamou and W. J. Older. Applying interval arithmetic to real,
integer and boolean constraints. Journal of Logic Programming, 32(1):1–
24, July 1997.

[3] P. Chatalic. Incremental techniques and Prolog. Technical Report TR-
LP-23, European Computer-Industry Research Centre, June 1987.

[4] P. Chatalic. IMPRO: An environment for incremental execution in
Prolog. Technical Report TR-LP-42, European Computer-Industry Re-
search Centre, May 1989.

[5] M.H.M. Cheng, M.H. van Emden, and J.H.M. Lee. Tables as a user
interface for logic programs. In Proceedings of the International Con-
ference on Fifth Generation Computer Systems 1988, pages 784–791,
Tokyo, Japan, November–December 1988. Ohmsha, Ltd.

[6] K.L. Clark. Parallel logic programming. The Computer Journal,
33(6):482–493, 1990.

40

[7] J. Crammond. The abstract machine and implementation of parallel
parlog. New Gener. Comput., 10:385–422, 1992.

[8] M. Dincbas, H. Simonis, and P. Van Hentenryck. Solving the car-
sequencing problem in constraint logic programming. In Proceedings
of the European Conference on Artificial Intelligence, pages 290–295,
1988.

[9] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and
F. Berthier. The constraint logic programming language CHIP. In Pro-
ceedings of the International Conference on Fifth Generation Computer
Systems (FGCS’88), pages 693–702, Tokyo, Japan, December 1988.

[10] F. Fages, J. Fowler, and T. Sola. A reactive constraint logic program-
ming scheme. In L. Sterling, editor, Logic Programming: proceedings
of the Twelfth International Conference on Logic Programming, pages
149–163, Tokyo, Japan, June 1995. MIT Press.

[11] S. Gregory. Parallel Logic Programming in PARLOG: The Language
and Its Implementation. Addison-Wesley, 1987.

[12] R Helm, T. Huynh, K. Marriott, and J. Vlissides. An Object-Oriented
Architecture for Constraint-Based Graphical Editing. In C. Laffra, E.H.
Blake, V. de Mey, and X. Pintado, editors, Object-Oriented Program-
ming for Graphics, Focus on Computer Graphics, Tutorials and Per-
spectives in Computer Graphics, pages 217–238. Springer-Verlag, 1995.

[13] J. Jaffar and J-L. Lassez. Constraint logic programming. In Proceedings
of the 14th ACM POPL Conference, pages 111–119, Munich, January
1987.

[14] J. Jaffar, S. Michaylov, P.J. Stuckey, and R.H.C. Yap. The CLP(R)
language and system. ACM Transactions on Programming Languages
and Systems, 14(3):339–395, July 1992.

[15] J.H.M. Lee and M.H. van Emden. Interval computation as deduction in
CHIP. Journal of Logic Programming, 16(3 & 4):255–276, 1993.

41

[16] H. F. Leung. Distributed Constraint Logic Programming, volume 41 of
World Scientific series in computer science. World Scientific, Singapore,
1993.

[17] J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, second
edition, 1987.

[18] A. K. Mackworth. Consistency in networks of relations. Artificial Intel-
ligence, 8(1):99–118, 1977.

[19] M. J. Maher. Logic semantics for a class of committed-choice programs.
In J.-L. Lassez, editor, Logic Programming: proceedings of the Fourth
International Conference, pages 858–876, Melbourne, Australia, 1987.
The MIT Press.

[20] M.J. Maher and P.J. Stuckey. Expanding query power in contraint logic
programming languages. In Proceedings of the North American Confer-
ence on Logic Programming 1989, pages 20–36, Cleveland, Ohio, U.S.A.,
1989.

[21] Lee Naish. An introduction to Mu-Prolog. Technical Report TR-82/2,
Department of Computer Science, Melbourne University, 1982. Revised
version July 1983.

[22] M. Ohki, A. Takeuchi, and K. Furukawa. A framework for interactive
problem solving based on interactive query revision. In E. Wada, editor,
Proceedings of the Fifth Conference on Logic Programming ’86, pages
137–146, Tokyo, Japan, June 1986. Springer-Verlag.

[23] E.Y. Shapiro. Concurrent Prolog: a progress report. IEEE Computer,
8(4):44–58, 1986.

[24] R.V. Southwell. Relaxation Methods in Theoretical Physics. Oxford
University Press, 1946.

[25] I.E. Sutherland. SKETCHPAD: a Man-Machine Graphical Communi-
cation System. PhD thesis, MIT Lincoln Labs, Cambridge, MA, 1963.

[26] The COSYTEC Team. CHIP V4 User Manuals, 1993.

42

[27] T.Huynh and K. Marriott. Incremental constraint deletion in systems of
linear constraints. Information Processing Letters, 55(2):111–115, July
1995.

[28] K. Ueda. Guarded Horn Clause. PhD thesis, University of Tokyo, Tokyo,
Japan, 1986.

[29] M.H. van Emden. Logic as an interaction language. In Proceedings of
the Fifth Conference on Canadian Society for Computational Studies in
Intelligence, pages 126–128, 1984.

[30] M.H. van Emden, M. Ohki, and A. Takeuchi. Spreadsheets with in-
cremental queries as a user interface for logic programming. New Gen-
eration Computing, OHMSHA, LTD. and Springer-Verlag, 4:287–304,
1986.

[31] M.H. van Emden and D.A. Rosenblueth. A spreadsheet interface for
Prolog. IBM SUR Grant Project No. 058CT-35, final report, August
1986.

[32] P. Van Hentenryck. Consistency Techniques in Logic Programming. PhD
thesis, University of Namur, Belgium, 1987.

[33] P. Van Hentenryck. Constraint Satisfaction in Logic Programming. The
MIT Press, 1989.

[34] P. Van Hentenryck and Y. Deville. The cardinality operator: A new
logical connective for constraint logic programming. In Proceedings of
the Eighth International Conference on Logic Programming, pages 745–
759, 1991.

[35] P. Van Hentenryck and T. Le Provost. Incremental search in constraint
logic programming. New Generation Computing, 9:257–275, 1991.

[36] P. Van Hentenryck, V. Saraswat, and Y. Deville. Design, implementa-
tion, and evaluation of the constraint language cc(FD). Technical Re-
port CS-93-02, Computer Science Department, Brown University, Prov-
idence, RI, USA, 1993.

43

[37] D.H.D. Warren. The Andorra model. Presented at Gigalips Project
Workshop, University of Manchester, March 1992.

44

gen(1). . . . (1)

gen(2). . . . (2)

gen(3). . . . (3)

gen(4). . . . (4)

gen(5). . . . (5)

gen(6). . . . (6)

schedule(X1,X2,X3,X4,X5,X6) :- . . . (1)

X1 ∈ {1, . . . , 6}, . . ., X6 ∈ {1, . . . , 6},

X1 6= X2, . . ., X5 6= X6,

X1 > X2,

X3 < X2,

X4 < X2,

X5 < X2,

X6 < X2,

gen(X1), . . ., gen(X6).

Figure 2: A Simple Scheduling Example in Constraint Pandora.

45

N0

N1

Nj−1

Nj

Nl−1

Nl

...

...

i1

i2

Figure 3: Existence of Nj

46

queens(L) :- [X1,X2,X3,X4] <= L :

X1 :: 1..4, X2 :: 1..4, X3 :: 1..4, X4 :: 1..4,

constrain([X1,X2,X3,X4]), indomain(X1),

indomain(X2), indomain(X3), indomain(X4).

constrain(L) :- [] <= L : true.

constrain(L) :- [X|T] <= L :

safe(X, T, 1), constrain(T).

safe(X, L, N) :- [] <= L : true.

safe(X, L, N) :- [Y|T] <= L :

noattack(X, Y, N), N2 is N + 1, safe(X, T, N2).

noattack(X, Y, N) :-

X 6= Y, X 6= Y + N, X 6= Y - N.

indomain(X) :- X = 1.

indomain(X) :- X = 2.

indomain(X) :- X = 3.

indomain(X) :- X = 4.

Figure 4: An IFD-Constraint Pandora program for the 4-queens problem.

47

Let A denote the active set of constraints and P the passive set of constraints

1. Initialize A to contain all new constraints

2. Initialize P to contain all constraints already in the store

3. while A is not empty

4. Remove from A a constraint p, the domains of its associated variables are ~D

5. ~D′ = REVISE(p, ~D)

6. if any domain in ~D′ is ∅ then

7. Exit with failure

8. else

9. if ~D 6= ~D′ then

10. foreach d-variable XDi in p such that Di 6= D
′
i

11. Generate the substitution θ = {XDi/Y D
′

i}

12. Apply θ to A and P

13. foreach constraint q in P

14. if q contains XDi then

15. Move q from P to A

16. endif

17. endforeach

18. endforeach

19. endif

20. endif

21. Add p to P

22. endwhile

Figure 5: A Relaxation Algorithm for Constraint Assimilation
48

O(Ci)

O(Ci+1)

2

1

NIQ

N ′IQ

3

Perfect
re-start point

4

Figure 6: The Approximate IQ-Scheme for Deletion of Constraints

49

