
A Rule-based System for Model Transformation

Sebastian Brand, Gregory J. Duck, Jakob Puchinger, and Peter J. Stuckey

NICTA, Victoria Research Lab, University of Melbourne, Australia

Abstract. We describe the constraint model transformation system
Cadmium, focussing on its application. We discuss how we use it to re-
duce solver-independent models in the medium-level modelling language
MiniZinc into equivalent models for finite domain constraint solvers and
integer linear programming solvers.

1 Introduction

The last decade has seen a trend towards high-level modelling languages in
constraint programming. Languages such as ESRA [1], Essence [2], and Zinc [3]
allow the modeller to state problems in a declarative, human-comprehensible
way and without having to make subordinate modelling decisions or even to
commit to a particular solving approach. Examples for decisions that depend
on the target solver are the representation of variables of a complex type or the
translation of constraints into those provided. Such decisions need to be taken
if concrete solvers such as ILOG Solver or Eclipse are used directly.

The problem solving process is thus broken into, first, the development of a
high-level, solver-independent, conceptual model and, second, the mapping of it
into an executable version, the design model. Typically, an iterative process of
solver selection, model formulation or augmentation, and model transformation,
followed by experimental evaluation, is employed.

In terms of system support, there is an imbalance between the tasks of model
formulation, for which well-designed, open high-level languages exists, and model
transformation, which is typically done by fixed procedures inaccessible to the
modeller. It is hard to see, however, that there is a single best set of transforma-
tions that can be wrapped and packed away. We therefore believe that a strong
requirement on a model transformation process and platform is flexibility.

In this paper we describe our model transformation system Cadmium [4]
with a focus on its use. Cadmium, in contrast to comparable systems, is term-
rewriting based. The rules and transformations are directly accessible to the
modeller and can be freely examined, modified, and replaced. A major strength
of Cadmium is its tight integration with the Zinc modelling language: the rules
operate directly on Zinc expressions. As a result, in our view, transformations
are often very compact and comprehensible.

We have found that Cadmium addresses the flexibility requirement well,
and we provide evidence for this statement in this paper. We report on sev-
eral transformations, including two major ones over models in the medium-level

modelling language MiniZinc [5], a subset of Zinc. One transformation maps
MiniZinc models into a form easily executable by ordinary Finite Domain con-
straint solvers. The second transformation generates linear constraints solvable
by (Integer) Linear Programming solvers.

2 Languages and systems

2.1 The Zinc family of modelling languages

Zinc [3] is a novel declarative, typed constraint modelling language. It provides
mathematical notation-like syntax (arithmetic and logical operators, iteration),
high-level data structures (sets, arrays, tuples, Booleans), and extensibility by
user-defined functions and predicates. Model and instance data can be sepa-
rate. MiniZinc [5] is a subset of Zinc closer to existing CP languages and
that is still suitable as a medium-level constraint modelling language. Flat-

Zinc, also described in [5], is a low-level subset of Zinc. It takes a role for CP
systems comparable to that taken by the DIMACS and LP/MPS formats for
propositional-satisfiability solvers and linear solvers, resp.

A Zinc model consists of an unordered set of items such as variable and
parameter definitions, constraints, type definitions, and the solving objective.
As an example, consider the following MiniZinc model of the Golomb Ruler
problem. The problem consists in finding a set of small integers of given cardi-
nality such that the distance between any pair of them differs from the distance
between any other pair.

int: m = 5;

int: n = m*m;

array[1..m] of var 0..n: mark;

array[1..(m*(m-1)) div 2] of var 0..n: differences =

[mark[j] - mark[i] | i in 1..m, j in i+1..m];

constraint mark[1] = 0;

% The marks are ordered, and their differences are distinct

constraint

forall (i in 1..m-2) (mark[i] < mark[i+1])

∧
all different(differences);

% Symmetry breaking

constraint mark[2] - mark[1] < mark[m] - mark[m-1];

solve minimize mark[m];

Let us consider the items in textual order.

– The first and second lines declare the parameters m and n, both of type int.
– The following two lines declare the variable arrays mark and differences.

The elements of either array are variables taking integer values in the range
0..n. The index set of mark are the integers in the range 1..m. The array
differences is defined by an array comprehension.

2

– Next is a constraint item fixing the first element of mark to be zero. More con-
straint items follow, specifying the properties of the desired Golomb rulers.

– The final item is a solve item, which states that the optimal solution with
respect to minimising the final mark at position m should be found.

More detail about Zinc and its sublanguages is available in [3, 6, 5].

2.2 The Cadmium model transformation system

Cadmium [4] is a declarative rule-based programming language based on asso-
ciative, commutative, distributive term rewriting. Cadmium is primarily target-
ted at Zinc model transformation, where one Zinc model can be transformed
into another by a Cadmium program (or mapping). A rule-based system for
constraint model transformation is a natural choice as such transformations are
often described as rules in the first place.

Transforming Zinc models with Cadmium is very natural because of the
tight representational integration between the two languages. In technical terms,
our integrated Zinc solver tool reads a Zinc model and a Cadmium transfor-
mation specification according to which the model is transformed. The resulting
model can be output for inspection or further use, or it can be immediately
solved by the built-in FD constraint solver.

A Cadmium program is a sequence of Cadmium rules of the form

Head ⇔ Body

where Head and Body are arbitrary terms that in particular can be or con-
tain Zinc expressions. Any expression from the input model matching Head is
rewritten to the expression Body . The rules in the program are repeatedly ap-
plied until no more applications are possible. The obtained model is the result
of the transformation.

To emphasise the free combination of Zinc expressions with arbitrary term
constructors, we continue marking Zinc keywords as in constraint, int, array.

Example 1. The following is a one-rule Cadmium transformation:

X + 0 ⇔ X

Given this program, Cadmium will transform the Zinc item

constraint a + 0 = 10;

into the simplified form

constraint a = 10; ut

Cadmium has several features that make implementing model transformation
easier:

– associative commutative matching;
– distributive or conjunctive context matching;
– user-definable guards on rules;
– staged transformations.

We describe them in the following.

3

Associative commutative matching. An operator ◦ is Associative Commu-

tative (AC) if it satisfies x ◦ (y ◦ z) = (x ◦ y) ◦ z and x ◦ y = y ◦ x. AC operators
are common, e.g. +, ∗, ∧, ∨, ∪, ∩. In Cadmium, the order and nested struc-
ture of expressions constructed form AC operators does not matter. Because of
AC matching, the number of rules required to express a transformation can be
significantly reduced.

Example 2. Consider the rule from Example 7 and the Zinc item:

constraint 0 + a = 10;

Thanks to AC matching, the rule is still applicable to the expression 0 + a,
despite the order of the arguments for + being reversed. ut

Conjunctive context matching. Cadmium supports conjunctive context
(CC) matching, which makes it possible for rules to match against non-local
information. At the core of CC matching is the following observation: given a
conjunction X ∧ Y , fact X is true in Y as well as in all subterms of Y . We
say that X is in the conjunctive context of Y . Likewise, Y is in the conjunctive
context of X.

Example 3. Consider the expression

(a < b) ∧ f(1 + bool2int(b > a))

The expression a < b is in the conjunctive context of the sub-term b > a. We
can therefore deduce that b > a must be false, and simplify the expression:

(a < b) ∧ f(1 + bool2int(false)) ut

A Cadmium rule of the form:

CCHead \ Head ⇔ Body

uses CC matching. The expression matching Head will be rewritten to Body

provided an expression matching CCHead is in the conjunctive context.

Example 4. Reconsider the transformation from Example 3. It can be achieved
by the following Cadmium rule:

X < Y \ X > Y ⇔ false ut

Example 5. CC matching can be used to implement parameter substitution in
constraint models as follows:

X = C \ X ⇔ C

If an equation X = C appears in the conjunctive context of an X, then this rule
rewrites X to C. Consider the expression

f(a,a+b,g(a)) ∧ a = 3

After exhaustively applying the rule, the result is:

f(3,3+b,g(3)) ∧ a = 3 ut

A more detailed explanation of conjunctive context can be found in [4].

4

User-definable guards. Cadmium supports rule with guards. The syntax is:

CCHead \ Head ⇔ Guard | Body

Such a rule can only be applied if the Guard holds, that is, if it can be rewrit-
ten to true. Cadmium provides a number of simple guards, e.g. is int(X),
is float(X). Guards can also be defined by the user via rules.

Example 6. The following program is the same as that in Example 5, except rule
application has been restricted by guards.

X = C \ X ⇔ is var(X) ∧ is num(C) | C

is num(C) ⇔ is int(X) | true

is num(C) ⇔ is float(X) | true

The guards is int, is float, and is var are built-in guards, and is num is a
user-defined guard. The guard is num(C) succeeds if C is an integer or a floating
point number. ut

Staged transformations. For complex mappings, Cadmium supports staged

transformations. So far, all of the transformations have been simply sets of rules.
A staged transformation consists of several rule sets run in sequence. Staged
transformations are declared via transform declarations. For example,

transform main = stage 1, stage 2;

defines a transformation main that consists of the sub-transformations stage 1

and stage 2. The output of stage 1 becomes the input to stage 2, and the
subsequent output of stage 2 is the final result of main.

The simplest transformations are sets of rules. Rules sets are given names
via ruleset declarations, e.g.

ruleset simplify ints;

X + 0 ⇔ X;

X * 0 ⇔ 0;

Rule sets can import other rule sets, e.g.

ruleset simplify num;

import simplify ints;

import simplify floats;

Thus, simplify num is in effect the union of the two rulesets simplify ints and
simplify floats. Importing of rulesets can also be inlined inside transformation
declarations; e.g.

transform main = (simplify ints | simplify floats), stage 2;

is equivalent to

transform main = simplify num, stage 2;

5

2.3 Representation of Zinc models in Cadmium

The Cadmium rewriting engine operates on terms, similar to terms in Prolog.
This means that a Zinc model must be represented as a Cadmium term in a
standard way. We do so as follows:

– Each Zinc item is given some term representation, e.g. constraint X+3 is
represented as ’!constraint’(X+3). Note that the ‘!’ is added to functor
‘constraint’ to help avoid name space clashes.

– All Zinc items in the model are joined by conjunction, thus

constraint X = 3;

solve satisfy;

is represented as

’!constraint’(X = 3) ∧ ’!solve’(’!satisfy’)

Therefore, Zinc items can be looked up by rules using conjunctive context.

– The conjunction of Zinc items is wrapped by a top-level model functor. This
means that it is possible to rewrite the entire model at once:

model Model ⇔ ...

This representation allows top-down model transformation in the way non-
term-rewriting-based approaches work. However, in our experience, top-
down transformations are rarely needed.

Much low-level details about model representation is hidden from the user,
since the Cadmium parser accepts a Zinc-like syntax. However, generalising
the Zinc grammar for Cadmium has led to ambiguity. For example, consider
T: X in the head of a rule. It can match many different things in Zinc, e.g.
a variable declaration, an array index-value pair, or a record identifier-value
pair. Some ambiguity is currently resolved by additional keywords. Furthermore,
Cadmium has shadow versions of many Zinc operators which are evaluated by
the Cadmium engine. For instance, 1+2 represents a Zinc addition whereas 1!+2
is evaluated to 3.

A good solution to the issues raised by merging the base grammar of Cad-

mium with Zinc’s grammar needs to achieve both rigour and conciseness, and
is on-going work.

3 Model transformations

For the reader to gain an understanding of the conciseness and readability pos-
sible in Cadmium, we give some representative example rules in the following
sections. We emphasise that most rules are copied verbatim from our actual
source code and (except for minor stylistic improvements) are thus executable.
Of others we use generalised versions.

6

3.1 Elimination of enumerated types

As a gentle introduction to transformations, we start with a simple task: the
elimination of enumerated types. Enumerated types provide a set of named al-
ternatives in Zinc. Here is an example definition:

enum animals = {cat, dog, unicorn};

Typically, target solvers do not support enumerated types, so the type constants
need to be represented as integer parameters. The following transformation ap-
plies a standard mapping to a model, replacing the ith enumerated type constant
by the integer i.

enum T = Symbols ⇔
(type T = 1..set size(Symbols)) ∧
refine enum type(T, Symbols, 1)

refine enum type(, {},) ⇔ true

refine enum type(T, {S ! Symbols}, I) ⇔
T: S = I ∧ refine enum type(T, Symbols, I !+ 1)

The function set size used here is handled by (the obvious) rules in the Cad-

mium standard library. Given the enumerated type definition above, the trans-
formation will generate:

type animals = 1..3;

animals: cat = 1;

animals: dog = 2;

animals: unicorn = 3;

A fixed, linear mapping of symbols to integers is applied here. It should be easy
to see that it is not hard to write rules using instead a mapping chosen by the
modeller, which may sometimes be desirable.

3.2 Type refinement

As a second small example let us consider a simple case of type refinement:
the reduction of a set type to a Boolean array type. The array index set is the
universe of the original set.

var set of T: S ⇔ array[T] of var bool: A ∧ refine(S, A)

refine(S, A) \ P subset S ⇔ forall([A[E] | E in P])

The first rule replaces a set variable declaration by a corresponding array variable
declaration, using a fresh identifier, and installs a refinement token at the model
top level, i.e. in the conjunctive context of the entire model. By the second rule,
subset constraints fitting the refinement token are replaced by the appropriate
constraint on the new array variable. Similar rules for all other set constraints
would also be part of this rule set. In a concluding stage, the refinement token
is deleted.

This two-stage transformation rewrites the model

7

var set of 1..5: T;

constraint B → (1..3 subset T);

var bool: B;

into the refined model

array[1..5] of var bool: V1;

constraint B → forall([V1[V2] | V2 in 1..3]);

var bool: B;

The new identifiers V1, V2 are freshly introduced by the transformation and
uniquely named by the Cadmium engine.

Note that the rules did not specify the set element type T. Zinc allows deeply
nested types, and further refinement rules may be needed to reduce the so gen-
erated array indexed by T into e.g. an integer-indexed array.

It is clear that this proof-of-concept transformation is still a considerable
distance from a comprehensive type refinement system as present in Conjure [7].
We hope to be able to formulate an equivalent system using concise Cadmium

transformations.

3.3 Transforming MiniZinc to FlatZinc

Next, we present elements of the Cadmium variant of the MiniZinc-to-Flat-

Zinc conversion described in [5].

1. Model normalisation.
Zinc allows much choice in the way models are written and so adapts to the
preferred visual style of the model writer. The first step in our conversion
is to rewrite simple, equivalent notations into a normal form. Examples are
the joining of constraint items and the unification of synonyms:

(constraint C) ∧ (constraint D) ⇔ constraint C ∧ D

X == Y ⇔ X = Y

2. Predicate inlining.
We use a top-down transformation, traversing the entire model term, to re-
place a call to a predicate (or function) by the respective instantiated pred-
icate body. This is our only significant case of a top-down transformation.

3. The next steps, while defined separately and listed in sequence, depend on
and enable one another. In a non-term-rewriting approach, an iteration algo-
rithm would be needed to compute the mutual fixpoint. In Cadmium, each
individual transformation corresponds to a set of rules, and the composite
transformation is the union of these rule sets. Once the composite transfor-
mation has reached stabilisation, the mutual fixpoint of the separate rule
sets is obtained.

(a) Partial evaluation.
We here apply rules that simplify the model by taking into account the
semantics of Zinc constructs. Consider:

8

X ∨ true ⇔ true

X + Y ⇔ is int(X) ∧ is int(Y) | X !+ Y

L..U:X \ X 6 C ⇔ is int(U)∧ is int(C) ∧ U!6C | true

(b) Compound built-in unfolding.
Expressions with e.g. sum, forall are compound expressions in Zinc.
They are inlined by rules such these:

sum([]) ⇔ 0

sum([E ! Es]) ⇔ E + sum(Es)

(c) Parameter substitution.
We use the conjunctive context of an expression:

T: X = E \ X ⇔ is int(E) | E;

(d) Comprehension unfolding.
[E | X in L..U] ⇔ L !> U | []

[E | X in L..U] ⇔ [subst(X=L, E) ! [E | X in L+1..U]]

4. Boolean/numeric/set normalisation and decomposition.
This step again consists of separate sets of independent, composed trans-
formations; one set of rule sets each for normalising and for decomposing
constraints involving the respective types.
Numeric normalisation, for example, joins constants on opposite sides of an
inequality:

C+E < D ⇔ is int(C) ∧ is int(D) | E < D!-C

Our choice for Boolean normalisation is to establish a negation normal form
by rules such as

not (X → Y) ⇔ X ∧ not Y

not (A > B) ⇔ A < B

Boolean decomposition.
In a first step, we extract complex subexpressions using a let formulation:

C → D ⇔ is not(is variable(C)) |

let { var bool: B = C } in (B → D)

Guard is not(G) holds if G rewrites to false. The inner guard
is variable(X) holds if X is a model variable, which includes Cadmium

identifiers (tested by is var) and lookups to variable arrays, e.g. a[0] is a
Zinc variable if a is an array of variables.

Numeric decomposition.
The rules here are slightly more complex than in the Boolean case:

A[X] ⇔ is not(is variable(X)) ∧ is not(is int(X)) |

let { var lbound(X)..ubound(X): W = X } in A[W]

max(X,Y) ⇔ is not(is variable(X)) ∧ is not(is int(X)) |

let { var lbound(X)..ubound(X): W = X } in max(W, Y)

The *bound functors are used to derive a tight type for the new variable.
They are defined using rules such as the following:

lbound(C) ⇔ is int(C) | C

L..U: X \ lbound(X) ⇔ L

lbound(X + Y) ⇔ term(X) | lbound(X) + lbound(Y)

9

The local variable declarations introduced during decomposition are lifted
to the model top level by a command provided by the Cadmium engine:

let { var T: X } in E ⇔ top level(E, T: X)

5. FlatZinc format.
The final step is to turn the constraints, now decomposed and in normal
form, into their FlatZinc form:

Z = max(X, Y) ⇔ int max(X, Y, Z)

X = A[Y] ⇔ is not(is int(Y)) | array int element(Y,A,X)

Example 7. Here are some of the constraints resulting in the MiniZinc-to-Flat-

Zinc conversion of the Golomb Ruler problem, Section 2.1:

constraint int plus(differences[3], mark[1], mark[2]);

constraint int lt(mark[1], mark[2]);

constraint int eq(mark[0], 0);

constraint all different(differences); ut

3.4 Transforming MiniZinc into linear (Mixed Integer
Programming) format

There are many similarities between the MiniZinc-to-FlatZinc and this trans-
formation which generates a model of linear constraints only. In principle, it
would suffice to transform FlatZinc to a MIP format; however, the generic
Boolean decomposition is inappropriate for this purpose. So we just share many
of the subtransformations. More specifically, rule sets 1–3 are identical. Rule sets
4–9 are detailed below.

The transformation is based on the work by McKinnon and Williams [8] and
Li et al. [9]. We simplified the transformation and made some steps, such as
Boolean normalisation, more explicit. Li et al. define the modelling language L+

consisting of linear arithmetic constraints, Boolean operators, and some further
formulas such as at most or at least. Steps of the transformation described in [9]:

– Transformation of L+ into negation normal form.
– Transformation of simplified L+-formulas into Γ -formulas, which are of

the form Γm{P1, . . . , Pn} where each Pi is a Γ -formula or constraint, and
Γm{P1, . . . , Pn} means at least m formulas of {P1, . . . , Pn} are true.

– Elimination of negated Γ -formulas.
– Flattening of nested Γ -formulas.
– Transformation of Γ -formulas into MIP-expressions.

Our transformations also use the previously defined Γ -formulas. After ap-
plying the previously defined rulesets 1–3, we do further normalisation and de-
composition. We then generate Γ -formulas which are further transformed into a
linear form of MiniZinc. As a final optional step, we can also transform these
linear models into CPLEX LP format for directly feeding them into most of the
currently available MIP solvers.

10

4. Boolean/numeric normalisation and decomposition.
In addition to the previously defined normalisations and decompositions, we
decompose different generic constraints such as the domain constraint:

X in A..B ⇔ is int(A) ∧ is int(B) | A 6 X ∧ X 6 B

X in S ⇔ is set(S) | exists(map(’=’(X), set2list(S)))

For mapping domain constraints we discern two cases: ranges which can
simply be mapped onto two inequalities, and the others where the domain
is a general set of values. We map this second case to a disjunction over the
values of the domain (map(F,L) applies F to the elements of L).

Element constraint:

Y = A[X] ⇔
is variable(X) | exists(map(ec decomp(A, X, Y),

range2list(lbound(X), ubound(X))))

ec decomp(A, X, Y, I) ⇔ A[I] = Y ∧ X = I

The element constraint is transformed into a disjunction over all possible
values of X; each of the disjuncts fixes Y according to a given X.

Alldifferent constraint:

all different(X) ⇔
forall(I,J in index set(X) where I < J) (X[I] != X[J])

We simply decompose the alldifferent constraint into a conjunction of in-
equations between all variable pairs.
Furthermore strict inequalities, inequations, minimum and maximum are
transformed into a linear form. The above rules are the most straightforward
decompositions of element and alldifferent. More refined decompositions are
described in [10].

5. Negation normal form (established by Boolean normalisation).
As in the MiniZinc-to-FlatZinc mapping, we transform the formulas into
negation normal form. An example:

(x - y > 5 ∧ x - y < 5) → (z > 1)

is transformed into:

(x - y 6 5 ∨ x - y > 5) ∨ (z > 1)

6. Rewriting binary into n-ary conjunctions/disjunctions (conj(), disj()) so
that they can be further transformed into Γ -formulas.

disj(Cs) ⇔ gamma(Cs, length(Cs), 1)

conj(Cs) ⇔ gamma(Cs, length(Cs), length(Cs))

The formula from the example above:

(x - y 6 5 ∨ x - y > 5) ∨ (z > 1)

becomes:

gamma([gamma([x - y 6 5, x - y > 5], 2, 1),

z > 1], 2, 1)

7. Boolean to linear transformations.
These are mainly based on the Γ to linear transformations, but are simpler,
since all constraints were previously normalised.

11

constraint gamma(Cs, N, N) ⇔ constraint forall(Cs)

constraint gamma(Cs, N, M) ⇔
N !> M | constraint true → gamma(Cs, N, M)

constraint gamma(Cs, N, M) ∧ Ds ⇔
N !> M | constraint true → gamma(Cs, N, M) ∧ Ds;

B → gamma(Cs, , M) ⇔ g aux(B, Cs, M, [])

g aux(B0, [C ! Cs], M, Bs) ⇔
let { var bool: B } in

((B → C) ∧ g aux(B0, Cs, M, [bool2int(B) ! Bs]))

g aux(B0, [], M, Bs) ⇔ B0 → sum(Bs) > M

B → E 6 F ⇔ E-F 6 ubound(E-F) * (1-bool2int(B))

The first three rules transform top-level Γ -formulas. The fourth and fifth rule
transform a formula B → Γm(Cs) into a conjunction of rules Bi → Ci. The
Bi are accumulated in a list. The sixth rule then adds B0 →

∑
(Bi) > m.

Finally the last rule rewrites B0 →
∑

(Bi) > m into the form
∑

(Bi) > B0m.

We optimise the transformation by distinguishing some special cases:
constraint

gamma aux(B0, [B ! Cs], M, Bs) ⇔
is bool var(B) | g aux(B0, Cs, M, [bool2int(B) ! Bs])

Looking at part of our example and assuming x and y are in 0..10:
gamma([x - y 6 5, x - y > 5], 2, 1)

is stepwise transformed as follows (ignoring bool2int for brevity):
B → gamma([x - y 6 5, x - y > 5], 2, 1)

g aux(B,[x - y 6 5, x - y > 5], 2, 1)

B1 → x - y 6 5 ∧ B2 → x - y > 5 ∧ B → B1 + B2 > 1

x - y - 5 6 5 *(1 - B1) ∧ 5 - x + y 6 15 *(1 - B2) ∧
1 - B1 - B2 6 1 - B

8. Boolean-to-integer.
In this ruleset we transform Boolean variables into 0-1 integer variables by
directly substituting the type (and reusing the variables).

bool ⇔ 0..1

bool2int(B) ⇔ B

9. A possible concluding stage of the linearisation prints out the linear model
in CPLEX LP format using Cadmium’s I/O facilities.

Example 8. The following is part of the result of applying the MiniZinc-to-LP
format transformation to the Golomb Ruler problem from Section 2.1:

Minimize mark{3}
Subject To

mark{0} = 0

mark{2} - 1 mark{1} - 1 differences{3} = 0

mark{1} - 1 mark{2} <= -1

-1 V 84 - 1 V 85 <= -1

differences{1} + 17 V 85 - 1 differences{0} <= 16

12

differences{0} + 17 V 84 - 1 differences{1} <= 16

...

Bounds

0 <= differences{0} <= 16

0 <= mark{1} <= 16

0 <= V 84 <= 1

0 <= V 85 <= 1

...

General

mark1

differences0

V 84

V 85

...

4 Case studies

We tested and evaluated the MiniZinc to FlatZinc as well as MiniZinc to LP
format transformations on several different models:

– alpha: Gecode alpha example
– eq20: Solving twenty linear constraints
– golomb: Golomb rulers (m ∈ {4, 6, 8, 10})
– jobshop: Square job scheduling (2x2, 4x4, 6x6, 8x8)
– mdknapsack: Multidimensional knapsack problem (n = 5,m = 3 and n =

100,m = 5)
– packing: Packing squares into a rectangle (4)
– perfsq: Find a set of integers the sum of whose squares is itself a square (with

maximum integer 10, 20, or 30)
– n-queens: 8, 10, 20
– radiation: Radiation treatment planning (4x4, 5x5)
– warehouses: Warehouse construction problem

The experiments where performed on a 3.4Ghz Intel Pentium D with 4Gb
RAM computer running Linux. The Flatzinc models were solved by the G12
finite domain solver, the LP models were solved using CPLEX 10.0. The solvers
were aborted if they did not return a result within 5 minutes.

From these experiments we can see that while the FlatZinc translations are
often smaller, and faster to achieve than the LP format, the speed of the LP solver
means that the LP translations are often better overall. Some of the slightly
bigger examples (golomb8 and golomb10, jobshop8x8, mdknapsack2, perfsq30,
20-queens, and radiation5) show that translations times do scale, but the solve
times can increase dramatically. For some examples we can see a clear advantage
for the FD solver (n-queens, golomb, jobshop), whereas for other examples the
MIP solver performs better(mdknapsack, perfsq, radiation). Most of the other
examples are small, where the translation time often dominates on solving time.

13

Table 1. Results of the described transformations on several different models

name mzn fzn lp format
lines lines trans.[s] solve[s] lines trans.[s] solve[s]

alpha 52 53 0.29 0.17 2356 1.52 0.09
eq20 63 82 0.14 0.09 43 0.19 0.00
golomb4 11 16 0.14 0.04 146 0.19 0.00
golomb6 11 27 0.15 0.09 809 0.32 0.059
golomb8 11 42 0.16 0.71 2765 0.95 11.54
golomb10 11 61 0.39 229.24 7106 6.87 -
jobshop2x2 20 18 0.13 0.05 37 0.17 0.00
jobshop4x4 22 141 0.16 0.09 227 0.21 0.01
jobshop6x6 24 492 0.26 0.55 749 0.33 0.67
jobshop8x8 26 1191 0.95 - 1771 1.32 -
mdknapsack1 21 16 0.13 0.04 25 0.18 0.00
mdknapsack2 75 175 0.39 - 217 0.64 0.31
packing 32 237 0.15 0.09 378 0.22 0.00
perfsq10 16 89 0.14 0.08 948 0.36 0.04
perfsq20 16 161 0.14 0.79 3068 1.27 0.32
perfsq30 16 233 0.15 55.31 6388 3.63 3.17
8-queens 9 86 0.14 0.09 613 0.26 0.01
10-queens 9 86 0.14 0.09 613 0.26 0.02
20-queens 9 572 0.26 0.11 4039 1.38 -
radiation4 40 553 0.32 1.12 1689 0.83 0.02
radiation5 41 1032 0.56 - 3084 2.07 0.13
warehouses 45 476 0.22 1.21 1495 0.50 0.77

5 Final remarks

Cadmium is one of only a few purpose-built systems targetting constraint model
transformation, and among these, has particular strengths. Constraint Handling
Rules (CHR) is less powerful in the sense that CHR rules can only rewrite items
at the top-level conjunction. CHR implementations are also not deeply integrated
with high-level modelling languages in the way Cadmium and Zinc are.

The Conjure system [7] for automatic type refinement accepts models in the
high-level constraint specification language ESSENCE and transforms them into
models in a sublanguage, ESSENCE’, roughly corresponding to a Zinc-to-Mini-

Zinc translation. Conjure’s focus is on automatic modelling: the generation of a
family of correct but less abstract models that a given input model gives rise to.
Our current goal with Cadmium somewhat differently is to have a convenient,
all-purpose, highly flexible ‘plug-and-play’ model rewriting platfom.

As a case in point for such a platform (beside the content of this paper),
consider the recent work on preprocessing constraint models for stochastic local
search [11]. It deals with an architecture in which models in a language com-
parable to MiniZinc can be simplified. The studied simplifications include a
translation into negation normal form, simple consistency reasoning on the vari-
able domains, substitution of a variable occurrence if its conjunctive context

14

determines its value (‘dealiasing’), and forms of partial evaluation. These tasks
are already implemented in Cadmium rules or appear to be easily doable. Also
pointed out in [11] is the fact that, since subtransformations can interact, their
mutual fixpoint should be computed. This fixpoint computation comes for free
using a term-rewriting-based approach with merged rule sets as in Cadmium.

Acknowledgements. This work has taken place with the support of the mem-
bers of the G12 project. We also thank the reviewers for their comments.

References

1. Flener, P., Pearson, J., Ågren, M.: Introducing ESRA, a relational language for
modelling combinatorial problems. In: Proc. of LOPSTR 2003. (2003) 214–232

2. Frisch, A.M., Grum, M., Jefferson, C., Hernandez, B.M., Miguel, I.: The design
of ESSENCE: A constraint language for specifying combinatorial problems. In:
Proceedings of IJCAI-07. (2007)

3. de la Banda, M.J.G., Marriott, K., Rafeh, R., Wallace, M.: The modelling language
Zinc. In Benhamou, F., ed.: Proc. of 12th International Conference on Principles
and Practice of Constraint Programming (CP’06). Volume 4204 of LNCS., Springer
(2006) 700–705

4. Duck, G.J., Stuckey, P.J., Brand, S.: ACD term rewriting. In Etalle, S., Truszczyn-
ski, M., eds.: ICLP. Volume 4079 of Lecture Notes in Computer Science., Springer
(2006) 117–131

5. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: Mini-
Zinc: Towards a standard CP modelling language. In: Proc. of 13th International
Conference on Principles and Practice of Constraint Programming (CP’07). (2007)
To appear.

6. Rafeh, R., de la Banda, M.J.G., Marriott, K., Wallace, M.: From Zinc to design
model. In Hanus, M., ed.: Proc. 9th International Symposium of Practical Aspects
of Declarative Languages (PADL’07). Volume 4354 of LNCS., Springer (2007) 215–
229

7. Frisch, A.M., Jefferson, C., Hernández, B.M., Miguel, I.: The rules of constraint
modelling. In Kaelbling, L.P., Saffiotti, A., eds.: 19th International Joint Confer-
ence on Artificial Intelligence (IJCAI’05). (2005) 109–116

8. McKinnon, K., Williams, H.: Constructing integer programming models by the
predicate calculus. Annals of Operations Research 21 (1989) 227–246

9. Li, Q., Guo, Y., Ida, T.: Modelling integer programming with logic: Language and
implementation. IEICE Transactions of Fundamentals of Electronics, Communi-
cations and Computer Sciences E83-A(8) (2000) 1673–1680

10. Refalo, P.: Linear formulation of constraint programming models and hybrid
solvers. In Dechter, R., ed.: Proc. of 6th International Conference on Principles
and Practice of Constraint Programming (CP’00). Volume 1894 of LNCS., Springer
(2000) 369–383

11. Sabato, S., Naveh, Y.: Preprocessing expression-based constraint satisfaction prob-
lems for stochastic local search. In Hentenryck, P.V., Wolsey, L., eds.: Proc. of 4th
Int. Conf. on Integration of AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems (CPAIOR’07). Volume 4510 of LNCS.,
Springer (2007) 244–259

15

