
GRASPER

A framework for graph CSPs

Ruben Duarte Viegas1 and Francisco Azevedo
{rviegas,fa}@di.fct.unl.pt

CENTRIA
Departamento de Informática

Faculdade de Ciências e Tecnologia
Universidade Nova de Lisboa

Abstract. In this paper we present GRASPER, a graph constraint
solver, based on set constraints. We specify GRASPER’s constraints and
we make use of our framework to model a problem in the context of
biochemical networks showing promising results, when compared to an
existing similar solver, in this early stage of development.

Keywords: Constraint Programming, Graphs, Sets

1 Introduction

Constraint Programming (CP) [1–3] has been successfully applied to numerous
combinatorial problems such as scheduling, graph coloring, circuit analysis, or
DNA sequencing. Following the success of CP over traditional domains, sets were
also introduced [4] to more declaratively solve a number of different problems.
Recently, this also led to the development of a constraint solver over graphs [5,
6], since a graph [7–9] is composed by a set of vertexes and a set of edges.

Graph-based constraint programming can be declaratively used for path and
circuit finding problems, possibly applying weights so as to be able to determine
shortest or longest paths, to routing, scheduling and allocation problems, etc.
CP(Graph) was proposed by G. Dooms et al. [5, 6] as a general approach to solve
graph-based constraint problems. It provides a key set of basic constraints which
represent the framework’s core, and higher level constraints for solving path
finding and optimization problems, and to enforce graph properties. CP(Graph)
is integrated with the finite domain and finite sets computation domains and has
implementations available in Gecode (http://www.gecode.org/) and in Mozart
[10]. Developing a framework upon a finite sets computation domain allows us to
abstract from many low-level particularities of set operations and focus entirely
on graph constraining, consistency checking and propagation.

In this paper we present GRASPER (GRAph constraint Satisfaction Prob-
lem solvER) which is being developed in the Master of Computer Science thesis
at Universidade Nova de Lisboa (UNL). GRASPER is an alternative framework

1 Partially supported by PRACTIC - FCT-POSI/SRI/41926/2001



for graph-based constraint solving based on Cardinal [11], a finite sets constraint
solver with extra inferences also developed in UNL. We present a set of basic con-
straints which represent the core of our framework and we provide functionality
for directed graphs, graph weighting, graph matching, graph path optimization
problems and some of the most common and desired graph properties. In ad-
dition, in this MSc work, we intend to integrate GRASPER in CaSPER [12],
a programming environment for the development and integration of constraint
solvers, using Generic Programming [13] methodology.

This paper is organised as follows. In section 2 we specify the details of
our framework, starting with a brief introduction to Cardinal, followed by the
presentation of our core constraints, other non-trivial ones and their associated
filtering rules. Then, in section 3 we describe a problem in the context of bio-
chemical networks which we use to test our framework: we present a model for
it together with search strategies to find the solution, and present experimental
results, comparing them with the ones obtained with CP(Graph). We conclude
in section 4.

2 GRASPER

In this section we start by briefly introducing Cardinal, the finite sets constraint
solver upon which our framework is based and then we present the concepts
which build up our framework: core constraints, non-trivial constraints and as-
sociated filtering rules.

2.1 Cardinal

Set constraint solving was proposed in [4] and formalized in [14] with ECLiPSe
(http://eclipse.crosscoreop.com/eclipse/) library Conjunto, specifying set do-
mains by intervals whose lower and upper bounds are known sets ordered by
set inclusion. Such bounds are denoted as glb (greatest lower bound) and lub
(least upper bound). The glb of a set variable S can be seen as the set of ele-
ments that are known to belong to set S, while its lub is the set of all elements
that can belong to S. Local consistency techniques are then applied using inter-
val reasoning to handle set constraints (e.g. equality, disjointness, containment,
together with set operations such as union or intersection). Conjunto proved its
usefulness in declarativeness and efficiency for NP-complete combinatorial search
problems dealing with sets, compared to constraint solving over finite integer do-
mains. Afterwards, Cardinal (also in ECLiPSe) [11], improved on Conjunto by
extending propagation on set functions such as cardinality.

Inferences using cardinalities can be very useful to deduce more rapidly the
non-satisfiability of a set of constraints, thus improving efficiency of combinato-
rial search problem solving. As a simple example, if Z is known to be the set
difference between Y and X, both contained in set {a, b, c, d}, and it is known
that X has exactly 2 elements, it should be inferred that the cardinality of Z
can never exceed 2 elements (i.e. from X,Y ⊆ {a, b, c, d}, #X = 2, Z = Y \X it



should be inferred that #Z ≤ 2). A failure could thus be immediately detected
upon the posting of a constraint such as #Z = 3.

Cardinal supports constraints such as set inclusion, disjointness and equality
over set expressions that may themselves include such operators as intersection,
union or difference of sets. Also, as it is often the case, one is not interested
simply on these relations but on some attribute or function of one or more sets
(e.g. the cardinality of a set). For instance, the goal of many problems is to
maximise or minimise the cardinality of a set. Even for satisfaction problems,
some sets, although still variables, may be constrained to a fixed cardinality or
a stricter cardinality domain than just the one inferred by the domain of a set
variable (for instance, the cardinality of a set may have to be restricted to be an
even number). Due to the importance of set functions in a number of problems,
Cardinal fully uses constraint propagation on sets cardinality, and generalises
it to other set functions, such as union (for sets of sets) and minimum and
maximum (for sets of integers).

2.2 GRASPER Specification

In this subsection we explain how we defined our framework upon Cardinal.
A graph is composed by a set of vertexes and by a set of edges, where each

edge connects a pair of the graph’s vertexes. So, a possible definition for a graph
is to see it as a pair (V,E) where both V and E are finite set variables and
where each edge is represented by a pair (X, Y ) specifying a directed arc from
X towards Y . In our framework we do not constrain the domain of the elements
contained in those sets, so the user is free to choose the best representation for
the constraint satisfaction problem (CSP). The only restriction we impose is
that each incidence of an edge in the set of edges must be present in the set of
vertexes.

In order to create graph variables we introduce the following constraint:

graph(G, V, E) (G is a compound term of the form graph(V,E))

which is true if G is a graph variable whose set of vertexes is V and whose set
of edges is E.

All the basic operations for accessing and modifying the vertexes and edges
is supported by Cardinal ’s primitives, so no additional functionality is needed.
Therefore, our framework provides the creation and manipulation of graph vari-
ables for constraint satisfaction problems just by providing a single constraint
for graph variable creation and delegating to Cardinal the underlying core op-
erations on sets.

While the core constraints of the framework allow basic manipulation of
graph variables, it is useful to define some other, more complex, constraints
based on the core ones thus providing a more intuitive and declarative set of
functions for graph variable manipulation.

We provide a constraint to weight a graph in order to facilitate the modeling
of graph optimization or satisfaction problems. The weight of a graph is defined



by the weight of the vertexes and of the edges that compose the graph. Therefore,
the sum of the weights of both vertexes and edges in the graph’s glb define the
lower bound of the graph’s weight and, similarly, the sum of the weights of
the vertexes and of the edges in the graph’s lub define the upper bound of the
graph’s weight. The constraint is provided as weight(G, Wf , W ), where Wf is a
map which associates to each vertex and to each edge a given weight, and can
be defined as:

weight(graph(V,E), Wf , W ) ≡ m =
∑

v ∈ glb(V )

Wf (v) +
∑

e ∈ glb(E)

Wf (e)∧

M =
∑

v ∈ lub(V )

Wf (v) +
∑

e ∈ lub(E)

Wf (e)∧

W :: m..M

Additionally, we provide a subgraph relation which can be expressed as:

subgraph(graph(V1, E1), graph(V2, E2) ≡ V1 ⊆ V2 ∧ E1 ⊆ E2

stating that a graph G1 = graph(V1, E1) is a subgraph of a graph G2 =
graph(V2, E2) if and only if V1 is a subset of V2 and E1 is a subset of E2.

Obtaining the set of predecessors P of a vertex v in a graph G is performed
by the constraint preds(G, v, P ) which can be expressed as:

preds(graph(V,E), v, P ) ≡ P ⊆ V ∧ ∀v′ ∈ V : (v′ ∈ P ≡ (v′, v) ∈ E)

Similarly, obtaining the successors S of a vertex v in a graph G is performed
by the constraint succs(G, v, S) which can be expressed as:

succs(graph(V,E), v, S) ≡ S ⊆ V ∧ ∀v′ ∈ V : (v′ ∈ S ≡ (v, v′) ∈ E)

However, this last constraint obtains the set of the immediate successors of
a vertex in a graph and we may want to obtain the set of all successors of that
vertex, i.e., the set of reachable vertexes of a given initial vertex. Therefore, we
provide a reachables(G, v,R) which can be expressed in the following way:

reachables(graph(V,E), v, R) ≡ R ⊆ V ∧
∀r ∈ V : (r ∈ R ≡ ∃p : p ∈ paths(graph(V,E), v, r))

stating that a set of vertexes is reachable from another vertex if there is a path
between this last vertex and each of those vertexes. The rule paths represents
all possible paths between two given vertexes and p ∈ paths(graph(V,E), v, r)
can be expressed as:



p ∈ paths(graph(V,E), v0, vf ) ≡


v0 ∈ V ∧ p = ∅ , if v0 = vf

∃vi ∈ V : (v0, vi) ∈ E∧
∃p′ : p′ ∈ paths(graph(V,E), vi, vf )∧
p = cons(v0, p

′)
, if v0 6= vf

Additionally, this last constraint will allow us to build other very useful ones.
For instance, we can make use of the reachables/3 constraint to develop the
connectivity property of a graph. By [7], a non-empty graph is said connected if
any two vertexes are connected by a path, or in other words, if any two vertexes
are reachable from one another. In a connected graph, all vertexes must reach
all the other ones, so we define a new constraint connected(G) which can be
expressed as:

connected(graph(V,E)) ≡ ∀v ∈ V : reachables(graph(V,E), v, R) ∧R = V

Another useful graph property is that of a path: a graph defines a path
between an initial vertex v0 and a final vertex vf if there is a path between those
vertexes in the graph and all other vertexes belong to the path and are visited
only once. We provide the path(G, v0, vf ) constraint, which can be expressed in
the following way:

path(G, v0, vf ) ≡ quasipath(G, v0, vf ) ∧ connected(G)

This constraint delegates to quasipath/3 the task of restricting the vertexes
that are or will become part of the graph to be visited only once and delegates
to connected/1 the task of ensuring that those same nodes belong to the path
between v0 and vf so as to prevent disjoint cycles from appearing in the graph.

The quasipath(G, v0, vf ) constraint (for directed graphs) can be expressed
as:

quasipath(graph(V,E), v0, vf ) ≡ ∀v ∈ V



succs(graph(V,E), S)∧
#S = 1 , if v = v0

preds(graph(V,E), P )∧
#P = 1 , if v = vf

preds(graph(V,E), P )∧
#P = 1∧
succs(graph(V,E), S)∧
#S = 1

, otherwise

This constraint, although slighty complex, is very intuitive: it ensures that
every vertex that is added to the graph has exactly one predecessor and one
sucessor, exceptions being the initial vertex which is only restricted to have one
successor and the final vertex which is only restricted to have one predecessor.



Therefore, a vertex that is not able to verify these constraints can be safely
removed from the set of vertexes.

2.3 Filtering rules

In this subsection we formalize the filtering rules of the constraints presented
earlier, as they are currently implemented. For a set variable S, we will denote
S′ as the new state of the variable (after the filtering) and S as its previous
state.

graph(graph(V, E), V, E):

– The number of edges is limited by the number of possible combinations of
pairs of vertexes:

#E ≤ #V ×#V

– When an edge is added to the set of edges, the vertexes that compose it are
added to the set of vertexes:

glb(V ′)← glb(V ) ∪ {x : (x, y) ∈ glb(E) ∨ (y, x) ∈ glb(E)}

– When a vertex is removed from the set of vertexes, all the edges incident on
it are removed from the set of edges:

lub(E′)← lub(E) ∩ {(x, y) : x ∈ lub(V ) ∧ y ∈ lub(V )}

weight(graph(V, E), Wf , W):

Let min(G) and Max(G) be the minimum graph weight and the maximum
graph weight of graph G, respectively.

– When an element (vertex or edge) is added to the graph, the graph’s weight
is updated:

W ≥
∑

v ∈ glb(V )

Wf (v) +
∑

e ∈ glb(E)

Wf (e)

– When an element (vertex or edge) is removed from the graph, the graph’s
weight is updated:

W ≤
∑

v ∈ lub(V )

Wf (v) +
∑

e ∈ lub(E)

Wf (e)

– When the lower bound of the graph’s weight W :: m..M is increased, some
elements (vertexes or edges) may be added to the graph:

glb(V ′)← glb(V ) ∪ {v : v ∈ lub(V ) ∧Max(G\{v}) < m}
glb(E′)← glb(E) ∪ {(x, y) : (x, y) ∈ lub(E) ∧Max(G\{(x, y)}) < m}



– When the upper bound of the graph’s weight W :: m..M is decreased, some
elements (vertexes or edges) may be removed from the graph:

lub(V ′)← lub(V )\{v : v ∈ lub(V ) ∧min(G ∪ {v}) > M}
lub(E′)← lub(E)\{(x, y) : (x, y) ∈ lub(E) ∧min(G ∪ {(x, y)}) > M}

subgraph(graph(V1,E1), graph(V2,E2)):

The V1 ⊆ V2 and E1 ⊆ E2 Cardinal constraints, corresponding to our
subgraph rule, yield the following filtering rules:

– When a vertex is added to V1, it is also added to V2:
glb(V ′

2)← glb(V2) ∪ glb(V1)

– When a vertex is removed from V2 it is also removed from V1:
lub(V ′

1)← lub(V1) ∩ lub(V2)

– When an edge is added to E1, it is also added to E2:
glb(E′

2)← glb(E′
2) ∪ glb(E1)

– When an edge is removed from E2, it is also removed from E1:
lub(E′

1)← lub(E1) ∩ lub(E2)

preds(graph(V, E), v, P):

– The P ⊆ V constraint of preds/3 is managed by Cardinal

– When an edge is added to the set of edges, the set of predecessors is updated
with the in-vertexes belonging to the edges in glb(E) whose out-vertex is v:

glb(P ′)← glb(P ) ∪ {x : (x, v) ∈ glb(E)}

– When an edge is removed from the set of edges, the set of predecessors is
limited to the in-vertexes belonging to the edges in lub(E) whose out-vertex
is v:

lub(P ′)← lub(P ) ∩ {x : (x, v) ∈ lub(E)}

– When an edge is added to the set of predecessors, the set of edges is updated
with the edges that connect each of those nodes in glb(P) to v:

glb(E′)← glb(E) ∪ {(x, v) : x ∈ glb(P )}

– When a vertex is removed from the set of predecessors, the corresponding
edge is removed from the set of edges:

lub(E′)← {(x, y) : (y = v ∧ x ∈ lub(P )) ∨ (y 6= v ∧ (x, y) ∈ lub(E))}

succs(graph(V, E), v, S):



– The S ⊆ V constraint of succs/3 is managed by Cardinal

– When an edge is added to the set of edges, the set of successors is updated
with the out-vertexes belonging to the edges in glb(E) whose in-vertex is v:

glb(S′)← glb(S) ∪ {y : (v, y) ∈ glb(E)}

– When an edge is removed from the set of edges, the set of successors is
limited to the out-vertexes belonging to the edges in lub(E) whose in-vertex
is v:

lub(S′)← lub(S) ∩ {y : (v, y) ∈ lub(E)}

– When an edge is added to the set of successors, the set of edges is updated
with the edges that connect v to each of those nodes in glb(S):

glb(E′)← glb(E) ∪ {(v, y) : y ∈ glb(S)}

– When a vertex is removed from the set of successors, the corresponding edge
is removed from the set of edges

lub(E′)← {(x, y) : (x = v ∧ y ∈ lub(S)) ∨ (x 6= v ∧ (x, y) ∈ lub(E))}

reachables(graph(V, E), v, R):

– The R ⊆ V constraint reachables/3 is managed by Cardinal

– When an edge is added to the set of edges, the set of reachable vertexes is
updated with all the vertexes in glb(V) that are reachable from v:

glb(R′)← glb(R)∪{r : r ∈ glb(V )∧∃p p ∈ paths(graph(glb(V ), glb(E)), v, r)}

– When a vertex is removed from the set of reachable vertexes, the edge con-
necting v to it is removed from the set of edges:

lub(E′)← lub(E)\{(v, r) : r 6∈ lub(R)}

– When a vertex is added to the set of reachable vertexes, the edge connecting
v to it may be added to the set of edges:

glb(E′)← glb(E) ∪ {(v, r) : r ∈ glb(R)∧ 6 ∃(x, r) ∈ glb(E) : x 6= v}

– When an edge is removed from the set of edges, the set of reachable vertexes
is limited to the vertexes in lub(V) that are reachable from v:

lub(R′)← lub(R)∩{r : r ∈ lub(V )∧∃p p ∈ paths(graph(lub(V ), lub(E)), v, r)}

connected(graph(V,E)):

Let Rv be the set of reachable vertexes of a vertex v ∈ glb(V). Since this
rule makes use of the reachables/3 rule it will use its filtering rules. The Rv =
V Cardinal constraint, included in our connected/1 rule, yields the following
filtering rules:



– When a vertex is added to the set of reachable vertexes Rv of a vertex v, it
is also added to the set of vertexes:

glb(V ′)← glb(V ) ∪ glb(Rv)

– When a vertex is removed from the set of vertexes it is also removed from
the sets of reachable vertexes:
∀v ∈ lub(V ) : (lub(R′

v)← lub(Rv) ∩ lub(V ))

– When a vertex is added to the set of vertexes it is added to the sets of
reachable vertexes:
∀v ∈ glb(V ) : (glb(R′

v)← glb(Rv) ∪ glb(V ))

– When a vertex is removed from the set of reachable vertexes Rv of a vertex
v, it is also removed from the set of vertexes:

lub(V ′)← lub(V ) ∩ lub(Rv)

quasipath(graph(V,E), v0, vf):

Let Pv and Sv be the set of predecessors and the set of successors, respectively,
of a vertex v ∈ lub(V).

– When a vertex is added to the set of vertexes, the number of predecessors is
set to 1:
∀v ∈ glb(V ) : #Pv = 1

– When a vertex is added to the set of vertexes, the number of successors is
set to 1:
∀v ∈ glb(V ) : #Sv = 1

– When a vertex has no predecessor it is removed from the graph:
lub(V ′)← lub(V ) ∩ {v : v ∈ lub(V ) ∧#Pv > 0 ∧#Sv > 0}

path(graph(V,E), v0, vf):

Since this rule makes use of connected/1 and quasipath/3 rules, it will use
their filtering rules.

3 Results

In this section we describe a problem in biochemical networks, model it, and
present obtained results, comparing them with CP(Graph).



3.1 Pathways

Metabolic networks [15, 16] are biochemical networks which encode information
about molecular compounds and reactions which transform these molecules into
substrates and products. A pathway in such a network represents a series of
reactions which transform a given molecule into others. In Fig. 1 we present a
metabolic network, and in Fig. 2, a possible pathway between the imposed start
and finish molecules.

An application for pathway discovery in metabolic networks is the explana-
tion of DNA experiments. An experiment is performed on DNA cells and these
mutated cells (called RNA cells) are placed on DNA chips, which contain specific
locations for different strands, so when the cells are placed in the chips, the dif-
ferent strands will fit into their specific locations. Once placed, the DNA strands
(which encode specific enzymes) are scanned and catalyze a set of reactions.
Given this set of reactions the goal is to know which products were active in the
cell, given the initial molecule and the final result. Fig. 2 represents a possible
pathway between two given nodes regarding the metabolic network of Fig. 1.

A recurrent problem in metabolic networks pathway finding is that many
paths take shortcuts, in the sense that they traverse highly connected molecules
(act as substrates or products of many reactions) and therefore cannot be con-
sidered as belonging to an actual pathway. However there are some metabolic
networks for which some of these highly connected molecules act as main inter-
mediaries. In Fig. 1 there are three highly connected compounds, represented by
the grid-filled circles.

It is also possible that a path traverses a reaction and its reverse reaction: a
reaction from substrates to products and one from products to substrates. Most
of the time these reactions are observed in a single direction so we can introduce
exclusive pairs of reactions to ignore a reaction from the metabolic network when
the reverse reaction is known to occur, so that both do not occur simultaneously.
Fig. 1 shows the presence of five exclusive pairs of reactions, represented by 5
pairs of the bold-like arrows.

Additionally, it is possible to have various pathways in a given metabolic
experiment and often the interest is not to discover one pathway but to discover
a pathway which traverses a given set of intermediate products or substrates,
thus introducing the concept of mandatory molecule. These mandatory molecules
are useful, for example, if biologists already know some of the products which are
in the pathway but do not know the complete pathway. In Fig. 1 we imposed the
existence of a mandatory molecule, represented by a diagonal lined-filled circle.

In fact, the pathway represented in Fig. 2 is the shortest pathway obtained
from the metabolic network depicted in Fig. 1 that complies with all the above
constraints.

3.2 Modeling Pathways

Such network can be represented as a directed bi-partite graph, where the com-
pounds, substrates and products represent one of the partition of the vertexes



Fig. 1. Metabolic Network Fig. 2. Metabolic Pathway

and the reactions the other partition. The edges link compounds with the set of
reactions and these to the substrates and the products. The search of a pathway
between two nodes (the original molecule and a final product or substrate) can
be easily performed with a breadth-first [17] search algorithm.

Considering the problem of the highly connected molecules, a possible so-
lution is to weight each vertex of the graph, where each vertex’s weight is its
degree (i.e. the number of edges incident on the vertex) and the solution con-
sists in finding the shortest pathway of the metabolic experiment. This approach
allows one to avoid these highly connected molecules whenever it is possible.

The exclusive pairs of reactions can also be easily implemented by introduc-
ing pairs of exclusive vertexes, where as soon as it is known that a given vertex
belongs to the graph the other one is instantly removed.

Finally, to solve the constraint of mandatory molecules, it is sufficient to add
the vertexes representing these molecules to the graph thus ensuring that any
solution must contain all the specified vertexes. With this mechanism, however,
it is not guaranteed that the intended pathway is the shortest pathway between
the given initial and final vertexes (e.g. one of the mandatory vertexes does not
belong to the shortest path), so we cannot rely on breadth-first search again and
must find a different search strategy for solving this problem.

Basically, assuming that G = graph(V,E) is the original graph, composed of
all the vertexes and edges of the problem, that v0 and vf are the initial and the
final vertexes, that Mand = {v1, . . . , vn} is the set of mandatory vertexes, that



Excl = {(ve11, ve12), . . . , (vem1, vem2)} is the set of exclusive pairs of vertexes
and that Wf is a map associating each vertex and each edge to its weight, this
problem can be easily modeled in GRASPER as:

minimize(W ) :

subgraph(graph(SubV, SubE), G) ∧Mand ⊆ SubV ∧
∀(vei1, vei2) ∈ Excl : (vei1 /∈ SubV ∨ vei2 /∈ SubV )∧
path(graph(SubV, SubE), v0, vf )
weight(graph(SubV, SubE), Wf , W )

The minimization function can be found built-in in almost every constraint
logic programming environment. The subgraph relation is directly mapped to our
subgraph constraint presented earlier and its objective is to allow the extraction
of the actual pathway from the original graph containing every vertex and edge
from the original problem. The introduction of the mandatory vertexes is easily
achieved by a mere set inclusion operation. The exclusive pairs of reactions
demand the implementation of a very simple propagator which basically removes
one vertex once it is known that another vertex has been added to the graph and
they form an exclusive pair of reactions. The weighting of the graph is performed
using the weight constraint also presented earlier. These simple operations sketch
the basic modeling for this problem, however it is still necessary to perform search
so as to trigger the propagators and determine the set of vertexes that belong
to the pathway and the edges that connect them.

3.3 Search Strategy

The minimization of the graph’s weight ensures that one obtains the shortest
pathway constrained to contain all the mandatory vertexes and not containing
both vertexes of any pair of exclusive vertexes. However, it may not uniquely
determine all the vertexes (the non-mandatory) which belong to that pathway.
This must then be achieved by labeling functions which, in graph problems,
decide whether or not a given vertex or edge belongs to the graph.

To solve this problem, a first-fail heuristic was adopted: in each cycle we
start by selecting the most constrained vertex and label the edge linking it to
its least constrained successor. The most constrained vertex is the one with the
lowest out-degree and the least constrained successor vertex is the one with the
highest in-degree. This heuristic is greedy in the sense that it will direct the
search towards the most promising solution. This heuristic shall henceforth be
referred to as first-fail.

3.4 Experimental Results

In this subsection we present the results (in seconds) obtained for the problem
of solving the shortest metabolic pathways for each of the metabolic chains and
for increasing graph orders (the order of a graph is the number of vertexes that
belong to the graph).

In Table 1 we present the results obtained with our prototype and the results
obtained by CP(Graph) (presented in [5]) employing the same first-fail heuristic



(GRASPER on an Intel Pentium(R) D CPU 3.4 GHz, 1 Gb of RAM; CP(Graph)
on an Intel Xeon 2.66 GHz, 2 Gb of RAM), having been imposed a time limit of
10 minutes. The results for instances that were not solved within the time limit
are set to ”N.A.”.

GRASPER CP(Graph)
Order Glyco Heme Lysine Glyco Heme Lysine

50 0.2 0.2 0.2 0.2 0.2 0.2

100 1.9 1.0 60.8 2.5 0.3 4.7

150 3.1 2.9 106.5 41.7 1.0 264.3

200 6.3 9.5 153.8 55.0 398.8 N.A.

250 13.2 19.0 183.7 127.6 173.3 N.A.

300 98.8 33.0 218.0 2174.4 1520.2 N.A.

Table 1. Results obtained for GRASPER and CP(Graph).

In Fig. 3 the speed-up of GRASPER relative to CP(Graph) can be seen,
showing that GRASPER presents better results than CP(Graph) for instances
of the problem with order of at least 150. The speed-up was calculated as the
quotient between CP(Graph) and GRASPER.

Fig. 3. Grasper’s speed-up relative to CP(Graph)

CP(Graph) only produces better results for graphs of order 50 and 100 and
for the heme chain of order 150. However, this trend is clearly reversed for higher



order instances: results for the glycose chain outperform the ones obtained by
CP(Graph) from order 150 above, and for the graph of order 300 we achieve
almost 35 minutes less; results for graphs of order above 150 are all under 220
seconds managing to decrease the expected time as compared to CP(Graph);
finally, for the lysine chain, we could obtain results for instances of order above
150, for which CP(Graph) presents no results.

The comparison between these frameworks seems to indicate that GRASPER
outperforms CP(Graph) for larger problem instances thus providing a more scal-
able framework.

4 Conclusions and Future Work

In this paper we presented GRASPER, a new framework for the development of
graph-based constraint satisfaction problems. This framework being built upon
Cardinal [11] allows for a clear and concise manipulation of the elements that
constitute a graph, the sets of vertexes and edges, and thus appears as a simple
and intuitive interface just by defining a few additional rules for graph creation,
manipulation and desirable graph properties.

We tested GRASPER with a problem in the context of biochemical networks
(metabolic pathways) and compared results with CP(Graph) [5]. Even though
CP(Graph) presented better results for small problem instances, GRASPER
clearly outperformed it for larger ones, achieving speed-ups of almost 50.

More efficient results were published in [6] using a mechanism based on the
concept of a shortest path tree and a cost-based filtering [18] mechanism to
further constrain search space. We have already started to develop such a mech-
anism but it is still being improved.

The presented GRASPER’s filtering rules still require fine tunning, namely
for the reachables/3 and the connected/1 constraints, for which we are cur-
rently trying some different (lighter) rules that are already exhibiting much
larger speed-ups in preliminary experiments. Since connected/1 is highly de-
pendent on reachables/3, a more efficient filtering rule or consistency checking
mechanism would drastically influence its efficiency. Among those experiments
we have already observed that delaying the consistency checking until the graph
is completely instanciated improves the performance of the application for this
particular problem. We are still studying other approaches.

We also plan to improve the internal Cardinal data structure, since it cur-
rently requires linear time cost for the most common rules used in GRASPER,
to substantially improve its overall performance. Furthermore, we are extend-
ing our framework to allow manipulation of undirected graphs, which, in some
cases, make use of the underlying constraints differently when compared with
directed graphs and we will also implement other useful graph properties to pro-
vide a more intuitive and easy to use interface to model graph-based constraint
satisfaction problems.

Finally, we intend to integrate GRASPER into CaSPER where we will be
able to perform additional experiments related, for instance, to the hybridization



of different constraint solvers, and explore the use of channelling constraints with
distinct modelings.

References

1. E. Tsang. Foundations of Constraint Satisfaction. Academic Press, London, 1993.
2. K. Marriot and P. J. Stuckey. Programming with Constraints: An introduction.

MIT Press, 1998.
3. Rina Dechter. Constraint Processing. Morgan Kaufmann, 2003.
4. J.-F. Puget. Pecos: A high level constraint programming language. In Proc. Spicis,

Singapure, 1992.
5. G. Dooms, Y. Deville, and P. Dupont. Cp(graph): Introducing a graph computation

domain in constraint programming. In 11th International Conference on Princi-
ples and Practice of Constraint Programming, number 3709 in Lecture Notes in
Computer Science, pages 211 – 225, Barcelona, 2005. Springer-Verlag.

6. G. Dooms. The CP(Graph) Computation Domain in Constraint Programming.
PhD thesis, Faculté des Sciences Appliquées, Université Catholique de Louvain,
Louvain-La-Neuve, 2006.

7. R. Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer-
Verlag, third edition, 2005.

8. F. Harary. Graph Theory. Addison-Wesley, 1969.
9. J. Xu. Theory and Application of Graphs, volume 10 of Network Theory and

Applications. Kluwer Academic Publishers, 2003.
10. P. Van Roy and S. Haridi. Mozart: A programming system for agent applications.

In International Conference on Logic Programming (ICLP 99), 1999.
11. F. Azevedo. Cardinal: A Finite Sets Constraint Solver, volume 12 of Constraints

journal, pages 93 – 129. Kluwer Academic Publishers, 2007.
12. M. Correia, P. Barahona, and F. Azevedo. Casper: A programming environment for

development and integration of constraint solvers. In Azevedo et al., editor, Pro-
ceedings of the First International Workshop on Constraint Programming Beyond
Finite Integer Domains (BeyondFD’05), pages 59 – 73, 2005.

13. D. Musser and A. Stepanov. Generic programming. In ISSAC, pages 13 – 25, 1988.
14. C. Gervet. Interval Propagation to Reason about Sets: Definition and Implemen-

tation of a Practical Language, volume 1 of Constraints journal, pages 191 – 244.
Kluwer Academic Publishers, 1997.

15. C. Mathews and K. Van Holde. Biochemistry. Benjamin/Cummings, second edi-
tion, 1996.

16. T. Attwood and D. Parry-Smith. Introduction to bioinformatics. Prent. Hall, 1999.
17. T.Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms. MIT

Press, second edition, 2001.
18. M. Sellmann. Cost-based filtering for shorter path constraints. In 9th International

Conference on Principles and Practice of Constraint Programming (CP), volume
2833 of LNCS, pages 694 – 708. Springer-Verlag, 2003.


