
On the Expressive Power of Essence

David G. Mitchell and Eugenia Ternovska

Computational Logic Laboratory
Simon Fraser University
{mitchell,ter}@cs.sfu.ca

Abstract. Essence is a syntactically rich language for specifying search
and optimization problems. We show how to applying descriptive com-
plexity theory to study the expressive power of Essence, and present
several results on the expressive power of fragments incorporating cer-
tain features. The same approach can be applied to a number of other
constraint specification or modelling languages. We believe this approach
forms is an appropriate theoretical formalization for scientific develop-
ment and study of constraint modelling languages and the tools and
techniques used in their application.

1 Introduction

An important direction of work in constraint modelling is the development of
declarative languages for specifying or modelling combinatorial search prob-
lems.1 Examples of such languages (or tools with input languages that qualify)
include: ASPPS [3] EaCL [12] ESRA [6] Essence [7] MidL [11] MXG [13, 14]
NP-Spec [1] . An important role of these languages is to model problems, that
is, to abstract away from individual instances of a problem. The user describes
the general properties of their problem instances and solutions. Then, a solver
takes as input a problem description (or “specification” or “model”) together
with an instance, and produces one or more solutions (if there are any). This
is in contrast to much work in constraint-based solving where the user must
either provide a reduction to a particular ground language (SAT, CSP) or must
implement a solving strategy (eg., CLP).

These languages, if well-designed and supported by high quality tools, have
the potential to greatly expand the range of applications and users of constraint
solving technology. They also provide a convenient context in which to explore
modelling options and reformulation techniques, as shown by the work of sev-
eral groups including that of Frisch and his colleagues developing Essence and
its companion tool Conjure, that of Mancini with the late Marco Cadoli on
automatic reformulation of constraints, etc.

The general trend in the development of such declarative languages is to-
ward greater abstraction and increased variety of syntactic features for user

1 We do not distinguish specification and modelling here. The distinction is important,
but is neither simple nor central to the results or point of this paper.

convenience. The design of these languages tend to be based on the designers
experience and intuitions about what would be useful or convenient in practice,
and the language features are formalized in different ways (or, in some cases, not
at all). It is thus challenging to carry out a scientific study of the languages and
their features. Such study would be useful in the design process, in comparison
of languages, in the design of implementations supporting language use, and in
identifying common ground that could be exploited by the broad community,
for example in the form of standards, translation tools, etc. Our goal here is to
take first steps in this direction, by beginning a study of one of the most funda-
mental questions about a formal language: What things can it say, or not? For
languages which describe computational problems, the most basic form of such
a question is: What is computational complexity of the problems the language
can describe? We begin by looking at Essence, which is probably the richest
and most expressive language among those we have mentioned.

Our contributions here are the following:

1. Using Essence as an example, we demonstrate that by adopting a logical
formalization of problem specification, descriptive complexity theory can be
used to formally study the expressive power of constraint modelling lan-
guages.

2. We examine the expressive power provided by various features of Essence,
which turns out to be very expressive. This provides material for thought
for language designers, as expressiveness is a double-edged sword.

3. We point out that several other languages can be studied using the same
approach. This, we believe, provides significant opportunities for the field
in possibilities for, for example, standard base languages, automated trans-
lation or cross-compilation, theoretically well-founded studies of modelling
and reformulation techniques and their application within broad classes of
languages, etc.

Remark 1. Here, we distinguish expressiveness, in the formal sense of what prob-
lems can or cannot be specified with a language, from notions of expressiveness
related only to user convenience. The latter is extremely important, but is not
our subject here except to the extent that certain convenient features may lead
to increased formal expressiveness.

In our study of Essence, we begin with a small fragment of the language,
and show that it can specify exactly the problems in NP. We then point out a
number of extensions to this language that do not increase its expressive power.
We point out one feature of Essence, and many other languages, which gives
them great expressive power – but which for most purposes we should ignore.
Finally, we point out a number of features of the full language which give it
great expressive power. Expressive power is, in and of itself, neither good nor
bad. We believe it is useful to understand the expressive power of languages we
design and use, and to be able to control and exploit this power. Obviously, we
need a modelling language of sufficient expressive power to specify the problem
at hand. On the other hand, expressiveness beyond what is needed, or certain

given Vertex new type enum(. . .)
given Colour new type enum(. . .)
given Edge: rel Vertex × Vertex
find Coloured: rel Vertex × Colour
such that ∀u:Vertex. ∃c:Colour. Coloured(u, c)
such that ∀u:Vertex. ∀c1:Colour. ∀c2:Colour. (¬(c1 = c2) ⇒

¬(Coloured(u, c1) ∧ Coloured(u, c2))
such that ∀u:Vertex.∀v:Vertex.∀c:Colour.(Edge(u, v) ⇒

¬(Coloured(u, c) ∧ Coloured(v, c)))

Fig. 1. An Essence specification of Graph Colouring

features that provide such expressiveness, may be an obstacle to effective design
and implementation of solvers and other tools. We believe it is worthwhile to
investigate the possibility of languages with restricted versions of these features
which provide the desired convenience without the attendant expressive power.

2 A Logical Formalization

The tools we will apply – and propose to apply more generally in design and
analysis of constraint modelling languages – are those of logic, and in particular
finite model theory. Thus, we begin by adopting a logical point of view of the task
at hand. All constrain modelling languages, while differing in styles and having
their own particular goals, share with Essence the general goal of specifying
search problems. We consider here what a specification of a search problem is
from a logical point of view, in the particular context of Essence specifications.

2.1 A Little Essence

We will not attempt a full description of Essence. We will introduce features of
Essence required to understand the paper as we need them, and these only by
example or illustration. While this is sufficient to make the paper self-contained,
for a fuller appreciation of Essence and our work we strongly encourage the
reader to refer to [7].

Simple Essence specifications consist of three parts, identified by keywords
given, find, and such that, which are suggestive of their roles. The “given”
part specifies the types of objects which comprise instances; the “find” part
specifies types of objects that comprise solutions; the “such that” part specifies
the relationship between instances and their solutions.

Example 1. Figure 1 gives an Essence specification of Graph Colouring. The
computational task described by this specification is this. We will be given a finite
set V ertex, a finite set Colour, and a binary relation Edge ⊆ V ertex× V ertex.
Our task is to find a relation Coloured ⊆ V ertex×Colour, which, in accordance

with the constraints – the such that part – maps each v ∈ V ertex to a unique
colour so that no edge is monochromatic. ⋄

2.2 EF O: A Small Fragment of Essence

Here we introduce a fragment of Essence that is convenient to explain our
logical view and is a useful starting point for analysis.

Definition 1 (EFO). Let EFO denote the fragment of Essence defined by the
following rules.

1. The “given” part consists of a sequence of statements of the following two
forms:
(a) given D new type enum(. . .), or
(b) given R : rel D1 × . . .× Dn, where each Di is a type declared by a

previous given statement of form 1a, and n ∈ N.
2. The “find” part consists of a sequence of statements each of the form

find R : rel D1 × . . . Dn

where each Di is the name of a type declared in a given statement of the
form 1a, and n ∈ N.

3. The “such that” part consists of a sequence of statements each of the form
such that φ

Here, φ is an expression which is syntactically a formula of function-free
first-order logic, with two exceptions:
(a) All quantifiers of EFO are of the form ∃x:D. or ∀x:D., where x is a variable

and D is a type declared by a given statement of form 1a.
(b) We use ⇒ for material implication in Essence expressions, and ⊃ in

formulas of classical logic.

The notation EFO indicates the fragment of Essence corresponding to first
order logic. EFO is a kind of “kernel” of Essence of primarily theoretical in-
terest – although many features used in typical specifications can be seen as
abbreviations for more complex EFO expressions.

2.3 Model Expansion as the Underlying Logical Task

The “given” part of an EFO specification declares a vocabulary, or set of symbols,
σ, with one symbol for each type or relation given by the instance. An instance
gives an interpretation for each symbol of σ, which is a finite set of objects if
the symbol was declared with form 1a of Definition 1, or a relation over some
of the given types, if declared with form 1b. In logical terms, an instance is a
finite structure for the vocabulary σ.2 The universe of this finite structure is the
union of all types given in the instance.

2 A vocabulary is a set σ of relation and function symbols, each with an associated
arity. A relational vocabulary has no function symbols. A structure A for vocabulary
σ is a tuple containing a universe A, and a relation (function), defined over A, for
each relation (function) symbol of σ. If R is a relation (a.k.a. predicate) symbol of

The “find” part of an EFO specification also declares a vocabulary, ε. Inter-
pretations of the symbols of ε are relations over the given types. If we take an
instance σ-structure, and expand it by adding interpretations for ε, we have a
finite structure of vocabulary σ ∪ ε, consisting of an instance together with a
“candidate solution”. The role of the “such that” part of the specification is to
identify those “candidate solutions” that are actual solutions.

Example 2. The specification of Graph Colouring in Figure 1 is an EFO() spec-
ification. The instance vocabulary is σ = (V ertex,Edge, Colour). An instance
structure gives interpretations to the symbols of σ, in the form of the two sets
V ertex and Colour and a binary relation Edge ⊆ V ertex×V ertex. The domain
of the structure will be the union of the sets of vertices and colours. The solution
vocabulary is ε = (Coloured), and a “candidate solution” is a binary relation
over V ertex × Colour. ⋄

2.4 FO Axioms for an EF O Specification

In logical terms, the task specified by any EFO specification is of the form: Given
a finite σ-structure A, find an expansion of A to σ∪ε which constitutes a solution.
We now need to show that the remaining information contained in an EFO

specification can be accounted for in purely logical terms. To show we can do this,
we first identify with each EFO specification Γ a class KΓ of finite σ∪ε-structures
containing exactly those structures consisting of an instance for Γ expanded with
a (real, not candidate) solution. We then show that, corresponding to each EFO

specification Γ is a formula φΓ of first order logic whose finite models are exactly
the structures in KΓ .

The information we need to express in our formula is the constraints, which
comprise the “such that” part of the specification, and the type information. The
constraints are just formulas of first-order logic, except for the type information
in the quantifiers. It is easy to re-write these as pure FO formulas containing
the same information. To do so, we recursively apply the following rules to each
constraint.

– Rewrite ∀x:D. φ(x) as ∀x (D(x) ⊃ φ(x)),
– Rewrite ∃x:D. φ(x) as ∃x (D(x) ∧ φ(x))

For an EFO specification Γ , denote by ΓC the translation of the “such that”
constraints to first-order formulas.

It remains to account for the type information in the “given” and “find”
declarations. There, an expression of the form

vocabulary σ, the relation corresponding to R in a σ-structure A is denoted RA. For
example, we write

A := (A; R
A

1 , . . . R
A

n , f
A

1 , . . . f
A

m , c
A

1 , . . . c
A

k),

where the Ri are relation symbols, the fi are function symbols, and constant symbols
ci are 0-ary function symbols. A structure is finite if its universe is finite. For more
background, see [4, 10].

R : rel D1 × . . . Dn

indicates that the interpretation of R is a subset of the cross-product of the given
types. Each of those sets is provided by the instance, and has a corresponding
vocabulary symbol. So, the information provided is equivalent to the FO formula

∀x1, . . . ∀xn R(x1, . . . , xn) ⊃ D1(x1) ∧ . . . ∧ Dn(xn).

Let us denote by ΓT the set of formulas containing one formula of the form just
described corresponding to each such expression in the EFO specification Γ .

Now, let φΓ = ΓC ∧ ΓT . The following is now immediate:

Proposition 1. Let Γ be an EFO specification with instance vocabulary σ and
solution vocabulary ε. Then, for every finite σ ∪ ε-structure A, A |= φΓ if and
only if A is instance structure for Γ expanded with a solution.

Here, A |= φ means that φ is true in the structure A. We rely on the reader
believing that our first order formulas accurately express the semantics of EFO.
A rigorous proof would involve defining the notion of a structure satisfying an
EFO specification in terms of the (denotational) formal semantics of Essence.

Remark 2. It is not hard to see that essentially the same logic-based formal-
ization approach works nicely for several other languages, such as EaCL and
ESRA. In the case of MXG, this formalization came before the language design
[14]. Some other cases are less straightforward. For example, NPSpec semantics
involve the notion of minimal Herbrand models.

3 EFO Captures NP

How expressive is our fragment EFO? We have the following.

Theorem 1. Let K be a class of finite σ-structures. The following are equivalent

1. K ∈ NP ;
2. There is a first-order formula φ with vocabulary σ′) σ, such that A ∈ K if

and only if there is an expansion A′ of A to σ′ with A′ |= φ;
3. There is an EFO specification Γ with instance vocabulary σ and vocabulary

σ′) sigma, such that A ∈ K iff there is an expansion A′ of A to σ′ with
A′ |= ΓT ∪ ΓC.

4. K is the class of finite models of a sentence of Existential Second Order logic
(∃SO), where the predicate symbols in σ′ − σ are existentially quantified.

The equivalence of 1 with 2 and 4 are by Fagin’s Theorem [5] (2 is just a re-
statement of 4).3 The equivalence of 3 with 2 is immediate from the above.

3 For basics of finite model theory, including a proof of Fagin’s Theorem, we refer the
interested reader to [10].

The theorem tells us that EFO can specify all search problems whose decision
versions in NP, and no other problems. Note that this is very different from NP-
completeness, which tell us that exactly the problems in NP can be polynomially
reduced to a given problem.

One reason we might be interested in knowing a language captures a com-
plexity class is to be sure it can express all such problems. A user expecting
to solve their favourite NP-complete problem would be very upset to discover
they were using a modelling language that could not describe it. Another reason
might be to know that it cannot express problems outside the given class. This
is relevant to the choice of solver technology and solver design.

EFO is a nearly minimal fragment of Essence that captures NP. (Smaller
fragments are of marginal interest. For example, one could restrict the constraint
formulas to be universal formulas in CNF. It’s not clear why we would study
this fragment, except to carry out a proof which would be tedious otherwise.)

Remark 3. We chose to call our fragment EFO, because the formulas of the “such
that” part are formulas of first order logic, and the task of finding a solution
to a EFO specification is the model expansion problem for FO, as described in
[9, 14]. The expressive power is the same as that of Existential Second Order
logic (∃SO) over finite structures. The difference in terminology is related to
the task. When one states that “∃SO over finite structures captures NP”, the
task in question is model checking. Here, our interest is actually witnessing the
second-order quantifiers.

3.1 Extending the Fragment within NP

The fragment EFO is sufficient to specify a search version of any problem in
NP, but no other problems. However, EFO is stripped of many of the syntac-
tic features of Essence that make it attractive, even for specifying NP search
problems. One may ask: How much of Essence could we add to EFO to im-
prove user convenience, without formally increasing its expressive power? Here,
we give some rough indications in this direction.

Simple Type and Domain Definitions We have seen that simple forms
of type information can be expressed in FO formulas by limiting the range of
(untyped) first order variables. Simple type definitions, however, may introduce
elements that are not part of the instance, a feature not supported by our for-
malization as given. This limitation can be fixed by positing an infinite structure
that provides an unlimited number of “reserve” elements. A FO formula corre-
sponding to a type definition specifies the number of elements needed from this
reserve.

Arithmetic EFO extended with integer arithmetic still captures NP when ex-
tended with arithmetic, provided all integer domains are restricted in size. As-
sume, for simplicity, that all domains are of integers. We posit the infinite struc-
ture of the integers in the background, from which elements may be used at will.

Since every Essence specification restricts variables to range over finite sets, we
can expand EFO with arithmetic without increasing expressiveness provided we
restrict type and domain definitions to keep the sizes of these sets polynomial in
the instance size.

4 Nested Types Lead to the Polynomial-Time Hierarchy

Here, we consider the consequences of allowing the declaration of higher-order
domains, which are produced in Essence by composition (nesting) of types, and
quantification over these domains. We show that extending the fragment EFO

with quantification over variables of such types is equivalent to quantification
over sets, which gives the such that part the power of full second order logic
(over finite domains, of course).

Second-Order (SO) Logic

Recall the second order logic (SO) allows quantification over sets (of tuples) and
functions. This is expressed through quantification over predicate symbols such
as, e.g. P (x1, . . . , xn) or function symbols such as f(x1, . . . , xn). An example of
a SO formula is

∃E ∀f ∀R ∀x ∀y (R(x, y) ∧ f(x) = y ⊃ E(x)).

Here, E and R are SO variables ranging over sets (of tuples), f is a SO function
variable, and x and y are FO variables (those ranging over simple domains).
By quantifiers we mean ∀, ∃, as in first-order (FO) and SO logic. (For more
background see [4].)

A Source of SO quantification in Essence

We already saw that decision variables correspond to the expansion vocabulary
ε. These are implicitly existentially SO quantified. An Essence specification of
the form

QSet1 . . . QSetn
Qx1∈Set1 . . . Qxn∈Setn

Ψ,

where Q denotes either ∀ or ∃, and each Seti is a variable ranging over sets (of
tuples) and set variables do not appear as arguments of other predicates amounts
to general second-order quantification. An example of such a specification is one
having the following such that statements, in which D is domain defined by an
expression of the form “set of D”, for some finite domain D:

such that ∀P :T∃x∈P (R(x) ∧ ∀y∈P (R(y) =⇒ y = x)).

(Every set P of elements from D contains a unique element for which property
R holds). In general, we will say that a second-order quantifier in an Essence

specification is a quantifier of the form ∀P :D or ∃P :D, where D is a domain whose

elements are sets of tuples (or, equivalently, are relations). Thus, ∀P :setoftuple(D,D)

and ∃P :relD×D are also second-order quantifiers.

Note that, if a symbol R is from the expansion vocabulary (i.e., R is declared
in a find section) then there is an implicit existential SO quantifier for R at the
front of the formula, and the computational task is to find a witness for that
quantifier.

Obtaining the Polynomial-Time Hierarchy

Without second order quantification in EFO, we can express exactly the prob-
lems in NP, also known as Σ

p
1 . (Σp

0 is the complexity class P . We are at Σ
p
1 with

no second order quantifiers because the expansion/find predicates are implicitly
existentially second order quantified.) If we allow second order quantification,
each alternation of SO quantifiers gives us a jump in the Polynomial Time Hi-
erarchy. If the specification contains only universal (∀) second order quantifiers,
then we can express problems in Σ

p
2 , or NPNP. If the quantification pattern is

∀∃, then we have Σ
p
3 , or NPNPNP

, etc. This way, all Σ levels of the Polynomial
Time Hierarchy (PH) are precisely captured by Essence specifications with
second-order quantification. Recall that

PH =
⋃

i∈N

Σ
p
i

Let Πi, where i ≥ 1 denote the fragment of Essence that consists of EFO ex-
tended with second-order quantification, and where the such that part starts
with a universal set quantifier ∀ and has precisely i alternations of SO quantifiers
(from ∀ to ∃ or back). Π0 is FO, so the fragment of Essence corresponding to
Π0 is EFO. We assume a counterpart of Definition 1 for these more expressive
fragments, where Πi replaces EFO.

Theorem 2. Essence specifications in the fragment Πi capture Σ
p
i+1. That is,

every Πi-definable class of finite structures is in Σ
p
i+1, and every class of finite

structures in Σ
p
i+1 is Πi-definable.

Proof. (Sketch) It is sufficient to establish a correspondence between Essence

specifications and SO logic. We already saw that Essence specifications where
quantification over sets is allowed amounts to a fragment of SO logic where the
outer-most quantifiers are existential, and arbitrary depth of quantifier alterna-
tions is possible. In addition, we need to show that every SO formula starting
with a block of existential quantifiers can be represented by an Essence specifi-
cation of this type. The capturing result will follow immediately because it holds
for the corresponding fragment of SO logic. To go from SO to Essence, simply
replace QP with QP :T , where Q is either ∀ or ∃, and let T be a suitable type,
i.e., the elements of T should be sets of tuples of the appropriate arity.

5 Succinct Domains Lead to NEXP-time

In our Essence fragment EFO, we require that given domains be enumerated.
Not coincidentally, in Fagin’s theorem – and the corollaries that say that EFO

(and FO-MX, and NP-Spec, etc) capture NP – the domain of the instance struc-
ture is given explicitly, by enumeration, or by the size of the domain expressed
in unary.

An enumerated set of size n requires at least n log n bits to describe. Essence

(and many the other specification and modelling languages) allow an instance
domain to be given by its size. For example, in many Essence specifications a
positive integer n is given, and a domain of size n is then defined, using a letting
statement, as in:

given n : int
letting Nodes be new domain int(1..n)

which is used frequently in the examples on the Essence web page.4 In these
cases, we are describing a universe of size n with about log n bits: exponentially
more efficiently. We call this a succinct representation.

Consider the fragment of Essence that consists of EFO extended with the
ability to give domains succinctly. This fragment can express problems of expo-
nentially higher complexity.

Theorem 3. The is an NEXP-complete class K of finite structures that can
be expressed by the fragment of Essence consisting of E extended with succinct
domain specification.

Proof. The following Tiling problem satisfies the claim. We are given a set of
square tile types T = {t0, . . . , tk}, together with two relations H,V ⊆ T ×T (the
horizontal and vertical compatibility relations, respectively). We are also given
an integer n in binary. An n×n tiling is a function f : {1, . . . , n}×{1, . . . , n} 7→ T

such that

1. f(1, 1) = t0, and

2. for all i < n and j ≤ n (f(i, j), f(i + 1, j)) ∈ H, and

3. for all i ≤ n and j < n (f(i, j), f(i, j + 1)) ∈ V .

The problem of deciding, given T,H, V and n, whether an n × n tiling exists
is NEXP-complete. (This is Problem 20.2.10 (a) in Papadimitriou’s complexity
text [15].) To prove our theorem, we need only provide an Essence specification
for the tiling problem, which is given in Figure 2.

NEXP is known to properly contain NP, and thus this problem is provably
not in NP, and not expressible in EFO without succinct domain representation.

4 See http://www.cs.yorku.ac.uk/aig/constraints/AutoModel

given n: int, Tiles enum(...)
given t: Tiles
given H: rel Tiles × Tiles, V: rel Tiles × Tiles
letting Index be new domain int(1 . . . n)
find f : Index × Index → (total) Tiles
such that f(1, 1) = t ∧

∀i:Index. ∀j:Index. [i < n ⇒ H(f(i, j), f(i + 1, j))] ∧
∀i:Index. ∀j:Index. [j < n ⇒ V (f(j), f(i, j + 1))]

Fig. 2. An Essence specification of a Tiling problem.

Remark 4. A key point here is that T can be quite small relative to n. To
construct a solution, we have to build the function f , which is of size at least
n2. This may be exponentially larger than the input, which may be of size only
O(logn). The fact that the problem is NEXP-complete tells us that, even if we
choose a “compact representation scheme” for the function f , under any such
scheme there will be values of n for which the representation of f is still of
exponential size. We could even reformulate the problem as a decision problem,
and just output a single yes/no bit, but this would still not significantly reduce
the work to find the solution.

Should We Worry?

The above proof can be adapted to several of the languages mentioned above,
including the languages for Spec2SAT [2] (an NPSpec solver), MXG [14], ASPPS
[3], and other tools targeted specifically toward NP-search problems. The reason
is simple: all provide a means of giving as part of an instance a range of values,
as in 1..n, as an abbreviation of the enumerated set {1, . . . n}. This shows that
they may have much greater expressive power than anticipated.

Should be be concerned? These tools have been designed primarily to solve
NP-search problems, and in many respects do an admirable job. There is a
simple reason that, most of the time, we should ignore this complexity result.
Consider, for example, a problem where the input is a graph G = 〈V,E〉. If, by
convention, we number the vertices of each n-vertex graph {1, . . . n}, requiring
the user to enumerate the n numbers explicitly rather than give the range is
an inconvenience, but typically of no significance computationally. The reason is
that the “hardness” is captured in the set of edges, which will be given explicitly,
and has size Ω(n) in almost every application. From this point of view, nothing
is amiss, but the formal properties do not exactly match “normal use”.

Yet, it is possible that users could be “bitten”, unexpectedly, by the property,
and we think it is important that users understand the power of their tools, and
under what conditions they behave “normally”, or otherwise.

6 Large Defined Domains

Essence allows defining new domains as a function of what is given, and these
domains can be extremely large — much larger than the single exponential that
appears in the previous section. Here we give two examples. We will not assume
the input may be given succinctly, but rather use other features of the language.

Case 1: Composition of Type Constructors

Suppose we are given an instance domain D of size n. Then, using Essence type
constructors and letting statements, we may construct domains as follows

– set of D, which is of size 2n;
– partition of D, which is of size 2n;

– rel of D × D × . . . D, which is of size 2nk

, where k is the arity;

– function: Dk 7→ D, which is of size 2nk

;
– etc.

Since these can be composed, a letting statement of size k can define a domain
of size

22

...

2
n

where the stack of 2’s is k high. Thus, we may specify problems where deter-
mining if there is a solution requires construction of an object of this size, and
probably one where the smallest efficiently checkable witness to a solution is of
this size. Since a formula in the such that part may have quantifier depth k,
it can talk about elements at the inner-most level of such a nested type, so it

seems we can specify problems whose complexity is at least 22...2
n

, where the
stack of 2’s is k high, although we do not provide a concrete example here.

Case 2: Exponentiation

Since Essence includes an exponentiation operator, and we can define a new
domain in terms of it’s size, we can define a domain of size nn, given a domain
of size n. We can also compose such definitions, so a letting statement of size k

can define a domain of size nn...n

, where the stack of n’s is k high.
Such a problem specification would look like this:

given D enum
letting n be |D|
letting Big be new domain of size n ∗ ∗(n ∗ ∗(n ∗ ∗(. . . n) . . .)))
find f : Big → (total) Big
such that . . .

Again, we do not provide a concrete example of a problem with solution
complexity matching the size of this constructed domain, but we believe such a
problem can be specified with Essence.

Conjecture 1. Essence can specify problems which are complete for the com-
plexity class NTIME[nn...n

], where the stack of n’s is k high for arbitrary k ∈ N .

Remark 5. The NEXP case is a special case of this one. It is interesting in it’s
own right because: 1) many languages allow compact representation of domains
and, 2) it is related to a more general problem of numbers, which arises even
without exponentiation.

A Complexity Upper Bound on Essence Specifications

This does bring us to the only upper bound we are fairly confident of for com-
plexity of problems specifiable in Essence:

Conjecture 2. For every Essence-specifiable problem P , there exists k ∈ N such
that P is of complexity at most NTIME[nn...n

], where the stack of n’s is k high.

The reason that the upper bound is a conjecture is that Essence has a very
large collection of features, and it is hard to be absolutely sure one has taken
into account everything that can be done with them.

7 Capturing NP-search

Complexity theory primarily studies decision problems. A decision problem is
formalized as the set of “yes” instances. For many applications, we are interested
in search problems, that is, given an instance we want to find an object of a
certain sort – called a solution – not just answer a yes-no question. A search
problem is formalized as a binary relation R, such that the solutions for instance
are the elements of {y : R(x, y)}. An NP-search problem is a polytime binary
relation R(x, y) such that the set {x : ∃ y R(x, y)} is in NP, and there is some
polynomial p such that R(x, y) ⇒ |y| ≤ p(|x|).

Now, suppose you are faced with an NP-search problem R(x, y). You have
a specific notion of what constitutes an instance and a solution: This gives you
an instance vocabulary σ, and a solution vocabulary ε. Theorem 1 tells us that
there must be some EFO specification S, with find vocabulary σ, which specifies
the set {x : ∃ y R(x, y). It does not tell you that there is such an S which has
find vocabulary ε. Indeed, there are cases for which there is no such S. For these
problems, the specification S has given vocabulary σ and find vocabulary ε∪α.
Intuitively, one cannot write the such that conditions in a FO formula using
only the given and find vocabulary – you must use additional concepts for
which you require additional vocabulary symbols, which we may call “auxiliary”
vocabulary.

We say a search problem R(x, y) is EFO-definable iff there is an EFO speci-
fication S such that x is and S-instance with S-solution y iff R(x, y).

Theorem 4. EFO, even when extended with the features listed at the end of
Section 2.2, does not capture NP-search.

Proof. (Sketch) EFO can express the same class of NP checking relations as FO.
However, FO can only express those relations that are in the complexity class
AC0 (this follows from the fact that FO model checking is in AC0). This is known
to be a proper subset of the polytime relations, and thus does not include all
NP checking relations.

Consider now extending the formulas allowed in the such that expressions
of EFO as follows.

Definition 2. An ∃SO universal Horn formula is a SO formula consisting of
a conjunction of Horn clauses, preceded by universal first-order quantifiers, pre-
ceded by existential SO quantifiers. Here, a clause is Horn if it contains at most
one positive occurrence of a SO variable ranging over sets (of tuples).

Theorem 5. EFO, when extended with universal Horn formulas in the such

that part, captures NP search over ordered structures.

Proof. Follows from the capturing P result by ∃SO universal Horn [8].

Remark 6. The requirement for ordered structures in the theorem indicates that
every domain must have a linear order. This is essential to the proof, and thus
one would be restricted in the use of the so-called “un-named types” of Essence.

Remark 7. An alternate way to extend EFO to capture NP search would be to
add a least-fixpoint operator, or other form of inductive definition. In our opin-
ion, inductive definitions (or other forms of fixpoint operators) are an important
element missing from almost all constraint modelling languages.

8 Discussion

Like the Essence designers, we think a good industrial modelling languages
should support a rich type system, and that an industrial worker with basic dis-
crete math background but little training specific to constraint modelling, should
be able to specify problems in such a language.5 We also strongly believe that
the languages used in practice to specify or model problems should have expres-
sive power commensurate with the complexity of the problems being specified.
This is, in our view, important to producing high-quality and high-performance
tools. (As an illustrative, if extreme, example, imagine using a theorem prover
to sort the relations of a large database.)

We consider development of Essence and related languages an extremely
important direction for the constraints field. In this paper, we have pointed
out some expressiveness and complexity implications of providing rich linguistic
features in Essence. In particular, we have shown that a number of features
of Essence lead to extremely high expressive power. This does not constitute

5 Of course, tackling the hardest problems will always require substantial modelling
experience and understanding of solver technology.

a flaw in the design of Essence, but for such expressive languages it may be
useful to identify the largest fragments possible with limited expressive power,
and to exercise care when using features that give expressive power beyond that
required for the problem at hand.

We consider it a central challenge to researchers in the area to find ways
to incorporate the kind of features that Essence provides in such a way that
expressiveness and complexity – but not naturalness – are constrained. This will
require study of the ways features are used in natural specifications, over a very
wide range of real application problems, as well as application of ingenuity and
the application of appropriate design and analysis techniques.

References

1. M. Cadoli, G. Ianni, L. Palopoli, A. Schaerf, and D. Vasile. NP-SPEC: An exe-
cutable specification language for solving all problems in NP. Computer Languages,
pages 165–195, 2000.

2. M. Cadoli and A. Schaerf. Compiling problem specifications into SAT. Artificial
Intelligence, 162:89–120, 2005.

3. Deborah East and Mirolsaw Truszczynski. Predicate-calculus based logics for mod-
eling and solving search problems. ACM TOCL, 7(1):38–83, 2006.

4. H. B. Enderton. A Mathematical Introduction to Logic. Harcourt/Academic Press,
New York, 2001.

5. R. Fagin. Generalized first-order spectra and polynomial-time recognizable sets.
In Complexity of Comput., pages 43–73, 1974.

6. P. Flener, J. Pearson, and M. Agren. Introducing ESRA, a relational language for
modelling combinatorial problems. In Proc., LOPSTR’03, 2003.

7. Alan M Frisch, Matthew Grum, Chris Jefferson, Bernadette Martinez Hernandez,
and Ian Miguel. The design of ESSENCE: a constraint language for specifying
combinatorial problems. In Proc., 20th International Joint Conference on Artificial
Intelligence (IJCAI 2007), January 2007.

8. E. Grädel. Capturing Complexity Classes by Fragments of Second Order Logic.
Theoretical Computer Science, 101:35–57, 1992.

9. Antonina Kolokolova, Yongmei Liu, David Mitchell, and Eugenia Ternovska. Com-
plexity of expanding a finite structure and related tasks. In Logic and Computa-
tional Complexity, workshop associated with LICS’06, 2006.

10. L. Libkin. Elements of Finite Model Theory. Springer, 2004.
11. Maarten Mariën, Johan Wittocx, and Marc Denecker. The IDP framework for

declarative problem solving. In Search and Logic: Answer Set Programming and
SAT, pages 19–34, 2006.

12. P. Mills, E.P.K. Tsang, R. Williams, J. Ford, and J. Borrett. EaCL 1.0: an easy
abstract constraint programming language. Technical Report CSM-321, University
of Essex, December 1998.

13. David Mitchell and Eugenia Ternovska. A framework for representing and solving
NP search problems. In Proc. of the 20th National Conf. on Artif. Intell. (AAAI),
pages 430–435, 2005.

14. David Mitchell, Eugenia Ternovska, Faraz Hach, and Raheleh Mohebali. Model
expansion as a framework for modelling and solving search problems. Technical
Report TR 2006-24, School of Computing Science, Simon Fraser University, 2006.

15. Christos Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

