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Abstract. In spite of the effectiveness of Constraint Programming lan-
guages and tools, modeling remains an art and requires significant in-
volvement from a CP expert. Our goal is to alleviate the load of the
human user, and this paper is a first step in this direction. We propose
a framework that enriches a ‘generic’ constraint model of a domain area
with a set of constraints that are applicable to a particular problem in-
stance. The additional constraints used to enrich the model are selected
from a library; and a set of rules determines their applicability given
the input data from the instance at hand. We address application do-
mains where problem instances slightly vary in terms of the applicable
constraints, such as the Building Identification (BID) problem and we
use Sudoku puzzles as a vehicle to illustrate the concepts and issues in-
volved. To evaluate our approach, we apply it to these domains, using
constraint propagation on the generic model to uncover additional in-
formation about the problem instance. Our initial results demonstrate
our ability to create customized models whose accuracy is further im-
proved with the use of constraint propagation. We also discuss results
obtained by solving the newly inferred models, showing that the combi-
nation of rule-based constraint inference and constraint propagation is
a step towards precise modeling. Finally, we discuss domains that can
benefit from our approach (e.g., timetabling and machine translation)
and present directions for future work.

1 Introduction

Constraint Programming (CP) has been shown to be an effective paradigm for
modeling and solving combinatorial problems [1–4]. However, the modeling step
remains an art, requiring a CP expert to specify the variables, their domains, and
the set of constraints that govern a particular Constraint Satisfaction Problem

(CSP). Further complicating the modeling process is the need to specialize a
given constraint model for all variations found within the problem class. As a
first step to automating the modeling process and alleviating the load placed on
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the human user, we propose to enrich the generic constraint model3 of a problem
class by adding to it the constraints that apply to a given problem instance. The
additional constraints are inferred from the input data of a problem instance.

The embedded information that we exploit is a set of instantiated variables
(i.e., variable-value pairs) which we call data points. Our framework tests the
features of these data points in order to select, from a library of constraints, those
constraints that should be added to the generic constraint model of the problem.
We reduce the load on a domain expert by limiting their involvement to defining
the rules, constraints and features describing the data points. While such tasks
still require human expertise, we contend that (1) this effort is leveraged over
time and (2) storing the individual models for all problem variations is infeasible
in practice. As such, we use this expert knowledge along with the information
found in the problem description to generate a customized problem model.

When automatically generating constraint models, it is difficult to know when
the ‘right’ model for a problem instance is reached. Hence, our proposed method
to modeling attempts to approach the right model of a problem. Subsequently,
it is possible that we may incorrectly add to the generic constraint model con-
straints that do not apply. To contend with incorrect inferences, we augment
our inference method with a backtrack search over the set of possible models.
Assuming that given problem instances are solvable allows us to detect inconsis-
tencies in the model (e.g., annihilation of a variable’s domain) to determine that
a model is incorrect and that the search requires backtracking. The real-world
nature of the problem domains we consider (Building Identification (BID) [1]
and Sudoku) requires the existence of a solution for all instances, making our as-
sumption valid. We believe this assumption holds for other application domains,
and our intention is to apply this framework to such domains.

This paper is structured as follows. Section 2 motivates our approach. Sec-
tion 3 provides a general definition of our framework with examples of the intro-
duced concepts from the BID and Sudoku problem domains. Section 4 reports
results of experiments on both the BID problem and Sudoku puzzles. Section 5
relates our contribution to existing approaches in modeling and CSPs. Section 6
demonstrates the generality of our approach by identifying various settings where
it is desirable, and identifies directions for future research.

2 Motivating Example

Consider the problem of mapping postal addresses to buildings in satellite im-
agery using publicly available information, defined as the Building Identification
(BID) problem [1]. The input here is a bounding box that defines the area of a
satellite image, buildings identified in the image, vector information that spec-
ifies streets in the image, and a set of phone-book entries for the area. Using
the geospatial characteristics of addressing in the world, the task is to return
a set of possible address assignments for each building. When presented with a

3 The basic set of constraints that represent the general characteristics of the problem.
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user query, the satellite imagery provides the buildings that need to be assigned
addresses. Not knowing which streets each building could lie on requires the use
of vector data to determine this information. Finally, the phone book entries
provide a set of addresses that are known for the area and must appear in the
final solution. To assign address labels to the buildings in the image requires
the combination of the gathered and induced information with the addressing
characteristics for the area. Casting the BID problem as a CSP is an effective
method for combining the various sources of information to find sets of assign-
ments that adhere to the addressing constraints of the area in the satellite image
[1], thus identifying a new application domain for the CP research community.

To be useful as a web application accessed online, this application needs
to contend with the slight addressing variations found in cities throughout the
world. For example, some cities adhere to a block-numbering scheme where ad-
dresses increment by a fixed factor (i.e., 100 or 1000) across street blocks while
other cities do not. The direction in which addresses increase also varies, in some
cities this occurs to the east while in others it is to the west. Additionally, the
globalization of addressing across continents ensures that some general guidelines
are followed, but this standardization is typically met with regional/cultural cus-
tomization such as the red/black numbering in Europe or the block numbering
in the US. Therefore, to expand this application to support unseen addressing
characteristics requires the addition of new constraints. Finally, some cities such
as El Segundo California (used in the experiments reported in [1]) are character-
ized by non-monotonic addressing where building numbers increase to the west
in one part of town and to the east in another. Therefore, a model representing
cities such as El Segundo needs to contain both the constraints representing its
specific addressing characteristics and the context in which they apply.

The creation, storage, and maintenance of individual constraint models, for
all cities, that account for all of the applicable addressing constraints is an un-
realistic and formidable endeavor. However, the work required of the expert to
define constraints that capture all of the characteristics of addressing seen to
date is relatively simpler and more manageable. Moreover, combining this ex-
pert knowledge with known building addresses provided by public sources such
as gazetteers4 allows the web application to dynamically build a constraint model
of the area of interest and makes this application a more realistic proposition.

Another example where generic models gain to be enriched to adapt to a
specific context is Sudoku. Sudoku is a logic-based placement puzzle similar to
a Latin Square. It has been shown that solving basic Sudoku puzzles is NP-
complete [5] and can be done using CP [4]. Interestingly, slight variations of
the basic Sudoku puzzle are played throughout the world (see Figure 1), where
each variation adds to the constraints that define the basic puzzle. For example,
the diagonal Sudoku adds an ‘all-different’ constraint for each of the diagonals;
and the Samurai Sudoku combines five different puzzle variations in a quincunx
arrangement. A generic CSP model represents only weakly all these variations.

4 A geographical dictionary of building addresses and their spatial coordinates.
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Fig. 1. Variations of sudoku puzzles.

Hence, to solve a given Sudoku instance, an automated system must identify the
constraints and their context for the given instance.

We realize that it is highly unlikely that a user would be given a set of pre-
filled cells and the vague description ‘this is some Sudoku variant’ and be left to
work out what puzzle they are supposed to solve. However, Sudoku puzzles serve
as a vehicle to illustrate the ideas and concepts behind our proposed framework.
The BID problem is more complex in nature and harder to illustrate in the
scope of a single paper. Yet the issues encountered in this problem can be quite
naturally mapped to Sudoku puzzles, which are more widely recognized and in
our view easier to understand. As such, we analyze both domains in this paper
to help facilitate the reader’s understanding of our ideas.

3 Constraint-Inference Framework

In this section, we discuss the problem of inferring applicable constraints from
input data. We describe our constraint inference framework and present general
techniques for constraint selection. We introduce the use of constraint propaga-
tion in an iterative way to improve the inference capabilities of this framework.
Throughout this section, we use the Sudoku puzzle and the BID problem to
illustrate the introduced concepts. As mentioned in Section 1, a prevailing as-
sumption being made is that all problem instances are solvable. This assumption
holds in the BID problem because all buildings in the world must be assigned a
unique address and in the Sudoku domain because all of the problem instances
we consider are well-formed (i.e., each instance has one unique solution).

3.1 General framework

Figure 2 informally defines our general inference framework. CG is the set of
constraints on the generic model, and apply to all instances for a problem class.
Examples in the BID problem are all known addresses have to be assigned to
a building, corner buildings are only assigned to one street, and in Sudoku the
AllDiff constraints on the rows and columns.
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Given:

– a generic CSP model of a particular class of problems containing a set of generic
constraints CG,

– a library with a set of constraints CL applicable to this class, and
– a set of data points {Di}, where each data point Di has a set of features,

a Constraint-Inference Framework is a set of rules {Rm} along with an algorithm (i.e.,
inference engine) that operates on these rules. The rules map the features of Di to the
constraints {CL} of the library, indicating which constraints govern a problem instance.

Fig. 2. Constraint-inference framework.

Data Points: Generally speaking, data points {Di} can be any elements of the
input data, such as information that instantiates some of the CSP variables of
the generic CSP model. These data points are described using a set of domain-
specific features defined by a domain expert. In the Sudoku domain, the data
points are the cells filled with numbers defined by the features: Filled-in Num-
ber, Row, Column, Region, and Cell Color. In the BID problem, data points are
landmark buildings defined by: ID, Address Number, Street Name and Orienta-
tion, Side of Street, Latitude, Longitude, Block Number, and Street Ordering.
Constraint Library: The constraint library consists of a set of constraints CL

that represent the additional characteristics introduced by variations of problem
instances within a problem class. An individual constraint captures a certain
characteristic that is only applicable to some problem instances. The block num-
bering in the BID problem and the AllDiff on the diagonals in Sudoku are two
examples of constraints found in the library. This library serves as the repository
from which our framework selects applicable constraints.
Applicability Rules: The rules in our framework are predefined by a domain
expert, similar to the use of expert modules in Proverb [3]. They are separated
from the constraints in the library and act as a link between the constraints and
the features defining the data points. The differences between rules and con-
straints are as follows: A constraint’s scope is over a subset of the variables in
the model. Therefore, a constraint is satisfied given a particular set of variable-
value pairs (i.e., assignments of values to variables). The rules are triggered by a
predicate function over the features of the variables in the problem instance (the
head of the rule). When this function is true, the constraint (whose scope is the
variables in the head of the rule) is asserted. The generic constraints for the given
problem class are always included in the model. An additional benefit of using
rules is that multiple rules can map to a single constraint, allowing higher lev-
els of inference for a constraint. Our rule language supports any programmable
predicate expressions and rules are defined using the following format:

1. If 〈test points’ features for rule applicability〉
2. If 〈test points’ features for constraint applicability〉
3. Then 〈add positive support to constraint〉
4. Else 〈add negative support to constraint〉
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The first test checks the applicability of the rule, the second that of a con-
straint from the constraint library. If the second test succeeds, the positive sup-

port of the constraint is increased, otherwise the negative support of the con-
straint is increased. Finally, as in a classical Expert System architecture, the
rules are separated from the inference engine making the inference framework
applicable across problem domains. Two sample rules are shown in Figure 3.
Applying rules is linear in the number of rules and we use bucketing (see Sec-
tion 3.2) to improve scalability of testing rules applicability. Furthermore, it is
possible to use various modeling or rule languages to represent the applicabil-
ity rules. However, our contribution lies in using the input data to select the
constraints, independent of the representation language used for the rules.

BID Applicability Rule: Parity

If Street(P1)=Street(P2) then
If [SameParity(Num(P1),Num(P2)) ∧ SameSide(P1,P2)] ∨

[OppositeParity(Num(P1),Num(P2)) ∧ OppositeSide(P1,P2)]
Then Add positive support for Parity constraint
Else Add negative support for Parity constraint

Sudoku Applicability Rule: AllDiff Row

If Row(P1)=Row(P2) then
If Number(P1)6=Number(P2)

Then Add positive support for All-Diff Row constraint
Else Add negative support for All-Diff Row constraint

Fig. 3. Two examples of applicability rules.

3.2 Selecting constraints

The selection of constraints based on the information found in the problem (data
points) is the key contribution of our framework. Previous work in selecting
constraints from a library has shown that such an approach is an effective method
to modeling CSPs [6, 7]. As such, our framework uses the constraint library as a
‘knowledge base’ from which we can enrich the generic model. The selection of
constraints is a three-step process. First, in order to enhance the performance of
testing rule applicability and the scalability of the inference engine, we perform
a bucketing [8] of the data points based on feature values. Our evaluation (see
Section 4.1) illustrates the benefits of bucketing.

After comparing all data points within each bucket, we obtain a set of sup-
ports (positive and negative) for inferred constraints, with some constraints in
the library receiving no support. Before selecting which constraints from the
constraint library to add to the generic constraint model, all constraints are
categorized into one of three categories, applicable, non-applicable, or unknown,
based on their respective set of supports. The categorization of constraints is an
important step towards determining which constraints to select and add to the
CSP model. If a given constraint receives no support, it is classified as unknown.
For all other constraints, they are categorized as applicable or non-applicable de-
pending on their support level, a function of the positive and negative supports
of the constraint that allows the framework to express confidence in its inference.
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The enriched constraint model Cnew is defined as CG

⋃
Ca where CG is the set

of constraints of the generic model and Ca ⊆ CL is the set of constraints from
the constraint library classified as applicable.

In our evaluations (see Section 4), a support level of 1 (the constraint has
at least one positive support and no negative support) classified a constraint as
applicable and constraints with both negative and positive supports were clas-
sified as non-applicable. Non-applicable and unknown constraints are not added
to the CSP model. This setup enforces a binary classification of constraints and
uses a minimum support level, allowing us to test the major ideas present in this
framework. Studying the impact of support levels is our next course of action
and is discussed in Section 6. Furthermore, it is possible that an incorrect infer-
ence can be made and a constraint is incorrectly added to the generic constraint
model (due to noisy data or a lack of information from the data points). The
elimination of erroneous inferences is important for maintaining high solution
precision and techniques presented in Section 3.3 are a means towards this end.

Finally, the context in which certain constraints apply must be determined.
To begin, we require the user to define a set of conflicting constraints. Because
automatically identifying conflicting constraints is NP-hard and may require
considering 2c combinations of constraints (c is the number of constraints in
the library), we reduce the initial complexity of the framework by using this
predefined set. Subsequently, if two or more inferred constraints appear in the
set of conflicting constraints, we exploit semantic information to generate con-
texts that spatially separate the conflicting constraints. As such, the scope of a
conflicting constraint will be limited to variables within one context, while all
other constraints will be defined across all contexts. Once a contextualized set of
constraints has been determined, the customized model can be generated. This
context-inference approach is specific to a given problem domain and we discuss
the generalization of the context-inference process in Section 6.

3.3 Improving constraint selection using constraint propagation

A lack of information in the data points of a problem instance may lead to in-
correct constraint inferences or not inferring constraints that apply. Given that
the constraints in the generic model hold for the problem instance at hand, we
propose to apply constraint propagation algorithms on the generic constraints
in order to make explicit more features of the particular instance. Starting with
Arc-Consistency (AC) [9] we gradually move to more discriminating propaga-
tion algorithms and inject the newly inferred data points back into the generic
model at each step. For the Sudoku domain, we considered AC, Generalized
Arc-Consistency (GAC) [10], and Shaving or Singleton Arc-Consistency (SAC)
[11], applying these algorithms in sequence for better performance.

The addition of new data points by constraint propagation benefits the
constraint-selection process described in Section 3.2. We developed an itera-
tive algorithm where we use constraint propagation to infer new data points
and then use constraint inference to augment the generic model. This algorithm
takes as input the initial model for the given instance, made up of the generic
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constraints CG and the initial data points of the problem Di. It then loops, prop-
agating the current set of constraints to infer new data points. When new data
points are inferred, the constraint-selection process described in Section 3.2 is
re-applied using the new set of data points to select applicable constraints. The
newly inferred constraints are then added to the constraint model. At the next
step, constraint propagation is applied to both inferred and generic constraints.
Our proposed algorithm ends when the process reaches quiescence, yielding the
inference of one possible model. While it is possible that alternative models exist,
our algorithm returns the first model found.

It should be noted that this algorithm may require backtracking. If a new
constraint inference leads to the annihilation of a variable’s domain, then back-
tracking is necessary to eliminate the erroneously inferred constraint. Backtrack-
ing would require this algorithm to keep track of which constraints were added
at each time step. In this paper, we remove the need for backtracking by only
applying constraint propagation to the generic constraints CG and increasing the
strength of propagation for each constraint-inference iteration using AC, GAC,
and SAC. Additionally, an augmented model may not exist, at which point our
algorithm simply returns the generic constraint model.

4 Experimental Evaluation

We carried out experiments on two application domains: the BID problem [1]
and Sudoku puzzles. We present our initial findings and the performance of
solving the inferred models for both domains, and we evaluate our constraint
propagation techniques (see Section 3.3) in the Sudoku domain.

4.1 Sudoku puzzles

Our evaluation of Sudoku puzzles included the basic puzzle along with four
variations: geometry (regions are of irregular shape), diagonal (additional AllDiff
constraints apply to the diagonals), odd/even (numbers in colored cells have
same parity), and magic (each number inside a polyomino must be no larger then
the number of blue cells in the region, along with the two diagonal constraints).
The Samurai puzzle was not included because we were unable to freely obtain
instances of this puzzle type. The constraint library consisted of the ‘defining’
Sudoku constraints along with all the additional constraints introduced by each
puzzle variation. Data points correspond to filled-in cells as defined in Section 3.1.

We conducted three sets of experiments for each puzzle type, testing our
framework on 100 puzzle instances for each puzzle difficulty level.5 Our initial
results are summarized in Table 1, and report recall and precision. Recall is
defined as the ratio of the number of correct constraints inferred to the total
number of constraints representing the puzzle type, and precision is defined as

5 Randomly sampled from www.menneske.no/sudoku/eng and
www.printsudoku.com/index-en.html
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the ratio of the number of correct constraints to the total number of constraints
inferred. |Cnew| corresponds to the number of constraint types that define each
puzzle type.

Table 1. Sudoku: precision and recall of inferred constraints.

Easy Medium Hard

|Cnew| Rec. Prec. Rec. Prec. Rec. Prec.

Basic 3 1.0 0.88 1.0 0.87 1.0 0.87

Geometry 3 1.0 0.86 1.0 0.88 1.0 0.88

Diagonal 4 0.86 1.0 0.86 1.0 0.85 1.0

Even/Odd 4 1.0 0.93 1.0 0.94 1.0 0.95

Magic 5 (not categorized): Rec.: 0.81, Prec.: 1.0

In general, we were able to correctly infer all of the constraints. Specifically,
the basic and geometry puzzles are nearly the same puzzle except that geometry
puzzles have irregular regions, hence the results are very similar for both puzzle
types. We were able to infer the three core constraints (as reflected by the per-
fect recall), but we incorrectly inferred the existence of a diagonal constraint in
some puzzle instances, causing a drop in overall precision. This same incorrect
inference caused the drop in precision for the even/odd puzzle. The diagonal and
magic puzzles were cases where all inferred constraints were correct (perfect pre-
cision), but the filled-in cell distribution was such that we were unable to infer
a diagonal constraint (an applicable constraint) for all the puzzle instances (a
drop in recall). In fact, only 10% of all magic puzzle instances contained enough
data points to infer this constraint.

Table 2. Iterative Propagation: precision and recall of inferred constraints.

Easy Medium Hard

|CG| |Cnew| Rec. Prec. Rec. Prec. Rec. Prec.

Basic 2 3 1.0 0.99 1.0 1.0 1.0 0.99

Geometry 2 3 1.0 1.0 1.0 1.0 1.0 0.99

Diagonal 2 4 0.89 1.0 0.89 1.0 0.88 1.0

Even/Odd 2 4 1.0 0.93 1.0 0.94 1.0 0.94

Magic 2 5 (not categorized): Rec.: 0.81, Prec.: 1.0

Those less-than optimal results necessitate a more robust approach to se-
lecting constraints. We present in Table 2 results of combining the iterative
algorithm described in Section 3.3 with our inference framework. In these ex-
periments we only propagate the row and column AllDiff constraints (|CG|),
changing the propagation levels at each iteration. Due to a lack of space we omit
the precision and recall measures seen at each iteration of the algorithm. As ex-
pected, the precision of the constraint model was improved for puzzle variations
where a significant number of new data points were inferred. Specifically, the
basic and geometry puzzles saw a significant jump in precision values because
the new data points eliminated most of the erroneously inferred diagonal con-
straints. Interestingly, a small number of new data points in the diagonal puzzle
helped improve the recall by providing enough information to allow the inference
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of the diagonal constraint in additional instances. Not surprisingly, the even/odd
and magic puzzle variations saw no significant change in their respective models
because the propagation of constraints led to very few new data points. A drop
in precision for the hard even/odd puzzles is caused by the incorrect inference
of the diagonal constraint for some problem instances, caused by the newly in-
ferred data points. In general, puzzle variations that are highly constrained (i.e.
even/odd, magic) require propagation of more than just generic constraints. A
solution is thus to propagate the set of currently inferred constraints at each
iteration of the algorithm and we discuss this approach in Section 6.

Table 3. Sudoku problem results with an inferred constraint model.

Easy Medium Hard

% solved % one sol. % solved % one sol. % solved % one sol.

Basic 99% 100% 100% 100% 99% 100%

Geometry 100% 100% 100% 100% 99% 100%

Diagonal 100% 57% 100% 56% 100% 53%

Even/Odd 69% 100% 74% 100% 76% 100%

Magic (¬ categorized): % solved: 100% % one sol.: 10%

Finally, we evaluated the performance of solving the inferred model and
present our results in Table 3. The results report the percentage of problem
instances for each puzzle type and difficulty level that could be solved using the
inferred constraint model, and the percentage of the solved puzzle instances that
returned a single solution. As these results show, the basic and geometry puzzles
are almost all solved, except for two puzzle instances that were represented with
an over-constrained model (containing an incorrect inference of the diagonal
constraint). For the diagonal and magic puzzles, we were able to solve all puzzle
instances but a significant number of inferred models were under-constrained,
leading to a lower percentage of instances with only one solution. Finally, the
incorrect inference of the diagonal constraint in the even/odd puzzles led to a
lower percentage of solved instances. As these results show, as a first step the
inferred models are quite representative of the puzzle instances. However, we
need to further explore support levels as a means to eliminate erroneous infer-
ence and adjust our iterative algorithm to provide additional data points for
instances where few data points are inferred (see Section 6).

4.2 BID problem

For the BID domain, our evaluation included the cities: El Segundo California,
San Francisco CA, Downtown Los Angeles CA, and Boulder Colorado, chosen for
their unique characteristics. We varied the set of landmark data-points (defined
in Section 3.1) by using different public data sources. Each source provided a
different set of data points varying in number and distribution within the area
of interest. Results are summarized in Tables 4 and 5.

We ran three sets of experiments in El Segundo (Table 4). First, we collected
from a Property Tax website a set of 38 well-distributed data points, all of
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Table 4. El Segundo: inferred constraints.

Constraints

Data Points Parity
Block

Ascending
k=100

38 data points west of Main St. X X X East-West & North-South

1650 geocoded points X X
X Context 1: East-West & North-South
X Context 2: East-West & North-South

20 USGS gazetteer data points X X

X Context 1: East-West & North-South
X Context 2: North-South
× Context 2: East-West

X applicable constraint × non-applicable constraint

which are located to the west of Main St. (referred to as Context 1). This trial
served as a sanity check and the results shown in Table 4 conform to the ground
truth. The second trial used roughly 1650 points generated by a geocoder web-
service. This experiment tested the scalability of the framework along with its
ability to determine contexts. From a scalability standpoint, this experiment
required no more than 10 seconds to run (but well over an hour without the
bucketing mentioned in Section 3.2). The framework also correctly identified
the two contexts for the area, and correctly determined and contextualized the
sets of constraints. Finally, we utilized all of the gazetteer points (20) from the
USGS gazetteer that lay within El Segundo and had an address associated with
them. The contexts and all but one constraint were correctly identified. This
experiment illustrates the effect that the distribution of the data points has
on the results. To further explore the effect of landmark-point distributions in
different areas, we ran the inference engine on other parts of the US. The results
of our trials are shown in Table 5.

Table 5. Other cities: inferred constraints.

Constraints

Area Parity
Block

Ascending
k=100

7 hotels found in Downtown LA X X
XNS
× EW

16 USGS gazetteer points in San Francisco X X X NS & EW

16 USGS gazetteer points in Boulder X N/A in this area
X EW
× NS

X applicable constraint × non-applicable constraint

For downtown LA, seven landmark points where derived from an online
source of hotels, each with an address and latitude and longitude coordinates.
Our framework was able to correctly determine all but one of the applicable
constraints. Indeed, there was not enough information in the data to determine
in which direction addresses increased on East-West (EW) running streets. Next
we considered a subarea of San Francisco CA and Boulder CO. Using 16 and 7
points respectively from the USGS gazetteer, we were able to correctly identify
all but one of the applicable constraints for both regions. There wasn’t enough
information in the data to determine in which direction addresses increased on
North-South (NS) running streets in Boulder. These experiments illustrate the
importance of data point distribution over the problem instance. We estimate
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that, with a perfect distribution of data points, the minimum number needed to
correctly identify all of the constraints currently considered is 4×n, where n is
the number of contexts. Essentially, we require two points for each street type
(North-South or East-West running). While this minimal set of points allows us
to select a set of constraints, we remain vulnerable to noise.

Table 6. BID problem case studies.

Case study Phone-book Number of. . .

completeness bldgs blocks building-address
combinations

NSeg125-c 100.0% 4160
NSeg125-i 45.6%

125 4
1857

NSeg206-c 100.0% 10009
NSeg206-i 50.5%

206 7
4879

SSeg131-c 100.0% 3833
SSeg131-i 60.3%

131 8
2375

SSeg178-c 100.0% 4852
SSeg178-i 65.6%

178 12
2477

We evaluate the quality of the solutions generated when solving the con-
straint model inferred from 38 data points (see Table 4). We apply this inferred
model to areas west of Main St. (defined in Table 6), and solve the model using
a customized BID problem solver [12]. The largest region tested previously con-
tained 34 buildings and a single city block [1] and all of our areas represent an
increased problem size over that work. The completeness of the phone book indi-
cates what percentage of the buildings on the map have a corresponding address
in the phone book. We created the complete phone books using property-tax
data, and the incomplete phone books using real-world phone books. The num-
ber of building-address combinations is the number of possible combinations of
buildings and phone-book addresses. Note that this number is smaller when the
phone book is incomplete.

Table 7. BID problem results with an inferred constraint model.

W/o orientation cons W/ orientation cons
Runtime Domain Runtime Domain Runtime Domain

(sec) size (sec) size reduction reduction

NSeg125-c 22397.08 1.22 1962.53 1.0 11.41x 1.22x

NSeg125-i 22929.49 6.11 3987.73 4.18 5.75x 1.46x

NSeg206-c 198169.43 1.21 10786.33 1.0 18.37x 1.21x

NSeg206-i 232035.89 7.91 12900.36 4.99 17.99x 1.59x

SSeg131-c 173565.78 1.56 125011.65 1.41 1.39x 1.11x

SSeg131-i 75332.35 12.56 17169.84 3.92 4.39x 3.20x

SSeg178-c 523100.80 1.41 284342.89 1.31 1.84x 1.08x

SSeg178-i 334240.61 8.24 62646.91 3.23 5.34x 2.55x

Average 8.31x 1.68x
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Our results are summarized in Table 7. We present results obtained when the
Parity and Ascending constraints (denoted by orientation cons) are included and
when they are unknown. When these constraints are unknown, the constraint
model solved corresponds to the generic model. Runtime reports the runtime, in
seconds, required to solve the problem, Domain size reports the geometric mean
of the domain size for a building, Runtime reduction and Domain reduction

report the factor by which the average domain size and runtime were reduced
when using the customized model. As our results show, the use of a customized
constraint model greatly improves the performance of the solver. The results
show on average a factor of 8.31 improvement in runtime, with some scenarios
seeing a reduction by a factor as large as 19. We also see an average factor of 1.68
improvement in domain reduction. As Bayer et al. [12] noted, every building has
the correct label in its domain (resulting in a perfect recall), therefore a factor
of 1.68 domain reduction results in a large increase in the solution’s precision.

5 Related Work

An appealing new application domain for CSPs has been identified by Michalowski
and Knoblock [1]. Incorporating our inference engine into this framework will
improve the robustness of the BID system. Puzzles are also an interesting domain
for constraint programming (CP). The Proverb system [3] uses a probabilistic
CSP approach to solving crossword puzzles. Proverb uses clue-value pairs to
infer themes in crossword puzzles by passing them onto sets of expert modules.
These clue-value pairs are analogous to our data points, and the expert mod-
ules are similar to our applicability rules. Our work was partially inspired by
Proverb’s inference mechanisms. Finally, Sudoku puzzles have also been mod-
eled as a CSP and it has been shown how different known and ad-hoc propagation
techniques affect the ability to solve basic Sudoku puzzles of varying difficulty
[4]. Combining our inference framework with these propagation schemes would
allow Simonis [4] to expand the set of Sudoku puzzles solved from only the 3x3
basic version to variations such as the ones discussed in this paper and others.

Recent work in CP modeling aims at automatically learning constraint net-
works from data. Colleta et al. [6] automatically learn constraint networks from
full solutions (both consistent and inconsistent). Bessière et al. [13] use historical
data (solutions previously seen) to learn constraint networks. Finally, Bessière
et al. [7] propose a SAT-based version-space algorithm for picking applicable
constraints from a library given a set of solutions. All of these approaches are a
way to model a problem class without having to explicitly define the constraint
model. However, each approach uses full problem solutions to learn the constraint
networks. In our work, we do not require full solutions to a problem instance but
only a small number of known values (a small partial-solution). Furthermore, our
work identifies small variations of similar problem classes while previous work
focuses on finding constraint networks for a particular problem class. However,
we are investigating extending the work done by Bessière et al. [13] to support
the type of constraints seen in our application domains. The work by Lallouet
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et al. [14], which employs machine learning techniques to learn open constraints
and their propagators, is also an interesting idea we will study in more detail.

Lastly, Colton et al. [15] find redundant constraints for quasi-groups and
reformulate basic constraint models of these groups to improve search. Cheng et
al. [16] show how ad-hoc global case constraints can be customized to construct
various constraint models in the Still-Life game. These papers provide insight
into optimizing the inferred model by incorporating different types of constraints
(i.e. redundant, case). Some of these techniques can be applied to the model
generated by our framework and could lead to more efficient problem solving.

6 Discussion and Future Work

In this paper, we introduced a framework for enriching constraint models using
data specific to a problem instance. Our framework selects applicable constraints
and the context within which they apply and adds them to the constraint model
of an instance, dynamically building a representative model. This approach re-
duces the load placed on a domain expert by requiring them to define constraints
representing all known characteristics of a problem class (and the rules that map
the information in the problem to these constraints) rather then generating indi-
vidual models representing all possible variations of a problem class. Our initial
results demonstrate the feasibility of this approach, and extending our frame-
work to include iterative constraint propagation leads to the generation of more
precise constraint models.

Our framework’s effectiveness in two domains leads us to believe that it can
be applied to others as well. One such domain is syntactic machine translation
[17]. In this domain, syntactic transfer rules are derived from bilingual corpa and
used to translate documents from a base to a target language. The text in the
document being translated could determine a context (what type of document
it is) and what constraints apply. This information would allow a translation
engine to be optimized at run-time based on the context and the deduced rule
set and would enhance the possibility of a more generalized translation engine
for performing multiple bilingual translations.

Timetabling [18] is another relevant application domain. Previous timetable
assignments (i.e., historical data) can be used to determine the library of con-
straints used to infer constraint models. When a timetabling system is being
applied in a new environment, such as scheduling exams at a new university, we
could look at data points from previous schedules and infer the scheduling rules
that are in use in the new environment. This inferred set of constraints could
then be applied to new timetabling scenarios without a domain expert having to
define the applicable constraints. Furthermore, the timetabling application could
support scenarios where some schedule assignments are required in the final set
of assignments. These required assignments, in conjunction with the library of
scheduling constraints, would be used to automatically generate and solve an
applicable scheduling (constraint) model. This approach would be analogous to
the use of our constraint-inference framework as defined in this paper.
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Our future work includes several directions. Firstly, we will evaluate the ef-
fectiveness of the constraint propagation methods presented in Section 3.3 on the
BID domain. Secondly, we will study strategies for determining the applicability
of the constraints given their support levels. We will also generalize the method-
ology for inferring contexts by studying ways to determine boundaries within the
problem space other than spatially. A machine learning concept worth pursing
with regards to this problem is Support Vector Machines (SVM) [19]. Finally, we
envision an offline process that uses a constraint learning technique to populate
the constraint library. Towards this end, we will study approaches to learning
constraints [13, 14] and determine if they can be applied to our framework to
further lessen the role of the domain expert.
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