
Crossword Grid Composition with a Hierarchical CSP
Encoding

Adi Botea

NICTA and
Australian National University

Canberra, ACT

Abstract. Automatic composition of crossword grids is challenging for many
interesting puzzles. This paper introduces a solving approach that uses a hierar-
chical CSP encoding. At the high level, word slots are variables and all dictionary
words that fit into that slot are possible values. The low level uses each grid cell
as a variable that has all alphabet characters as possible values. Searching for a
solution explores the high-level space, instantiating entire words rather than indi-
vidual cells. Channelling constraints between the two levels reduce the high-level
search space. The benefits of the new model are demonstrated with experiments
on large puzzles.

1 Introduction

Crossword grid composition is both a problem that illustrates human intelligence and
a textbook application of AI constraint programming. Despite its beauty and relevance
to AI research, it has received limited attention from academic researchers, especially
when compared to other puzzles and games. Automatic composition of crossword grids
is challenging for a large class of interesting puzzles. Features that impact the com-
plexity of a puzzle include the size of the grid, the size of the dictionary, the pattern of
blocked cells and the percentage of blocked cells.

Consider, for example, varying the number of blocked cells. Problems with rela-
tively many blocked cells (e.g., more than 15% on a 15x15 grid) have very many so-
lutions and reaching a goal state is quite easy. At the other extreme, problems with no
blocked cells have very few or no solutions. Complete exploration of the problem space
of such tightly constrained puzzles is possible even with simple pruning rules based on
deadlock detection.1 Puzzles become much harder when the percentage of blocked cells
shifts from these extremes towards the middle of the range.

A major performance bottleneck can be caused by the presence of deadlocks. Ex-
periments on hard puzzles have shown that the same deadlock can occur over and over
again, when changes in one corner do not affect the deadlock area. Being able to detect
deadlocks early is crucial for the performance of a solver.

This paper presents a solving model based on a hierarchical CSP encoding of the
problem. The higher hierarchical level defines one variable for each word slot. A low-
level variable is created for each non blocked cell on the grid. Searching for a solution is

1 A deadlock state is a partially filled grid for which no correct completion exists.

performed at the high level, instantiating entire word slots rather than individual cells.
The low level is used to reduce the high-level search space via channelling constraints.

In this paper, a puzzle consists of a dictionary, a grid size, and a pattern of blocked
cells. The task is to fill all word slots with valid dictionary words. No blocked cells
can be added or removed during the solving process. The related topic of automatically
solving puzzles based on their clue lists [2, 5] is beyond the focus of this paper.

The rest of the paper is structured as follows: The next section reviews related work.
Then we present the hierarchical model in detail and discuss how it can be extended to
handle any CSP problem, not only crossword composition. A brief section describes
the strategy employed when searching for a solution. The empirical evaluation comes
next, followed by conclusions and future work ideas.

2 Related Work

This section starts with a review of work on crossword grid composition. The last part
focuses on related work in constraint programming.

While several commercial products are available, the AI literature provides few
contributions to the topic of automatic composition of crosswords. In the early work of
Mazlack [7] a grid is filled with a letter-by-letter approach. More recently, Ginsberg et
al. [3] focus on an approach that adds an entire word at a time. The list of matching
words for each slot is updated dynamically based on the slot positions already filled
with letters. We advance this by computing more accurate word lists with an additional
level of variables. Meehan and Gray [8] compare a letter-by-letter approach against a
word-by-word encoding and conclude that the latter is able to scale up to harder puzzles.

Beacham et al. [1] use the crossword application as a testbed to study how choosing
a combination of a problem encoding (which can be either CSP or SAT-based), a search
strategy and a heuristic impact the performance of a solver. The CSP models include
pure encodings where only word slots or only cells generate CSP variables, and a hybrid
model where both slots and cells are variables. In the hybrid model, no distinction is
made between the two types of variables. In contrast, our architecture is a combination
of two viewpoints (i.e., mutually redundant encodings of a problem), each correspond-
ing to one variable type. The connection between two viewpoints is achieved with a set
of channelling constraints.

In constraint programming, combining two viewpoints into one model is by no
means a new idea. See Smith’s survey [9] for work in this area. Hnich et al. [4] com-
bine several variables into a so called compound variable. The authors apply this idea
to model the covering test problem. Structuring a CSP problem hierarchically has been
used by Mackworth et al. [6]. In that research, the domain of a variable is represented
as a hierarchy. In our work, the set of variables is partitioned into a high level and a low
level.

3 Hierarchical CSP Encoding

Our model uses a dual CSP representation of a problem, at two different granularity
levels. In the high-level representation each word slot is a variable whose possible val-

ues are all words that fit into that slot. As a low-level encoding, each non blocked cell
introduces a variable that has all alphabet characters as possible values. As shown be-
fore, neither encoding is new. Our contribution is to combine them into a hierarchical
model and exploit the strengths of each encoding. The main strength of the high-level
encoding that we exploit in this work is a much smaller search space than the low-level
encoding. The low-level encoding allows to introduce a set of channelling constraints
that directly impact the branching factor of a node, the deadlock detection mechanism,
and the decision of what grid area to explore next. The difference in search space size
between the high-level and the low-level encodings is illustrated next. The impact of
the low-level encoding on search is more elaborated and it is presented in the following
sections.

An upper bound for the size of the low-level space is N
|A|
c , where Nc is the total

number of empty cells and |A| is the alphabet size. The high-level search space would
approach this limit only if all letter sequences were valid English words. In practice,
only a tiny subset of these sequences are real words. The number of real words of a
given length is in the order of thousands or tens of thousands. In contrast, the total
number of, say, 10-letter sequences is 1026.

Before describing the hierarchical architecture in detail, we introduce some defi-
nitions and notations that will be used in the rest of the article. Slots (i.e., high-level
variables) will be denoted with s. The length of a slot is l(s), and its i-th cell is s[i],
1 ≤ i ≤ l(s). The dictionary is D. The length of a word is l(w), and its i-th letter
is w[i]. Given a low-level variable (i.e., cell) c, there are at most two slots sH(c) and
sV (c) 2 that contain it. For the simplicity of the presentation, we assume that there are
exactly two slots that contain a cell. The position of the cell c in the slot st(c) is denoted
as pc

t , t ∈ {H,V }. For an instantiated high-level or low-level variable x, we denote its
assigned value by v(x).

3.1 High-Level Search Space

Searching for a solution is performed at the high level, where one move is to select both
a slot and a word to be added to the grid. Selecting a slot–word pair uses a variant of the
most constrained heuristic, a principle widely used in CSP applications: find the most
constrained word slot s according to the K(s) measure defined below and fill it with an
word that introduces the least amount of new constraints and thus gives more options
in continuing filling the grid.

Compared to a naive branching scheme where variables are instantiated in order
(e.g., slots starting from the upper left corner and words in alphabetical order), the
most constrained heuristic is a big win in the problem of crossword grid composition.
Puzzles that are next to impossible to fill with the naive approach can become very easy.
However, this enhancement alone reaches its limits quickly in many interesting puzzles.
The performance can dramatically be improved with the hierarchical encoding.

Our measure of how constrained a slot s is considers both the number of matching
words N(s) according to the current constraints (see details below) and the length of the
slot l(s). Slots that have all cells filled with letters as a result of previous moves are not

2 H and V stand for “horizontal” and “vertical” respectively.

considered in the following discussion, unless otherwise mentioned. In the definition
below, a smaller K(s) corresponds to a more constrained slot s:

K(s) = 0, ifN(s) = 0

1, ifN(s) = 1

1 +
N(s)

l(s)2
, otherwise

For a given partially filled grid and a slot s, define W ∗(s) as the set of all words that
are placed on slot s in at least one solution (i.e., correct completion) of that partial grid.
Computing W ∗(s) is as hard as finding all solutions to a puzzle. W ∗(s) is approximated
with W (s), a superset computed according to the current knowledge about the grid at
hand. N(s) = |W (s)| is an upper bound of N ∗(s) = |W ∗(s)|. The condition W ∗(s) ⊆
W (s) preserves the completeness of the search. In this work we discuss several methods
for computing W (s). As shown later, the version of W computed with a given method
is denoted by Wi, where i is a index.

Before describing how W (s) is computed, we emphasise the key observation that
smaller sets are more desirable as long as completeness is preserved. This becomes
more obvious after we discuss its most important effects in search. Firstly, it deter-
mines what area of the grid to fill next, since a slot with the smallest K(s) is tried first.
Secondly, N(s+), where s+ = arg mins K(s), represents the number of successors
(branching factor) of the current node. See a formal result about the branching factor
later. Thirdly, slots for which no words match the current constraints have K(s) = 0
and thus rank at the top of list, allowing to detect a deadlock before trying to fill other
parts of the grid. Fourthly, when exactly one word fits in a slot, adding it to the grid
as soon as possible can only help. This is similar to forced moves in games and unit
propagation in SAT.

Fig. 1. Partially filled grid used as a running example.

Figure 1 shows a toy problem that we use as a running example. The slot sH,i

corresponds to the i-th row, whereas the slot sV,i corresponds to the i-th column.
Words RETRO and RUMOR have been added to the grid as shown in the picture.
Assume that, besides the already added words, the dictionary contains the follow-
ing entries: MACRO, MAGDA, MAGIC, MARTE, MASAI, MATRI, MEDIC,

METRO, MOGUL, MOTOR, OARED, OCCUR, OPALS, OPERA, OPIUM, OPTIN,
ORION, ORGAN, RADAR, RADIO, RARED, REBUS, ROBOT, ROMAN, RO-
TOR, TABBY, TABLA, TABLE, TABOR, TEMPO, TIGER, TORID, TREND.
As shown in the experiments section, our system handles much larger puzzles. This
simple example is used just for a better understanding of the method.

The remainder of this section focuses on how N(s) = |W (s)| is computed using
only the high-level encoding. This is roughly equivalent to what Ginsberg et al. call
lookahead in their work [3]. It should be seen as the base model that we extend as shown
in this work. We denote by W0(s) the approximations of W ∗(s) computed using only
the high level. For a given slot s, W0(s) is dynamically updated each time when the
most recently added word intersects s. Part of the cells of the slot s can contain letters
that were added when instantiating slots that intersect s:

(∃k)0 ≤ k < l(s)

(∃i1 . . . ik)1 ≤ i1 < . . . < ik ≤ l(s) :

v(s[i1]) = αi1 ∧ . . . ∧ v(s[ik]) = αik
,

αij
∈ {A . . . Z}

W0(s) contains all words in the dictionary that respect the constraints introduced by the
already filled cells and have no constraints on the empty cells:

W0(s) = {w ∈ D|l(s) = l(w) ∧ ∀m = 0 . . . k : w[im] = αim
}

Variable Domain
Slot sH,3 MACRO, MAGDA, MAGIC, MARTE,

MASAI, MATRI, MEDIC,
METRO, MOGUL, MOTOR

Slot sH,5 RADAR, RADIO, RARED, REBUS,
ROBOT, ROMAN, ROTOR,

Slot sV,3 TABBY, TABLA, TABLE, TABOR,
TEMPO, TIGER, TORID, TREND

Slot sV,5 OARED, OCCUR, OPALS, OPERA,
OPIUM, OPTIN, ORION, ORGAN

Table 1. Variable domains computed with the high-level encoding.

In the running example, the words RETRO and RUMOR reduce the domains of
the slots intersected by each word. Table 1 contains the updated domains of each slot.
The most constrained slot is sH,5 (i.e., the one on the fifth row), since there are only
seven words that start with an R. Hence this method selects sH,5 to be filled next, and
the branching factor is seven. Figure 2 shows a few successors of the current grid that
are computed with the high-level encoding.

Fig. 2. Successors computed with the high-level encoding. Four out of seven successors are
shown.

3.2 Low-Level Encoding and Channelling Constraints

As a low-level problem representation, each non blocked cell introduces a variable
whose domain is the set of the alphabet characters A = {A, . . . , Z}. The low-level
encoding is used to reduce the sets W0(s) and thus make the high-level search more
informed, as discussed before. In this section we describe an iterative method for re-
ducing W0(s). The approximation of W ∗(s) computed after i iterations is denoted by
Wi(s). As soon as a variable domain is reduced to the empty set, a deadlock has been
detected and there is no need to move on to the next iteration. Otherwise, iterations are
repeated for a number of times given as a parameter or until a fixpoint is reached.

Each iteration is a two-way propagation of channelling constraints between the two
levels. First, a downwards propagation updates the domain of each cell based on the
domains of the slots that contain it. Then, the updates in each cell domain are propagated
back to the high level, further restricting the domains of word slots.

More formally, consider two high-level variables (slots) sH and sV that have a com-
mon uninstantiated low-level variable (empty cell) c. Assume c is at the intersection of
the pc

H -th position of the slot sH and the pc
V -th position of the slot sV . Define C∗(c) as

the set of letters that appear on cell c in at least one correct completion of the partial grid
at hand. For a cell c that is already instantiated with a letter α, C∗(c) = C(c) = {α}.
For a blank cell, C∗(c) is approximated with a superset C(c) computed as below.
C(c) = CH(c) ∩ CV (c), where Ct(c) = {α ∈ A|∃w ∈ Wi−1(st) : w[pc

t] = α},
t ∈ {H, V}. Said in simpler words, we compute what letters might be added to that
cell by the words on the horizontal slot, compute a similar set of letters induced by the
vertical set, and take the intersection of the two sets. See the running example below.

Given a slot s, upwards propagation can further reduce Wi−1(s) by considering the
sets C(c) of all cells c that belong to s:

Wi(s) =
⋂

k=1..l(s)

{w|l(s) = l(w) ∧ w[k] ∈ C(s[k])}

In the running example, the blank cells at the intersection of two slots are c3,3, c3,5,
c5,3 and c5,5, where the first number is the row in the grid and the second one is the
column. For each of these, we compute a set of acceptable letters by looking at the
words that fit into each of the two intersecting slots. For example, let us focus on the
cell c3,3, located at the intersection of sH,3 and sV,3. Consider W0(sH,3), the set of
words that fit into the third row. These are all words that start with an M. All letters that
appear on the third position of these words are C, D, G, R, S, T. Similarly, consider
all words that fit into the third column (i.e., words that start with T). B, E, G, M, R
are all letters that appear on the third position of these words. In effect, the intersection
G, R is the set of acceptable letters for cell c3,3. According to the previous notations,
C(c3,3) = {G,R}. Table 2 shows the updated domains for all low-level and high-level
variables. Note that all slots are significantly more constrained than in Table 1. The
most constrained slots are sH,5 and sV,3. Either one can be selected to be instantiated
next. In Figure 3, slot sV,3 is preferred to illustrate that the selected slot can change as
compared to Figure 2. The branching factor reduces from seven to two.

Fig. 3. Successors computed after one iteration.

Figure 4 shows the iterative procedure in pseudocode. Table 3 shows how the proce-
dure is run on the example. Iteration 1 is the same as in Table 2. The following iterations
keep reducing the domains of each variables. After iteration 4, a deadlock is discovered.
The grid in Figure 1 is proven to be deadlocked without resorting to search.

Variable Domain
Cell c3,3 G, R
Cell c3,5 A, C, E, I, R
Cell c5,3 D, R
Cell c5,5 D, N, R, S
Slot sH,3 MAGDA, MAGIC, MARTE
Slot sH,5 RADAR, RARED
Slot sV,3 TIGER, TORID
Slot sV,5 OARED, OCCUR, OPALS, ORION

Table 2. Variable domains computed after one iteration.

1: i← 0
2: repeat
3: i← i + 1
4: {downwards propagation:}
5: for all empty cells c do
6: CH(c)← {α ∈ A|∃w ∈Wi−1(sH(c)) : w[pc

H] = α}
7: CV (c)← {α ∈ A|∃w ∈Wi−1(sV (c)) : w[pc

V] = α}
8: C(c)← CH(c) ∩ CV (c)
9: end for

10: {upwards propagation:}
11: for all slots s that contain at least one empty cell do
12: Wi(s)← {w ∈ D|l(w) = l(s) ∧ ∀k(w[k] ∈ C(s[k]))}
13: end for
14: until no change occurs or i = max iterations or a deadlock is found

Fig. 4. Iteratively propagating constraints between the hierarchical levels. A deadlock is found
when the domain of a variable becomes empty.

To have the results below hold for both uninstantiated and instantiated slots, we
extend the definition of W to the trivial case of a slot s already filled with a word w:
Wi(s) = W ∗(s) = {w},∀i ≥ 0.

Theorem 1. For a given partially filled grid, a slot s and 0 ≤ i < j, Wi(s) ⊇ Wj(s) ⊇
W ∗(s).

Corollary 1. For a given partially filled grid and 0 ≤ i < j, if Wi detects a deadlock
then Wj detects that deadlock too.

Corollary 2. For a given partially filled grid and 0 ≤ i < j, if Wi detects a forced
move then Wj detects either a forced move or a deadlock.

Since the definition of K(s) includes the length of a slot l(s), it is possible that
the branching factor of a given partially filled grid increases as one more propagation
iteration is performed. Although doing more propagation cannot increase the domain
sizes of the slot variables, it can cause the most constrained variable to become one

Variable Iteration 2 Iteration 3 Iteration 4
Cell c3,3 G, R G G
Cell c3,5 A, C C C
Cell c5,3 D, R D, R R
Cell c5,5 D, R R ∅
Slot sH,3 MAGDA, MAGIC MAGIC
Slot sH,5 RADAR, RARED RADAR
Slot sV,3 TIGER, TORID TIGER
Slot sV,5 OCCUR OCCUR

Table 3. Variable domains computed iteratively. The first iteration is shown in Table 2.

corresponding to a longer slot, and so the branching factor can increase. The following
corollary shows a condition that is sufficient to guarantee that the branching factor does
not increase.

Corollary 3. Consider a fixed partially filled grid and its corresponding search node
n. For a number of propagation iterations i, consider si the selected slot for that grid
and bi = |Wi(si)| the branching factor of n. If i < j and l(si) ≥ l(sj) then bi ≥ bj .

Proof. For simplicity, we skip the cases when K(s) = 0 or K(s) = 1. Define Ki(s) =

1+ |Wi(s)|
l(s)2 , the version of K(s) computed with Wi(s) in use. Since sj = arg mins Kj(s),

1 +
|Wj(sj)|

l(sj)2
= Kj(sj) ≤ Kj(si) = 1 +

|Wj(si)|

l(si)2
⇔

|Wj(sj)|

l(sj)2
≤

|Wj(si)|

l(si)2
⇔

|Wj(sj)| × l(si)
2 ≤ |Wj(si)| × l(sj)

2.

Since l(sj) ≤ l(si), |Wj(sj)| ≤ |Wj(si)|. Since i < j, |Wj(si)| ≤ |Wi(si)|, according
to the theorem above. From the last two inequalities, we get that bj = |Wj(sj)| ≤
|Wi(si)| = bi.

3.3 A More Generally Applicable Hierarchical Model

In this section we discuss how the lessons learned from this work can help to design a hi-
erarchical CSP model applicable to a larger range of CSP problems, not just crossword
composition. Specifically, we focus on automatically building a hierarchical represen-
tation starting from a classical CSP encoding. The resulting problem can be solved as
shown in the previous sections. In converting a problem representation from classical
into hierarchical CSP, the original encoding becomes the low level of the new hierarchy.
Several low-level variables can then be combined into a high-level variable, just as sev-
eral cells compose a word slot. A value of a high-level variable is a tuple with values of
the contained low-level variables. The domain of each high-level variable is the set of

tuples that respect all constraints between the contained variables but ignores all other
constraints.

In crosswords, the domain of each high-level variable is already given as a dic-
tionary. In the more general model, the high-level variable domains have to be com-
puted beforehand. In terms of worst-case complexity, computing each variable domain
is exponentially easier than solving the original problem. In domains where some con-
straints are fixed and some other vary with the problem instance, the high-level variable
domains could be reused from one instance to another, similarly to reusing the English
dictionary in crosswords.

This hierarchical model can be seen as a form of problem decomposition. Each
high-level variable is a subproblem. All subproblems are solved in advance and all their
solutions are cached as macro-actions. When the global problem is solved, a combina-
tion of macro-actions is sought that respects all constraints between subproblems.

4 Search Strategy

The problem space is explored in a depth-first manner. This choice is supported by
the bounded depth of a search tree (it never exceeds the total number of word slots)
and by the small memory requirements. When expanding a node, a slot s is selected
as shown in the previous section. Each word in Wi(s) (where Wi(s) is a superset of
W ∗(s) computed with one of the methods described before) generates a successor. The
successors of a node are sorted according to the most constrained heuristic. Each node
is assigned a score computed as

∏
s∈S N(s), where S is the set of all slots yet to be

instantiated and N(s) = |Wi(s)|. Nodes with a higher score are ranked first.
When a node is proven deadlocked (because either the branching factor is zero or all

successors were explored and no solution was found), a deadlock pattern is extracted
from the partially filled grid by preserving the values of some instantiated cells and
ignoring the rest of the grid. A deadlock pattern is a partial assignment of the low-level
encoding. All grids that contain that assignment can be pruned from the search space.

To compute such a pattern, a deadlock area is built starting from the slot that has
no valid words and thus has caused the grid to be labelled as deadlocked. Empty of
partially filled slots that intersect the deadlock area are used to grow it until a fixpoint
is reached. Even if fully instantiated slots are skipped, part of their cells might be added
to the deadlock area by intersecting partially instantiated slots.

All instantiated cells in a deadlock area are a superset of a deadlock pattern. The
current program version stores such supersets in a simple deadlock database that con-
tains the most recent k records, where k is a parameter. (In experiments, k is set to
1,000.) It might be useful to process a deadlock superset and extract smaller and thus
more general patterns. As a heuristic rule, cells in the proximity of the deadlock slot
should be tried first. Note that the deadlock handling mechanism exploits the dual en-
coding of the problem. Deadlocks are used in the high-level search space but are stored
as partial assignments at the low level.

The search algorithm implements a solution sampling idea. Its presentation is im-
portant not only from a practical perspective, but also for a better understanding of the
search strategy and the experiments. For most problems in real life, finding one (good)

solution is sufficient. In crosswords, many solutions need to be enumerated, such that a
publisher can release one new puzzle every day. The order in which solutions are enu-
merated is important. If a naive strategy is employed, one solution will be followed by
countless very similar variations, which are not interesting to users.

A better approach is to output a small number of similar puzzles (such that a human
expert can select the best one) and then explore a new part of the search space, where
solutions are significantly different. In our current implementation, reaching a solution
is followed by a backjumping directly to the root, whose next successor is explored.
Extensions such as enumerating a few similar solutions or backjumping over a smaller,
user-specified number of steps are easy to add.

5 Experimental Evaluation

The ideas presented in this paper were implemented in C++. The resulting system is
called COMBUS. A first experiment compares COMBUS against previous state-of-the-
art results [1]. In a second experiment, we evaluate the impact of using two viewpoints
as compared to a single viewpoint.

We use the same problem set as in [1]. The data contain ten grids for each of the
following sizes: 5x5, 15x15, 19x19, 21x21 and 23x23. There are two dictionaries, con-
taining 45,000 and 220,000 words respectively. Each combination of a grid and a dic-
tionary creates a problem instance, obtaining a set of 100 problems. In this experiment,
the program stops after finding one solution to the problem instance at hand. COMBUS
is set to perform five iterations of channelling constraint propagation. Beacham et al.
have run the experiments on a 300MHz machine with a time limit of 10 hours per prob-
lem. Our machine is six times faster, so we limit the time to 6,000 seconds per problem.
Beacham et al. evaluate the performance of several combinations of algorithms, heuris-
tics and encodings. The top performer in that work solves 92 problems. COMBUS solves
95 problems.

Dictionary Grid Size Solved Nodes Time (seconds)
small 15x15 9 54,654 545
large 15x15 10 703 789
small 19x19 10 19,070 480
large 19x19 10 1,195 1,473
small 21x21 8 181,550 2,836
large 21x21 10 2,018 2,366
small 23x23 8 122,814 2,119
large 23x23 10 2,094 2,659

Table 4. Summary of results with a 6,000 second limit. Each row corresponds to a set of ten
grids. Columns 4 and 5 show the total effort to solve a number of problems indicated in the third
column. For each problem, only one solution is sought.

The results are summarized in Table 5. The smaller dictionary produces harder prob-
lems. A similar finding is mentioned in [1]. The explanation seems to be that, with a
big dictionary, the deadlocks are less frequent and the “density” of goal states in the
problem space is larger. With a large dictionary, all problems are solved with few nodes
expanded. Often, solutions are found without backtracking. Note that a larger dictio-
nary increases the cost to process one node. It can be as high as one node per second,
but there is significant room to improve it with a better implementation.

In the problem set summarized on the first row of Table 5, two problems dominate
the total effort, accounting for 93% of the total node expansions. All remaining solved
problems require less than 2,000 nodes each. Three instances are solved after expanding
less than 100 nodes each.

On the third row, one problem takes 90% of the total number of expanded nodes.
Search in all other problems succeeds within less than 500 nodes. On the fifth row, there
is one hard instance (besides the two unsolved ones), which is responsible for 98% of
the total search effort measured as expanded nodes. The other problems require at most
1,030 nodes each. On the second last row, one problem requires over 80,000 nodes,
one about 33,500 nodes, and one almost 8,000 nodes. The remaining ones are solved
within less than 550 node expansions in each case. Even rows, which correspond to the
large dictionary, have low values for the number of expanded nodes and do not require
a further discussion.

In the second experiment, the hierarchical architecture is compared against the stan-
dard model with one viewpoint containing slot variables. Three system configurations
are run. W0 corresponds to the basic model. W1 is the hierarchical system with one iter-
ation for propagating the channelling constraints. W5 is the version with five iterations.
For each problem, the program attempts to find 5 solutions to each problem (recall the
solution sampling strategy). For faster results, the dataset is reduced to the 15x15 and
19x19 grids and the time per problem is limited to 30 minutes.

W0 W1 W5

Dict. Size S NS Nodes Time S NS Nodes Time S NS Nodes Time
small 15x15 6 21 135,593 1,243 8 35 385,086 2,653 9 39 432,790 3,561
large 15x15 10 46 48,521 1,911 10 50 4,492 3,249 10 50 3,592 3,868
small 19x19 10 33 326,217 3,341 10 34 329,545 3,754 10 40 52,081 1,570
large 19x19 10 46 11,167 4,623 10 50 6,346 6,309 10 50 5,929 6,992

Table 5. Standard encoding vs hierarchical encoding.

In Table 5, S is the number of problems for which at least one solution is found.
NS is the total number of solutions found for the ten problems in the corresponding set.
The node and time data include the total effort to find all the solutions reported in the
NS column. The table does not report the effort spent in unsuccessful searches. Hence
it is normal to have a larger number nodes or seconds for a program that finds more
solutions.

The program versions corresponding to W1 and W5 find more solutions than W0,
showing that the hierarchical model improves the solver. As before, the data shows that
the instances with a small dictionary are harder. In hard problems, W5 solves more
problems than W1, indicating that more iterations are desirable. In the easy problems
corresponding to a large dictionary a larger number of iterations still reduces the num-
ber of expanded nodes. However, the increased cost per node results in a degradation
of the overall performace as compared to W1. For easy instances, a small number of
propagation iterations seems to be a good trade-off to balance the number of expanded
nodes and the cost to process one node.

6 Conclusion

This paper has introduced an approach to automatic crossword grid composition that
represents a problem on two hierarchical levels. The high level defines a variable for
each word slot, whereas individual cells correspond to low-level variables. Search is
performed at the high level, instantiating entire slots rather than single cells. The low
level is useful to reduced the search space via a collection of channelling constraints.
In experiments, the hierarchical model solves more puzzles compared to a classical
encoding and to previous results reported in the literature.

A promising idea for the future is dynamic problem decomposition. Depending on
the arrangement of blocked cells, a problem might quickly become decomposable into
independent parts after instantiating relatively few slots. A second idea would be in-
vestigate the impact of backjumping and dynamic variable ordering on the system per-
formance. It would be interesting to study empirically how the difficulty of a puzzle
varies with parameters such as dictionary size, grid size, and number of blocked cells.
We are interested in generating thematic puzzles, where part of the words belong to a
given theme (e.g., movie titles). The challenge would be to maximize the number of
thematic words. We plan to generalize the hierarchical model presented in this paper
into a method applicable to any CSP problem, not only crossword grid composition.

7 Acknowledgment

National ICT Australia is funded by the Australian Government’s Department of Com-
munications, Information Technology, and the Arts and the Australian Research Coun-
cil through Backing Australia’s Ability and the ICT Research Centre of Excellence
programs.

We are grateful to Markus Enzenberger for developing a graphical user interface for
the COMBUS engine, and to Martin Müller and Jonathan Schaeffer for their feedback
at earlier stages of this work. We thank the anonymous reviewers for their comments
and suggestions, and Peter van Beek for providing us with test data to be used in the
experiments.

References
1. A. Beacham, X. Chen, J. Sillito, and P. van Beek. Constraint Programming Lessons Learned

from Crossword Puzzles. Lecture Notes in Computer Science, 2056:78–87, 2001.

2. M. Ernandes, G. Angelini, and M. Gori. WebCrow: A WEB-based system for CROssWord
Solving. In Twentieth National Conference on Artificial Intelligence AAAI-05, pages 1412–
1417, 2005.

3. M. L. Ginsberg, M. Frank, M. P. Halpin, and M. C. Torrance. Search Lessons Learned from
Crossword Puzzles. In Eighth National Conference on Artificial Intelligence, pages 210–215,
1990.

4. B. Hnich, S. Prestwich, and E. Selensky. Modeling the Covering Test Problem. 2004.
5. M. L. Littman, G. A. Keim, and N. Shazeer. A Probabilistic Approach to Solving Crossword

Puzzles. Artificial Intelligence, 134(1-2):23–55, 2002.
6. A. K. Mackworth, J. A. Mulder, and W. S. Havens. Hierarchical Arc Consistency: Exploit-

ing Structured Domains in Constraint Satisfaction Problems. Comuptational Intelligence,
(1):118–126, 1985.

7. L. J. Mazlack. Computer Construction of Crossword Puzzles Using Precedence Relationships.
Artificial Intelligence, (7):1 – 19, 1976.

8. G. Meehan and P. Gray. Constructing Crossword Grids: Use of Heuristics vs Constraints,
1997. citeseer.ist.psu.edu/433222.html.

9. F. Rossi, P. van Beek, and T. Walsh, editors. Handbook of Constraint Programming, chapter
11 Modelling, pages 377–406. 2006.

