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1. INTRODUCTION

We study the problem of triangle listing in a simple undirected graph G, that is,
listing all triangles in G, where a triangle is a complete subgraph of G that consists
of three vertices. Our focus is to design an efficient algorithm for triangle listing when
the input graph G is too large to fit in main memory and is disk resident.

Triangles are one of the fundamental types of small subgraphs most commonly used
in the analysis of complex graphs/networks. In particular, a triangle is also the short-
est non-trivial cycle (i.e., a cycle of length 3) and the smallest non-trivial clique (i.e., a
clique of size 3). The concept of triangle is at the heart of the definitions of many im-
portant measures for network analysis, such as the clustering coefficients (of a single
vertex and of the entire network) [Watts and Strogatz 1998], transitivity [Wasserman
and Faust 1994; Newman et al. 2002], triangular connectivity [Batagelj and Zaveršnik
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2007], etc. All these measures can be directly computed from the result of triangle
listing.

The aforementioned triangle-centered measures have a large number of important
applications. In addition, triangle listing also has a broad range of applications in other
areas, such as the discovery of dense subgraphs [Wang et al. 2010], the computation of
trusses (i.e., subgraphs of high connectivity) [Cohen 2009], spam detection [Becchetti
et al. 2008; 2010], the study of motif occurrences [Milo et al. 2002], the uncovering of
hidden thematic relationships in the Web [Eckmann and Moses 2002], etc. In all these
applications, triangle listing plays a vital role in their computation.

Although many algorithms have been proposed for triangle listing, these existing
algorithms [Itai and Rodeh 1977; 1978; Alon et al. 1997; Batagelj and Mrvar 2001;
Schank and Wagner 2005; Schank 2007; Latapy 2008; Eppstein and Spiro 2009] all fall
into the category of in-memory algorithms. The best existing in-memory algorithms re-
quire space that is asymptotically linear in the size of the input graph. However, many
real-world networks have grown exceedingly large in recent years and are continuing
to grow at a steady rate. For example, the Web graph has over 1 trillion webpages (by
Google in 2008), most social networks (e.g., Facebook, MSN) have millions to billions
of users, many citation networks (e.g., DBLP, Citeseer) have millions of publications,
other networks such as phone-call networks, email networks, stock-market networks,
etc., are also massively large and still growing fast.

For handling large graphs that cannot fit in main memory, a number of approxima-
tion algorithms have been proposed [Alon et al. 1999; Bar-Yossef et al. 2002; Copper-
smith and Kumar 2004; Buriol et al. 2006; Becchetti et al. 2008; Tsourakakis et al.
2009; Becchetti et al. 2010]. However, all these algorithms are restricted to the ap-
proximation of triangle counting, i.e., estimating the number of triangles in a graph
or that formed at each vertex. Algorithms for estimating the total number of triangles
in a graph only are considerably accurate [Alon et al. 1999; Bar-Yossef et al. 2002;
Coppersmith and Kumar 2004; Buriol et al. 2006; Tsourakakis et al. 2009], but the
range of their applications is significantly more limited than that of triangle listing.
Algorithms for estimating the number of triangles formed at each vertex in a graph,
also called local triangle counting, have a wider range of applications but algorithms
for local triangle counting [Becchetti et al. 2008; 2010] may not be accurate enough
for certain applications. Moreover, the set of applications of triangle counting is only
a small subset of that of triangle listing, as the result of triangle counting is directly
obtainable from that of triangle listing.

We propose an I/O-efficient algorithm for exact triangle listing. Designing such an
algorithm is difficult because triangle listing requires to access the neighbors of the
neighbor of a vertex, which may appear arbitrarily in any position in the graph stored
on disk. Thus, random access to the disk-resident graph is required, which incurs huge
I/O cost.

Our algorithm iteratively partitions the input graph G into a set of subgraphs that
can fit in main memory and processes triangle listing in each local subgraph in mem-
ory. To ensure the correctness and completeness of the final result computed iteratively
from the local subgraphs, we categorize the triangles into three types. We devise an
mechanism that lists all Type 1 and Type 2 triangles, and then converts the remaining
Type 3 triangles into Type 1 and Type 2 by a new partition of a shrinking graph at the
next iteration. To limit the total number of iterations, we show that we can remove all
intra-partition edges at the end of each iteration, thus shrinking G until it becomes
empty.

We propose three effective algorithms for graph partitioning for the task of triangle
listing in our framework. The first algorithm sequentially scans the input graph only
once to partition the graph, thus achieving high efficiency in practice. The sequential
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graph partitioning algorithm, however, does not have any theoretical guarantee on
the number iterations required in the overall process of triangle listing. To this end,
we propose another graph partitioning algorithm that requires two scans of the input
graph and, by grouping neighboring vertices together based on the application of the
dominating set, attains a theoretical upper bound on the total number of iterations
needed. However, to apply the dominating set the algorithm requires O(|VG|) mem-
ory space, where |VG| is the number of vertices in the input graph G. To address this
problem, we propose a randomized graph partitioning algorithm, which removes the
memory space requirement, and with which we establish a bound on the total number
of iterations with a high probability.

Many real-world networks undergo frequent updates. We propose a compact disk-
based data structure for efficient update of the set of triangles when the input graph
is updated. We discuss the operations for updating the data structure as well as for
updating the set of triangles. The data structure is also useful in applications where
the set of triangles needs to be materialized on disk.

We evaluated our algorithm on large real datasets with up to 106 million vertices
and 1,877 million edges, by comparing with the state-of-the-art in-memory algorithm
[Latapy 2008] and the approximation algorithm for local triangle counting [Becchetti
et al. 2008]. Our algorithm achieves comparable performance with the in-memory al-
gorithm when the graph can fit in main memory. For large graphs that cannot fit in
main memory, our results show that our algorithm is superior to the approximation
algorithm [Becchetti et al. 2008]: at comparable running time and memory usage, the
approximation algorithm records a high error rate while ours returns the exact result.
The results also show that our data structure supports efficient update of the set of
triangles in a dynamic network.

Paper Organization. Section 2 gives the notations and problem definition. Section 3
describes an in-memory algorithm. Section 4 discusses the I/O-efficient algorithm for
triangle listing and Section 5 proposes the three graph partitioning algorithms. Section
6 presents an I/O-efficient algorithm for triangle listing in graphs with extremely high
degree vertices. Section 7 discusses update in dynamic networks. Section 8 presents
two applications of our algorithm. Section 9 reports the experimental results. Section
10 gives the related work. Section 11 concludes the paper.

2. NOTATIONS AND PROBLEM DEFINITION

Let G = (VG, EG) be a simple undirected graph, where VG is the set of vertices and EG

is the set of edges. We define the set of adjacent vertices (or neighbors) of a vertex v in
G as adjG(v) = {u : (u, v) ∈ EG}, and the degree of v in G as degG(v) = |adjG(v)|.

We assume that the graph is stored in its adjacency list representation (whether
in memory or on disk), which is a common data format used for graph storage. Each
vertex in the graph is assigned a unique vertex ID. Given any two vertices u and v, we
use u < v or equivalently v > u to denote that u is ordered before v according to the
order of their vertex IDs. In the adjacency list representation, the vertices are ordered
in the ascending order of their vertex IDs.

Given three distinct vertices, u, v, w ∈ VG, we say that u, v and w form a triangle in G
if (u, v), (u,w), (v, w) ∈ EG. We use △uvw to denote the triangle formed by the vertices
u, v and w.

The set of triangles that consist of a vertex v, denoted by △(v), is defined as

△(v) = {△uvw : u,w ∈ adjG(v), (u,w) ∈ EG}. (1)

The triangle number of v, denoted by N△(v), is defined as N△(v) = |△(v)|.
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Let △(G) be the set of all triangles in G. Then,△(G) is given by

△(G) =
⋃

v∈VG

△(v). (2)

The number of triangles in G, denoted by N△(G), is defined as N△(G) = |△(G)|,
which is also given as follows

N△(G) =
1

3

∑

v∈VG

N△(v). (3)

Equation 3 holds because every triangle △uvw is counted three times, once for each
of the three vertices u, v and w.

Given a vertex v ∈ VG, we say that u, v and w form an open triangle centered at
v if u,w ∈ adjG(v). An open triangle is considered as a potential triangle. A triangle
△uvw may be regarded as a closed triangle and by definition,△uvw contains three open
triangles, centered at u, v, and w, respectively.

The number of open triangles centered at v, denoted by N∨(v), is defined as

N∨(v) =
1

2
degG(v)(degG(v)− 1). (4)

Intuitively, N∨(v) defines the maximum number of triangles that can be potentially
formed from v.

The following example illustrates the concepts.

Example 2.1. Let G be the graph given in Figure 1. Consider the vertices b and
e, we have △(b) = {△abc,△bcg,△bgi} and △(e) = {△dej ,△efh}. Thus, N△(b) = 3 and
N△(e) = 2. By Equation 4, N∨(b) = 6 and N∨(e) = 6 since degG(b) = 4 and degG(e) = 4.
From Figure 1, we can also easily find that △(G) = {△abc,△bcg,△bgi,△dej ,△efh,△jkl}
and N△(G) = |△(G)| = 6. 2

Fig. 1. A Graph G

Problem Definition. This paper studies the problem of triangle listing defined as
follows. Given a graph G = (VG, EG), output△(G). In particular, we design I/O-efficient
algorithms when G cannot fit in main memory, i.e., (|VG|+ |EG|) > M , where M is the
size of the available main memory.

For the complexity analysis of I/O-efficient algorithms, we use the standard I/O
model [Aggarwal and Vitter 1988] with the following parameters: M is the available
main memory size and B is the disk block size, where 1≪ B ≤M/2.
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Table I. Frequently Used Notations

Notation Description
G = (VG, EG) A simple undirected graph
adjG(v) The set of adjacent vertices of v in G
degG(v) The degree of v in G
△uvw A triangle formed by u, v and w
△(v) The set of triangles that contains the vertex v (Eq. 1)
N△(v) The triangle number of v, N△(v) = |△(v)|
△(e) The set of triangles that contains the edge e (Section 7.2)
△(G) The set of all triangles in G (Eq. 2)
N△(G) The number of triangles in G (Eq. 3)
N∨(v) The number of open triangles centered at v (Eq. 4)
M The available main memory size
B The disk block size
scan(N) Θ(N/B)

sort(N) Θ(N
B

logM/B
N
B
)

We also use the following standard I/O complexity notations: scan(N) I/Os =Θ(N/B)
I/Os and sort(N) I/Os = Θ(NB logM/B

N
B ) I/Os, where N is the amount of data being read

or written from/to disk.
Table I gives the frequently-used notations in the paper.

3. IN-MEMORY TRIANGLE LISTING

In this section, we first present an in-memory algorithm for triangle listing and use it
to explain the difficulties of triangle listing in the case when main memory is insuffi-
cient to hold the input graph.

We sketch the algorithm in Algorithm 1. The algorithm intersects the adjacency list
of each vertex u with the adjacency list of each neighbor v of u. Clearly, each vertex w
as the result of the intersection is a neighbor of both u and v, and as u and v are also
neighbors, we obtain a triangle △uvw.

A naive algorithm for triangle listing processes every neighbor v ∈ adjG(u), and
intersects the entire adjG(u) and adjG(v). This involves much redundant processing
and also outputs duplicate triangles. In Algorithm 1, we only process a neighbor v that
is ordered after u (Line 3), because if v is ordered before u, i.e., v < u, then v has been
processed before u and hence the triangle △vuw must have been already listed (note
that△vuw = △uvw). For the intersection between adjG(u) and adjG(v) (Line 4), we also
skip those vertices that are ordered before v (and hence also u) in adjG(u) and adjG(v).
The above process is similar to the state-of-the-art in-memory algorithm for triangle
listing [Latapy 2008], except that their work assumes that the adjacent list of each
vertex is sorted in the non-increasing order of the vertex degree, which requires costly
pre-processing for the sorting for a large graph. Note that it is not common to store a
graph with adjacency lists sorted by the vertex degree, since update to such a storage
data format is expensive.

Algorithm 1 is efficient when the input graph can fit in main memory. However,
when the input graph G cannot fit in main memory, the algorithm requires huge I/O
cost due to random disk access. Most existing in-memory algorithms [Itai and Rodeh
1977; 1978; Alon et al. 1997; Batagelj and Mrvar 2001; Schank 2007; Latapy 2008;
Eppstein and Spiro 2009] require random access to each adjG(v) for each v ∈ adjG(u)
(as in Line 4 of Algorithm 1 for the intersection). Note that each adjG(u) in Algorithm
1 is read sequentially as we read G, but adjG(v) can be in an arbitrary position on disk
where G is stored. Other existing in-memory algorithms [Schank and Wagner 2005]
use an additional array for each vertex in G and the total size of these arrays is in the
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Algorithm 1 In-Memory Triangle Listing

Input: A graph G = (VG, EG)
Output: △(G)

1. △(G)← ∅;
2. for each u ∈ VG do
3. for each v ∈ adjG(u), where v > u, do
4. for each w ∈ (adjG(u) ∩ adjG(v)), where w > v, do
5. △(G)← (△(G) ∪ {△uvw});

end
end

end
6. return △(G);

order of the size of the input graph; thus these arrays need to be stored on disk and
random access is again inevitable.

When G cannot fit in main memory, Algorithm 1 requires O(|EG| · scan(dmax )) I/Os
in the worst case, where dmax is the maximum vertex degree in G, since we need to
randomly access adjG(v) for each edge (u, v) ∈ EG and degG(v) = O(dmax ). This I/O
cost can be prohibitively large especially when G is large.

4. I/O-EFFICIENT TRIANGLE LISTING

In this section, we present an I/O-efficient algorithm for triangle listing in a large
graph when main memory is not sufficient to hold the entire graph. We first sketch the
framework of our algorithm and then present the details of the algorithm.

4.1. Algorithm Framework

When the input graph G cannot fit in main memory, we can only load a portion (i.e., a
subgraph) of G that can fit in main memory each time. Thus, our algorithm iteratively
performs triangle listing in a subgraph of G that fits in main memory. We outline the
framework of our algorithm as follows.

•Each iteration:

- Partition G into a set of subgraphs, P = {G1, . . . , Gi, . . . , Gp}, such that each Gi

can fit in main memory;
- Load each Gi in main memory and perform triangle listing in Gi;
- Remove from G those edges of Gi that can no longer contribute to triangle listing.

•Repeat the above iteration until G becomes empty.

The main idea of our algorithm is to iteratively partition the graph and perform
triangle listing in each local subgraph Gi separately, as to avoid random access to
arbitrary vertices (and their adjacency lists) in the graph.

The concept is simple but there are a number of technical challenges: (1) ensuring
the correctness and completeness of the final result obtained from the iterative local
computations; (2) an effective and efficient partitioning algorithm for triangle listing;
and (3) bounding the overall I/O complexity of the algorithm (i.e., the I/O complexity
at each step and the number of iterations). We discuss the above three issues in each
of the following subsections.
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4.2. Correctness and Global-Completeness of Local Triangl e Listing

We first propose an algorithm that ensures the correctness of triangle listing in each
local subgraph of G as well as the completeness of the global result obtained from all
local computations.

The design of our algorithm is based on the following Lemma.

LEMMA 4.1. Let P = {G1, . . . , Gi, . . . , Gp} be a partition of a graph G = (VG, EG),
where ∪1≤i≤pVGi

= VG and VGi
∩VGj

= ∅ for 1 ≤ i < j ≤ p. Then,△(G) = △1∪△2∪△3,
where△1, △2, and △3 are disjoint sets defined as follows.

•△1 = ∪1≤i≤p{△uvw : u, v, w ∈ VGi
}.

•△2 = ∪1≤i,j≤p ∧ i6=j{△uvw : u, v ∈ VGi
, w ∈ VGj

}.
•△3 = ∪1≤i<j<k≤p{△uvw: u ∈ VGi

, v ∈ VGj
, w ∈ VGk

}.

PROOF. First, (△1 ∪ △2 ∪ △3) ⊆ △(G), since the elements in △1, △2, and △3 are
triangles in G.

Next we show△(G) ⊆ (△1∪△2∪△3). For any triangle△uvw ∈ △(G), there are only
three cases where u, v, and w can be located in the subgraphs in P :

(1) u, v, and w are all in the same subgraph Gi.
(2) Two of them are in the same subgraph Gi while the other in another different

subgraph Gj ; that is, without the loss of generality, we may assume that u, v ∈
VGi

, w ∈ VGj
, i 6= j.

(3) u, v, and w are in three different subgraphs Gi, Gj , and Gk; that is, without the
loss of generality, we may assume that u ∈ VGi

, v ∈ VGj
, w ∈ VGk

, i < j < k.

The above three cases correspond to the three types △1, △2, and △3, and thus
△(G) ⊆ (△1 ∪△2 ∪△3).

The triangles in △1, △2, and △3 are also called Type 1, Type 2, and Type 3 trian-
gles, respectively. The following example illustrates the concept of the three types of
triangles.

Example 4.2. Figure 2 shows a partition, P = {G1, G2, G3}, of the graph G shown
in Figure 1. In the figure, △abc, △efh and △jkl are Type 1 triangles because all the
three vertices in each of these three triangles are in the same subgraph. We only have
one Type 2 triangle, △bcg, because its vertices are in two subgraphs, G1 and G2, in P .
We have two Type 3 triangles, △bgi and △dej , because all the three vertices of each of
the two triangles are in three different subgraphs in P . 2

According to Lemma 4.1, a triangle △uvw can be listed by searching a subgraph Gi

alone if and only if u, v and w are all in Gi (i.e., Type 1 triangles). However, the number
of Type 1 triangles may be quite limited. More critically, we cannot remove any edge
(and hence any vertex) of Gi from G even after we list all Type 1 triangles, because
an edge (u, v) in △uvw may form another triangle △uvx with a vertex x in another
subgraph Gj .

To enable the removal of edges after all triangles containing these edges are listed,
and at same time to ensure the completeness of the global result, we introduce the
notion of extended subgraph as follows.

Definition 4.3 (Extended Subgraph). Let H = (VH , EH) be a subgraph of G =
(VG, EG). An extended subgraph of H in G, denoted by H+, is a directed graph de-
fined as H+ = (VH+ , EH+), where VH+ = VH ∪ {v : u ∈ VH , v ∈ VG\VH , (u, v) ∈ EG} and
EH+ = {(u, v) : (u, v) ∈ EG, u ∈ VH}.
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1 2 3

Fig. 2. A Partition of the Graph G in Figure 1: P = {G1, G2, G3}

Intuitively, an extended subgraph of H is a subgraph obtained by adding (to H)
those directed edges from the vertices in H to those vertices not in H . Note that ∀v ∈
VH+\VH , adjH+(v) = ∅. For now, we assume that if VH = {u, v}, for any (u, v) ∈ E, then
the corresponding H+ fits in main memory, which is a realistic assumption with the
available memory size of a commodity PC today. We remove this assumption in Section
6.

We give an example of an extended subgraph as follows.

Example 4.4. Figure 3 depicts the extended subgraphs of G1, G2, and G3 in Figure
2, i.e., G+

1 , G+
2 , and G+

3 . The shaded vertices are the vertices in each Gi, while the
directed edges (i.e., those with an arrow) show the extension to vertices outside each
Gi. All the other edges that are without an arrow are considered as the bi-directional
edges in G+

1 , G+
2 , and G+

3 . 2

b

c

d

f

e

g

h

j

i

G1+ G2+ G3+

b

a c

d

e

g

j

i b

d

e

g

j

i

k

l

Fig. 3. The Extended Subgraphs of G1, G2, G3 in Figure 2

Based on Definition 4.3, we have the following lemma for triangle listing in an ex-
tended subgraph.

LEMMA 4.5. Let H+ be an extended subgraph of a subgraph H of G. Then:

•Let △1(H+) = {△uvw : △uvw ∈ △1, u, v, w ∈ VH}. Then, ∀△uvw ∈ △1(H+), △uvw

can be listed by searching H+ alone.
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Algorithm 2 I/O-Efficient Triangle Listing

Input: A graph G = (VG, EG)
Output: △(G)

1. while(G is not empty)
2. Partition G into P = {G1, . . . , Gi, . . . , Gp};
3. for each extended subgraph G+

i of Gi ∈ P do

4. List all triangles in △1(G+
i ) and △2(G+

i ) (by Algorithm 3);
5. Remove all edges in Gi from G;

end
end

•Let △2(H+) = {△uvw : △uvw ∈ △2, u, v ∈ VH}. Then, ∀△uvw ∈ △2(H+), △uvw can
be listed by searching H+ alone.

In addition, for any edge (u, v) ∈ EH , (u, v) does not exist in any triangle in
△(G)\(△1(H+) ∪△2(H+)).

PROOF. First, ∀△uvw ∈ △1(H+), △uvw can be listed by searching H+ alone because
all the three edges (u, v) (u,w), and (v, w) of △uvw are in H and hence also in H+.
Second, ∀△uvw ∈ △2(H+),△uvw can be listed by searching H+ alone because u, v ∈ VH ,
w ∈ adjH+(u) and w ∈ adjH+(v), which means that △uvw can be found by intersecting
adjH+(u) and adjH+(v).

Finally, for any edge (u, v) ∈ EH , (u, v) does not exist in any triangle in
△(G)\(△1(H+) ∪ △2(H+)) because any triangle containing (u, v) must be in either
△1(H+) or △2(H+).

Lemma 4.5 implies that we can list all Type 1 and Type 2 triangles from the extended
subgraph G+

i of each subgraph Gi in the partition P of G. More importantly, after
listing the two types of triangles in each G+

i , we can remove all edges in Gi (i.e., those
bi-directed edges in G+

i ), since all triangles containing these edges have been already
listed.

Listing all Type 1 and Type 2 triangles alone is not enough since we still miss all
Type 3 triangles. We devise an efficient algorithm that iteratively converts Type 3
triangles into Type 1 and Type 2 triangles so that all triangles can be listed, while
at the same time reducing the size of the graph to reduce the I/O cost as well as the
search space for subsequent iterations of triangle listing. We outline our algorithm in
Algorithm 2.

Algorithm 2 is essentially an iterative computation of △1(G+
i ) and △2(G+

i ) from
the extended subgraph G+

i of each Gi ∈ P , as defined in Lemma 4.5, where P is the
new partition of the new graph G at each iteration (note that some edges of G are
deleted at the end of each iteration, i.e., Step 5 of Algorithm 2). Note that Algorithm 2
deletes the original graph G, but we can first make a copy of G on disk and disk copy
is relatively much cheaper compared with triangle listing. For the removal of edges in
Step 5 of Algorithm 2, we simply remove all vertices in VGi

from the adjacency list of
each vertex in Gi and write the new adjacency lists back to disk.

At the end of each iteration, we remove all edges in each Gi in the current partition
P and obtain a shrunk new graph. Then, at the beginning of the next iteration, we re-
partition the new shrunk graph. The new partition P defines new sets of △1(G+

i ) and
△2(G+

i ) for the extended subgraph G+
i of each Gi ∈ P . Thus, Algorithm 2 iteratively

converts the old set of Type 3 triangles at the previous iteration into Type 1 and Type
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Algorithm 3 Triangle Listing in Extended Subgraph

Input: An extended subgraph H+ = (VH+ , EH+)
Output: △1(H+) and △2(H+)

1. for each u ∈ VH do
2. for each v ∈ adjH(u), where v > u, do
3. for each w ∈ (adjH+(u) ∩ adjH+(v)) do
4. if(w > v or w /∈ VH )
5. List △uvw;

end
end

end
end

2 triangles with respect to the new partition at the current iteration. This process
continues until all edges in G are removed.

Another purpose of graph partition is to make sure that each subgraph in P is small
enough to fit in main memory, so as to avoid random disk access for triangle listing.
Meanwhile, we also want to take full utilization of the available memory and hence
each Gi ∈ P should be as big as possible under the condition that (|VGi

|+ |EGi
|) ≤ M .

Thus, if the shrinking graph G becomes small enough to fit in main memory at any
iteration, Step 2 of Algorithm 2 computes a partition consisting of only one subgraph,
i.e., P = {G}, after which the algorithm terminates since all edges in G will be removed
at the end of the iteration.

Step 4 of Algorithm 2 invokes Algorithm 3 to compute△1(G+
i ) and△2(G+

i ) from G+
i ,

i.e., H+ in Algorithm 3. The extended subgraph G+
i can be easily obtained along with

the computation of the partition P , which we discuss in Section 5.
Algorithm 3 is an in-memory algorithm similar to Algorithm 1. The only difference is

that the extended graph H+ contains two sets of vertices, VH and VH+\VH . Algorithm
3 only intersects the adjacency lists of those vertices in VH . Let w be a vertex found in
(adjH+(u) ∩ adjH+(v)), where u, v ∈ VH . If w ∈ VH , we also require w > v (and hence
also w > u) in order to avoid duplicate listing of the triangle △uvw. If w /∈ VH , then we
simply list △uvw since △uvw cannot be listed elsewhere.

Finally, although in many applications the output of our algorithm is pipelined as
the input of another algorithm, there are also applications where the set of triangles
needs to be materialized on disk. In the worst case, the size of the output for any
general graph is O(|VG|3), that is, in the case of a complete graph. More precisely, the
worst case output size of a graph is given by O(13

∑
v∈VG

N∨(v)), which depends on
the degree of a vertex (see Equation 4). Although the average case output size may
be much smaller, it can still be considerably large and should be stored on disk. We
present a compact data structure for storing the set of triangles in Section 7.1.

We now prove the correctness and completeness of Algorithm 2.

THEOREM 4.6. Given a graph G = (VG, EG), Algorithm 2 lists all triangles in G
and no false or duplicate triangle is listed.

PROOF. Lemma 4.5 ensures that (1) all triangles containing a removed edge are
listed, (2) all edges of any triangle not yet listed are still in the current graph G, and (3)
the already listed triangles will not be listed again at any future iterations because at
least one of their edges has been removed from G. By (1) and (2), all triangles in G are
listed because G becomes empty when Algorithm 2 terminates. Since Algorithm 3 does
not list any duplicate triangle due to the enforced vertex ordering, by (3) Algorithm 2
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does not list any duplicate triangle. Finally, since all triangles listed by Algorithm 3
are real triangles in G, Algorithm 2 does not list any false triangle.

The overall complexity of triangle listing by Algorithm 2, however, also depends on
the graph partitioning algorithm being used. Therefore, we give the overall complexity
analysis of Algorithm 2 in Section 5.4 after the discussion of the graph partitioning
algorithms.

5. GRAPH PARTITIONING ALGORITHMS FOR TRIANGLE LISTING

The objectives of graph partitioning for the task of triangle listing are: (1) each sub-
graph in the partition should fill the available memory as much as possible; and (2)
each subgraph should contain as many intra-partition edges (i.e., edges within the
same subgraph) as possible. The first objective is to fully utilize memory, while the sec-
ond objective is to remove as many edges as possible at each iteration of Algorithm 2 in
order to reduce the search space at each iteration and the number of total iterations.

Graph partitioning that fulfills the above two objectives, however, is known to be
APX-hard [Andreev and Racke 2004] when the number of subgraphs in the parti-
tion is more than 2. There have been a number of approximation algorithms proposed
[Kernigham and Lin 1970; Fiduccia and Mattheyses 1982; Karypis and Kumar 1999;
Feige and Krauthgamer 2000; Feige et al. 2000; Abou-Rjeili and Karypis 2006], but
they are in-memory algorithms that are not suitable for triangle listing in massive net-
works that cannot fit in memory. Other graph preprocessing techniques may be applied
to improve the quality of graph partitioning, and hence the efficiency of triangle listing.
For example, by discovering vertices that share many common neighbors through a fre-
quent itemset mining process on the adjacency lists [Buehrer and Chellapilla 2008],
and then grouping them into the same subgraphs in the partition. Though useful for
many other graph computations, many of these algorithms are either in-memory al-
gorithms or too costly as a preprocessing step, which can considerably increase the
overall cost of triangle listing.

For the task of triangle listing in a large graph that cannot fit in memory, we need
an efficient algorithm that partitions the graph with limited memory consumption.
We propose three efficient graph partitioning algorithms, two of them are streaming
algorithms that require only one scan of the input graph, while the other scans the
graph only twice. All three algorithms have linear CPU time complexity. Moreover,
all the three partitioning algorithms output the extended subgraphs required in the
triangle listing algorithm.

5.1. Sequential Graph Partitioning

Sequential graph partitioning is a simple, efficient streaming algorithm, which works
as follows: we sequentially read the input graph G from disk, whenever the available
memory is filled up, the portion of G being read in memory forms a subgraph in the
partition. Note that this subgraph is actually an extended subgraph, because each
vertex v being read is associated with its adjacency list adjG(v).

After we scan G once, we obtain a partition with approximately (|VG| + |EG|)/M
subgraphs in it. Since the algorithm scans G only once, it requires only O(scan(|VG| +
|EG|)) I/Os and O(|VG| + |EG|) CPU time. Furthermore, since the subgraphs in the
partition are obtained sequentially one after another as we read G, it allows pipelining
such that we can process triangle listing in each subgraph as soon as it is obtained,
rather than starting triangle listing until the entire partitioning process finishes.

Sequential graph partitioning is effective when the input graph exhibits high local-
ity, i.e., vertices are naturally clustered according to the sequential order by which
the graph is stored. For example, in a road network, proximate vertices are assigned
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Algorithm 4 DominatingSet

Input: A graph G = (VG, EG)
Output: A dominating set, D, of G

1. D ← ∅;
2. Create a bit array A of size |VG| and set each bit in A to 0;
3. for each v ∈ VG, where A[v] = 0, do
4. D ← D ∪ {v};
5. Set A[v] and A[u], for all u ∈ adjG(v), to 1;

end
6. return D;

Algorithm 5 Dominating-Set-based Graph Partitioning

Input: A graph G = (VG, EG)
Output: A partition of G, P = {G1, . . . , Gi, . . . , Gp}

1. Compute a dominating set D of G by Algorithm 4;
2. Divide D into p disjoint subsets of roughly the same size;
3. Create p subgraphs for P out of the p subsets of D;
4. for each v ∈ VG, where v /∈ D, do
5. Add v and adjG(v) to the smallest subgraph in P that has

at least (degP(v)/p) neighbors of v;
end

6. return P ;

consecutive vertex IDs and they are stored sequentially in nearby positions in the ad-
jacency list graph representation. In social network graphs, local communities may
also be stored together.

5.2. Dominating-Set-based Graph Partitioning

Sequential graph partitioning may be efficient in practice but it gives no theoretical
guarantee on the number of iterations Algorithm 2 may take. To this end, we propose
another graph partitioning algorithm based on the concept of dominating set. The par-
titioning algorithm takes two scans of the input graph, one for the computation of the
dominating set and one for graph partitioning.

A dominating set of a graph G is a subset of vertices D ⊆ VG such that every vertex
in G is either in D or a neighbor of some vertex in D. Computing the minimum dom-
inating set is known to be NP-hard. However, for our purpose of graph partitioning,
we do not require a minimum dominating set. Thus, we devise an efficient one-pass
algorithm to compute a dominating set for G as shown in Algorithm 4.

In Algorithm 4, we first initialize a bit array A of size |VG| and set all bits in A to 0.
Then, we read G from disk sequentially and for each vertex v (together with adjG(v))
read, we add v to D only if A[v] = 0. If v is added to D, then we also set v and all v’s
neighbors to 1 in A. Thus, all vertices in VG\D are neighbors of some vertex in D.

We then use D to compute a partition of G, as outlined in Algorithm 5. For triangle
listing, we want the vertices in the same subgraph in the partition to be highly con-

nected with each other. We divide D into p = |EG|
M subsets and create p initial subgraphs

in P (if |D| < p, we can simply randomly select (p− |D|) extra vertices from G and add
them to D). Then, we use the dominating vertices in each subset as seeds to grow each
of the p subgraphs by attracting their neighbors. Again, we read G sequentially from
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disk. For each vertex v (together with adjG(v)) read, let degP(v) be the current total
number of neighbors of v in all the subgraphs in the current partition P , which can be
easily obtained by scanning adjG(v) and checking which subgraph in P each neighbor
of v belongs to. We choose the subgraph that has at least (degP(v)/p) neighbors of v
currently, and add v to that subgraph. If there are more than one such subgraph, we
add v to the subgraph with the smallest size so far. Upon adding v, we also add adjG(v)
to the subgraph, so that the resultant subgraph is an extended subgraph ready for
triangle listing in Algorithm 2.

Whenever the size of a subgraph becomes greater than B (i.e., the block size), we
write a block of the subgraph to disk. Thus, we need extra I/Os to first write all sub-
graphs in P to disk and then read each subgraph in P into memory for triangle list-
ing in Algorithm 2. However, the asymptotic I/O complexity of Algorithm 5 is still
O(scan(|VG| + |EG|)). The CPU time complexity is O(|VG| + |EG|) since we only need
to scan adjG(v) for each v. But to compute degP (v) efficiently we need a look-up table
to keep which subgraph in P a vertex in VG belongs to. The look-up table requires
(|VG| log2 p) bits, which is a problem if (|VG| log2 p) > M .

Dominating-set-based graph partitioning has two advantages for the task of trian-
gle listing. First, the method groups neighborhood vertices together, which leads to
a larger number of Type 1 and Type 2 triangles to be listed in each local subgraph
in the partition and hence also a larger number of edges to be deleted at the end of
each iteration. Second, the method gives a guaranteed lower bound on the number of
intra-partition edges, i.e., edges that can be removed at the end of each iteration of
Algorithm 2, as we prove in the following lemma.

LEMMA 5.1. Let P = {G1, . . . , Gi, . . . , Gp} be a partition of G computed by Algo-
rithm 5. Then, the number of intra-partition edges of P (i.e., edges that are incident on

vertices within the same subgraph in P) is at least
|EG|
p .

PROOF. Let Pt(v) be the current partition P at the time when a vertex v is added to
P at Step 5 of Algorithm 5. For each vertex v, v is added to the smallest subgraph in
Pt(v) that has at least ((degPt(v)

(v))/p) neighbors of v. First, there must exist such a sub-

graph in Pt(v) when v is being added, because v is the neighbor of at least one vertex in
D. Thus, the total number of intra-partition edges is at least

∑
v∈VG\D((degPt(v)

(v))/p).

We have
∑

v∈VG\D(degPt(v)
(v)) = |EG| because each edge is counted once by one of its

end vertices and no edge exists between any two vertices in D according to Algorithm
4. The result thus follows.

The significance of Lemma 5.1 is further shown when we apply it to obtain an upper
bound on the total number of iterations required in Algorithm 2 in Section 5.4.

5.3. Randomized Graph Partitioning

Dominating-set-based graph partitioning has a theoretical guarantee on the number
of iterations performed in Algorithm 2, but it requires O(|VG|) memory space. For a
very large graph, it is possible that |VG| > M . To address this problem, we devise
another graph partitioning algorithm that not only has a theoretical guarantee on the
number of iterations required in Algorithm 2, but also does not have the memory space
problem.

The algorithm is very simple and efficient. It is a streaming algorithm that scans the
input graph only once, as shown in Algorithm 6. The algorithm uniformly at random

maps each vertex v ∈ VG to one of the p = |EG|
M subgraphs in P . We can create p buffers

in memory, one for each subgraph in P . When we map a vertex v to a subgraph Gi ∈ P ,
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Algorithm 6 Randomized Graph Partitioning

Input: A graph G = (VG, EG)
Output: A partition of G, P = {G1, . . . , Gi, . . . , Gp}

1. Create p empty subgraphs for the initial partition P ;
2. Let h(v) be a function that maps a vertex v ∈ VG into [1..p] uniformly at random;
3. for each v ∈ VG, where v /∈ D, do
4. Add v and adjG(v) to Gh(v) ∈ P ;

end
5. return P ;

we add v and adjG(v) to Gi’s buffer. Whenever a buffer is filled with a block (of size B)
of data, we write the block of data to disk and clear it from the buffer.

The following lemma gives the expected number of intra-partition edges of a parti-
tion computed by the randomized graph partitioning algorithm.

LEMMA 5.2. Let P = {G1, . . . , Gi, . . . , Gp} be a partition of G computed by Algo-
rithm 6. Let Eintra be the set of intra-partition edges of P , i.e., edges that are incident
on vertices within the same subgraph in P . Then, the expectation of |Eintra | is given by

E[|Eintra |] =
|EG|
p .

PROOF. For each vertex v ∈ VG, the probability that v is mapped to a subgraph Gi ∈
P is given by Pr[h(v) = i] = 1

p . Given two vertices, u and v, the event that u is mapped

to a subgraph in P and the event that v is mapped to a subgraph in P are independent.
Thus, given an edge (u, v), we have Pr[(u, v) ∈ Eintra ] = p× 1

p ×
1
p = 1

p . As a result, the

expectation of |Eintra | is given by E[|Eintra |] =
∑

(u,v)∈EG
Pr[(u, v) ∈ Eintra ] =

|EG|
p .

Lemma 5.2 shows that the expected number of intra-partition edges obtained by the
randomized graph partitioning is equal to the lower bound on the number of intra-
partition edges obtained by the dominating-set-based graph partitioning, but without
requiring O(|VG|) memory space as does the dominating-set-based graph partitioning
algorithm. In Section 5.4, we also apply Lemma 5.2 to obtain a bound on the total
number of iterations required in Algorithm 2 by applying Algorithm 6 with a high
probability.

5.4. Bounding I/O Complexity by Graph Partitioning

We now analyze the overall complexity of our algorithm for triangle listing. For all
the three graph partitioning algorithms, only O(scan(|VG| + |EG|)) I/Os are required.
More precisely, only one scan of the input graph is required for the sequential and
the randomized graph partitioning algorithms, while two scans are required for the
dominating-set-based graph partitioning algorithm.

At each iteration of Algorithm 2, we read each extended subgraph in the partition
into main memory only once. Thus, the overall I/O complexity for each iteration is
O(scan(|VG|+ |EG|)), but for a shrinking graph G = (VG, EG).

From the above analysis, the overall I/O complexity of Algorithm 2 depends on the
total number of iterations. Thus, we analyze the number of iterations required in Al-
gorithm 2 when each of the three graph partitioning algorithms is applied.

5.4.1. Sequential Graph Partitioning. If we apply sequential graph partitioning in Al-
gorithm 2, the number of iterations depends largely on the locality of the graph data,
which varies for different datasets and is difficult to analyze. There is no graph model
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that characterizes this property for real-world graphs. Thus, we use synthetic graph
dataset to investigate the behavior of the partitioning technique, as we show in our
experiments.

5.4.2. Dominating-Set-based Graph Partitioning. If we apply dominating-set-based
graph partitioning, then we can obtain an upper bound on the total number of iter-
ations required in Algorithm 2, as shown in Lemma 5.3.

LEMMA 5.3. If Algorithm 2 partitions G by Algorithm 5, then the total number of

iterations required in Algorithm 2 is O( |EG|
M ).

PROOF. According to Lemma 5.1, the number of intra-partition edges of P is at least
|EG|
p , where p = |EG|

M . This means that |EG|
p = |EG|

|EG|/M = M edges are removed at the

end of each iteration in Algorithm 2. Thus, the total number of iterations required in

Algorithm 2 is O( |EG|
M ).

With the result of Lemma 5.3, we give the overall I/O complexity of Algorithm 2,
when dominating-set-based graph partitioning is applied, as follows.

THEOREM 5.4. If Algorithm 2 partitions G by Algorithm 5, then Algorithm 2 re-

quires O( |EG|
M scan(|VG|+ |EG|)− scan( |EG|2

M )) I/Os, where (|VG|+ |EG|) is the size of the
original input graph G.

PROOF. According to Lemma 5.3, at least M edges are removed from G at the end
of each iteration of Algorithm 2. Thus, at the start of the t-th iteration, (t− 1)M edges
have been removed from the original graph G. Summing up, the overall I/O complexity

of Algorithm 2 is given by O(
∑|EG|/M

t=1 (scan(|VG|+|EG|−(t−1)M))) = O( |EG|
M scan(|VG|+

|EG|)− scan(( |EG|
M )2M)) = O( |EG|

M scan(|VG|+ |EG|)− scan( |EG|2

M )) I/Os.

Although applying dominating-set-based graph partitioning in Algorithm 2 gives a
bounded I/O complexity, the overall process requires at least (|VG| log2 p) bits of mem-
ory space. The randomized graph partitioning removes this requirement on memory.

5.4.3. Randomized Graph Partitioning. If randomized graph partitioning is applied, we
can establish a bound on the total number of iterations required in Algorithm 2 with a
high probability as follows.

LEMMA 5.5. Let X = |Eintra| be the number of intra-partition edges of a partition
computed by Algorithm 6. Then, at each iteration of Algorithm 2, we have Pr[X ≥
(1− ǫ)M ] ≥ 1− 1

ǫ2M , where 0 < ǫ < 1.

PROOF. Let |EGt | be the number of edges in the t-th iteration. Let Xk be the indicator
random variable for each edge ek ∈ EGt , where Xk = 1 if ek ∈ Eintra, and Xk = 0
otherwise. Then, we have X =

∑
Xk.

Recall in Algorithm 6, we uniformly at random pick each vertex to be added to one

of the (pt =
|EGt |
M ) subgraphs. Thus, we obtain the variance of X as follows:

V ar[X ] = V ar[
∑

Xk]

= E[(
∑

Xk)
2]− (E[

∑
Xk])

2
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= E[
∑

X2
k +

∑

j 6=k

XjXk]− (E[
∑

Xk])
2

= |EGt |
1

pt
+ |EGt |(|EGt | − 1)

1

p2t
− (
|EGt |

pt
)2

=
(pt − 1)|EGt |

p2t
.

Let µ = E[X ] = M , where E[X ] = M is obtained in Lemma 5.2. We first obtain
Pr[X < (1 − ǫ)M ] as follows:

Pr[X < (1− ǫ)M ]

= Pr[ µ−X > µ− (1− ǫ)M ]

≤ Pr[ |µ−X | > ǫM ]

= Pr[ |X − µ| ≥ ǫ
|EGt |

pt
] . (5)

By applying Chebyshev’s inequality, we have:

Pr[X < (1 − ǫ)M ] ≤ Pr[ |X − µ| ≥ ǫ
|EGt |

pt
]

≤
V ar[X ]

(
ǫ|EGt |

pt
)2

=
pt − 1

ǫ2|EGt |
. (6)

Thus, we obtain:

Pr[X ≥ (1 − ǫ)M ] > 1−
pt − 1

ǫ2|EGt |

> 1−
pt

ǫ2|EGt |
. (7)

Since pt =
|EGt |
M , from Equation 7 we obtain the desired result:

Pr[X ≥ (1− ǫ)M ] > 1−
1

ǫ2M
.

�

With the result of Lemma 5.5, the following theorem establishes a bound on the total
number of iterations required in Algorithm 2 with a high probability.

THEOREM 5.6. Let n be the total number of iterations required in Algorithm 2 by

applying Algorithm 6. Then, n ≤ |EG|
(1−ǫ)M with a probability of at least (1 − 1

ǫ2M )
|EG|

(1−ǫ)M ,

where 0 < ǫ < 1.
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PROOF. Let At be the event that at the t-th iteration of Algorithm 2, |Eintra| ≥
(1− ǫ)M . Then, we have:

Pr[∩kt=1At] = Pr[A1]× Pr[A2|A1] . . . P r[Ak| ∩
k−1
t=1 At]

≥ (1−
1

ǫ2M
)k . (8)

Let k = |EG|
(1−ǫ)M , then ∩kt=1At implies that Algorithm 2 terminates in at most k itera-

tions, since at each iteration, the number of intra-partition edges is at least (1 − ǫ)M

according to Lemma 5.5. By substituting k with |EG|
(1−ǫ)M in Equation 8, the proof follows.

�

The following example gives an idea how tight the bound obtained in Theorem 5.6
may be.

Example 5.7. Let ǫ = 0.1 and M = 109. If |EG| = 1010, then by Theorem 5.6,
Algorithm 2 runs at most 11 iterations with a probability of greater than 0.99999. In
fact, with this reasonable setting of ǫ = 0.1 and M = 109, for any graph with |EG| ≤
(9× 1013) edges, we obtain a probability greater than 0.99 that Algorithm 2 terminates

within the bound specified in Theorem 5.6, i.e., n ≤ |EG|
(1−ǫ)M . For a graph of a size with

more than (9 × 1013) edges, it is certainly reasonable to assume a larger available
memory size M , with which we can establish the bound again with a high probability.

2

With the result of Theorem 5.6, we obtain a bound on the overall I/O complexity of
Algorithm 2 with a high probability as follows.

THEOREM 5.8. If Algorithm 2 partitions G by Algorithm 6, then with a probability

of at least (1 − 1
ǫ2M )

|EG|

(1−ǫ)M , the I/O complexity of Algorithm 2 is O( |EG|
(1−ǫ)M scan(|VG| +

|EG|)− scan( |EG|2

(1−ǫ)M )) I/Os, where 0 < ǫ < 1 and (|VG|+ |EG|) is the size of the original

input graph G.

PROOF. The proof is similar to that of Theorem 5.4, by replacing M in the proof of
Theorem 5.4 with (1− ǫ)M .

Finally, we remark that the CPU time complexity for triangle listing at each itera-
tion of Algorithm 2 is similar that of the counter-part in-memory algorithm with the
same input graph. We thus refer the readers to the related work [Latapy 2008] for
details.

6. TRIANGLE LISTING FOR HIGH DEGREE VERTICES WITH LIMITED ME MORY

In the previous sections, we assume that if VH = {u, v}, for any (u, v) ∈ E, then the cor-
responding extended subgraph H+ fits in main memory (the assumption is given after
Definition 4.3 in Section 4.2). In other words, we assume that (degG(u)+degG(v)) < M .
This assumption is required because if for some u, v ∈ VG, adjG(u) and adjG(v) cannot
fit in memory but they appear in the same extended subgraph, then it incurs extra
I/O cost when we apply the in-memory triangle listing algorithm in this extended sub-
graph. Note that to list any triangles in a local subgraph in a partition, VH must consist
of at least two vertices in the corresponding extended subgraph H+ = (VH+ , EH+); oth-
erwise, either we have listed all triangles in the graph or we need to re-partition the
graph.
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Algorithm 7 I/O-Efficient Triangle Listing for High Degree Vertices

Input: A set of high degree vertices S, and adjG(v) for each v ∈ S
Output: The set of triangles with two end vertices in S, i.e.,△(S) = {△uvw : u, v ∈ S}

1. for each u ∈ S do
2. for each block, B1, of adjG(u) read from disk do
3. for each v in B1, where v ∈ S and v > u, do
4. for each block, B2, of adjG(v) read from disk do
5. for each w ∈ (B1 ∩B2) do
6. if(w > v or w /∈ S)
7. List △uvw;

end
end

end
end

end
end

The above assumption is realistic with the available memory size of a commodity PC
today because for a machine with 4GB of memory, adjG(u) and adjG(v) should consist
of 109 adjacent vertices in order to use up the memory. Even with very large power-
law graphs [Faloutsos et al. 1999; Newman 2003] that can consist of few vertices with
large degree, it is still extremely rare that we have such a large real graph with this
extreme vertex degree. Note that we are not referring to the number of vertices in a
graph but the degree of a vertex in a graph.

The above estimation shows that our I/O-efficient algorithm can handle most of the
real-world large graphs. For those extremely large graphs for which the assumption is
not valid, we propose an algorithm to handle this extreme case as follows.

Let S be the set of high degree vertices that violate the above-mentioned assumption.
We first remove S, together with adjG(v) for each v ∈ S, from the input graph G, which
gives a new graph G′. Then, we apply Algorithm 2 to list all triangles in G′. Finally, we
list the rest of the triangles in G as shown in Algorithm 7.

Algorithm 7 is similar to Algorithm 3, except that now each adjG(u) and adjG(v)
cannot fit in main memory. Therefore, to avoid random disk access, we use a block
nested-loop join to allow sequential disk scans described as follows.

In the block nested-loop join, both the outer relation and the inner relation are the
adjacency lists adjG(u) and adjG(v) for each pair of vertices u, v ∈ S, where (u, v) ∈
EG and u < v. The outer relation reads adjG(u) from disk, which is then joined with
adjG(v) in the inner relation to find the common neighbor w of u and v, which form the
triangle △uvw.

The I/O complexity analysis of Algorithm 7 is similar to that of the standard block
nested-loop join. The number of disk blocks occupied by the outer relation is given by
α =

∑
u∈S scan(adjG(u)), since the outer relation is scanned only once. For each u ∈ S

processed in Algorithm 7, the number of disk blocks occupied by the inner relation is
given by β(u) =

∑
v∈adjG(u)∧v∈S∧v>u scan(adjG(v)). If adjG(u) can fit in memory, then

the algorithm requires O(α+
∑

u∈S β(u)) I/Os. Otherwise, the algorithm requires O(α+
(α/(M/B − 2)) · (

∑
u∈S β(u))) I/Os.

The I/O cost can be high if S is large, i.e., there are many extremely high degree
vertices in the graph. However, according to [Faloutsos et al. 1999; Newman 2003],
there are only a very small number of high degree vertices in a large real world graph,
which can be estimated as follows.
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According to [Faloutsos et al. 1999], large real-world graphs follow a power law de-
gree distribution given by the following equation:

degG(v) =
1

|VG|r
(rankG(v))

r, (9)

where rankG(v) is the degree rank of a vertex v in G, i.e., v is the (rankG(v))-th highest
degree vertex in G, and r is the rank exponent, where r < 0 is a constant with a typical
value between −0.8 and −0.7 for most real-world networks [Faloutsos et al. 1999].

According to Equation 9, if r = −0.7 and (degG(u) + degG(v)) ≈ 109, where u and v
are the two highest degree vertices in G, then |VG| ≈ (4 × 1012). In other words, for a
power-law graph G that has 4 trillion vertices, it only has two vertices u and v in G
such that adjG(u) and adjG(v) would use up 4GB of memory, i.e., |S| = 2 in Algorithm
7.

7. UPDATE IN DYNAMIC NETWORKS

Many real-world networks undergo frequent updates. When the network graph is up-
dated, the set of triangles of the graph also needs to be updated. The challenge, how-
ever, is that a single edge insertion or deletion can trigger a series of updates to the set
of triangles. This can be a costly operation because the set of triangles may be large
and stored on disk, and thus the updates require random disk accesses to read and
write the triangles.

In this section, we present a compact data structure for efficient update of the set of
triangles when the input graph undergoes frequent updates. We consider two types of
updates: edge insertion and edge deletion. Vertex insertion/deletion can be considered
as a sequence of edge insertions/deletions preceded/followed by the insertion/deletion
of an isolated vertex. Note that it is trivial to handle the insertion/deletion of an iso-
lated vertex, since it does not trigger an update to the set of triangles.

7.1. A Compact Data Structure for Storage of Triangles

We first present the data structure that supports efficient update of the set of triangles.
Apart from supporting efficient update, the data structure is also useful in applications
where the set of triangles needs to be materialized on disk.

The set of triangles can be naturally represented as a prefix tree structure. We define
the data structure, called triangle-tree, as follows.

Definition 7.1 (Triangle-Tree). Let △(G) be the set of all triangles in a graph G.
The triangle-tree of G is a prefix tree defined as follows.

— The root of the tree represents an empty set.
— Each△uvw ∈ △(G), where u < v < w, is represented by a path in the tree as follows:

u is a child of the root, v is a child of u, and w is a child of v.
— The prefix tree order follows the order of the IDs of the vertices in the triangles.

Excluding the root, the triangle-tree has three levels, corresponding to the three
vertices in a triangle. The compactness comes from the sharing of prefixing vertices
among the triangles. Further compression is possible to reduce the space for storage
purpose; however, our focus here is to support efficient update operations on disk.

To support the update of the set of triangles in a dynamic graph, we need to sup-
port efficient insertion and deletion of nodes in the triangle-tree. Both node insertion
and deletion can be done in logarithmic time if the operations are performed in main
memory. However, the triangle-tree data structure is stored on disk and the update
operations need to be reflected on disk. If the tree is represented as pointers, then ran-
dom disk accesses to the tree nodes are obviously too expensive. If the nodes in the
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triangle-tree is stored sequentially on disk, then a single node insertion may cause all
the data following the node to be shifted backwards on disk in order to maintain the
sequential order, which is prohibitive if the tree is large or the update is frequent.

We propose an effective disk storage scheme for the triangle-tree as follows. The
storage scheme consists of three levels, corresponding to the three levels (excluding
the root) in the triangle-tree. The nodes at each level of the triangle-tree are stored,
according to their level-order traversal sequence, in a linked list of disk blocks (note
that only the blocks are stored as a linked list, not the data items inside each block).
To enable access to their children, each internal node (i.e., nodes at the first two levels)
of the triangle-tree is also associated with a pointer to the block where its children are
stored.

To avoid the overflow of a disk block due to node insertions or the under-utilization
of disk space due to node deletions, we leave some free space in each of the disk blocks.
Then, the following invariant is used to maintain the tree storage for efficient update:
at least 2

3B of storage space is utilized for every pair of neighboring disk blocks. Note

that it does not mean that we only use 2
3B out of every 2B of storage space, the 2

3B is
only an invariant to be maintained during the update process but we can use much
more space than that.

With the above invariant, a node insertion requires a single I/O if the insertion does
not cause an overflow. Let Y be the disk block where the node is to be inserted, and X
and Z be the two disk blocks at either end of Y . Now suppose that we have an overflow,
i.e., the block Y is full. Then, if either X or Z still has free space to insert the node, we
simply shift the data within the two blocks Y and X (or Z), and then insert the node
there. If both X and Z are full, then we split Y into two new blocks, Y1 and Y2, each
taking approximately 1

2B of the data from Y . Then, we insert the node into either Y1 or
Y2 according to its order. It is easy to see that now the three pairs of neighboring blocks,
i.e., (X,Y1), (Y1, Y2), and (Y2, Z), utilize 3

2B, 1B, and 3
2B of storage space, respectively.

Therefore, the invariant is always maintained for an insertion operation, which takes
O(1) I/Os in the worst case.

Now we discuss a node deletion. Let Y be the disk block where the node is deleted,
and X and Z be the two disk blocks at either end of Y . To maintain the invariant,
we need to check if the pair of blocks (X,Y ) or (Y, Z) now use less than 2

3B of storage

space. If both pairs still utilize at least 2
3B of storage space, then the variant is still

maintained. But assume that, without the loss of generality, X and Y now uses less
than 2

3B of storage space, then we simply merge X and Y into one single block. Clearly,
the merging re-establishes the invariant. Thus, a node deletion takes O(1) I/Os in the
worst case.

There is another type of update that we also need to consider, that is, the update of
the pointer of a node to its children’s disk block. For an insertion/deletion of a triangle
into/from the triangle-tree, we access the tree from parent to child by loading their
respective disk blocks into memory; thus, the pointer information to the child’s block
can be easily updated in memory before it is written back to disk. However, in case of a
disk block split/merge due to a node insertion/deletion at the child level, it may trigger
an update of the pointer information of some nodes at the parent level. Let X be the
block at the parent level currently loaded in memory. Now if the pointer information
to be updated at the parent level is within the block X , it can be done directly in X
in memory and then write X back to disk. However, if the parent block in which the
pointer information needs to be updated is not the block X in memory, then it must
be a neighboring block of X on disk, because the nodes in the triangle-tree are stored
according to their level-order traversal sequence. Thus, we can read the corresponding
neighboring block of X into memory, update the pointer information to the child blocks,
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and then write the block back to memory. In the worst case, such an update also takes
O(1) I/Os only.

7.2. Edge Insertion and Deletion

Having discussed the data structure that supports efficient update of triangles, we
now discuss how the update to the set of triangles is performed when a new/old edge
is inserted/deleted into/from the input graph.

7.2.1. Edge Insertion. We first consider edge insertion. The insertion of an edge,
e = (u, v), may create a number of new triangles, which are to be inserted into the
triangle-tree. Let △(e) be the set of new triangles created with the insertion of e. As-
sume that, without the loss of generality, u < v. We can divide △(e) into the following
three categories:

• △1(e) = {△uvw : △uvw ∈ △(e), u < v < w},
• △2(e) = {△uvw : △uvw ∈ △(e), u < w < v},
• △3(e) = {△uvw : △uvw ∈ △(e), w < u < v}.

To insert the triangles in △1(e) = {△uvw
1
, · · · ,△uvw

k
} into the triangle-tree, we pro-

cess as follows. We first try to locate u (by binary search) among the children of the
root. If u is not a child of the root, then we create a new node u to be inserted as a
child of the root. Note that even if u is already a child of the root in the triangle-tree, v
cannot be a child of u in the tree because the edge (u, v) is a new edge. Thus, in either
case, we create a new node v to be inserted among the children of u or as the only child
of u if u is newly created. Then, we create new nodes, w1, · · ·, and wk, to be inserted as
the children of v in the triangle-tree.

The insertion of a triangle △uvw in the second category,△2(e), into the triangle-tree
is processed as follows. We first try to locate u among the children of the root and then
w among the children of u. If u and w are already there in the triangle-tree, then we
create a new node v to be inserted among the children of w. If u and/or w are not in the
triangle-tree, we create u and/or w to be inserted into the tree, followed by the creation
of a new node v to be inserted as a child of w.

The insertion of a triangle △uvw in the third category, △3(e), into the triangle-tree
is processed in a similar way as the insertion of a triangle in △2(e), except that the
orders of u and w are now reversed.

The insertion of a new node into the triangle-tree and its cost/complexity is discussed
in Section 7.1. The extra cost required in the above process of inserting a triangle is the
cost of locating a node among the children or determining the position where a node
should be inserted among the children, both of which can be done by a binary search
in memory.

7.2.2. Edge Deletion. Next, we consider edge deletion. The deletion of an edge, e =
(u, v), may invalidate a number of existing triangles, which thus need to be deleted
from the triangle-tree. Let △(e) be the set of triangles that are originally in G but are
no longer triangles after the removal of e from G. As in Section 7.2.1, we assume that
u < v and divide△(e) into three categories.

To delete the triangles in △1(e) = {△uvw
1
, · · · ,△uvw

k
} from the triangle-tree, we

process as follows. First, we locate u among the children of the root and then v among
the children u. We delete all the children of v, which are exactly the set {w1, · · · , wk},
and then also delete v from among the children of u. If after the deletion of v, u has no
other child, then we also delete u from the triangle-tree.

The deletion of a triangle △uvw in the second category,△2(e), from the triangle-tree
is processed as follows. First, we locate u among the children of the root and then w
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among the children u. Then, we locate v among the children of w and delete v. We also
delete w if after the deletion of v, w has no other child. Similarly, we delete u if w is the
only child of u.

The deletion of a triangle △uvw in the third category,△3(e), from the triangle-tree is
processed in a similar way as the deletion of a triangle in△2(e), except that the orders
of u and w are now reversed.

The deletion of a node from the triangle-tree and its cost/complexity is discussed in
Section 7.1. The extra cost required in the above process of deleting a triangle is the
cost of locating a node among the children, which can be done by a binary search in
memory.

8. APPLICATIONS OF TRIANGLE LISTING

Triangle listing has many important applications. Here, we focus on a few popular
ones and demonstrate how our algorithm can be applied to benefit these applications
in massive networks that cannot fit in main memory.

8.1. Triangle Counting, Clustering Coefficients, and Trans itivity

Our algorithm can be readily applied to compute triangle counting, clustering coeffi-
cients, and transitivity. For completeness, we also give the definitions of these concepts
here.

We first define clustering coefficient [Watts and Strogatz 1998], which is a popular
index for network analysis, as follows.

Definition 8.1 (Clustering Coefficient). The clustering coefficient of a vertex v ∈ VG,
where degG(v) > 1, denoted by C(v), is defined as

C(v) =
N△(v)

N∨(v)
. (10)

When degG(v) ≤ 1, we define C(v) = 0.

The clustering coefficient of G, denoted by C(G), is defined as

C(G) =
1

|VG|

∑

v∈VG

C(v). (11)

Intuitively, the clustering coefficient of a vertex v, also called the local clustering
coefficient or neighborhood density of v, defines the probability that two vertices are
also neighbors of each other if they are both the neighbors of v. In a social network
setting, local clustering coefficient implies how likely the two friends of a person are
also themselves friends of each other.

The clustering coefficient of a network/graph G is the average of the clustering coef-
ficient of all the vertices in G. G is a small-world network if C(G) is high (with respect
to that of a random graph constructed on the same set of vertices) and G also has short
average path length [Watts and Strogatz 1998].

Next we define transitivity [Wasserman and Faust 1994; Newman et al. 2002] of a
network as follows.

Definition 8.2 (Transitivity). The transitivity of a graph G, denoted by C(G), is de-
fined as

T (G) =
N△(G)

1
3

∑
v∈VG

N∨(v)
. (12)
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Algorithm 8 Triangle Counting, Clustering Coefficients, and Transitivity

Input: A graph G = (VG, EG)
Output: N△(v) and C(v) for each v ∈ VG, C(G), and T (G)

1. ∀v ∈ VG, N△(v)← 0;
2. C(G)← 0; N△(G)← 0; N∨(G)← 0;
3. for each triangle △uvw listed by Algorithm 2 do
4. N△(x)← N△(x) + 1, for all x ∈ {u, v, w};

end
5. for each v ∈ VG do

6. C(v)←
2N△(v)

degG(v)(degG(v)−1) ;

7. C(G)← (C(G) + C(v));
8. N△(G)← (N△(G) +N△(v));
9. N∨(G)← (N∨(G) + 1

2degG(v)(degG(v)− 1));
end

10. C(G)← C(G)
|VG| ;

11. T (G)← 3N△(G)
N∨(G) ;

The transitivity of a network/graph G is a measure of the degree to which the ver-
tices in G tend to cluster together. It is often known as the global clustering coefficient,
because it is an indication of clustering in the whole network, i.e., globally as contrast
to the local clustering coefficient C(v). Note that T (G) 6= C(G) in general.

When the input graph is too large to fit in main memory, our algorithm is far more
efficient than the existing algorithms for computing these network measures. Algo-
rithm 2 can be pipelined to compute all the above measures as shown in Algorithm 8,
i.e., we do not need to first compute all triangles and perform a post-processing. The
algorithm is self-explanatory.

Steps 5-9 of Algorithm 8 requires another scan of G, but the asymptotic I/O com-
plexity of the algorithm is the same as Algorithm 2. Updating N△(v) for all v ∈ VG

may require O(|VG|) space, but this can be avoided by writing N△(v) after processing
each extended subgraph and then merging the results of all extended subgraphs. The
asymptotic I/O complexity still remains the same since the size of N△(v) for all v in an
extended subgraph is bounded by the size of the subgraph.

8.2. Triangular Vertex Connectivity

Triangular vertex connectivity (also called 3-gonal connectivity) defines stronger con-
nectivity in a network than single link connectivity, since edges that are in short cyclic
component (e.g., triangles) are considered as strong ties [Granovetter 1973; Batagelj
and Zaveršnik 2007]. Triangular vertex connectivity is formally defined as follows
[Schank 2007].

Definition 8.3 (Triangular Vertex Connectivity). Two vertices u and v are triangu-
larly vertex-connected if there exists a sequence of triangles 〈△1, . . . ,△n〉 such that u is
in △1, v is in △n, and either (1) n = 1, or (2) for 1 ≤ i < n, △i and △i+1 share at least
one common vertex.

Intuitively, if u and v are connected by a single path, then they become disconnected
if any edge on the path is removed. On the contrary, if u and v are connected by a
sequence of triangles, then removing any edge does not disconnect them.

Triangular vertex connectivity is important in many applications [Eckmann and
Moses 2002; Fritzke 1993; Taubin and Rossignac 1998; Watts and Strogatz 1998]. It
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defines an equivalence relation V△ on VG. Two vertices u and v belong to the same
equivalence class if they are triangularly vertex-connected. The following example fur-
ther explains the concept.

Example 8.4. In the graph G given in Figure 1, there are two equivalence classes
defined by triangular vertex connectivity, C1 = {a, b, c, g, i} and C2 = {d, e, f, h, j, k, l},
which can be obtained by removing the three edges (in bold lines) that are not part
of any triangle. Let G[C1] and G[C2] be induced subgraph of G by C1 and C2, respec-
tively. Removing any edge from G[C1] or G[C2] does not disconnect the vertices in G[C1]
or G[C2], which demonstrates that the connectivity between the vertices within the
graphs are stronger. 2

The existing algorithm for computing the equivalence classes of V△ is based on tri-
angle listing [Batagelj and Zaveršnik 2007]. However, the algorithm assumes that all
computations, both equivalent class computation and triangle list, are processed in
main memory, which is thus impractical when the input graph is too large and disk
resident.

We show that the result of Algorithm 2 can be easily pipelined to compute the equiv-
alence classes of V△ as follows. Upon processing each extended subgraph, we first
mark the directed edges (u, v), (u,w), (v, w), where u < v < w, for each triangle △uvw

listed. Then, we write these marked edges to disk. When Algorithm 2 terminates, we
read the marked edges one by one to find which equivalent class each v ∈ VG belongs
to. This can be done by using two lookup tables, C and A, where C[j] = i indicates that
i is the smallest class ID that Class j is connected to, and A[v] = i indicates v belongs
to Class i. Initially, C[i] = i and A[v] = ∞. We keep a counter c which is initialized to
0. For each marked edge (u, v) read, we do the following: (1) if A[u] = A[v] = ∞, we
set A[u] = A[v] = c and increment c; (2) if A[u] 6= A[v], without the loss of generality,
assume that A[u] < A[v], we set C[A[v]] = min(C[A[v]], A[u]) and A[v] = A[u]; (3) oth-
erwise, do nothing. Finally, we scan C once to update each C[i] to the smallest class
ID that Class i is connected to, and update A[v] = C[A[v]], which indicates the class v
belongs to.

Since the number of marked edges written to disk for each extended subgraph can-
not exceed the size of the subgraph, the asymptotic I/O complexity of computing the
equivalence classes of V△ by the above algorithm is the same as that of Algorithm 2.

9. EXPERIMENTAL RESULTS

We compare our algorithms with the state-of-the-art in-memory triangle listing al-
gorithm (denoted by In-Mem) [Latapy 2008] and the semi-streaming local triangle
estimation algorithm (denoted by Semi-Stream) [Becchetti et al. 2008]. We ran all
experiments on a machine with an Intel Xeno 2.67GHz CPU and 4GB RAM, running
CentOS 5.4.

Dataset. We use four real datasets: LiveJournal (LJ), U.S. road network (USRD),
World Wide Web of UK (WebUK), and Billion Triple Challenge (BTC). LJ is a so-
cial network (http://www.live-journal.com, http://snap.stanford.edu), where vertices
are members and edges represent friendship between members. USRD is the road
network of United States, where vertices represent intersections and endpoints, and
edges represent the roads connecting these intersections or road endpoints. WebUK
is obtained from the YAHOO webspam dataset (http://barcelona.research.yahoo.net),
where vertices are pages and edges are hyperlinks. BTC is a semantic graph converted
from the Billion Triple Challenge 2009 RDF dataset (http://vmlion25.deri.ie), where
each vertex represents an object such as a person, a document, and an event, and each
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edge represents the relationship between two vertices such as “has-author”, “links-to”,
and “has-title”.

To examine the behavior of the graph partitioning algorithms, we also use a syn-
thetic dataset, which is denoted as Synthetic in our discussion. We give the number
of vertices and edges, the storage size on disk, and the size of the graph in memory (in
binary format), of all the datasets in Table II. Note that the actual memory used for
in-memory triangle listing is larger than the size of the graph in memory because the
in-memory algorithm also uses extra data structures such as hashtable to speed up
the process.

Table II. Datasets (M=106 , G=109)

LJ USRD WebUK BTC Synthetic
|VG| 4.8M 24M 106M 165M 604M
|EG| 69M 58M 1,877M 773M 1,208M

Disk size 809.1MB 969.6MB 20.3GB 10.0GB 21.4GB
Memory size 363.9MB 402.8MB 7.8GB 4.1GB 9.0GB

9.1. Effectiveness of Graph Partitioning Algorithms

We first show the effectiveness of the three graph partitioning algorithms, se-
quential graph partitioning (Sequential), dominating-set-based graph partitioning
(Dominating), and randomized graph partitioning (Randomized). We set the avail-
able memory size M for partitioning to be 256MB, 512MB, 1GB, 2GB, and 4GB, re-
spectively.

Tables III and IV reports the total number of iterations Algorithm 2 takes by apply-
ing Sequential, Dominating, or Randomized, on the two large datasets, WebUK and
BTC. The theoretical upper bound on the total number of iterations by applying Dom-
inating and that by applying Randomized (with a probability of at least 0.99, where
ǫ = 0.1) are also given as reference.

Table III. The Number of Iterations of Algorithm 2 using Different Graph Partitioning Algorithms on the
WebUK Dataset

M=256MB M=512MB M=1GB M=2GB M=4GB

Sequential 3 3 2 2 1

Dominating − 3 2 2 1
Dominating (Upper Bound) − 16 8 4 2

Randomized 33 16 8 3 2
Randomized (Upper Bound) 35 18 9 5 3

Table IV. The Number of Iterations of Algorithm 2 using Different Graph Partitioning Algorithms on the
BTC Dataset

M=256MB M=512MB M=1GB M=2GB M=4GB

Sequential → ∞ → ∞ 7 2 1

Dominating − 6 3 2 1
Dominating (Upper Bound) − 9 5 3 2

Randomized 18 9 4 2 2
Randomized (Upper Bound) 19 10 5 3 2

The results show that for both WebUK and BTC, Dominating is most effective
in all cases when the available memory is large enough, which is an expected re-
sult since dominating-vertex-based graph partitioning groups neighboring vertices to-
gether. These neighboring vertices tend to form Type 1 and Type 2 triangles, resulting
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in more intra-partition edges being deleted at the end of each iteration and hence less
total number of iterations. However, Dominating becomes infeasible when the avail-
able memory is smaller than O(|VG| log2 p) bits, which happens to both WebUK and
BTC when M = 256MB.

The results show that Sequential is effective in practice for both WebUK and BTC. In
fact, the number of iterations of Algorithm 2 by applying Sequential is as small as that
by applying Dominating in most cases. Thus, as shown in Table VI, applying Sequen-
tial in Algorithm 2 can be more efficient than applying Dominating since Dominating
requires two more scans of the input graph at each iteration of Algorithm 2.

However, when the available memory becomes smaller, adopting Sequential shows
no sign of termination since there is a point that all or almost all triangles are Type 3
triangles with respect to the partition. Thus, no or very few edges are removed at the
end of an iteration. Such a situation happens to the BTC dataset when M = 256MB or
M = 512MB, since BTC has a lower locality than the WebUK dataset.

In this case, Dominating shows its advantage as it gives a guaranteed upper bound
on the number of iterations, while our result shows that it indeed has consistent perfor-
mance. The result also shows that in all cases, the actual number of iterations needed
by applying Dominating is always less than its theoretical upper bound.

The results also show that Randomized is not as effective as Sequential and Dom-
inating in some cases, mainly because the randomized process destroys the locality
that exists in the real datasets. However, when both Sequential and Dominating fail,
the results show that Randomized is still effective, which demonstrates the advantage
of applying Randomized in Algorithm 2. We also show that the total number of itera-
tions of Algorithm 2 by applying Randomized almost matches its corresponding upper
bound in all cases, for both WebUK and BTC.

We also remark that when M = 4GB, applying either Sequential or Dominating in
Algorithm 2 requires only 1 iteration, for both WebUK and BTC. This result may seem
to be be impossible since both datasets cannot fit in the 4GB memory and therefore
one may expect that at least 2 iterations are needed. We examined the details and
found that there are only two subgraphs in the partition, each of them (with the more
compact binary format than the ascii format in disk storage) can fit in the 4GB memory
(just fit for WebUK). In this case, there is no Type 3 triangles (since there are only two
subgraphs in the partition) and therefore all triangles, either Type 1 or Type 2, are
listed at the first iteration.

To further analyze the behaviors of the graph partitioning algorithms, we generate
the Synthetic dataset as follows. Let G be the Synthetic graph. We divide G sequen-
tially into three parts, G1, G2, and G3. The graph G is generated in such a way that
there is no triangle within each Gi (i ∈ {1, 2, 3}) and across any Gi and Gj (i 6= j); that
is, there is no Type 1 and Type 2 triangles with respect to the partition {G1, G2, G3} of
G. The size of each Gi, when loaded in memory, is larger than 2GB but smaller than
4GB.

Table V. The Number of Iterations of Algorithm 2 using Different Graph Partitioning Algorithms on the
Synthetic Dataset

M=256MB M=512MB M=1GB M=2GB M=4GB

Sequential ∞ ∞ ∞ ∞ 3

Dominating − − − 2 2
Dominating (Upper Bound) − − − 5 3

Randomized 45 23 10 5 2
Randomized (Upper Bound) 40 20 10 5 3
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We show the results for the three graph partitioning algorithms in Table V. For Se-
quential, the algorithm obviously enters a dead loop when the available memory is less
than 4GB, since there is no Type 1 and Type 2 triangles in these cases. For Dominat-
ing, the algorithm fails when the available memory is smaller than O(|VG| log2 p) bits,
but is very effective when more memory (M ≥ 2GB) is available. For Randomized, it
works in all settings of available memory and thus the result again demonstrates its
advantage over Sequential and Dominating. However, for the cases when Dominating
works, Randomized is not as effective as Dominating, since Dominating groups neigh-
boring vertices together even though the neighboring vertices may be widely scattered
over the Synthetic graph. In the case when Sequential also works (M = 4GB), Ran-
domized is more effective than Sequential, mainly because Sequential requires more
on data locality which is lacking in the Synthetic dataset.

9.2. Performance Comparison with Existing Algorithms

We now report the performance of Algorithm 2 by applying Sequential (denoted by TL-
Sequential), Dominating (denoted by TL-Dominating), and Randomized (denoted by
TL-Randomized), compared with In-Mem [Latapy 2008] and Semi-Stream [Becchetti
et al. 2008]. We set the available memory size for our I/O-efficient algorithms is to be
2GB.

Table VI reports the running time (wall-clock time in seconds) of all the algo-
rithms. We do not report the memory consumption since the smaller datasets LJ and
USRD can fit in memory and all algorithms use roughly the same memory (less than
1GB), while our algorithms and Semi-Stream use all available memory for the larger
datasets BTC and WebUK. In-Mem is extremely slow on the larger datasets BTC and
WebUK due to too many I/O swaps as a result of insufficient memory.

Table VI. Running Time (wall-clock time in seconds) of Our Algorithms Com-
pared with the Existing Algorithms

LJ USRD BTC WebUK

TL-Sequential 29.63 6.24 350 2411
TL-Dominating 29.43 12.46 412 2503
TL-Randomized 20.60 29.03 465 2991

In-Mem 32.98 6.68 − −
Semi-Stream (σ(N△(v)) ≈ 0.8) 306 321 3402 7032
Semi-Stream (σ(N△(v)) ≈ 0.5) 1275 1683 13711 34722

The result shows that the performance of our algorithm, whichever of the three
graph partitioning algorithms is applied, is very competitive. When the graphs can fit
in memory, our algorithm has comparable performance with In-Mem. When the graphs
are too large to fit in memory, our algorithm demonstrates significant advantage over
Semi-Stream, which makes multiple passes over the original input graph (in contrast
to our algorithm that makes multiple iterations over a shrinking graph).

Let σ(N△(v)) be the average approximation error rate for N△(v), defined as
(|approximate value − exact value|/exact value) averaged over all vertices. We find
that Semi-Stream takes significantly longer time in order to obtain a low σ(N△(v)).
Table VI reports the running time for Semi-Stream by setting σ(N△(v)) ≈ 0.8 and
σ(N△(v)) ≈ 0.5. The result shows that Semi-Stream is many times slower than our
algorithm in the case of σ(N△(v)) ≈ 0.8 and up to orders of magnitude slower in the
case of σ(N△(v)) ≈ 0.5. Note that our algorithm is an exact algorithm.

From another angle of comparison, we choose a setting for Semi-Stream that it takes
slightly longer time than our algorithm TL-Sequential, and we report the error rate
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Table VII. Error Rate of Semi-Stream
at Comparable Running Time with TL-
Sequential

LJ USRD BTC WebUK
97.6% 133.6% 115.4% 95.0%

of Semi-Stream in Table VII. The result shows that at comparable running time with
TL-Sequential, the error rate σ(N△(v)) of Semi-Stream increases significantly.

9.3. Performance on Update in a Dynamic Network

In this subsection, we assess the performance of updating the set of triangles when
the input graph is updated. We use a real dynamic network, the Technorati blog (blog)
dataset, whose edges are associated with a time stamp when they were created. The
Technorati blog network was collected from the top-15 popular queries published by
Technorati (technorati.com) every three hours over a period of over a year. For each
query, the top-50 results are retrieved. In the blog network, vertices are blogs and
edges indicate that two blogs appear in the search result of the same query.

Update in the blog network is performed as follows. We first choose a starting point,
that is the blog network obtained by the end of February 2007. Then, to test the update
performance on edge insertion, we insert the edges that were created in the months of
March and April 2007, in the order of their time stamp. To test the update performance
on edge deletion, we delete the edges that were created in the months of February and
January 2007, in the reverse order of their time stamp. For each edge insertion and
deletion, we update the set of triangles accordingly.

Table VIII reports the size of the blog network at the starting point T , i.e., the end of
February 2007, two months before T , denoted by T−, and two months after T , denoted
by T+. We also report the number of triangles in the blog network at T−, T , and T+,
respectively. The result shows that with the deletion of 1.63 million edges created in
the period from T− to T , we need to delete 5.41 million triangles. This implies that for
each edge deletion, on average 3.32 triangles need to be deleted. On the other hand,
the insertion of 1.91 million edges from T to T+ triggers the insertion of 6.81 million
triangles. On average, we have 3.57 triangles that need to be inserted for each edge
insertion.

Table VIII. Dataset Size, Triangle Number, Storage Size of Triangles, Triangle-Tree Sizes for Storage and Update,
and Disk Utilization (for Update Only)

|VG| |EG| N△(G) Storage Triangle-Tree Triangle-Tree Disk Utilization
Size of △(G) Size for Storage Size for Update (Update Only)

T− 0.09M 1.47M 5.06M 58MB 25MB 67MB 42.97%
T 0.17M 3.10M 10.47M 120MB 49MB 91MB 65.63%
T+ 0.27M 5.01M 17.28M 198MB 78MB 123MB 79.69%

Table VIII also reports the disk storage size of the set of triangles, the size of the
triangle-tree (for storage purpose only), and that of the triangle-tree (for update pur-
pose), at T−, T , and T+, respectively. The result shows that the triangle-tree saves the
storage space considerably, especially when the tree is used for storage purpose only,
i.e., there is not pointer information maintained for update purpose and every disk
block is fully used. The disk utilization rate is considerably lower at T− than at T+.
This is mainly because the update is performed as a series of continuous edge deletions
or edge insertions, respectively, from the starting point T . As a result, the utilization
rate at T− is lower than at T while that at T+ is higher than at T , which results in the
greater gap between T− and T+. However, a continuous load of edge deletions and that

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



Triangle Listing in Massive Networks A:29

of edge insertions stand for the two severest update conditions. And the result shows
that in all cases, the invariant given in Section 7 is always maintained.

Table IX reports the update time and the number of I/Os used for the update, aver-
aged over all edges or triangles. The result shows that inserting or deleting triangles
is highly efficient, which is only about 0.01 milliseconds per triangle update. The num-
ber of I/Os required is only slightly more than 1 I/Os for each of the three vertices in
a triangle. For edge insertion and edge deletion, they are more costly because an edge
insertion/deletion may trigger the insertion/deletion of a number of triangles.

Table IX. Average Update Time (wall-clock time in milliseconds) and Average Num-
ber of I/Os for Update

Insertion Insertion Deletion Deletion
(Per Edge) (Per △) (Per Edge) (Per △)

Avg. Update Time (msec) 0.11 0.015 0.07 0.011

Avg. Number of I/Os 33.43 4.69 26.45 4.00

In summary, the results show that the triangle-tree is efficient for storage as well as
for frequent updates in dynamic networks.

9.4. Performance on Applications

The experimental results in Section 9.2 have demonstrated that our algorithm has
significant advantages over the existing algorithms when the input graphs are too
large to fit in main memory.

Table X reports the error rates of clustering coefficient and transitivity of a network
approximated by Semi-Stream, denoted by σ(C(G)) and σ(T (G)), respectively. The re-
sult shows that, although the error rate of Semi-Stream is not too large for those global
measures, our algorithm is able to obtain the exact results (the running time is almost
the same as that shown in Table VI).

Table X. Error Rate of Semi-Stream for σ(C(G)) and σ(T (G))

BTC (σ(C(G))) BTC (σ(T (G))) WebUK (σ(C(G))) WebUK (σ(T (G)))
26.5% 40.2% 12.7% 15.3%

We also assess the performance of using our algorithm for computing triangular-
vertex-connectivity-based equivalence classes, compared with the state-of-the-art in-
memory algorithm [Batagelj and Zaveršnik 2007] (also denoted by In-Mem here for
simplicity).

Table XI. Triangular Vertex Connectivity

LJ USRD BTC WebUK
TL-Sequential 173.1 11.5 380.2 3670.3
In-Mem 138.1 9.0 N.A. N.A.

Table XI shows that the running time of our algorithm is comparable with that of
In-Mem on the smaller datasets LJ and USRD. But on the larger datasets, BTC and
WebUK, In-Mem becomes infeasible due to insufficient memory while our algorithm
still records high efficiency. The result again demonstrates that our algorithm is I/O-
efficient for processing large graphs.
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10. RELATED WORK

The algorithms for triangle listing or counting can be categorized into exact algorithms
and approximation algorithms.

The first non-trivial exact algorithm was a spanning-tree-based algorithm [Itai and
Rodeh 1977; 1978], which achieves a running time of O(|EG|1.5). This is the optimal
worst-case time complexity for an in-memory algorithm for triangle listing because
there are O(|VG|3) = O(|EG|1.5) triangles in a graph in the worst case. However, a
number of practical fast algorithms have been proposed that use vertex ordering and
efficient data structures such as lookup tables to facilitate the intersection of the adja-
cency lists of the neighboring vertices [Schank and Wagner 2005; Schank 2007; Latapy
2008]. For triangle counting, the number of triangles can be counted in O(|EG|1.41) time
with a fast matrix multiplication algorithm [Alon et al. 1997]. The basic triangle list-
ing algorithm was also extended to count triads (directed subgraph with three vertices)
in directed graph [Batagelj and Mrvar 2001]. Maintaining the number of triangles in
a dynamic graph was discussed in [Eppstein and Spiro 2009]. All the aforementioned
algorithms are in-memory algorithm and require at least O(|VG|+ |EG|) memory space.

Approximation algorithms have been proposed for triangle counting in large graphs
that cannot fit in main memory. Accurate streaming algorithms [Alon et al. 1999; Bar-
Yossef et al. 2002; Coppersmith and Kumar 2004; Buriol et al. 2006] and sampling
algorithm [Tsourakakis et al. 2009] have been proposed to estimate the total number
of triangles in a graph. More closely related to our work is the semi-streaming algo-
rithm that estimates the number of triangles formed locally at each vertex in a graph
[Becchetti et al. 2008; 2010]. All these algorithms, however, cannot handle triangle
listing, which has a broader range of applications.

For triangle counting in a large graph that cannot fit in main memory, parallel al-
gorithms that apply the MapReduce framework were proposed recently [Suri and Vas-
silvitskii 2011]. Their algorithms are exact and do not require to keep the entire input
graph in main memory at each individual machine. Our approach is orthogonal to their
approach of parallelization for triangle counting. However, we note that the MapRe-
duce framework may not be suitable for the task of triangle counting. As a cross refer-
ence, the experiments in [Suri and Vassilvitskii 2011] show that, for the same dataset
LJ, the fastest of their parallel algorithms running on 1,636 machines takes 5.33 min-
utes, while our algorithms running on a single machine use less than 0.5 minute. Note
that their algorithm is proven to be work efficient. The much longer running time may
be due to the hidden cost needed in the shuffling phase between Mappers and Reduc-
ers, because to make triangle counting work in a MapReduce framework, the algorithm
has to produce a huge amount of intermediate data. Moreover, many researchers or the
average users may not have access to or may not be willing to pay for the computing
resource of hundreds to thousands of machines. On the contrary, our algorithms are
efficient and require only one ordinary machine.

Compared with the preliminary version of this paper [Chu and Cheng 2011], we pro-
posed a new graph partitioning algorithm for the purpose of triangle listing; that is,
the randomized graph partitioning. The randomized graph partitioning addresses the
limitations of both the sequential and dominating-set-based graph partitioning algo-
rithms. It gives a theoretical guarantee on the I/O complexity of triangle listing (unlike
sequential partitioning), and at the same time has a bound on the memory usage (un-
like dominating-set-based partitioning). This paper also removes an assumption made
in the preliminary version [Chu and Cheng 2011] and proposes an I/O-efficient algo-
rithm for triangle listing in graphs with extremely high degree vertices. These two new
additions are of significant importance with respect to the design of I/O-efficient algo-
rithms, making our work not only practically useful but also theoretically feasible for
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the problem of triangle listing in very large graphs that cannot fit in main memory. In
addition, we also discussed the update of triangles in a dynamic network, and proposed
a disk-based data structure for efficient update and storage of the set of triangles.

Apart from triangle listing, Algorithms for listing more complex substructures, such
as maximal cliques, in massive networks were also studied [Cheng et al. 2010; 2011].
Their algorithms also partition the input graph and then perform local computation.
However, for each subgraph in their partition, they need to scan the graph once to ex-
tract the subgraph, while we extract each subgraph in our partition as we sequentially
scan the graph.

11. CONCLUSIONS

We presented an I/O-efficient algorithm for exact triangle listing. To avoid random disk
access, our algorithm partitions the input graph and only process one subgraph in the
partition each time. By carefully extracting the subgraphs, we proved that triangle
listing in those local subgraphs gives globally correct and complete result. We devised
three effective partitioning strategies, one achieving high efficiency in practice while
the other two bounding the I/O complexity theoretically.

Our experimental results on large graphs with up to 106 million vertices and 1,877
million edges show that our algorithm is either significantly more efficient or more
accurate than the state-of-the-art approximation algorithm for local triangle counting
[Becchetti et al. 2008]. Our results on a dynamic network show that the triangle-tree is
able to support frequent updates efficiently. The results also demonstrate the efficiency
of applying our algorithm on computing various network measures such as clustering
coefficients and transitivity, as well as equivalence classes of the graph based on tri-
angular vertex connectivity. Thus, we believe that our work can benefit many other
applications in processing large graphs.

Finally, the graphs we study in this paper are undirected graphs. However, our algo-
rithms can be extended to list triangles in directed graphs as follows. When the input
graph G is a directed graph, the triangles in G also contain directed edges. In general,
there are 7 types of triangles in a directed graph by considering the combinations of
all possible directions of the edges (note that an edge in a triangle can be either bi-
directional or uni-directional). To list all such triangles, we can convert G into an undi-
rected graph and then apply our algorithms to list the set of all undirected triangles.
Note that all directed triangles are also present in this set. To obtain the directions of
the edges in each triangle, a post-processing is needed by scanning the directed edges
of G to assign the directions of the edges to the triangles. When G cannot fit in memory,
we read O(M) edges into memory each time, scan the set of triangles once to assign
the directions of these edges, and then continue to read the next O(M) edges until
all edges of G are processed. The I/O complexity required for the post-processing is

O( |EG|
M scan(|△(G)|)).

For future work, we plan to study the application of triangle listing for the com-
putation of k-trusses [Cohen 2009]. A k-truss of a graph G is the largest subgraph of
G in which every edge is contained in at least (k − 2) triangles within the subgraph.
A k-truss can be considered as the “core” of a k-core [Cheng et al. 2011], and thus
more useful than k-core in many applications such as visualization and fingerprinting
of large-scale networks, interpretation of cooperative processes in complex networks,
and analysis of network connectivity.
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