Triangle Listing in Massive Networks and Its Applications

Shumo Chu
Nanyang Technological University, Singapore
shumo.chu@acm.org

ABSTRACT

Triangle listingis one of the fundamental algorithmic problems
whose solution has numerous applications especially irattad-
ysis of complex networks, such as the computation of clirger
coefficient, transitivity, triangular connectivity, etExisting algo-
rithms for triangle listing are mainly in-memory algoritspwhose
performance cannot scale with the massive volume of todagts
growing networks. When the input graph cannot fit into maimme
ory, triangle listing requires random disk accesses thaticeur
prohibitively large 1/0 cost. Some streaming and samplilyp-a
rithms have been proposed but these are approximationthigst
We propose an I/O-efficient algorithm for triangle listinQur al-
gorithm is exact and avoids random disk access. Our reuits s
that our algorithm is scalable and outperforms the statinefart
local triangle estimation algorithm.

Categories and Subject Descriptors

H.2.8 DATABASE MANAGEMENT]: Database Applications—
Data mining G.2.2 PISCRETE MATHEMATICS]: Graph The-
ory—Graph algorithms

General Terms
Algorithms, Experimentation, Performance

Keywords

Triangle Listing, Triangle Counting, Clustering CoefficieLarge
Graphs, Massive Networks

1. INTRODUCTION

We study the problem dfiangle listing in a simple undirected
graphG, that is,listing all triangles inG. Our focus is to design
efficient algorithm for triangle listing whe@' is too large to fit into
main memory and is disk-resident.

Triangles are one of the fundamental types of small subgraph
most commonly used in the analysis of complex graphs/né&svor
In particular, a triangle is also the shortest non-triviatle (i.e., a

Permission to make digital or hard copies of all or part o§ twork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

KDD'11, August 21-24, 2011, San Diego, California, USA.

Copyright 2011 ACM 978-1-4503-0813-7/11/08 ...$10.00.

James Cheng
Nanyang Technological University, Singapore

j.cheng@acm.org

cycle of length 3) and the smallest non-trivial clique (ig&clique
of size 3). The concept of triangle is at the heart of the didimof
many important measures for network analysis, such as tiséect
ing coefficient (of a single vertex and of the entire netwdag],
transitivity [35, 28], triangular connectivity [8], etc.lKkhese mea-
sures can be directly computed from the result of triangknig.

The aforementioned triangle-centered measures havesariany-
ber of important applications. In addition, triangle ligjialso has
a broad range of applications in other areas such as in tbeweis/
of dense subgraphs [34], in the detection of spamming #etvi
[9], in the study of motif occurrences [27], in the uncoveriof
hidden thematic relationships in the Web [15], etc. In adish ap-
plications, triangle listing plays a vital role in their cpntation.

Although many algorithms have been proposed for triangte li
ing, these existing algorithms [22, 23, 4, 7, 30, 29, 26, 16jad
into the category ofn-memory algorithms The best existing in-
memory algorithms require space that is asymptoticallgdmin
the size of the input graph. Unfortunately, many real-waréd-
works have grown exceedingly large in recent years and are co
tinuing to grow at a steady rate. For example, the Web graph ha
over 1 trillion webpages (by Google in 2008), most socialaeks
(e.g., Facebook, MSN) have millions to billions of usersngnai-
tation networks (e.g., DBLP, Citeseer) have millions of &
tions, other networks such as phone-call networks, emailorés,
stock-market networks, etc., are also massively large.

For handling large graphs that cannot fit into main memory, a
number of approximation algorithms have been proposed, [B4,6
10, 9, 33]. However, all these algorithms are restrictedofraxi-
mation oftriangle countingi.e., estimating the number of triangles
in a graph or that formed at each vertex. Algorithms for eating
the total number of triangles in a graph only are more aceyat
6, 14, 10, 33], but their applications are also much moretéchi
than those of triangle listing. Algorithms for estimatirdgetnum-
ber of triangles formed at each vertex in a graph, also cédiea
triangle counting have a wider range of applications but the state-
of-the-art algorithm [9] is still not accurate enough. Maover, the
set of applications of triangle counting is only a small ®ihsf
that of triangle listing, as the result of triangle countiaglirectly
obtainable from that of triangle listing.

We propose an I/O-efficient algorithm for exact triang|éitig.
Designing such an algorithm is difficult because triangéng re-
quires to access the neighbors of the neighbor of a verteichwh
may appear arbitrarily in any position in the graph. Thuadmn
access to the graph stored on disk is required, which inauge h
I/O cost.

Our algorithm iteratively partitions the input graghinto a set
of subgraphs that fit into memory and processes triangiadish
each local subgraph. To ensure the correctness and congsstef

the final result computed iteratively from the local subgapwe
categorize the triangles into three types. We devise an amésin
that lists all Type 1 and Type 2 triangles, and then convéres t
remaining Type 3 triangles into Types 1 and 2 by a new pantitio
at the next iteration. To limit the total number of iterasprwe

show that we can remove all edges in each subgraph at the end

of each iteration, thus shrinking until it becomes empty. We
propose two effective algorithms for graph partitioning thee task

of triangle listing in our framework, one achieving high effincy

in practice while the other giving theoretical bound on tbealt

number of iterations (also efficient in practice).

We evaluate our algorithm on large real datasets with up 6 10
million vertices and 1,877 million edges, by comparing wiitie
state-of-the-art in-memory algorithm [26] and the mosatexd ap-
proximation algorithm [9]. Our algorithm achieves commea
performance with the in-memory algorithm when the graphfitan
into memory. For large graphs that cannot fit into memory,ethe
ror rate of the approximation algorithm [9] can be as larg8%#%
to 133% while ours returns exact result, with comparablaingm
time and memory. When we attempt to attain a lower error rate,
e.g., at 50%, the approximation algorithm is already ordérsag-
nitude slower than our exact algorithm.

Paper Organization. Section 2 gives the notations and problem
definition. Section 3 describes an in-memory algorithm. ti6ac

4 discusses our main algorithm. Section 5 presents two appli
tions of our algorithm. Section 6 reports the experimergalits.
Section 7 gives the related work. Section 8 concludes therpap

2. NOTATIONS AND PROBLEM DEFINITION

Let G = (Ve, Ec) be a simple undirected graph, whére is
the set of vertices anfl is the set of edges. We define the set of
adjacent verticegor neighbor$ of a vertexv in G asadj (v) =
{u : (u,v) € Eg}, and thedegreeof v in G asdeg.(v) =
ladj ¢ (v)].
list representation, with vertices ordered according &irttD.

Given three distinct vertices,, v, w € Vi, we say that:, v and
w form atriangle in G if (u,v), (u,w), (v,w) € Eg. We use
Awvw to denote the triangle formed by the vertiegs) andw.

The set of triangles that consist of a vertexdenoted byA\(v),
is defined as

AW) = {Duwvw : u,w € adj o (v), (u,w) € Ec}. 1)

The triangle numberof v, denoted byNa (v), is defined as
Na(v) = |Av)). _ , o
Let A(G) be the set of all triangles i&. Then,A(G) is given
by
AG) = | A).

veVg

@)

The number of triangles it¥, denoted byNa (G), is defined as
Na(G) = |A(G)|, which is also given as follows

NM@:%E:MM)

veVg

©)

Equation 3 holds because every trianglg.., is counted three
times for the three verticas, v andw.

Given a vertexw € Vg, we say that:, v andw form anopen
triangle centered ab if u,w € adj(v). An open triangle is con-
sidered as a potential triangle. A triangte,.., may be regarded
as aclosed triangleand by definition,A .., contains three open
triangles, centered at, v, andw, respectively.

We assume that the graph is stored in the adjacency

Table 1: Notations

Symbol Description
G= Vg, Eg) A simple undirected graph
adj (v) The set of adjacent vertices ofn G
deg(v) Degree ofv in G
Aypw A triangle formed byu, v andw
A(v) The set of triangles that containgEq. 1)
Na(v) The triangle number of, Na (v) = [A(v)]
A(G) The set of all triangles 67 (Eq. 2)
Na(G) The number of triangles i67 (Eq. 3)
Ny (v) The number of open triangles centered €Eq. 4)
M Available main memory size
B Disk block size
scan(N) O(N/B) 1/0s
sort(N) @(% logy /g) I/Os

The number of open triangles centered atlenoted byVy (v),
is defined as

Nu(v) = 3 degg (0)(dege(v) — 1) @

Intuitively, Ny (v) defines the maximum number of triangles that
can be potentially formed from.
The following example illustrates the concepts.

Example 1.Let G be the graph given in Figure 1. Consider
the verticesh and e, we haveA(b) = {Aabe, Dbeg, Dbgi } @and
A(e) = {Adej,Aefh}. ThUS,Na(b) =3 andNA(e) = 2. By
Equation 4,Ny (b) = 6 and Ny (e) = 6 sincedeg(b) = 4 and
deg(e) = 4. We can also easy find (G) = {Aabe, Dveg, Dogi,
Ddej, Depny Ajri} andNa(G) = [A(G)| = 6. o

Figure 1: A Graph G

Problem Definition. This paper studies the problem wfangle
listing defined as follows. Given a gragh = (V&, Eg), output
A(G). In particular, we design 1/O-efficient algorithms whéh
cannot fit into main memory, i.e(|Ve| + |Ec|) > M, whereM
is the size of available main memory.

For the complexity analysis of 1/0-efficient algorithms, wee
the standard I/O model [2] with the following parametet$:is the
available main memory size ard is the disk block size, where
1<« B< M/2.

We also use the following standard I/O complexity notations
scan(N)=0O(N/B) 1/0s andsoﬁ(N):@(%logM/B X) 1iOs,
whereN is the amount of data being read or written from/to disk.

Table 1 gives the frequently-used notations in the paper.

3. IN-MEMORY TRIANGLE LISTING

In this section, we first present an in-memory algorithm for t
angle listing and use it to highlight the difficulty for trigle listing
when main memory is insufficient.

We sketch the algorithm in Algorithm 1. Assume that the input
graphd is in its adjacency-list representation and the vertices ar

Algorithm 1 In-Memory Triangle Listing
Input: A graphG = (Vg, Ec)

Output: A(G)

1L A(G) «+ 0;

2. foreachu € Vi do

3. foreachwv € adj(u), wherev > u, do

4. for eachw € (adj 5 (u) N adj g (v)), wherew > v, do
5.

6.

AG) + (AG) U{Duvw});
retumn A(G);

ordered in ascending order of their vertex ID, which is thestmo
common format used for graph storage. The algorithm int¢sse
the adjacency-list of each vertexwith the adjacency-list ofi’s
neighborv. Clearly, each vertew as the result of the intersection
is a neighbor of both, andv, and asu andv are also neighbors,
we obtain a triangle\ ;.

A naive algorithm for triangle listing processes every héior v
in adj ;(u), and intersects the entivelj ; (u) and adj;(v). This
involves much redundant processing. In Algorithm 1, we gl
cess a neighbor that is ordered after (Line 3), because ib is
ordered beforey, i.e.,v < u, thenv has been processed befare
and hence the trianglé ..., must have been already listed (note
that Avuw = Auww). For the intersection betweeni; . (u) and

- Remove fromG those edges of7; that can no longer con-
tribute to triangle listing.

e Repeat the above iteration until becomes empty.

The main idea of our algorithm is to iteratively partitioneth
graph and perform triangle listing in each local subgréhhsep-
arately, as to avoid random access to arbitrary verticed (agir
adjacency-list) in the graph.

The concept is simple but there are a number of challengaig te
nical issues: (1) ensuring the correctness and completeridhe
final result obtained from the iterative local computatidi@3 an ef-
fective and efficient partitioning algorithm for trianglisting; and
(3) bounding the overall /0O complexity of the algorithme(i.the
1/0 complexity at each step and the number of iterations) dise
cuss the above three issues in each of the following subsecti

4.2 Correctness and Global-Completeness
of Local Triangle Listing
We first propose an algorithm that ensures the correctndsis of
angle listing in each local subgraph @fas well as the complete-
ness of the global result obtained from all local computetio
The design of our algorithm is based on the following Lemma.

LEMMA 1. LetP = {Gi,...,Gs,...,Gp} be a partition of

adj(v) (Line 4), we also skip those vertices that are ordered be- G, WhereUi<i<, Ve, = Vg andVe, NVe; =0forl <i<j <

fore v (hence alsa:) in adj(u) and adj,(v). The above pro-
cess is similar to the state-of-the-art in-memory algaonitior tri-
angle listing [26], except that their work orders the vetién non-
increasing order of their degree, which requires pre-fmsiog.
Whend cannot fit into main memory, however, the I/O cost be-
comes a bottleneck. Most existing in-memory algorithms 22
4,7, 29, 26, 16] require random access to eaéf, (v) for each
v € adjs(u) (as in Line 4 for the intersection). Note that each
adj - (u) in Algorithm 1 is read sequentially as we reéd but
adj - (v) can be in an arbitrary position on disk whe®ds stored.
Others [30] use an additional array for each verte&iand the to-
tal size of these arrays is in the order of the size of the igpaph;

thus these arrays need to be stored on disk and random ascess i

again inevitable.

WhenG cannot fit into main memory, Algorithm 1 requir€X| E¢ |-
scan(dmas)) 1/0s in the worst case, wherg,,,, is the maximum
vertex degree iii7, since we need to randomly accesg . (v) for
each edgdu,v) € E¢ anddeg;(v) = O(dmaz). This I/O cost
can be prohibitively large especially whéhis large.

4. 1/O-EFFICIENT TRIANGLE LISTING

In this section, we first sketch the framework of our algarith
and then present the details of the algorithm.

4.1 Algorithm Framework

When the input grapld? cannot fit into memory, we could only
load a portion (i.e., a subgraph) @fthat can fit into memory each
time. Thus, our algorithm iteratively performs trianglstiing in a
subgraph ofGG that fits in memory. We outline the framework of
our algorithm as follows.

e Each iteration:

- PartitionGG into a set of subgraph®, = {G1, . ..
such that eacli?; can fit into memory;

,Giy ..., Gp},

- Load eachd; into memory and perform triangle listing in
Gi;

p. ThenA(G) = A1 U A2 U A3, whereAl, A2, and A3 are
disjoint sets defined as follows.

[] Al = Ulgigp{Auvw : ’LL,’U,'LU € VG%}-
o A2 =Uicij<p nizi{Duvw 4, v € Vg, w € Vg, }.
o A3 =Uicicj<k<p{Duvw: u € Vg, v € Va,,w € Vg, }.

PROOF First, (A1 U A2U A3) C A(G), since the elements
in A1, A2, andA3 are triangles irG.

Next we showA(G) C (Al U A2 U A3). For any triangle
Auvw € A(G), there are only three cases wherev, andw can
be located: (1) they are all in the same subgréhh (2) two of
them are in the same subgra@h while the other in another differ-
ent subgrapltz; (WLOG, we may assume thatv € Vg,,w €
Va1 # 3)s (3) they are in three different subgrapbs, G,
and G, (WLOG, we may assume that € Vg,,v € Ve, ,w €

Va,,i < j < k). The three cases correspond to the three types

A1, A2, andA3, and thusA(G) C (A1UA2UA3). O

We call triangles ilMA1, A2, andA3, Type 1 Type 2 andType
3 triangles. The following example illustrates the concepthe
three types of triangles.

(G3)

Figure 2: A partition of G in Figure 1: P = {G1,G2,G3s}

Example 2.Figure 2 shows a partitior? = {G1, G2, Gs}, of
the graph shown in Figure 1. In the figur®,sc, Acpr aNd Ak

are Type 1 triangles because all the three vertices of eauigte
are in the same subgraph. We only have one Type 2 triaiglg,,
because its vertices are in two subgraph®inWe have two Type

3 triangles,Awg; and Age;, because all the three vertices of each
triangle are in three different subgraphs/n a

According to Lemma 1, a triangl&. ..., can be listed by search-
ing any subgrapltz; alone only ifu, v andw are all inG; (i.e.,
Type 1 triangles). However, the number of Type 1 triangley ma
be limited. More critically, we cannot remove any edge (aedde
any vertex) ofG; from G even after we list all Type 1 triangles,
because an edde:, v) in Ay, may form another trianglé\ ,,»
with a vertexz in another subgrap&’;.

To enable the removal of edges after all triangles contgitliase
edges are listed, and at same time to ensure the completdribss
global result, we introduce the notion eftended subgraph

Definition1 (EXTENDED SUBGRAPH). Let H = (Vu, En)
be a subgraph ofs. Anextended subgraphf H in G, denoted by
H™, is adirectedsubgraph defined af * = (Viy+, Ey+), where
Var = Ve U{v : u € Va,v € Vg\Vu, (u,v) € Eg} and
Ey+ ={(u,v) : (u,v) € Eg,u € Vi }.

Intuitively, an extended subgraph &f is a subgraph obtained by
adding (toH) those directed edges from the verticedirto those
vertices not inH. In this paper, we assume thaflif; = {v}, for
anyv € V, then the corresponding * fits into memory. We give
an example of extended subgraph as follows.

Example 3.Figure 3 depicts the extended subgraph&of G2,
andGs in Figure 2. The shaded vertices are the vertices in each
G, while the directed edges show the extension to verticesawrit
eachG;. a

Figure 3: The extended subgraphs ofy1, G2, G3 in Figure 2

Based on Definition 1, we have the following lemma for triang|
listing in an extended subgraph.

LEMMA 2. Let H be an extended subgraph of a subgrdgh
of G. Then:

° LetAl(H*) = {Duwvw : Duww € AL, u,v,w € Vi}.
ThenVAuvw € AL(HT), Auww can be listed by searching
H™ alone.

o LetA2(HT) = {Avvw : Duww € A2, u,v € Vir}. Then,
VA uww € A2(HT), Ayww can be listed by searching ™
alone.

In addition, for any edgéu,v) € Em, (u,v) does not exist in
any triangle iNA(G)\(A1(HT) U A2(HT)).

PROOF. First, VAupw € AL(HT), Auww can be listed by
searchingH ™ alone because all the three edgesv) (u,w), and
(v, w) of Ayyyw are inH and hence also il . SecondYA v €

Algorithm 2 I/O-Efficient Triangle Listing

Input: A graphG = (Vz, Ec)

Output: Alisting of A(G)

1. while(G is not empty)

PartitionG into P = {G1,...,Gs,...,Gp};

for each extended subgraptb*:,r of G; € Pdo
List all triangles iNA1(G;H) and A2(G;") (by Algorithm 3);
Remove all edges i&'; from G;

2
3
4.
5

Algorithm 3 Triangle Listing in Extended Subgraph

Input: An extended subgrapH* = (Vg+, Eg+)
Output: A listing of A1(HT) andA2(H™)
1.foreachu € V do
for eachv € adj i (u), wherev > u, do
foreachw € (adj i+ (w) N adj g+ (v)) do
if(w >vorw¢ Vi)
List Avvw;

2

3.
4.
5.

A2(H™T), Auww can be listed by searching ™ alone because
u,v € Vi, w € adjy+(u), w € adj g+ (v), and Ay can be
found by intersectingdj ;;+ (u) andadj ; + (v).

Finally, for any edgu,v) € Eu, (u,v) does not exist in any
triangle inA(G)\(A1(HT)UA2(H™)) because any triangle con-
taining (u, v) must be in eithe\1(H 1) or A2(HT). O

Lemma 2 implies that we can list all Type 1 and Type 2 trian-
gles from the extended subgrapl]” of each subgrapld:; in the
partition P of G. More importantly, after listing the two types of
triangles in eactG;", we can remove all edges @; (i.e., those
bi-directed edges i), since all triangles containing these edges
have been already listed.

The above scheme lists all Type 1 and Type 2 triangles buit stil
misses all Type 3 triangles. We devise an efficient algoritnait-
eratively converts Type 3 triangles into Type 1 and Typeahuies
so that all triangles can be listed, while at the same timaadied
the size of the graph to reduce the I/O cost. We outline our-alg
rithm in Algorithm 2.

Algorithm 2 is essentially an iterative computationf (G;)
and A2(G;) from the extended subgragh! of eachG; € P,
as defined in Lemma 2, whef@ is the new partition of7 at each
iteration. (G; can be easily obtained along with the computation
of P, which we discuss in Section 4.3.)

At the end of each iteration, we remove all edges in &adgcin
the currentP and obtain a shrunk new graph. Then, at the begin-
ning of the next iteration, we re-partition the new shrunkr.
The new partitior® defines new sets ak1(G;") andA2(G;) for
the G of eachG; € P. Thus, Algorithm 2 iteratively converts
the old set of Type 3 triangles in the previous iteration ifigpe 1
and Type 2 triangles with respect to the new partition at tireemt
iteration. This process continues until all edges&siare removed.

Note that another purpose of graph partition is to make $ae t
each subgraph if? is small enough to fit into main memory, so
as to avoid random disk access for triangle listing. Meafeyhie
also want to take full utilization of the available memorydrence
eachG; € P should be as big as possible under the condition
that (|Vs,| + |Eq;|) < M. Thus, ifG at any iteration is small
enough to fit into memory, Step 2 of Algorithm 2 computes a par-
tition consisting of only one element, i.62, = {G}, after which
the algorithm terminates since all edgeginvill be removed at the
end of the iteration.

Step 4 of Algorithm 2 invokes Algorithm 3 to computel (G;")

andA2(G;) from G, i.e., H in Algorithm 3. Algorithm 3is an
in-memory algorithm similar to Algorithm 1. The only diffence
is that the extended grapH™ contains two sets of vertice¥
andVy+\Vg. Algorithm 3 only intersects the adjacency-lists of
those vertices iy. Letw be a vertex found if{adj ;1 (u) N
adj i+ (v)), whereu,v € V. If w € Vi, we also requirev > v
(and hence alsa) >) in order to avoid duplicate listing of the
triangle Ayvw. If w ¢ Vi, then we simply listA .., since it
cannot be listed elsewhere.

We now prove the correctness and completeness of Algorithm 2

THEOREM 1. Given a graphG = (Vg, E¢), Algorithm 2 lists
all triangles inG and no false or duplicate triangle is listed.

PROOF Lemma 2 ensures that (1) all triangles containing a re-
moved edge are listed, (2) all edges of any triangle not gétdi
are still in the currentd, and (3) the already listed triangles will
not be listed again in future iterations because at leasbbtieeir
edges has been removed fr@ By (1) and (2), all triangles iz
are listed becaus@ becomes empty when Algorithm 2 terminates.
Since Algorithm 3 does not list any duplicate triangle duehe
enforced vertex ordering, by (3) Algorithm 2 does not lisy a-
plicate triangle. Finally, since all triangles listed bygatithm 3 are
real triangles irGG, Algorithm 2 does not list any false triangle[]

4.3 Graph Partitioning for Triangle Listing

The objectives of graph partitioning for the task of triangt-
ing are: (1) each subgraph in the partition should fill thelatte

Procedure 4DominatingS€{&)

1. Create a bit arrayl of size|Vz| and set each bit t0;

2. for eachv in G, whereA[v] = 0, do

3. Addwvto D and markv and allv’s neighbors ag in A;
4. return D;

Algorithm 5 Dominating-Set-based Graph Partitioning
Input: A graphG = (Vg, Eg)
Output: A partition of G, P = {G1,...,Gs,...,Gp}

1. Compute a dominating sé&t of G by invoking DominatingS€i(5);

2. Divide D into p disjoint subsets of roughly the same size;

3. Createp subgraphs foP out of thep subsets oD;

4.for eachv € Vg, wherev ¢ D, do

5. Addv (andadj s (v)) to the smallest subgraph A that has
at least(deg (v)/p) neighbors of;

6. return P,

a road network proximate vertices are assigned consecutive
tex IDs and they are stored sequentially in nearby positiotise

adjacency-list graph representation. In social netwoalplgs, local
communities may also be stored together.

4.3.2 Dominating-Set-based Graph Partitioning
Sequential graph partitioning may be efficient in practioéib
gives no guarantee on the number of iterations Algorithm § ma

memory as much as possible; and (2) each subgraph should contake. To this end, we propose another graph partitioningrakgn

tain as many intra-partition edges (i.e., edges within #messub-
graph) as possible. The first objective is to fully utilize mry,
while the second objective is to remove as many edge as p@ssib
at each iteration of Algorithm 2 in order to reduce the numtder
total iterations.

Graph patrtitioning that fulfills the above two objectiveswh
ever, is known to be APX-hard [5] when the number of subgraphs
in the partition is more than 2. There have been a number of ap-
proximation algorithms proposed [25, 19, 24, 17, 18, 1],they
are in-memory algorithms that are not suitable for triatigténg in
massive networks that cannot fit into memory. Instead, we aee
efficient algorithm that partitions a large graph with liedtmem-
ory consumption. We devise two efficient graph partitioréthgp-
rithms that require only one scan or two scans of the inpuplgra
and has linear CPU time complexity.

4.3.1 Sequential Graph Partitioning

Sequential graph partitioning is a simple but very efficiaht
gorithm, which works as follows: we sequentially read theuin
graphG from disk, whenever the available memory is filled up, the
portion of G being read in memory forms a subgraph in the par-
tition. Note that this subgraph is actually an extended sajiig
because each vertexbeing read is associated with its adjacency-
list adj 5 (v).

After we scanG once, we obtain a partition with approximately
(|Va|+|Ec|)/M subgraphs init. Since the algorithm scahsnly
once, it requires onlY(scan(|Ve| + |Ecl)) /0s andO(|Ve| +
|Ec|) CPU time. Furthermore, since the subgraphs in the partition
is obtained sequentially one after another as we gai allows
pipelining such that we can process triangle listing forhesiah-
graph as soon as it is produced, rather than starting tedrsging
until the entire partitioning process finishes.

Sequential graph partitioning is effective when graphsitgikh
high locality, i.e., vertices are naturally clustered adaag to the
sequential order by which the graph is stored. For example, i

based on the concept dbminating set

A dominating set of a grapty is a subset of vertice® C Vg
such that every vertex ity is either inD or a neighbor of some
vertex inD. Computing the minimum dominating set is known to
be NP-hard. However, for our purpose of graph partitioning,
do not require a minimum dominating set. More specificallg, w
devise a one-pass algorithm to compute a dominating sé&t fas
shown in Procedure 4.

In Procedure 4, we first initialize a bit array of size|V| and
set each bit t@. Then, we read~ from disk sequentially and for
each vertex (together withadj . (v)) read, we add to D only
if Alv] = 0. If v is added toD, then we also set and allv's
neighbors tal in A. Thus, all vertices i\ D are neighbors of
some vertex irD.

We then useD to compute a partition of7, as outlined in Al-
gorithm 5. For triangle listing, we want the vertices in ttzene
subgraph in the partition to be highly connected with eadtemt
We divide D into p = O((|Vc| + |Eg|)/M) subsets and create
p initial subgraphs ifP. Then, we use the dominating vertices in
each subset as seeds to grow each opthebgraphs by attracting
their neighbors. Again, we redd sequentially from disk. For each
vertexv (together withadj , (v)) read, letdeg (v) be thecurrent
total number of neighbors afin all the subgraphs in thaurrent P,
which can be easily obtained by scanning . (v). We choose the
subgraph that has at leasteg(v)/p) neighbors ofu currently,
and addv to that subgraph. If there are more than one such sub-
graph, we add to the subgraph with the smallest size so far. Upon
addingv, we also addudj (v) to the subgraph, so that the resul-
tant subgraph is an extended subgraph ready for triangiedis
Algorithm 2.

Whenever the size of a subgraph becomes greaterBhéire.,
the block size), we write a block of the subgraph to disk. Thus
we need extra I/Os to first write all subgraphs7nto disk and
then read each subgraph#into memory for triangle listing in
Algorithm 2. However, the asymptotic I/O complexity of Algo

rithm 5 is still O(scan(|Ve| + |Ecl)). The CPU time complexity
is O(|Vz| + |Ecl) since we only need to scanlj . (v) for each
v. But to computedeg, (v) efficiently we need a look-up table
of size (|Vz|log, p) bits. However, in this case, the algorithm is
considered as a semi-external-memory algorithm.

Dominating-set-based graph partitioning not only grougigim
borhood vertices together, but more importantly it give®wer
bound on the number of intra-partition edges, i.e., edgasdhn
be removed at the end of each iteration of Algorithm 2.

LEmMMA 3. LetP = {G4,...,Gs,...,Gp} be a partition of
G computed by Algorithm 5. Then, the number of intra-panitio
edges ofP (i.e., edges that are incident on vertices within the same
subgraph inP) is at least| E¢|/p.

PROOF. Let P, be the current partitiod® at the time when
a vertexv is added toP at Step 5 of Algorithm 5. For each ver-
texv, v is added to the smallest subgraplfy .,y that has at least
(degﬂv)t(v) /p) neighbors ofv. First, there must exist such a sub-

graph inP,,y whenwv is being added, becauseis the neigh-
bor of at least one vertex iD. Thus, the total number of intra-
partition edges is at |ea§:uevG\D(d69Pt(U>(”)/p)- We have

2 veve\D degpt(v) (v) = |Eq| because each edge is counted once

by one of its end vertices and no edge exists between any two ve
tices inD according to Procedure 4. The result thus followkl

We further show that Lemma 3 implies an upper bound on the
total number of iterations required for Algorithm 2 in Lemwhén
the following subsection.

4.4 Bounding I/O Complexity

We now analyze the overall complexity of our algorithm. As
discussed in Section 4.3, graph partitioning at each iteratf Al-
gorithm 2 require® (scan(|Va|+|Eg|)) /0s. For triangle listing
at each iteration, we only read once the extended subgragécbf
subgraph in the partition into memory. Thus, the overall dfn-
plexity for each iteration i) (scan(|Va|+ |Ec|)) (for a shrinking
). Note that both partitioning algorithms in Section 4.3uadiy
output the extended subgraphs.

From the above analysis, the overall I/O complexity of Algo-
rithm 2 depends on the total number of iterations needed. elf w
use sequential graph partitioning, the number of iteratidgpends
largely on the locality of the graph data, which varies fdfedient
datasets. If we use dominating-set-based graph partitipihen
we can obtain an upper bound on the number of iterations ésut r
quire|Vg| log, p bits of memory) for Algorithm 2 as follows.

LEMMA 4. If Algorithm 2 partitionsG by Algorithm 5, then the
number of iterations in Algorithm 2 i©(|E¢|/M).

PrROOF According to Lemma 3, the number of intra-partition
edges ofP is at leas{ E¢|/p, which means that at lealsT¢|/p ~
|Ec|/(|Ec|/M) = M edges can be removed at the end of each it-
eration since = O((|Va|+|Ec|)/M) = |Eg|/M. Thus, the to-
tal number of iterations in Algorithm 2 is approximaté§ec|/M. [

THEOREM 2. If Algorithm 2 partitionsG by Algorithm 5, then
|[Ec|

Algorithm 2 requiresO (128, scan (V| + |Ec|) — (12€1)2M)
I/0s, where(|Ve | + | Ec|) is the original size of the input grap®.
PrROOF According to Lemma 4, at leadtl edges are removed
from G at the end of each iteration of Algorithm 2. Thus, at the
start of thei-th iteration,(: — 1) M edges have been removed from
the originalG. Summing up, the overall complexity of Algorithm
21is O(SIEG1M (sean([Ve| + |Eal) - (i = 1)M)) = O(F5¢!
scan(|Va| + |Ecl) — (Behy2m). O

M

Algorithm 6 Triangle Counting, Clustering Coeff., and Transitivity

Input: A graphG = (Vg, Eg)
Output: Na (v) andC(v) for eachv € Vg, C(G), andT (G)

1.Vv € VG,NA(U) <+~ 0;

2.C(G) + 0; NA(G) «+ 0; Nv(G) « 0;

3. for eachtriangle A, listed by Algorithm 2do
Na(z) + Na(z) + 1, forz € {u,v,w};
.foreachv € V5 do

C(v) + 2N (v)/deg g (v)(deg g (v) — 1);
C(G) + C(G) + C(v);

NA(G) — NA(G) + NA(’U);

NV(G) 4= Ny(G) + deg (v)(deg g (v) — 1)/2;
10.C(G) « C(G)/|Val;

11. T(G) «— 3NA(G)/N\/(G);

CoNo O~

Finally, we remark that the CPU time complexity for triangle
listing at each iteration of Algorithm 2 is the same as thathef
counter-part in-memory algorithm with the same input graple
thus refer the readers to the related work [26] for details.

5. APPLICATIONS OF TRIANGLE LISTING

Triangle listing has many important applications. Here,fae
cus on a few popular ones and demonstrate how our algorithm ca
be applied to benefit these applications in massive netwiikis
cannot fit into main memory.

5.1 Triangle Counting, Clustering Coefficients,
and Transitivity
Our algorithm can be readily applied to compute trianglentou
ing, clustering coefficients, and transitivity. For contpleess, we
first give the definition of the concepts.
Clustering coefficien36], which is a popular index for network
analysis, is defined as follows.

Definition2 (CLUSTERING COEFFICIENT). The clustering co-
efficient of a vertex € Vi, wheredeg . (v) > 1, denoted by’ (v),
is defined as
_ Na(v)
Ny(v)
Whendeg . (v) < 1, we define(v) = 0.
The clustering coefficient @f, denoted by’ (G), is defined as

o) = |V—1G| 3" c). ©)

veVg

C(v)

®)

Transitivity[35, 28] is defined as follows.

Definition3 (TRANSITIVITY). The transitivity of a grapi,
denoted by’ (G), is defined as

_ N6
T(G) TS N0

Instead of first computing all triangles and performing atpos
processing, our algorithm can be pipelined to compute aelatiove
measures as shown in Algorithm 6. The algorithm is self-@xatory.

Lines 5-9 of Algorithm 6 requires another scan@f but the
asymptotic I/O complexity of the algorithm is the same ascAlg
rithm 2. UpdatingNa (v) for all v € Vg may requireO(|Ve|)
space, but this can be avoided by writidg~ (v) after process-
ing each extended subgraph and then merging the resultsent-al
tended subgraphs. The asymptotic I/O complexity still resthe
same since the size &f» (v) for all v in an extended subgraph is
bounded by the size of the subgraph.

@)

5.2 Triangular Vertex Connectivity

Triangular vertex connectivitgalso called3-gonal connectivity
defines stronger connectivity in a network than single liokreec-
tivity, since edges that are in short cyclic component (érigngles)
are considered as strong ties [21, 8]. Triangular vertexiectivity
is formally defined as follows [29].

Definition4 (TRIANGULAR-VERTEX-CONNECTIVITY). Two
verticesu andwv are triangularly vertex connecteiflthere exists a
sequence of triangle§A 1, ..., A,) such thatu is in Ay, visin
Ay, and either (1n = 1, or (2) for1 < i < n, A; and A4
share at least one common vertex.

Intuitively, if w andv are connected by a single path, then they

become disconnected if any edge on the path is removed. On the

contrary, ifu andv are connected by a sequence of triangles, then
removing any edge does not disconnect them.

Triangular vertex connectivity is important in many apptions
[15, 20, 32, 36]. It defines an equivalence relatioft on V.
Two verticesu andv belong to the same equivalence class if they
are triangularly vertex connected. The following exampletfer
explains the concept.

Example 4.In the graph in Figure 1, there are two equivalence
classes defined by triangular vertex connectivity,b, ¢, g, 7} and
{d,e, f, h,j, k,1}, which can be obtained by removing the three
edges (in bold lines) that are not part of any triangle. Renpany
edge from the induced subgraph by any class does not distionne
the vertices in the class, which shows a stronger conngctivi O

The existing algorithm for computing the equivalence @assf
V2 is based on triangle listing [8]. However, the algorithmuiegs
random disk access when the graph is stored in disk.

The result of Algorithm 2 can be easily pipelined to compute
the equivalence classes Bf°. Upon processing each extended
subgraph, we first mark the directed edgesv), (u,w), (v, w),
whereu < v < w, for each triangle) .., listed. Then, we write
these marked edges to disk. When Algorithm 2 terminateseae r
the marked edges one by one to find which equivalent class each
v € Vg belongs to. This can be done by using two lookup tables,
C and A, whereC[j] = 4 indicates that is the smallest class ID
that Classj is connected to, and[v] = ¢ indicatesv belongs to
Classi. Initially, C[i] = ¢ and A[v] = co. We keep a counter
which is initialized to 0. For each marked edge v) read, we do
the following: (1) if A[u] = A[v] = oo, we setd[u] = Afv] = ¢
and increment; (2) if A[u] # A[v], WLOG assumingA[u] <
Alv], we setC[A[v]] = min(C[A[]v]], A[u]) and A[v] = Alul;

(3) otherwise, do nothing. Finally, we scéahonce to update each
C[¢] to the small class ID that Clagds connected to, and update
Alv] = C[A[v]], which indicates the clagsbelongs to.

Since the number of marked edges written to disk for each ex-
tended subgraph cannot exceed the size of the subgraplsythea
totic I/O complexity of computing the equivalence classe3’6
by the above algorithm is the same as Algorithm 2.

6. EXPERIMENTAL RESULTS

We compare our algorithms with the semi-streaming local tri
angle estimating algorithm (denoted Bgmi-strean) [9] and the
state-of-the-art in-memory triangle listing algorithmefebted by
In-mem) [26]. We run the experiments on a machine with an Intel
Xeno 2.67GHz CPU and 4GB RAM, and we use g++ 4.4.5 com-
piler on CentOS 5.4.

Dataset. We use four real datasettiveJournal(LJ), U.S. road
network (USRD), World Wide Web of UKWebUK), andBillion

vertices are pages and edges are hyperlinks.

Triple Challenge(BTC). LJ is a social network (http://www.live-

journal.com, http://snap.stanford.edu), where vertazesmembers

and edges represent friendship between members. USRD is the
road network of United States, where vertices represeatsat-

tions and endpoints, and edges represent the roads camntdetse
intersections or road endpoints. WebUK is obtained fromYhe

HOO webspam dataset (http://barcelona.research.yattpoahere

BTC is a seman-
tic graph converted from the Billion Triple Challenge 2009R
dataset (http://vmlion25.deri.ie), where each vertexasents an
object such as a person, a document, and an event, and each edg
represents the relationship between two vertices sucheasdithor",
"links-to", and "has-title". We give the number of verticaad
edges, and the storage size on disk, of the datasets in Table 2

Table 2: Datasets
LJ USRD | WebUK BTC
Vel 4.8M 24M 106M 165M
|Ec| 69M 58M 1,877M 773M
Disk size | 809.1MB | 969.6MB | 20.3GB | 10.0GB

6.1 Effectiveness of Partitioning Algorithms

We first show the effectiveness of two graph partitioningoalg
rithms, sequential graph partitionindSeg and dominating-set-
based graph partitionindDS). We set the available memory size
M for partitioning to be512M B, 1GB, 2G' B, and4G B, respec-
tively. Table 3 reports the number of iterations AlgorithniaRes
by adopting Seq or DS, on the two large datasets BTC and We-
bUK. The theoretical upper bound on the number of iteratimns
adopting DS is also shown.

Table 3: Number of Iterations of Algorithm 2

M=512MB | M=1GB | M=2GB | M=4GB
BTC (Seq) — 00 7 2 1
BTC (DS) 6 3 2 1
BTC (Theoretical) 19 10 5 3
WebUK (Seq) 3 2 2 1
WebUK (DS) 3 2 2 1
WebUK (Theoretical) 29 15 7 4

The result shows that Seq is effective in practice. The numbe
of iterations of Algorithm 2 by adopting Seq is as small ag tha
adopting DS in most cases, but as shown in Table 4 in Sectibn 6.
adopting Seq is more efficient than adopting DS since DS resjui
two more scans off at each iteration of Algorithm 2.

However, when the available memory becomes smallér<
512MB), adopting Seq does not terminate since there is a poin
that all triangles are Type 3 triangles w.r.t. the partititnus no
more edges can be removed. Such a situation may also happen
to other datasets that exhibit low locality. In this case, $h8ws
its advantage as it gives a guaranteed upper bound on theemumb
of iterations, while our result shows that it indeed has =iast
performance. The result also shows that in all cases, thealact
number of iterations needed by adopting DS is always lessitha
theoretical upper bound.

6.2 Triangle Listing

We now report the performance of Algorithm 2 by adopting Seq
(denoted byTL-Seq) and by adopting DS (denoted Gy.-DS),
compared with In-mem and Semi-stream. We set the available
memory size to be 2GB.

Table 4 reports the running time of the different algorithimée
do not report the memory consumption since the smaller efstas

LJ and USRD can fit in memory and all algorithms use roughly
the same memory (less than 1GB), while our algorithms and-Sem
stream use all available memory for BTC and WebUK. In-mem
runs out of memory for BTC and WebUK (BTC and WebUK re-
quires about 10GB and 20GB of memory).

Table 4: Running time (wall-clock time in seconds)
LJ [USRD | BTC | WebUK
TL-Seq 29.63| 6.24 | 350 2411
TL-DS 29.43| 12.46 | 412 2503
In-mem 32.98| 6.68 N.A. N.A.
Semi-stream(c(Na (v)) = 0.8) | 306 321 3402 7032
Semi-stream(c (N (v)) ~ 0.5) | 1275 | 1683 | 13711 34722

The result shows that the performance of our algorithmsiig ve
competitive. When the graphs can fit into memory, our alporg

Table 7: Triangular Vertex Connectivity

LJ_ [USRD [BTC | WebUK
TL-Seq | 173.1| 11.5 | 380.2| 36703
In-mem | 138.1] 9.0 | NA. | NA.
7. RELATED WORK

The algorithms for triangle listing or counting can be carized
into exactalgorithms andpproximationalgorithms.

The first non-trivial exact algorithm was a spanning-treedd
algorithm [22, 23], which achieves a running time®@f|Ec|*-®).
The asymptotic complexity of in-memory exact triangleitigthas
not been improved since then. However, a number of pradtisal
algorithms have been proposed that use vertex ordering fiind e
cient data structures such as lookup tables to facilitaéntersec-
tion of the adjacency-lists of the neighboring vertices, [28, 26].

have comparable performance compared with In-mem. When the For triangle counting, the number of triangles can be calivie

graphs are too large to fit into memory, our algorithms derrates
great advantage over Semi-stream, which makes multipleepas
over the data as do our algorithms.

Leta(Na (v)) be theaverage approximation error rater Na (v),
defined aq|approximate value- exact valug/exact valug aver-
aged over all vertices. We find that Semi-stream takes pitovaly
long time to obtain a lov&(Na (v)). Table 4 reports the running
time for Semi-stream by settifg N A (v)) ~ 0.8 andz (Na (v)) ~

O(|Ec|**') time with a fast matrix multiplication algorithm [4].
The basic triangle listing algorithm was also extended tmntdri-
ads (directed subgraph with three vertices) in directeglgfa].
Maintaining the number of triangles in a dynamic graph was di
cussed in [16]. All the aforementioned algorithms are immoey
algorithm and require at leaét(|Vz| + | Ec|) space.
Approximation algorithms have been proposed for trianglent-
ing in large graphs that cannot fit in memory. Accurate stiegm

0.5. The result shows that Semi-stream is many times slower than algorithms [3, 6, 14, 10] and sampling algorithm [33] haverbe

both our algorithms fo&(Na (v)) =~ 0.8 and up to orders of mag-
nitude slower foz(Na (v)) = 0.5.

From another angle of comparison, if we choose a setting for
Semi-stream that it takes slightly longer time than our atgm
TL-Seq, we also report its error rate in Table 5. The resudtxsh
that at comparable time, the error raéNx (v)) of Semi-stream
increases significantly.

Table 5: Error rate of Semi-stream at comparable time as TL-
Seq

LJ
97.6%

USRD
133.6%

BTC
115.4%

WebUK
95.0%

6.3 Performance on Applications

When the graphs are too large to fit into memory, our algorithm
shows significant advantages over approximation algosthifable
6 reports the error rate of clustering coefficient of a neknamnd
of transitivity approximated by Semi-stream, denoted-6¢(G))
ando(7(G)), respectively. The result shows that, although the
error rate of Semi-stream is not too large for those globalsuees,
we obtain exact results at comparable time.

Table 6: Error rate of Semi-stream for o(C(G)) and o (T (G))
I BTC (7(C(G))) [BTC (+(71G))) | WebUK @(C(G]) I WebUK (o(7.(@)) |

265% | 402% | 2.7% 15.3% |

We also assess the performance of using our algorithm for com
puting triangular-vertex-connectivity-based equivakenlasses, com-
pared with the state-of-the-art in-memory algorithm [8k¢ade-
noted byln-mem here for simplicity).

Table 7 shows that the running time of our algorithm is compa-
rable with In-mem for LJ and USRD. But for the larger datasets
BTC and WebUK, In-mem runs out of memory while our algo-
rithm still records high efficiency. The result again dentmates
our algorithms are 1/0-efficient for processing large gsaph

proposed to estimate the total number of triangles in a grisjaine
closely related to estimate the number of triangles fornoedlly
at each vertex in a graph. All these algorithms, howevernaain
handle triangle listing, which has a broader range of appibos.
Very recently, a parallel algorithm for triangle countinging
MapReduce framework [31] has been proposed. Their algotigh
exact and do not require to keep the entire input graph in mgmo
at each individual machine. Algorithms for listing more qaex
subgraphs are also studied in [13, 12].

8. CONCLUSIONS

We propose an I/O-efficient algorithm for exact triang|¢itig.
To avoid random disk access, we partition the input graphoahgd
process one subgraph in the partition each time. By cayeéxH
tracting the subgraphs, we prove that triangle listing msthlocal
subgraphs gives globally correct and complete result. Wisee
two effective partitioning strategies, one achieving héfficiency
in practice while the other bounding the 1/0 complexity tredo
ically. Our experimental results on large graphs with up @6 1
million vertices and 1,877 million edges show that our aitdpon is
significantly more efficient than the state-of-the-art appmation
algorithm for local triangle counting [9]: at comparablenning
time and memory, their algorithm records a very high errée ra
while ours returns the exact result. We also demonstratefthe
ficiency of applying our algorithm on computing various neti
measures such as clustering coefficients and transitastyyell as
equivalence classes of the graph based on triangular veotex
nectivity. Thus, we believe that our work can benefit manyenth
applications in processing large graphs.

For future work, we plan to study the relationship between th
triangles and thé-cores [11] for analyzing massive networks.

Acknowledgment

The authors would like to thank the reviewers for their carive
comments. This research is supported in part by the AcRFITier
Grant (M52020092) from Ministry of Education of Singapore.

9. REFERENCES

[1] A. Abou-Rjeili and G. Karypis. Multilevel algorithms fo
partitioning power-law graphs. i°?DPS 2006.

[2] A. Aggarwal and S. Vitter, Jeffrey. The input/output
complexity of sorting and related problen@ommun. ACM
31(9):1116-1127, 1988.

[3] N. Alon, Y. Matias, and M. Szegedy. The space complexity
of approximating the frequency momenisComput. Syst.
Sci, 58(1):137-147, 1999.

[4] N. Alon, R. Yuster, and U. Zwick. Finding and counting
given length cyclesAlgorithmicg 17(3):354-364, 1997.

[5] K. Andreev and H. Racke. Balanced graph partitioning. In
SPAA pages 120-124, 2004.

[6] Z. Bar-Yossef, K. Hildrum, and F. Wu. Incentive-comjté
online auctions for digital goods. IBRODA pages 964-970,
2002.

[7] V. Batagelj and A. Mrvar. A subquadratic triad census
algorithm for large sparse networks with small maximum
degree Social Networks23(3):237-243, 2001.

[8] V. Batagelj and M. Zaversnik. Short cycle connectivity.
Discrete Mathematigs307(3-5):310 — 318, 2007.

[9] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis. Effigit
semi-streaming algorithms for local triangle counting in
massive graphs. IKDD, pages 16—24, 2008.

[10] L. S. Buriol, G. Frahling, S. Leonardi,

A. Marchetti-Spaccamela, and C. Sohler. Counting triasmgle
in data streams. IRODS pages 253-262, 2006.

[11] J. Cheng, Y. Ke, S. Chu, and M. T. Ozsu. Efficient core
decomposition in massive networks.I{BDE, pages 51-62,
2011.

[12] J. Cheng, Y. Ke, A. W.-C. Fu, J. X. Yu, and L. Zhu. Finding
maximal cliques in massive network&CM Transactions on
Database Systems

[13] J. Cheng, Y. Ke, A. W.-C. Fu, J. X. Yu, and L. Zhu. Finding
maximal cliques in massive networks by h*-graph. In
SIGMOD Conferencepages 447-458, 2010.

[14] D. Coppersmith and R. Kumar. An improved data stream
algorithm for frequency moments. BODA pages 151-156,
2004.

[15] J.-P. Eckmann and E. Moses. Curvature of co-links uarv
hidden thematic layers in the world wide wétiNAS
99:5825-5829, 2002.

[16] D. Eppstein and E. S. Spiro. Theindex of a graph and its
application to dynamic subgraph statisticsWADS pages
278-289, 2009.

[17] U. Feige and R. Krauthgamer. A polylogarithmic
approximation of the minimum bisection. FOCS pages
105-115, 2000.

[18] U. Feige, R. Krauthgamer, and K. Nissim. Approximating
the minimum bisection size (extended abstractSTOC
pages 530-536, 2000.

[19] C. M. Fiduccia and R. M. Mattheyses. A linear time heticis
for improving network partitions. IREEE Design
Automation Conferen¢d 982.

[20] B. Fritzke. A self-organizing network for unsupervise
learning.TR-03-02642, 1993.

[21] M. Granovetter. The strength of weak tidsnerican Journal
of Sociology 78(6):1360-1380, 1973.

[22] A. Itai and M. Rodeh. Finding a minimum circuit in a graph
In STOC pages 1-10, 1977.

[23] A. Itai and M. Rodeh. Finding a minimum circuit in a graph
SIAM J. Comput.7(4):413-423, 1978.

[24] G. Karypis and V. Kumar. Parallel multilevel k-way
partitioning for irregular graphSIAM Review
41(2):278-300, 1999.

[25] B. W. Kernigham and S. Lin. An efficient heuristic procee
for partitioning graphsBell System Technical Journgdages
291-308, 1970.

[26] M. Latapy. Main-memory triangle computations for very
large (sparse (power-law)) grapfi$eor. Comput. Sgi.
407(1-3):458-473, 2008.

[27] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan,

D. Chklovskii, and U. Alon. Network Motifs: Simple
Building Blocks of Complex NetworksScience
298(5594):824-827, 2002.

[28] M. E. J. Newman, D. J. Watts, and S. H. Strogatz. Random
graph models of social networkBNAS 99:2566-2572,
2002.

[29] T. Schank. Algorithmic aspects of triangle-based ek
analysisPh.D. Dissertation, Universitéat Karlsruhe, Fakult&t
fur Informatik 2007.

[30] T. Schank and D. Wagner. Finding, counting and listihg a
triangles in large graphs, an experimental studyMBA
pages 606-609, 2005.

[31] S. Suriand S. Vassilvitskii. Counting triangles and tlurse
of the last reducer. IWWW pages 607-614, 2011.

[32] G. Taubin and J. Rossignac. Geometric compressiomgffro
topological surgeryACM Trans. Graph.17(2):84-115,

1998.

[33] C. E. Tsourakakis, U. Kang, G. L. Miller, and C. Falowgso
Doulion: counting triangles in massive graphs with a cain. |
KDD, pages 837-846, 2009.

[34] N. Wang, J. Zhang, K.-L. Tan, and A. K. H. Tung. On
triangulation-based dense neighborhood graphs discovery
PVLDB, 4(2):58-68, 2010.

[35] S. Wasserman and K. Faust. Social network analysis:
Methods and application€ambridge University Press
1994.

[36] D.J. Watts and S. H. Strogatz. Collective dynamics of
‘small-world’ networks.Nature 393(6684):440-442, 1998.

