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ABSTRACT
Triangle listing is one of the fundamental algorithmic problems
whose solution has numerous applications especially in theanal-
ysis of complex networks, such as the computation of clustering
coefficient, transitivity, triangular connectivity, etc.Existing algo-
rithms for triangle listing are mainly in-memory algorithms, whose
performance cannot scale with the massive volume of today’sfast
growing networks. When the input graph cannot fit into main mem-
ory, triangle listing requires random disk accesses that can incur
prohibitively large I/O cost. Some streaming and sampling algo-
rithms have been proposed but these are approximation algorithms.
We propose an I/O-efficient algorithm for triangle listing.Our al-
gorithm is exact and avoids random disk access. Our results show
that our algorithm is scalable and outperforms the state-of-the-art
local triangle estimation algorithm.

Categories and Subject Descriptors
H.2.8 [DATABASE MANAGEMENT ]: Database Applications—
Data mining; G.2.2 [DISCRETE MATHEMATICS ]: Graph The-
ory—Graph algorithms

General Terms
Algorithms, Experimentation, Performance

Keywords
Triangle Listing, Triangle Counting, Clustering Coefficient, Large
Graphs, Massive Networks

1. INTRODUCTION
We study the problem oftriangle listing in a simple undirected

graphG, that is,listing all triangles inG. Our focus is to design
efficient algorithm for triangle listing whenG is too large to fit into
main memory and is disk-resident.

Triangles are one of the fundamental types of small subgraphs
most commonly used in the analysis of complex graphs/networks.
In particular, a triangle is also the shortest non-trivial cycle (i.e., a
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cycle of length 3) and the smallest non-trivial clique (i.e., a clique
of size 3). The concept of triangle is at the heart of the definition of
many important measures for network analysis, such as the cluster-
ing coefficient (of a single vertex and of the entire network)[36],
transitivity [35, 28], triangular connectivity [8], etc. All these mea-
sures can be directly computed from the result of triangle listing.

The aforementioned triangle-centered measures have a large num-
ber of important applications. In addition, triangle listing also has
a broad range of applications in other areas such as in the discovery
of dense subgraphs [34], in the detection of spamming activities
[9], in the study of motif occurrences [27], in the uncovering of
hidden thematic relationships in the Web [15], etc. In all these ap-
plications, triangle listing plays a vital role in their computation.

Although many algorithms have been proposed for triangle list-
ing, these existing algorithms [22, 23, 4, 7, 30, 29, 26, 16] all fall
into the category ofin-memory algorithms. The best existing in-
memory algorithms require space that is asymptotically linear in
the size of the input graph. Unfortunately, many real-worldnet-
works have grown exceedingly large in recent years and are con-
tinuing to grow at a steady rate. For example, the Web graph has
over 1 trillion webpages (by Google in 2008), most social networks
(e.g., Facebook, MSN) have millions to billions of users, many ci-
tation networks (e.g., DBLP, Citeseer) have millions of publica-
tions, other networks such as phone-call networks, email networks,
stock-market networks, etc., are also massively large.

For handling large graphs that cannot fit into main memory, a
number of approximation algorithms have been proposed [3, 6, 14,
10, 9, 33]. However, all these algorithms are restricted to approxi-
mation oftriangle counting, i.e., estimating the number of triangles
in a graph or that formed at each vertex. Algorithms for estimating
the total number of triangles in a graph only are more accurate [3,
6, 14, 10, 33], but their applications are also much more limited
than those of triangle listing. Algorithms for estimating the num-
ber of triangles formed at each vertex in a graph, also calledlocal
triangle counting, have a wider range of applications but the state-
of-the-art algorithm [9] is still not accurate enough. Moreover, the
set of applications of triangle counting is only a small subset of
that of triangle listing, as the result of triangle countingis directly
obtainable from that of triangle listing.

We propose an I/O-efficient algorithm for exact triangle listing.
Designing such an algorithm is difficult because triangle listing re-
quires to access the neighbors of the neighbor of a vertex, which
may appear arbitrarily in any position in the graph. Thus, random
access to the graph stored on disk is required, which incurs huge
I/O cost.

Our algorithm iteratively partitions the input graphG into a set
of subgraphs that fit into memory and processes triangle listing in
each local subgraph. To ensure the correctness and completeness of



the final result computed iteratively from the local subgraphs, we
categorize the triangles into three types. We devise an mechanism
that lists all Type 1 and Type 2 triangles, and then converts the
remaining Type 3 triangles into Types 1 and 2 by a new partition
at the next iteration. To limit the total number of iterations, we
show that we can remove all edges in each subgraph at the end
of each iteration, thus shrinkingG until it becomes empty. We
propose two effective algorithms for graph partitioning for the task
of triangle listing in our framework, one achieving high efficiency
in practice while the other giving theoretical bound on the total
number of iterations (also efficient in practice).

We evaluate our algorithm on large real datasets with up to 106
million vertices and 1,877 million edges, by comparing withthe
state-of-the-art in-memory algorithm [26] and the most related ap-
proximation algorithm [9]. Our algorithm achieves comparable
performance with the in-memory algorithm when the graph canfit
into memory. For large graphs that cannot fit into memory, theer-
ror rate of the approximation algorithm [9] can be as large as95%
to 133% while ours returns exact result, with comparable running
time and memory. When we attempt to attain a lower error rate,
e.g., at 50%, the approximation algorithm is already ordersof mag-
nitude slower than our exact algorithm.

Paper Organization. Section 2 gives the notations and problem
definition. Section 3 describes an in-memory algorithm. Section
4 discusses our main algorithm. Section 5 presents two applica-
tions of our algorithm. Section 6 reports the experimental results.
Section 7 gives the related work. Section 8 concludes the paper.

2. NOTATIONS AND PROBLEM DEFINITION
Let G = (VG, EG) be a simple undirected graph, whereVG is

the set of vertices andEG is the set of edges. We define the set of
adjacent vertices(or neighbors) of a vertexv in G asadjG(v) =
{u : (u, v) ∈ EG}, and thedegreeof v in G as degG(v) =
|adjG(v)|. We assume that the graph is stored in the adjacency
list representation, with vertices ordered according to their ID.

Given three distinct vertices,u, v, w ∈ VG, we say thatu, v and
w form a triangle in G if (u, v), (u, w), (v, w) ∈ EG. We use
△uvw to denote the triangle formed by the verticesu, v andw.

The set of triangles that consist of a vertexv, denoted by△(v),
is defined as

△(v) = {△uvw : u,w ∈ adjG(v), (u,w) ∈ EG}. (1)

The triangle numberof v, denoted byN△(v), is defined as
N△(v) = |△(v)|.

Let △(G) be the set of all triangles inG. Then,△(G) is given
by

△(G) =
⋃

v∈VG

△(v). (2)

The number of triangles inG, denoted byN△(G), is defined as
N△(G) = |△(G)|, which is also given as follows

N△(G) =
1

3

∑

v∈VG

N△(v). (3)

Equation 3 holds because every triangle△uvw is counted three
times for the three verticesu, v andw.

Given a vertexv ∈ VG, we say thatu, v andw form anopen
triangle centered atv if u,w ∈ adjG(v). An open triangle is con-
sidered as a potential triangle. A triangle△uvw may be regarded
as aclosed triangleand by definition,△uvw contains three open
triangles, centered atu, v, andw, respectively.

Table 1: Notations
Symbol Description

G = (VG, EG) A simple undirected graph
adjG(v) The set of adjacent vertices ofv in G
degG(v) Degree ofv in G
△uvw A triangle formed byu, v andw
△(v) The set of triangles that containsv (Eq. 1)
N△(v) The triangle number ofv, N△(v) = |△(v)|
△(G) The set of all triangles inG (Eq. 2)
N△(G) The number of triangles inG (Eq. 3)
N∨(v) The number of open triangles centered atv (Eq. 4)
M Available main memory size
B Disk block size

scan(N) Θ(N/B) I/Os
sort(N) Θ(N

B
logM/B

N
B
) I/Os

The number of open triangles centered atv, denoted byN∨(v),
is defined as

N∨(v) =
1

2
degG(v)(degG(v)− 1). (4)

Intuitively,N∨(v) defines the maximum number of triangles that
can be potentially formed fromv.

The following example illustrates the concepts.

Example 1.Let G be the graph given in Figure 1. Consider
the verticesb and e, we have△(b) = {△abc,△bcg ,△bgi} and
△(e) = {△dej ,△efh}. Thus,N△(b) = 3 andN△(e) = 2. By
Equation 4,N∨(b) = 6 andN∨(e) = 6 sincedegG(b) = 4 and
degG(e) = 4. We can also easy find△(G) = {△abc,△bcg,△bgi,
△dej ,△efh,△jkl} andN△(G) = |△(G)| = 6. 2

Figure 1: A Graph G

Problem Definition. This paper studies the problem oftriangle
listing defined as follows. Given a graphG = (VG, EG), output
△(G). In particular, we design I/O-efficient algorithms whenG
cannot fit into main memory, i.e.,(|VG| + |EG|) > M , whereM
is the size of available main memory.

For the complexity analysis of I/O-efficient algorithms, weuse
the standard I/O model [2] with the following parameters:M is the
available main memory size andB is the disk block size, where
1 ≪ B ≤ M/2.

We also use the following standard I/O complexity notations:
scan(N)=Θ(N/B) I/Os andsort(N)=Θ(N

B
logM/B

N
B
) I/Os,

whereN is the amount of data being read or written from/to disk.
Table 1 gives the frequently-used notations in the paper.

3. IN-MEMORY TRIANGLE LISTING
In this section, we first present an in-memory algorithm for tri-

angle listing and use it to highlight the difficulty for triangle listing
when main memory is insufficient.

We sketch the algorithm in Algorithm 1. Assume that the input
graphG is in its adjacency-list representation and the vertices are



Algorithm 1 In-Memory Triangle Listing

Input : A graphG = (VG, EG)
Output : △(G)

1.△(G)← ∅;
2. for eachu ∈ VG do
3. for each v ∈ adjG(u), wherev > u, do
4. for eachw ∈ (adjG(u) ∩ adjG(v)), wherew > v, do
5. △(G)← (△(G) ∪ {△uvw});
6. return △(G);

ordered in ascending order of their vertex ID, which is the most
common format used for graph storage. The algorithm intersects
the adjacency-list of each vertexu with the adjacency-list ofu’s
neighborv. Clearly, each vertexw as the result of the intersection
is a neighbor of bothu andv, and asu andv are also neighbors,
we obtain a triangle△uvw.

A naive algorithm for triangle listing processes every neighborv
in adjG(u), and intersects the entireadjG(u) andadjG(v). This
involves much redundant processing. In Algorithm 1, we onlypro-
cess a neighborv that is ordered afteru (Line 3), because ifv is
ordered beforeu, i.e.,v < u, thenv has been processed beforeu
and hence the triangle△vuw must have been already listed (note
that△vuw = △uvw). For the intersection betweenadjG(u) and
adjG(v) (Line 4), we also skip those vertices that are ordered be-
fore v (hence alsou) in adjG(u) andadjG(v). The above pro-
cess is similar to the state-of-the-art in-memory algorithm for tri-
angle listing [26], except that their work orders the vertices in non-
increasing order of their degree, which requires pre-processing.

WhenG cannot fit into main memory, however, the I/O cost be-
comes a bottleneck. Most existing in-memory algorithms [22, 23,
4, 7, 29, 26, 16] require random access to eachadjG(v) for each
v ∈ adjG(u) (as in Line 4 for the intersection). Note that each
adjG(u) in Algorithm 1 is read sequentially as we readG, but
adjG(v) can be in an arbitrary position on disk whereG is stored.
Others [30] use an additional array for each vertex inG and the to-
tal size of these arrays is in the order of the size of the inputgraph;
thus these arrays need to be stored on disk and random access is
again inevitable.

WhenG cannot fit into main memory, Algorithm 1 requiresO(|EG|·
scan(dmax )) I/Os in the worst case, wheredmax is the maximum
vertex degree inG, since we need to randomly accessadjG(v) for
each edge(u, v) ∈ EG anddegG(v) = O(dmax ). This I/O cost
can be prohibitively large especially whenG is large.

4. I/O-EFFICIENT TRIANGLE LISTING
In this section, we first sketch the framework of our algorithm

and then present the details of the algorithm.

4.1 Algorithm Framework
When the input graphG cannot fit into memory, we could only

load a portion (i.e., a subgraph) ofG that can fit into memory each
time. Thus, our algorithm iteratively performs triangle listing in a
subgraph ofG that fits in memory. We outline the framework of
our algorithm as follows.

• Each iteration:

- PartitionG into a set of subgraphs,P = {G1, . . . , Gi, . . . , Gp},
such that eachGi can fit into memory;

- Load eachGi into memory and perform triangle listing in
Gi;

- Remove fromG those edges ofGi that can no longer con-
tribute to triangle listing.

• Repeat the above iteration untilG becomes empty.

The main idea of our algorithm is to iteratively partition the
graph and perform triangle listing in each local subgraphGi sep-
arately, as to avoid random access to arbitrary vertices (and their
adjacency-list) in the graph.

The concept is simple but there are a number of challenging tech-
nical issues: (1) ensuring the correctness and completeness of the
final result obtained from the iterative local computations; (2) an ef-
fective and efficient partitioning algorithm for triangle listing; and
(3) bounding the overall I/O complexity of the algorithm (i.e., the
I/O complexity at each step and the number of iterations). Wedis-
cuss the above three issues in each of the following subsections.

4.2 Correctness and Global-Completeness
of Local Triangle Listing

We first propose an algorithm that ensures the correctness oftri-
angle listing in each local subgraph ofG as well as the complete-
ness of the global result obtained from all local computations.

The design of our algorithm is based on the following Lemma.

LEMMA 1. Let P = {G1, . . . , Gi, . . . , Gp} be a partition of
G, where∪1≤i≤pVGi

= VG andVGi
∩ VGj

= ∅ for 1 ≤ i < j ≤
p. Then,△(G) = △1 ∪ △2 ∪ △3, where△1, △2, and△3 are
disjoint sets defined as follows.

• △1 = ∪1≤i≤p{△uvw : u, v, w ∈ VGi
}.

• △2 = ∪1≤i,j≤p ∧ i6=j{△uvw : u, v ∈ VGi
, w ∈ VGj

}.

• △3 = ∪1≤i<j<k≤p{△uvw: u ∈ VGi
, v ∈ VGj

, w ∈ VGk
}.

PROOF. First, (△1 ∪ △2 ∪ △3) ⊆ △(G), since the elements
in △1, △2, and△3 are triangles inG.

Next we show△(G) ⊆ (△1 ∪ △2 ∪ △3). For any triangle
△uvw ∈ △(G), there are only three cases whereu, v, andw can
be located: (1) they are all in the same subgraphGi; (2) two of
them are in the same subgraphGi while the other in another differ-
ent subgraphGj (WLOG, we may assume thatu, v ∈ VGi

, w ∈
VGj

, i 6= j); (3) they are in three different subgraphsGi, Gj ,
andGk (WLOG, we may assume thatu ∈ VGi

, v ∈ VGj
, w ∈

VGk
, i < j < k). The three cases correspond to the three types

△1, △2, and△3, and thus△(G) ⊆ (△1 ∪△2 ∪△3).

We call triangles in△1, △2, and△3, Type 1, Type 2, andType
3 triangles. The following example illustrates the concept of the
three types of triangles.

1 2 3

Figure 2: A partition of G in Figure 1: P = {G1, G2, G3}

Example 2.Figure 2 shows a partition,P = {G1, G2, G3}, of
the graph shown in Figure 1. In the figure,△abc, △efh and△jkl



are Type 1 triangles because all the three vertices of each triangle
are in the same subgraph. We only have one Type 2 triangle,△bcg,
because its vertices are in two subgraphs inP . We have two Type
3 triangles,△bgi and△dej , because all the three vertices of each
triangle are in three different subgraphs inP . 2

According to Lemma 1, a triangle△uvw can be listed by search-
ing any subgraphGi alone only ifu, v andw are all inGi (i.e.,
Type 1 triangles). However, the number of Type 1 triangles may
be limited. More critically, we cannot remove any edge (and hence
any vertex) ofGi from G even after we list all Type 1 triangles,
because an edge(u, v) in △uvw may form another triangle△uvx

with a vertexx in another subgraphGj .
To enable the removal of edges after all triangles containing these

edges are listed, and at same time to ensure the completenessof the
global result, we introduce the notion ofextended subgraph.

Definition1 (EXTENDED SUBGRAPH). Let H = (VH , EH)
be a subgraph ofG. Anextended subgraphof H in G, denoted by
H+, is adirectedsubgraph defined asH+ = (VH+ , EH+), where
VH+ = VH ∪ {v : u ∈ VH , v ∈ VG\VH , (u, v) ∈ EG} and
EH+ = {(u, v) : (u, v) ∈ EG, u ∈ VH}.

Intuitively, an extended subgraph ofH is a subgraph obtained by
adding (toH) those directed edges from the vertices inH to those
vertices not inH . In this paper, we assume that ifVH = {v}, for
anyv ∈ V , then the correspondingH+ fits into memory. We give
an example of extended subgraph as follows.

Example 3.Figure 3 depicts the extended subgraphs ofG1, G2,
andG3 in Figure 2. The shaded vertices are the vertices in each
Gi, while the directed edges show the extension to vertices outside
eachGi. 2
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Figure 3: The extended subgraphs ofG1, G2, G3 in Figure 2

Based on Definition 1, we have the following lemma for triangle
listing in an extended subgraph.

LEMMA 2. LetH+ be an extended subgraph of a subgraphH
of G. Then:

• Let △1(H+) = {△uvw : △uvw ∈ △1, u, v, w ∈ VH}.
Then,∀△uvw ∈ △1(H+),△uvw can be listed by searching
H+ alone.

• Let△2(H+) = {△uvw : △uvw ∈ △2, u, v ∈ VH}. Then,
∀△uvw ∈ △2(H+), △uvw can be listed by searchingH+

alone.

In addition, for any edge(u, v) ∈ EH , (u, v) does not exist in
any triangle in△(G)\(△1(H+) ∪△2(H+)).

PROOF. First, ∀△uvw ∈ △1(H+), △uvw can be listed by
searchingH+ alone because all the three edges(u, v) (u,w), and
(v, w) of △uvw are inH and hence also inH+. Second,∀△uvw ∈

Algorithm 2 I/O-Efficient Triangle Listing

Input : A graphG = (VG, EG)
Output : A listing of △(G)

1. while(G is not empty)
2. PartitionG intoP = {G1, . . . , Gi, . . . , Gp};
3. for each extended subgraphG+

i of Gi ∈ P do
4. List all triangles in△1(G+

i ) and△2(G+
i ) (by Algorithm 3);

5. Remove all edges inGi fromG;

Algorithm 3 Triangle Listing in Extended Subgraph

Input : An extended subgraphH+ = (VH+ , EH+)
Output : A listing of △1(H+) and△2(H+)

1. for eachu ∈ VH do
2. for each v ∈ adjH (u), wherev > u, do
3. for eachw ∈ (adjH+ (u) ∩ adjH+ (v)) do
4. if (w > v or w /∈ VH )
5. List△uvw;

△2(H+), △uvw can be listed by searchingH+ alone because
u, v ∈ VH , w ∈ adjH+(u), w ∈ adjH+(v), and△uvw can be
found by intersectingadjH+(u) andadjH+(v).

Finally, for any edge(u, v) ∈ EH , (u, v) does not exist in any
triangle in△(G)\(△1(H+)∪△2(H+)) because any triangle con-
taining(u, v) must be in either△1(H+) or △2(H+).

Lemma 2 implies that we can list all Type 1 and Type 2 trian-
gles from the extended subgraphG+

i of each subgraphGi in the
partitionP of G. More importantly, after listing the two types of
triangles in eachG+

i , we can remove all edges inGi (i.e., those
bi-directed edges inG+

i ), since all triangles containing these edges
have been already listed.

The above scheme lists all Type 1 and Type 2 triangles but still
misses all Type 3 triangles. We devise an efficient algorithmthat it-
eratively converts Type 3 triangles into Type 1 and Type 2 triangles
so that all triangles can be listed, while at the same time reducing
the size of the graph to reduce the I/O cost. We outline our algo-
rithm in Algorithm 2.

Algorithm 2 is essentially an iterative computation of△1(G+
i )

and△2(G+
i ) from the extended subgraphG+

i of eachGi ∈ P ,
as defined in Lemma 2, whereP is the new partition ofG at each
iteration. (G+

i can be easily obtained along with the computation
of P , which we discuss in Section 4.3.)

At the end of each iteration, we remove all edges in eachGi in
the currentP and obtain a shrunk new graph. Then, at the begin-
ning of the next iteration, we re-partition the new shrunk graph.
The new partitionP defines new sets of△1(G+

i ) and△2(G+
i ) for

theG+
i of eachGi ∈ P . Thus, Algorithm 2 iteratively converts

the old set of Type 3 triangles in the previous iteration intoType 1
and Type 2 triangles with respect to the new partition at the current
iteration. This process continues until all edges inG are removed.

Note that another purpose of graph partition is to make sure that
each subgraph inP is small enough to fit into main memory, so
as to avoid random disk access for triangle listing. Meanwhile, we
also want to take full utilization of the available memory and hence
eachGi ∈ P should be as big as possible under the condition
that (|VGi

| + |EGi
|) ≤ M . Thus, ifG at any iteration is small

enough to fit into memory, Step 2 of Algorithm 2 computes a par-
tition consisting of only one element, i.e.,P = {G}, after which
the algorithm terminates since all edges inG will be removed at the
end of the iteration.

Step 4 of Algorithm 2 invokes Algorithm 3 to compute△1(G+
i )



and△2(G+
i ) fromG+

i , i.e.,H+ in Algorithm 3. Algorithm 3 is an
in-memory algorithm similar to Algorithm 1. The only difference
is that the extended graphH+ contains two sets of vertices,VH

andVH+\VH . Algorithm 3 only intersects the adjacency-lists of
those vertices inVH . Let w be a vertex found in(adjH+(u) ∩
adjH+(v)), whereu, v ∈ VH . If w ∈ VH , we also requirew > v
(and hence alsow > u) in order to avoid duplicate listing of the
triangle△uvw. If w /∈ VH , then we simply list△uvw since it
cannot be listed elsewhere.

We now prove the correctness and completeness of Algorithm 2.

THEOREM 1. Given a graphG = (VG, EG), Algorithm 2 lists
all triangles inG and no false or duplicate triangle is listed.

PROOF. Lemma 2 ensures that (1) all triangles containing a re-
moved edge are listed, (2) all edges of any triangle not yet listed
are still in the currentG, and (3) the already listed triangles will
not be listed again in future iterations because at least oneof their
edges has been removed fromG. By (1) and (2), all triangles inG
are listed becauseG becomes empty when Algorithm 2 terminates.
Since Algorithm 3 does not list any duplicate triangle due tothe
enforced vertex ordering, by (3) Algorithm 2 does not list any du-
plicate triangle. Finally, since all triangles listed by Algorithm 3 are
real triangles inG, Algorithm 2 does not list any false triangle.

4.3 Graph Partitioning for Triangle Listing
The objectives of graph partitioning for the task of triangle list-

ing are: (1) each subgraph in the partition should fill the available
memory as much as possible; and (2) each subgraph should con-
tain as many intra-partition edges (i.e., edges within the same sub-
graph) as possible. The first objective is to fully utilize memory,
while the second objective is to remove as many edge as possible
at each iteration of Algorithm 2 in order to reduce the numberof
total iterations.

Graph partitioning that fulfills the above two objectives, how-
ever, is known to be APX-hard [5] when the number of subgraphs
in the partition is more than 2. There have been a number of ap-
proximation algorithms proposed [25, 19, 24, 17, 18, 1], butthey
are in-memory algorithms that are not suitable for trianglelisting in
massive networks that cannot fit into memory. Instead, we need an
efficient algorithm that partitions a large graph with limited mem-
ory consumption. We devise two efficient graph partitioningalgo-
rithms that require only one scan or two scans of the input graph
and has linear CPU time complexity.

4.3.1 Sequential Graph Partitioning
Sequential graph partitioning is a simple but very efficiental-

gorithm, which works as follows: we sequentially read the input
graphG from disk, whenever the available memory is filled up, the
portion ofG being read in memory forms a subgraph in the par-
tition. Note that this subgraph is actually an extended subgraph,
because each vertexv being read is associated with its adjacency-
list adjG(v).

After we scanG once, we obtain a partition with approximately
(|VG|+|EG|)/M subgraphs in it. Since the algorithm scansG only
once, it requires onlyO(scan(|VG| + |EG|)) I/Os andO(|VG| +
|EG|) CPU time. Furthermore, since the subgraphs in the partition
is obtained sequentially one after another as we readG, it allows
pipelining such that we can process triangle listing for each sub-
graph as soon as it is produced, rather than starting triangle listing
until the entire partitioning process finishes.

Sequential graph partitioning is effective when graphs exhibit
high locality, i.e., vertices are naturally clustered according to the
sequential order by which the graph is stored. For example, in

Procedure 4DominatingSet(G)
1. Create a bit arrayA of size|VG| and set each bit to0;
2. for each v in G, whereA[v] = 0, do
3. Addv to D and markv and allv’s neighbors as1 in A;
4. return D;

Algorithm 5 Dominating-Set-based Graph Partitioning

Input : A graphG = (VG, EG)
Output : A partition ofG, P = {G1, . . . , Gi, . . . , Gp}

1. Compute a dominating setD of G by invokingDominatingSet(G);
2. DivideD into p disjoint subsets of roughly the same size;
3. Createp subgraphs forP out of thep subsets ofD;
4. for each v ∈ VG, wherev /∈ D, do
5. Addv (andadjG(v)) to the smallest subgraph inP that has

at least(degP (v)/p) neighbors ofv;
6. return P ;

a road network proximate vertices are assigned consecutivever-
tex IDs and they are stored sequentially in nearby positionsin the
adjacency-list graph representation. In social network graphs, local
communities may also be stored together.

4.3.2 Dominating-Set-based Graph Partitioning
Sequential graph partitioning may be efficient in practice but it

gives no guarantee on the number of iterations Algorithm 2 may
take. To this end, we propose another graph partitioning algorithm
based on the concept ofdominating set.

A dominating set of a graphG is a subset of verticesD ⊆ VG

such that every vertex inG is either inD or a neighbor of some
vertex inD. Computing the minimum dominating set is known to
be NP-hard. However, for our purpose of graph partitioning,we
do not require a minimum dominating set. More specifically, we
devise a one-pass algorithm to compute a dominating set forG as
shown in Procedure 4.

In Procedure 4, we first initialize a bit arrayA of size|VG| and
set each bit to0. Then, we readG from disk sequentially and for
each vertexv (together withadjG(v)) read, we addv to D only
if A[v] = 0. If v is added toD, then we also setv and allv’s
neighbors to1 in A. Thus, all vertices inVG\D are neighbors of
some vertex inD.

We then useD to compute a partition ofG, as outlined in Al-
gorithm 5. For triangle listing, we want the vertices in the same
subgraph in the partition to be highly connected with each other.
We divideD into p = O((|VG| + |EG|)/M) subsets and create
p initial subgraphs inP . Then, we use the dominating vertices in
each subset as seeds to grow each of thep subgraphs by attracting
their neighbors. Again, we readG sequentially from disk. For each
vertexv (together withadjG(v)) read, letdegP(v) be thecurrent
total number of neighbors ofv in all the subgraphs in thecurrentP ,
which can be easily obtained by scanningadjG(v). We choose the
subgraph that has at least(degP(v)/p) neighbors ofv currently,
and addv to that subgraph. If there are more than one such sub-
graph, we addv to the subgraph with the smallest size so far. Upon
addingv, we also addadjG(v) to the subgraph, so that the resul-
tant subgraph is an extended subgraph ready for triangle listing in
Algorithm 2.

Whenever the size of a subgraph becomes greater thanB (i.e.,
the block size), we write a block of the subgraph to disk. Thus,
we need extra I/Os to first write all subgraphs inP to disk and
then read each subgraph inP into memory for triangle listing in
Algorithm 2. However, the asymptotic I/O complexity of Algo-



rithm 5 is stillO(scan(|VG| + |EG|)). The CPU time complexity
is O(|VG| + |EG|) since we only need to scanadjG(v) for each
v. But to computedegP (v) efficiently we need a look-up table
of size(|VG| log2 p) bits. However, in this case, the algorithm is
considered as a semi-external-memory algorithm.

Dominating-set-based graph partitioning not only groups neigh-
borhood vertices together, but more importantly it gives a lower
bound on the number of intra-partition edges, i.e., edges that can
be removed at the end of each iteration of Algorithm 2.

LEMMA 3. Let P = {G1, . . . , Gi, . . . , Gp} be a partition of
G computed by Algorithm 5. Then, the number of intra-partition
edges ofP (i.e., edges that are incident on vertices within the same
subgraph inP) is at least|EG|/p.

PROOF. Let Pt(v) be the current partitionP at the time when
a vertexv is added toP at Step 5 of Algorithm 5. For each ver-
tex v, v is added to the smallest subgraph inPt(v) that has at least
(degP(v)t(v)

/p) neighbors ofv. First, there must exist such a sub-
graph inPt(v) when v is being added, becausev is the neigh-
bor of at least one vertex inD. Thus, the total number of intra-
partition edges is at least

∑
v∈VG\D(degPt(v)

(v)/p). We have∑
v∈VG\D degPt(v)

(v) = |EG| because each edge is counted once
by one of its end vertices and no edge exists between any two ver-
tices inD according to Procedure 4. The result thus follows.

We further show that Lemma 3 implies an upper bound on the
total number of iterations required for Algorithm 2 in Lemma4 in
the following subsection.

4.4 Bounding I/O Complexity
We now analyze the overall complexity of our algorithm. As

discussed in Section 4.3, graph partitioning at each iteration of Al-
gorithm 2 requiresO(scan(|VG|+ |EG|)) I/Os. For triangle listing
at each iteration, we only read once the extended subgraph ofeach
subgraph in the partition into memory. Thus, the overall I/Ocom-
plexity for each iteration isO(scan(|VG|+ |EG|)) (for a shrinking
G). Note that both partitioning algorithms in Section 4.3 actually
output the extended subgraphs.

From the above analysis, the overall I/O complexity of Algo-
rithm 2 depends on the total number of iterations needed. If we
use sequential graph partitioning, the number of iterations depends
largely on the locality of the graph data, which varies for different
datasets. If we use dominating-set-based graph partitioning, then
we can obtain an upper bound on the number of iterations (but re-
quire |VG| log2 p bits of memory) for Algorithm 2 as follows.

LEMMA 4. If Algorithm 2 partitionsG by Algorithm 5, then the
number of iterations in Algorithm 2 isO(|EG|/M).

PROOF. According to Lemma 3, the number of intra-partition
edges ofP is at least|EG|/p, which means that at least|EG|/p ≈
|EG|/(|EG|/M) = M edges can be removed at the end of each it-
eration sincep = O((|VG|+ |EG|)/M) ≈ |EG|/M . Thus, the to-
tal number of iterations in Algorithm 2 is approximately|EG|/M .

THEOREM 2. If Algorithm 2 partitionsG by Algorithm 5, then
Algorithm 2 requiresO( |EG|

M
scan(|VG| + |EG|) − ( |EG|

M
)2M)

I/Os, where(|VG|+ |EG|) is the original size of the input graphG.

PROOF. According to Lemma 4, at leastM edges are removed
from G at the end of each iteration of Algorithm 2. Thus, at the
start of thei-th iteration,(i− 1)M edges have been removed from
the originalG. Summing up, the overall complexity of Algorithm
2 is O(

∑|EG|/M
i=1 (scan(|VG| + |EG|) − (i − 1)M)) = O( |EG|

M

scan(|VG|+ |EG|)− ( |EG|
M

)2M).

Algorithm 6 Triangle Counting, Clustering Coeff., and Transitivity

Input : A graphG = (VG, EG)
Output : N△(v) andC(v) for eachv ∈ VG, C(G), andT (G)

1. ∀v ∈ VG, N△(v)← 0;
2. C(G)← 0; N△(G)← 0; N∨(G)← 0;
3. for each triangle△uvw listed by Algorithm 2do
4. N△(x)← N△(x) + 1, for x ∈ {u, v, w};
5. for each v ∈ VG do
6. C(v)← 2N△(v)/degG(v)(degG(v) − 1);
7. C(G)← C(G) + C(v);
8. N△(G)← N△(G) +N△(v);
9. N∨(G)← N∨(G) + degG(v)(degG(v) − 1)/2;

10. C(G)← C(G)/|VG|;
11. T (G)← 3N△(G)/N∨(G);

Finally, we remark that the CPU time complexity for triangle
listing at each iteration of Algorithm 2 is the same as that ofthe
counter-part in-memory algorithm with the same input graph. We
thus refer the readers to the related work [26] for details.

5. APPLICATIONS OF TRIANGLE LISTING
Triangle listing has many important applications. Here, wefo-

cus on a few popular ones and demonstrate how our algorithm can
be applied to benefit these applications in massive networksthat
cannot fit into main memory.

5.1 Triangle Counting, Clustering Coefficients,
and Transitivity

Our algorithm can be readily applied to compute triangle count-
ing, clustering coefficients, and transitivity. For completeness, we
first give the definition of the concepts.

Clustering coefficient[36], which is a popular index for network
analysis, is defined as follows.

Definition2 (CLUSTERINGCOEFFICIENT). The clustering co-
efficient of a vertexv ∈ VG, wheredegG(v) > 1, denoted byC(v),
is defined as

C(v) =
N△(v)

N∨(v)
. (5)

WhendegG(v) ≤ 1, we defineC(v) = 0.
The clustering coefficient ofG, denoted byC(G), is defined as

C(G) =
1

|VG|

∑

v∈VG

C(v). (6)

Transitivity[35, 28] is defined as follows.

Definition3 (TRANSITIVITY ). The transitivity of a graphG,
denoted byC(G), is defined as

T (G) =
N△(G)

1
3

∑
v∈VG

N∨(v)
. (7)

Instead of first computing all triangles and performing a post-
processing, our algorithm can be pipelined to compute all the above
measures as shown in Algorithm 6. The algorithm is self-explanatory.

Lines 5-9 of Algorithm 6 requires another scan ofG, but the
asymptotic I/O complexity of the algorithm is the same as Algo-
rithm 2. UpdatingN△(v) for all v ∈ VG may requireO(|VG|)
space, but this can be avoided by writingN△(v) after process-
ing each extended subgraph and then merging the results of all ex-
tended subgraphs. The asymptotic I/O complexity still remains the
same since the size ofN△(v) for all v in an extended subgraph is
bounded by the size of the subgraph.



5.2 Triangular Vertex Connectivity
Triangular vertex connectivity(also called3-gonal connectivity)

defines stronger connectivity in a network than single link connec-
tivity, since edges that are in short cyclic component (e.g., triangles)
are considered as strong ties [21, 8]. Triangular vertex connectivity
is formally defined as follows [29].

Definition4 (TRIANGULAR-VERTEX-CONNECTIVITY). Two
verticesu andv are triangularly vertex connectedif there exists a
sequence of triangles〈△1, . . . ,△n〉 such thatu is in △1, v is in
△n, and either (1)n = 1, or (2) for 1 ≤ i < n, △i and△i+1

share at least one common vertex.

Intuitively, if u andv are connected by a single path, then they
become disconnected if any edge on the path is removed. On the
contrary, ifu andv are connected by a sequence of triangles, then
removing any edge does not disconnect them.

Triangular vertex connectivity is important in many applications
[15, 20, 32, 36]. It defines an equivalence relationV△ on VG.
Two verticesu andv belong to the same equivalence class if they
are triangularly vertex connected. The following example further
explains the concept.

Example 4.In the graph in Figure 1, there are two equivalence
classes defined by triangular vertex connectivity,{a, b, c, g, i} and
{d, e, f, h, j, k, l}, which can be obtained by removing the three
edges (in bold lines) that are not part of any triangle. Removing any
edge from the induced subgraph by any class does not disconnect
the vertices in the class, which shows a stronger connectivity. 2

The existing algorithm for computing the equivalence classes of
V△ is based on triangle listing [8]. However, the algorithm requires
random disk access when the graph is stored in disk.

The result of Algorithm 2 can be easily pipelined to compute
the equivalence classes ofV△. Upon processing each extended
subgraph, we first mark the directed edges(u, v), (u,w), (v, w),
whereu < v < w, for each triangle△uvw listed. Then, we write
these marked edges to disk. When Algorithm 2 terminates, we read
the marked edges one by one to find which equivalent class each
v ∈ VG belongs to. This can be done by using two lookup tables,
C andA, whereC[j] = i indicates thati is the smallest class ID
that Classj is connected to, andA[v] = i indicatesv belongs to
Classi. Initially, C[i] = i andA[v] = ∞. We keep a counterc
which is initialized to 0. For each marked edge(u, v) read, we do
the following: (1) ifA[u] = A[v] = ∞, we setA[u] = A[v] = c
and incrementc; (2) if A[u] 6= A[v], WLOG assumingA[u] <
A[v], we setC[A[v]] = min(C[A[v]], A[u]) andA[v] = A[u];
(3) otherwise, do nothing. Finally, we scanC once to update each
C[i] to the small class ID that Classi is connected to, and update
A[v] = C[A[v]], which indicates the classv belongs to.

Since the number of marked edges written to disk for each ex-
tended subgraph cannot exceed the size of the subgraph, the asymp-
totic I/O complexity of computing the equivalence classes of V△

by the above algorithm is the same as Algorithm 2.

6. EXPERIMENTAL RESULTS
We compare our algorithms with the semi-streaming local tri-

angle estimating algorithm (denoted bySemi-stream) [9] and the
state-of-the-art in-memory triangle listing algorithm (denoted by
In-mem) [26]. We run the experiments on a machine with an Intel
Xeno 2.67GHz CPU and 4GB RAM, and we use g++ 4.4.5 com-
piler on CentOS 5.4.

Dataset. We use four real datasets:LiveJournal(LJ ), U.S. road
network(USRD), World Wide Web of UK(WebUK), andBillion

Triple Challenge(BTC). LJ is a social network (http://www.live-
journal.com, http://snap.stanford.edu), where verticesare members
and edges represent friendship between members. USRD is the
road network of United States, where vertices represent intersec-
tions and endpoints, and edges represent the roads connecting these
intersections or road endpoints. WebUK is obtained from theYA-
HOO webspam dataset (http://barcelona.research.yahoo.net), where
vertices are pages and edges are hyperlinks. BTC is a seman-
tic graph converted from the Billion Triple Challenge 2009 RDF
dataset (http://vmlion25.deri.ie), where each vertex represents an
object such as a person, a document, and an event, and each edge
represents the relationship between two vertices such as "has-author",
"links-to", and "has-title". We give the number of verticesand
edges, and the storage size on disk, of the datasets in Table 2.

Table 2: Datasets
LJ USRD WebUK BTC

|VG| 4.8M 24M 106M 165M
|EG| 69M 58M 1,877M 773M

Disk size 809.1MB 969.6MB 20.3GB 10.0GB

6.1 Effectiveness of Partitioning Algorithms
We first show the effectiveness of two graph partitioning algo-

rithms, sequential graph partitioning(Seq) and dominating-set-
based graph partitioning(DS). We set the available memory size
M for partitioning to be512MB, 1GB, 2GB, and4GB, respec-
tively. Table 3 reports the number of iterations Algorithm 2takes
by adopting Seq or DS, on the two large datasets BTC and We-
bUK. The theoretical upper bound on the number of iterationsby
adopting DS is also shown.

Table 3: Number of Iterations of Algorithm 2
M=512MB M=1GB M=2GB M=4GB

BTC (Seq) →∞ 7 2 1
BTC (DS) 6 3 2 1

BTC (Theoretical) 19 10 5 3
WebUK (Seq) 3 2 2 1
WebUK (DS) 3 2 2 1

WebUK (Theoretical) 29 15 7 4

The result shows that Seq is effective in practice. The number
of iterations of Algorithm 2 by adopting Seq is as small as that by
adopting DS in most cases, but as shown in Table 4 in Section 6.2
adopting Seq is more efficient than adopting DS since DS requires
two more scans ofG at each iteration of Algorithm 2.

However, when the available memory becomes smaller (M =
512MB), adopting Seq does not terminate since there is a point
that all triangles are Type 3 triangles w.r.t. the partition; thus no
more edges can be removed. Such a situation may also happen
to other datasets that exhibit low locality. In this case, DSshows
its advantage as it gives a guaranteed upper bound on the number
of iterations, while our result shows that it indeed has consistent
performance. The result also shows that in all cases, the actual
number of iterations needed by adopting DS is always less than its
theoretical upper bound.

6.2 Triangle Listing
We now report the performance of Algorithm 2 by adopting Seq

(denoted byTL-Seq) and by adopting DS (denoted byTL-DS),
compared with In-mem and Semi-stream. We set the available
memory size to be 2GB.

Table 4 reports the running time of the different algorithms. We
do not report the memory consumption since the smaller datasets



LJ and USRD can fit in memory and all algorithms use roughly
the same memory (less than 1GB), while our algorithms and Semi-
stream use all available memory for BTC and WebUK. In-mem
runs out of memory for BTC and WebUK (BTC and WebUK re-
quires about 10GB and 20GB of memory).

Table 4: Running time (wall-clock time in seconds)
LJ USRD BTC WebUK

TL-Seq 29.63 6.24 350 2411
TL-DS 29.43 12.46 412 2503
In-mem 32.98 6.68 N.A. N.A.
Semi-stream(σ(N△(v)) ≈ 0.8) 306 321 3402 7032
Semi-stream(σ(N△(v)) ≈ 0.5) 1275 1683 13711 34722

The result shows that the performance of our algorithms is very
competitive. When the graphs can fit into memory, our algorithms
have comparable performance compared with In-mem. When the
graphs are too large to fit into memory, our algorithms demonstrate
great advantage over Semi-stream, which makes multiple passes
over the data as do our algorithms.

Letσ(N△(v)) be theaverage approximation error ratefor N△(v),
defined as(|approximate value− exact value|/exact value) aver-
aged over all vertices. We find that Semi-stream takes prohibitively
long time to obtain a lowσ(N△(v)). Table 4 reports the running
time for Semi-stream by settingσ(N△(v)) ≈ 0.8 andσ(N△(v)) ≈
0.5. The result shows that Semi-stream is many times slower than
both our algorithms forσ(N△(v)) ≈ 0.8 and up to orders of mag-
nitude slower forσ(N△(v)) ≈ 0.5.

From another angle of comparison, if we choose a setting for
Semi-stream that it takes slightly longer time than our algorithm
TL-Seq, we also report its error rate in Table 5. The result shows
that at comparable time, the error rateσ(N△(v)) of Semi-stream
increases significantly.

Table 5: Error rate of Semi-stream at comparable time as TL-
Seq

LJ USRD BTC WebUK
97.6% 133.6% 115.4% 95.0%

6.3 Performance on Applications
When the graphs are too large to fit into memory, our algorithm

shows significant advantages over approximation algorithms. Table
6 reports the error rate of clustering coefficient of a network and
of transitivity approximated by Semi-stream, denoted byσ(C(G))
andσ(T (G)), respectively. The result shows that, although the
error rate of Semi-stream is not too large for those global measures,
we obtain exact results at comparable time.

Table 6: Error rate of Semi-stream for σ(C(G)) and σ(T (G))
BTC (σ(C(G))) BTC (σ(T (G))) WebUK (σ(C(G))) WebUK (σ(T (G)))

26.5% 40.2% 12.7% 15.3%

We also assess the performance of using our algorithm for com-
puting triangular-vertex-connectivity-based equivalence classes, com-
pared with the state-of-the-art in-memory algorithm [8] (also de-
noted byIn-mem here for simplicity).

Table 7 shows that the running time of our algorithm is compa-
rable with In-mem for LJ and USRD. But for the larger datasets,
BTC and WebUK, In-mem runs out of memory while our algo-
rithm still records high efficiency. The result again demonstrates
our algorithms are I/O-efficient for processing large graphs.

Table 7: Triangular Vertex Connectivity
LJ USRD BTC WebUK

TL-Seq 173.1 11.5 380.2 3670.3
In-mem 138.1 9.0 N.A. N.A.

7. RELATED WORK
The algorithms for triangle listing or counting can be categorized

into exactalgorithms andapproximationalgorithms.
The first non-trivial exact algorithm was a spanning-tree-based

algorithm [22, 23], which achieves a running time ofO(|EG|
1.5).

The asymptotic complexity of in-memory exact triangle listing has
not been improved since then. However, a number of practicalfast
algorithms have been proposed that use vertex ordering and effi-
cient data structures such as lookup tables to facilitate the intersec-
tion of the adjacency-lists of the neighboring vertices [30, 29, 26].
For triangle counting, the number of triangles can be counted in
O(|EG|

1.41) time with a fast matrix multiplication algorithm [4].
The basic triangle listing algorithm was also extended to count tri-
ads (directed subgraph with three vertices) in directed graph [7].
Maintaining the number of triangles in a dynamic graph was dis-
cussed in [16]. All the aforementioned algorithms are in-memory
algorithm and require at leastO(|VG|+ |EG|) space.

Approximation algorithms have been proposed for triangle count-
ing in large graphs that cannot fit in memory. Accurate streaming
algorithms [3, 6, 14, 10] and sampling algorithm [33] have been
proposed to estimate the total number of triangles in a graph. More
closely related to estimate the number of triangles formed locally
at each vertex in a graph. All these algorithms, however, cannot
handle triangle listing, which has a broader range of applications.

Very recently, a parallel algorithm for triangle counting using
MapReduce framework [31] has been proposed. Their algorithm is
exact and do not require to keep the entire input graph in memory
at each individual machine. Algorithms for listing more complex
subgraphs are also studied in [13, 12].

8. CONCLUSIONS
We propose an I/O-efficient algorithm for exact triangle listing.

To avoid random disk access, we partition the input graph andonly
process one subgraph in the partition each time. By carefully ex-
tracting the subgraphs, we prove that triangle listing in those local
subgraphs gives globally correct and complete result. We devise
two effective partitioning strategies, one achieving highefficiency
in practice while the other bounding the I/O complexity theoret-
ically. Our experimental results on large graphs with up to 106
million vertices and 1,877 million edges show that our algorithm is
significantly more efficient than the state-of-the-art approximation
algorithm for local triangle counting [9]: at comparable running
time and memory, their algorithm records a very high error rate
while ours returns the exact result. We also demonstrate theef-
ficiency of applying our algorithm on computing various network
measures such as clustering coefficients and transitivity,as well as
equivalence classes of the graph based on triangular vertexcon-
nectivity. Thus, we believe that our work can benefit many other
applications in processing large graphs.

For future work, we plan to study the relationship between the
triangles and thek-cores [11] for analyzing massive networks.
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