Path Problems in Temporal Graphs

Huanhuan Wu-, James Cheng*, Silu Huang-, Yiping Ke#, Yi Lu+, Yanyan Xu*

*Department of Computer Science and Engineering, The Ghidassersity of Hong Kong
{hhwu, j cheng, sl huang, y! u, yyxu}@se. cuhk. edu. hk
#Institute of High Performance Computing, Singapore
keyp@ hpc. a- st ar. edu. sg

ABSTRACT

Shortest path is a fundamental graph problem with numerpus a
plications. However, the concept of classic shortest pathsuf-
ficient or even flawed in a temporal graph, as the temporal-info
mation determines the order of activities along any paththis
paper, we show the shortcomings of classic shortest patiieéma
poral graph, and study various concepts of “shortest” patlbefim-
poral graphs. Computing these temporal paths is challgngin
subpaths of a “shortest” path may not be “shortest” in a tealpo
graph. We investigate properties of the temporal paths espbge
efficient algorithms to compute them. We tested our algorition
real world temporal graphs to verify their efficiency, ansiceshow
that temporal paths are essential for studying temporaghgréay
comparing shortest paths in normal static graphs.

1. INTRODUCTION

There have been a lot of interests in research on graph data ma
agement and graph mining in recent years, mainly thankseo th
increasing popularity of many online social networks anchow-
nication networks. Existing research has mainly focusedhen
study of static graphs, while some have also consideredndigna

(@ —
@© W< ®

('b) Static Graph

a) Temporal Graph

Figure 1: Temporal graph G and its condensed static graptG

neural and brain connections, ecological systems, infraciral
networks, physical proximity, distributed computing, audon.

The temporal graphs listed above also have a static ver$on.
fact, temporal graphs are commonly condensed into statishgr
because their static version is much easier to handle. Fongbe,
computing the strongly connected components (SCCs) oftig sta
graph has a linear-time algorithm, but computing the SCCa of

graphs as a sequence of updates to static graphs. Howewsy, ma temporal graph has no known polynomial-time algorithm [13]

real world graphs are actualtgmporal graphs, in which a vertex
communicates with another vertex at specific time instan€es
example, assume that Figure 1(a) shows an air-transpavbriet
then the 2 edges from to b indicate that there is a flight from

Condensing a temporal graph into a static graph loses akthe
poral information which is critical to the understandingtioé re-
lationship between objects in the graph. Not only so, thenmai
concern is in fact that the resultant static graph oftengumesserro-

to b on Day 1 and Day 2, i.e., the numbers 1 and 2 on the edges neous information that leads to serious incorrect undedatg of

represent flight departure time.
There are numerous real world applications for which data ca

be modeled as a temporal graph. For example, A calls B at time

t in phone call networks, A sends message to B at tinmeShort
Message Service or emails networks, A follows B at tinresocial
networks, A cites B at timeéin citation networks, A works with B

at timet in collaboration networks, information spreads from A to
B at timet in information dissemination networks, to name but a
few. In a survey of temporal networks [8], Holme and Saramki
also describe in details various temporal networks in delogy,

This work is licensed under the Creatve Commons Attributio
NonCommercial-NoDerivs 3.0 Unported License. To view ayoofghis li-
cense, visit http://creativecommons.org/licenses/oyna/3.0/. Obtain per-
mission prior to any use beyond those covered by the licer@entact
copyright holder by emailing info@vldb.org. Articles frothis volume
were invited to present their results at the 40th Intermati€onference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhawa Ch
Proceedings of the VLDB Endowmevi). 7, No. 9

Copyright 2014 VLDB Endowment 2150-8097/14/05.

the graph or relationship between objects. We illustrageatiove-
mentioned problems by the following example.

EXAMPLE 1. Figure 1(a) shows a temporal graghl. Assume
that G is an air-transport network, then each vertex represents an
airport and the number on each edge is a flight's departure day
For simplicity, we assume that the duration of each flight day.
Figure 1(b) shows the condensed static graphof G.

We can see some paths in the static graph may not be a meaning-
ful path in the temporal graph. For example, b, g, j) is a path in
Figure 1(b), but{a, b, g, j) in Figure 1(a) is problematic becauge
has only one flight tg on Day 2 but we cannot reaghbefore Day
4 (leavingb on Day 3 and taking 1 day to fly frofnto g).

Now consider a shortest path fromto [in the two graphs. In
Figure 1(b), the shortest path {&, 7, {) with distance 2. But in the
temporal graph in Figure 1(a), if we take the ed@e :), then we
cannot take either of the flights froirto [since the flight fronu
arrives ati on Day 11. Instead, a valid temporal path(is, f,,)
with distance 3, by going fromato f on Day 3, fromf to < on Day
5, and fromi to [on Day 8. [|

The above example shows that a condensed static graph campre
misleading information about the original temporal gragid hence
it is essential to keep the temporal information in the gsaptow-
ever, efficient and effective tools for studying temporars are
severely lacking. In this paper, we focus on the study of fsst”
paths in a temporal graph, as shortest paths are fundante ezl
study of a graph and algorithms for computing shortest paths
essential building blocks of many advanced graph analygis a
rithms (e.g., centrality computation, graph clusterirtg,)e

Due to the presence of temporal information, different foh
“shortest” paths exist and each has its own meaning andfisigni
cance. We define four types of paths in a temporal graph,a:olle
tively we call themminimum temporal paths, as they give the
minimum value for different measures: (&arliest-arrival path
(i.e., a path that gives earliest arrival time starting frarsource
x to a targety); (2) latest-departure path (i.e., a path that gives
latest departure time starting framin order to reachy by a given
time); (3) fastest path(i.e., the path by which one goes framto
y with the minimum elapsed time); and (dhortest path (i.e., the
path that is shortest from to y in terms of overall traversal time
needed on the edges).

Note that a shortest path may not necessarily be a fastdst pat

(e.g., in a traffic network the shortest path franto y may have a
lot of traffic lights, while a highway is longer but is the fast way

to go fromz toy). Also, a fastest path may not be an earliest-arrival
path (e.g., traveling from to y may only take 1 hour at noon due
to less traffic, but one may leave at 9 a.m., take 2 hours teltrav
and arrive before noon).

Due to the additional temporal information, computing tenab
paths and their “time-distance” poses new challenges. fame
ple, the greedy strategy used to compute shortest pathstatia s
graph (e.g., by Dijkstra’s algorithm) is based on the proptrat a
subpath of a shortest path is also shortest, which is nossaoéy
true when computing any of the four minimum temporal paths.

We formally define various concepts of temporal graphs, bhad t
four types of minimum temporal paths. We investigate usgefoip-
erties of temporal paths to address the challenges of camgput
minimum temporal paths discussed above, and propose efficie
one-pass algorithms, as well as a graph transformatiorappy to
compute minimum temporal paths. We evaluate the performahc
our algorithms over a wide spectrum of real world temporapdss,
showing that they significantly outperform existing algoms. In
addition, we also discuss the applications of minimum temipo
paths, and demonstrate that analytic results obtainedtlyifeom
temporal graphs can be dramatically different from thoseiobd
from static graphs, and hence carry additional importafiatrima-
tion or even the real accurate information about the tenipiata.

Paper organization.Section 2 defines notions and notations of
temporal graphs. Section 3 formally defines the minimum mp
ral paths. Section 4 presents the one-pass algorithms anibiSe
5 offers an alternative approach. Section 6 discusses spphiea
tions. Section 7 reports experimental results. Sectiors8udises
related work and Section 9 gives our concluding remarks.

2. NOTATIONS OF TEMPORAL GRAPHS

Let G = (V,E) be a temporal graph, wheé is the set of
vertices ofG and E is the set of edges @F. An edgee € Eis a
quadruple(u, v, t,), whereu,v € V, ¢ is thestarting time, X\ is
the traversal time to go fromu to v starting at timet, andt + \
is theending time. We denote the starting time efby ¢(e) and
the traversal time oé by A(e). For simplicity of discussion, we
assume thai(e) # 0 for all e € E, but note that our algorithms
can be extended to handle the case where E that\(e) = 0.

If edges are undirected, then the starting time and traviensa
of an edge are the same framto v as fromv to u. We focus on
directed temporal graphs in this paper since an undirecigd ean
be modeled by two bi-directed edges.

In Section 1, we give a list of temporal graphs from a wide spec
trum of applications, we select a few of them to illustrateaiiem-
poral information is modeled as follows:

e Phone call or Short Message Service networks: each vertex
represents a person (or simply a mobile device), and an edge
(u, v, t, A) indicates that verten calls or sends a message to
vertexv at timet, and the connection time s

e Social networks (e.g., Facebook, Twitter): each vertex-mod
els a person (or an organization, etc.), and an édge, ¢, \)
can be an interaction betweanandv (e.g.,u follows v) at
time ¢ which takes time\.

e Flight graphs: each vertex represents a location, and am edg
(u,v,t,A) is aflight fromu to v departing at time and the
flight duration isA.

Note that in all the above examples, verieray communicate
with vertexv at multiple time instances and in fact, the number
of temporal edges from to v can be large for all of the above
graphs. We denote the set of temporal edges faoimv in G by
II(w, v), and the number of temporal edges framo v in G by
w(u,v), i.e., w(u,v) = |[II(u,v)|. We also define the maximum
number of temporal edges fromto v, for any« andwv in G, by
m = max{r(u,v) : (u,v) € (V x V)}. The value ofr can
be large for some real world temporal graphs (e.g., in onédnef t
temporal graphs used in our experiments;y 1074).

In atemporal graplr = (V, E), given two temporal edges =
(u1,v1,t1,\1) € F andez = (u2, v2,t2, A2) € E, we havee;
es iff (u1 — U ANVL =V At =ta AXN1 = /\2). If we condense
temporal edges into static edges, we obtain the correspgstiitic
graph Gs = (Vi, E) of G, whereV, = V andEs = {(u,v) :
(u,v,t,\) € E}, that is, the condensation removes all temporal
information from the edges i and combines all edges with the
same start and end vertices into a single edge.

We define the number of vertices (# andG, asn = |V| =
|Vs|, and the number of edges @& as M = |E| and inG; as
m = |Es|. We define the set adut-neighbors of a vertexu in
G or G, aslout(u, G)=Tout(u, Gs)={v : (u,v,t,\) € E} =
{v : (u,v) € Es}. We define theout-degreeof « in G as
dout (4, G) =3 cr, o (u,c) T(U,0), AN INGs @Sdout (u, Gs) =
|Tout(u, Gs)|. Thein-neighborsandin-degreeof a vertexu in G
or G, are defined symmetrically, i.dn (u, G) = Tin(u, Gs) =
{v : (v,u,t,\) € E} = {v : (v,u) € Es}, din(u,Q)
2overs, (w,c) T,), anddin (u, Gs) = |Lin(u, Gs)|.

Figure 1(a) shows a temporal gragh and its corresponding
static graphGs is shown in Figure 1(b). For simplicity, we set
A = 1 for all edges. We hav&',..(a,G) = Toui(a,Gs)
{b,¢, f,i}, andl» (b, G) = I'in(b, Gs) = {a}. Sincell(a,b)
{(a,b,1,1), (a,b,2,1)}, we haver(a,b) = 2, din(b,G)
and di,(b,Gs) = 1. Similarly, we havedou:(a, G)
dout(a7 Gé) = 4.

2ol

5 a

3. DEFINITIONS OF TEMPORAL PATHS

A temporal path P in a temporal graplds is a sequence of ver-
ticesP = (v1,v2,...,Vk, Vk+1), Where(v;, viy1, ti, \i) € Eis
thei-th temporal edge o for 1 < i < k, and(¢; + \i) < tiy1
for 1 <14 < k. Note that for the last edge, vi+1, tk, Ax) ON P,
we do not put a constraint qmy, + Ay) sincet.1 is not defined for

the pathP. In fact, (tx + Ax) is theending time of P, denoted by
end(P). We also define thetarting time of P asstart(P) = t1.
We define thaluration of P asdura(P) = end(P) — start(P),
and thedistanceof P asdist(P) = 3¢ \;.

The following example illustrates the concepts of temppedh.

ExAamPLE 2. Anexample of atemporal pathi3= ((a, f, 3,1),
(f,4,5,1),(,1,8,1)) in the temporal graptG in Figure 1(a). We
havestart(P) = 3,end(P) =8+1=9,dura(P)=9—-3=6
anddist(P)=1+4+1+4+1=3.

The stating time of the temporal edges@ifollows a chronolog-
ical order, which is important for real world applicationsish as
itinerary planning. For example, if we choose the edgg, 10, 1)
instead to go fronu to ¢, though the duration and distance are
shorter, we cannot reach the final destinatioas explained in Ex-
ample 1. Thus, the routés, 4, 10,1) cannot be used as a valid
travel itinerary. |

In the following, we formally define a set of minimum temporal
paths.

DEFINITION1 (MINIMUM TEMPORAL PATHS). Givenatem-
poral graphG, a source vertex and a target vertey in G, and a
time intervallta, to], letP(z, vy, [ta, tw]) = {P : P is a temporal
path fromz to y such thatstart(P) > ta, end(P) < to}, we
define the following four types of temporal paths froto y within
[ta,tw] that have the minimum value for different measures, thus
collectively calledminimum temporal paths:

Earliest-arrival path: P € P(z,y, [ta,t.]) is an earliest-arrival
path ifend(P) = min{end(P') : P’ € P(z,y, [ta, tw])}-
Latest-departure path: P € P(x,y, [ta,tw]) is a latest-departure
path if start(P) = max{start(P') : P' € P(z,y, [ta,tw])}-
Fastest path: P € P(x, v, [ta, tw]) is a fastest path ilura(P) =
min{dura(P’) : P' € P(x,y, [ta,tu])}

Shortestpath: P € P(z,y, [ta,tw]) is ashortest path fist(P) =
min{dist(P') : P’ € P(z, vy, [ta,tw])}

Note that if a time intervalt.,t.] is not explicitly specified
for the minimum temporal paths, then it is simply takentas=
0,t, = oo]. However, we may not be always interested in the
entire temporal history of the graph and hence allowing suser
specify[ta, t.] gives higher flexibility and applicability.

The concept of temporal path was introduced in [10]. Later a
number of different types of paths were proposed [1, 11, 4213,

16, 17, 21] based on the concept of temporal path. Howeveryma
of the existing path definitions are rather ad hoc, modelrimete
information, and/or use over-complicated notations. &herno
single work that studies all aspects or defines all types oii-mi
mum temporal paths that we study in this paper. The most com-
plete existing definitions on minimum temporal paths were- pr
posed in [21], which include three out of four types of pathes w
study here (i.e., earliest-arrival, fastest, and shopa#gts). Com-
pared with [21], our temporal path problems are more genérsi,

in [21] the traversal time\ is the same for any edde, v), while in

our definition)\ can be different when an edge has a different start-
ing time (which is common such as for flight duration, phonk ca
duration, etc.); second, their definition and algorithm $bortest
paths can only count the number of hops, while our definitioh a
algorithm allow edges to have either a traversal time or @htei

Problem definition: single-source minimum temporal paths
(SSMTP). Given a temporal grapti’ = (V, E), a vertexz in V,
and a time intervalt., t.,], the problem oSSMTP s to find: (1)
the earliest-arrival path from to everyv € V, or (2) the latest-
departure path from every € V to z, or (3) the fastest path from

x to everyv € V, or (4) the shortest path fromto everyv € V,
respectively, within the time intervgd., t.].

Let P be a minimum temporal path to be computed. For simplic-
ity of discussion, in the presentation of our algorithmsdomput-
ing SSMTP, we only report: (1) earliest-arrival tiraed(P), or (2)
latest-departure timetart(P), or (3) duration of the fastest path
dura(P), or (4) distance of the shortest pathst(P), respectively.
We note that the algorithms can be straightforwardly extenic
report the corresponding path

The following lemmas give some properties of minimum tempo-
ral paths (some examples for each case are given in [19]).

LeEmMA 1. A prefix-subpath of an earliest-arrival path may not
be an earliest-arrival path.

LEMMA 2. A postfix-subpath of a latest-departure path may
not be a latest-departure path.

LEMMA 3. A subpath of a fastest path may not be a fastest
path.

LEMMA 4. A subpath of a shortest path may not be a shortest
path.

Lemmas 1-4 highlight the challenges of computing minimum
temporal paths, as Dijkstra’s greedy strategy cannot leeiljrap-
plied to compute minimum temporal paths.

4. ONE-PASS ALGORITHMS FOR COM-
PUTING MINIMUM TEMPORAL PATHS

In this section, we present efficient one-pass algorithmedm-
puting single-source minimum temporal paths.

4.1 Stream Representation of a Temporal Graph

Before we present the one-pass algorithms, we first desitrébe
data stream representation of a temporal graph.

Theedge streanrepresentation of a temporal gra@hs simply
a sequence of all edgesdnthat come in the order of the time each
edge is created/collected (i.e., the edges are ordereddiogdo
their starting time). If two temporal edges are createtéctdd at
the same time, their ordering can be arbitrary. For exanifpléhas
the following edges{(v1, v2,2,5), (v2,v4,4,1), (vs,v2,1,1)},
then the edge stream 6fappears as followgws, ve, 1, 1), (v1, vz,
2,5), (v2,v4,4,1). The edge stream is a natural format with which
a temporal graph is generated and collected, e.g., the comazu
tion logs captured by telecom operators over time, or thepteai
user behavior captured by social networking sites over.time

The following lemma shows a property of a temporal path in
connection with the edge stream representation.

LEMMA 5. LetP = (v1,v2,...,vs, vk+1) be atemporal path
in G, wheree;=(v;, vit1,t:, \i) € E is thei-th temporal edge on
Pforl <i < k. Foranye; ande; on P, if i < j, thene; comes
beforee; (i.e.,e; is ordered before;) in the edge stream @f.

PrROOF By the definition of temporal path, we haiige + \;) <
tit1 for 1 < i < k, and hencé;+1 > t; as\; > 0. Thus, the
starting times ok, es, ..., e are in strictly ascending order, and
hencee; comes before; in the edge stream @¥. [

4.2 Earliest-Arrival Paths

In this subsection, we present our algorithm for computimg t
earliest-arrival time from a source vertexo every vertex in a tem-
poral graphG within the time intervalt,, t.].

Algorithm 1: Computing earliest-arrival time

: A temporal graphG = (V, E) in its edge stream
representation, source vertextime interval[tq, to]
Qutput : The earliest-arrival time from to every vertexw € V
within [ta, tw]

1 Initialize t[z] = to, andt[v] = coforallv € V' \ {z};

2 foreachincoming edge = (u, v, ¢,) in the edge streardo

3 if t + X\ < to, andt > t[u] then

4 L if t + A < t[v] then

5

Input

| o] —t+ X

6 else ift > t,, then
|_ Break the for-loop and go to Line 8;

~

8 return t[v] for eachw € V;

The classic Dijkstra’s algorithm for computing single-smishort-
est paths is based on the fact that the prefix-subpath of éeshor
path is also a shortest path. However, according to Lemmiael, t
prefix-subpath of an earliest-arrival path may not be aniestrl
arrival path. This seems to imply that the greedy strategyrow
the shortest paths that is applied in Dijkstra’s algoritramrot be
applied to compute earliest-arrival paths, though thetalhg ob-
servation shows otherwise.

LEMMA 6. LetP be the set of earliest-arrival paths fromto
a vertexv, within the time intervalta, t.]. If P # 0, then there
existsP = (x,v1,v2,...,v;) € P such that every prefix-subpath,
P; = (x,v1,v2,...,v;), iS an earliest-arrival path from to v;
within [ta, tw], for 1 < i < k.

PROOF Given any earliest-arrival patk € P, if not every
prefix-subpath in it is an earliest-arrival path, we can gkveon-
struct a pathP as follows. We travers® in reverse order and find
the first vertexv; such that the corresponding prefix-subp&ttis
not an earliest-arrival path fromto v;. Thus, there exists another
path P; that is an earliest-arrival path fromto v;. We replaceP;
in P by P,. The new path? is still a valid temporal path because
end(P;) < end(P;). In addition, P is an earliest-arrival path from
z to vy (i.e., P € P)becausend(P) = end(P). This process
continues until every prefix-subpath is an earliest-arpeah and
the resultingP is in P, which proves the lemma.[]

Based on Lemma 6, we can apply the greedy strategy to grow the

earliest-arrival paths in a similar way to Dijkstra’s algom. How-
ever, this approach needs to use a minimum priority queseltre
ing in an algorithm wittO (m log m+m log n) time andO (M +n)
space complexity [19], which is too expensive for procegsem-
poral graphs with a large number of temporal edges.

Dijkstra’s greedy strategy requires the entire graph toresent

as random access to vertices and edges are needed. However, f

temporal graphs, Lemma 5 implies that the input graph can teei
natural edge stream representation, and it is possiblentpute the
earliest-arrival paths with only one scan of the graph. Wsent
our one-pass algorithm in Algorithm 1 and elaborate as\idlo

We use an arraifv] to keep the current earliest-arrival time from

x to every vertew € V that has been seen in the stream. According

to Lemma 5, if there is a temporal pathfrom z to v so that all
edges onP have been seen in the stream, thgn = end(P) =
t + X as updated in Line 5. The conditioh+ A < ¢[v]” in Line 4
ensures that[v] will be updated with the smallest:d(P) for any
P from z to v within the time intervalt., t.].

We linearly scarG and for each incoming edge= (u, v, t, A)
in the stream, we check whethemeets the time constraint of a
temporal path withirit, t.], i.e., whethet + X < ¢, and¢ > t[u].

If yes, we grow the temporal path by extendinguteia the edge

e. During the process, we update] when necessary as discussed
earlier. The process terminates when we meet the first edipe in
stream that has starting time greater than or equi) {hines 6-7).

ExAmMPLE 3. Consider the temporal grapti in Figure 1(a),
where we assume that the traversal titis 1 for all edges. Let
be the source vertex. We compute the earliest-arrival thom &
to every vertex i within the time interva(1, 4].

Initially, t[a] = 1, andt[v] = co forallv € V \ {a}. The
first incoming edge i$a, b, 1, 1), since it satisfies the conditions in
Lines 3-4, we updatgb] = 1 + 1 = 2in Line 5. The second edge
is (a,b,2, 1), the condition in Line 4 is not satisfied. The next edge
is (g,7,2,1), sincet[g] = oo, the condition ‘t > t[u] = t[g]”
in Line 3 is not met. Then, the edg€sg,3,1), (b,h,3,1), and
(a, f,3,1) are followed, for which we updatédg] = 4, ¢[h] = 4,
andt[f] = 4. After that the edgéa, c, 4, 1) comes, which satisfies
the condition in Line 6 and the process is terminated. It can b
easily verified that we have obtained the correct earliesitzal
time froma to every vertex i within the time interva[l,4]. W

The following lemma shows that when Algorithm 1 terminates,
t[v] correctly reports the earliest-arrival time frao v.

LEMMA 7. For any vertexv € V, if the earliest-arrival path
from z to v within the time intervallt., t.,] exists, thert[v] re-
turned by Algorithm 1 is the corresponding earliest-artitiane;
otherwiset[v] = co.

PROOF Suppose that the earliest-arrival path frono v within
[t«, tw] €xists. Then, according to Lemma 6, there exists an earliest
arrival path fromz to v, P = (z = v1,v2,..., 0k, Vk+1 = V),
such that every prefix-subpath Bfis an earliest-arrival path from
x to some vertex; on P. Let t.[v;] be the earliest-arrival time
fromz tow;, forl < ¢ < k+ 1. Letey, ea, ..., e be the edges
on P, wheree; = (vi, vit1,ti, A;) for 1 <4 < k. Then, we have
ti > te[vi] andt; + \; = te[vi+1] forl1 <:<k.

We prove that Algorithm 1 computeégy;] = te[vi], for1 <i <
k + 1, by induction oni. Wheni = 1, z = vy, t[z] = te[z] = ta
is initialized in Line 1 of Algorithm 1, and[x] will not be updated
any more. Whern = 2, obviously we have[vs] = t.[v2] = t1 +
A1 when we process;, andt[vz] will not be updated again due to
the condition in Line 4. Now assume that for j, wherej < k+
1, t[v;] = te[vj] = tj—1 + Aj—1 when we process;_;. Consider
i = j + 1 and we want to prove[v;yi1] = te[vj+1]. According
to Lemma 5,e; comes aftek;_; in the stream. Thus, when the
algorithm scansg;, we have the following two cases regarding the
value oft[vj+1]. (1) tfvj+1] = tevj+1]. In this case, Line 5 will
not be processed due to the condition in Line 4 &ngl, 1] gives the
correct earliest-arrival time fromto v 1. (2) t[vj+1] > te[vj+1].

In this case{[v; 1] is updated td.[v;+1] = ¢; + A; in Line 5, and
it will not be updated again due to the condition in Line 4. bitb
cases, we havlv; 1] = te[v;+1] and by inductiont[v;] = te[vi]
for1 <:<k+1.

Finally, if the earliest-arrival path fromto v does not exist, then
there is no temporal path fromto v andt[v] remains to beo. [

The following theorem states our main result for earligsit/al
path computation.

THEOREM 1. Algorithm 1 correctly computes the earliest-arrival
time from a source vertex to every vertex € V within the time
interval[t., t.,] using only one linear scan of the grapi(n+ M)
time andO(n) space.

PROOF The correctness is proved in Lemma 7. The initial-
ization in Line 1 takesD(n) time. Every temporal edge i@ is

Algorithm 2: Computing latest-departure time

Algorithm 3: Computing fastest-path duration (multi-passes)

Input : Atemporal graptG = (V, E) in reverse edge stream
representation, target vertex time interval[t, t.]
OQutput : The latest-departure time from every vertex V to x
within [ta, tw]
1 Initialize t[z] = t.,, andt[v]

—ocoforallv e V\ {z};

2 foreach edgee = (u, v, t, \) in the reverse edge streato
3 if t >ty then

4 if t + X < t[v] then

5 if ¢ > t[u] then

6 L | tlu] <t

7 else

8 |_ Break the for-loop and go to Line 9;

9 return t[v] for eachw € V;

scanned at most once and it takegl) time to process every edge.
Thus, the overall time complexity of Algorithm 1 8(n + M).

We do not keep the edges, but U3én) space to keepv] for each

v € V. And clearly, the algorithm takes at most one linear scan of
the edge stream.[]

4.3 Latest-Departure Paths

Next we present a one-pass algorithm for computing thetlates
departure time from every vertex to a target vettér G.
We present the algorithm in Algorithm 2, which is esseniall

symmetric to Algorithm 1 as we now scan the edge stream in re-

verse order. The other differences can be easily observedtfre
definition of the latest-departure paths, and hence we dmite-
tailed algorithm description here.

Similar to the computation of earliest-arrival time, thidwing
lemma shows that we can correctly compute latest-depatitoee
(the proof is similar to that of Lemma 7 and hence omitted).

LEMMA 8. For any vertexv € V, if the latest-departure path
fromw to within [t, t.] exists, thert[v] returned by Algorithm 2
is the corresponding latest-departure time; otherwige], = —oo.

The following theorem states our main result for latestaitepe
path computation (the proof is similar to that of Theorem 1).

: A temporal graphG = (V, E) in its edge stream
representation, source vertextime interval[tq , to]
Output : The duration of the fastest path franto every vertex
v € V within [ta, tw)
1 Initialize f[z] = 0, andf[v] = coforallv € V' \ {z};
2 Let S be the set of distinct starting time of the out-edges @fithin
[ta,tw], i€,
S = {t(e) : eisan out-edge aof, t(e) > ta,t(e) + A(e) < tw};
3 foreacht € S do
4 Call Algorithm 1 with inputG, z, and time intervalt, ¢.,];
L let t[v] be the earliest-arrival time from to v returned by
5 return f[v] for eachv € V;

Input

Algorithm 1, then updatg[v] < min{ f[v], t[v] — t};

instance frome in the time intervalt., t.,]. Based on this obser-
vation, we design our algorithm as shown in Algorithm 3.

For each distinct starting timec S, whereS is defined in Line 2,
the algorithm calls Algorithm 1 to compute the earliesivairtime
from z to eachw € V' \ {z}, within the time intervalt, ¢,,]. Then,
the minimum duration of the earliest-arrival paths stardiffer-
ent starting time is returned as the duration of the fastist. p

We give the correctness and complexity of Algorithm 3 below.

THEOREM 3. Algorithm 3 correctly computes the duration of
the fastest path from a source verteto every vertex € V within
[ta,ts] in O(|S|(n + M)) time andO(n) space, usindsS| lin-
ear scans of the graph, whefe = {¢(e) : e is an out-edge af,
t(e) > ta, t(e) + A(e) < twl.

PROOF The correctness follows from Lemma 9 as Algorithm 3
calls Algorithm 1 to compute all earliest-arrival time framto v
starting at every distinct starting time frapwithin [t t.].

The time complexity follows from the number of times Algo-
rithm 1 is called, while we nee@(n) space to keep[v] and f[v]
for eachv € V. The algorithm scané&’ once for each of théS|
calls of Algorithm 1. [

4.4.1 One-Pass Algorithm with Better Time Bound
In Algorithm 3, there can be potentially much redundant psse

THEOREM 2. Algorithm 2 correctly computes the latest-departureing due to multiple invocations of Algorithm 1. Every time @rh

time from every vertex € V to a target vertex: within the time
interval [t, t.,] using only one linear scan of the graph(n+ M)
time andO(n) space.

4.4 Fastest Paths

We now present our algorithm for computing the duration ef th
fastest path from a source vertexo every vertex irG.

A naive way to find the fastest path franto a vertexv in G is to
find all temporal paths from to v, and then pick the one with the
minimum duration. However, there may exist exponentiallngn
temporal paths from to v. Thus, effective pruning of search space
is needed, and the following lemma is useful for this purpose

LEMMA 9. LetP be the set of temporal paths fraarto v with
the same starting time Then,P € P is a fastest path from to v
starting att if P is an earliest-arrival path from to v starting at
t.

PROOF The proof follows directly from the definitions of earliest
arrival path and fastest path[]

Lemma 9 implies that we can compute the fastest path from
by finding the earliest-arrival path starting at every distitime

Algorithm 1 is invoked, we need to scan the graph once. Thes, w
want to examine whether we can avoid scanning the graph-multi
ple times and eliminate the redundant processing. To thdswa
design a one-pass algorithm as given in Algorithm 4.

The algorithm uses a sorted list for each vertexdenoted by
L,, to keep the earliest-arrival time from the source venteé® v
at different starting time that may potentially give the ation of
the fastest path from to v. For every elements[v], a[v]) in L.,
defined in Line 2, if there exists another elemésf{v], a’[v]) in
Ly, wheres'[v] > s[v] andd’[v] < afv], or s'[v] = s[v] and
a'[v] < a[v], we say tha{s'[v], a’[v]) dominates(s[v], a[v]), and
call (s[v], a[v]) adominated elementin L,,.

The following lemma shows that a dominated element can be
safely pruned frond,,.

LEMMA 10. Given two elementés(v], a[v]) and (s'[v], a’[v])
in L, for any vertexs € V, if (s'[v], a’[v]) dominateq(s[v], a[v])
in L., then(s[v], a[v]) can be removed from, without affecting
the computation of the duration of the fastest path froto any
vertexinV.

PROOF. Since both(s[v], a[v]) and(s’[v], a’[v]) are inL,, this
implies that there is one temporal pathstarting froma at time

s[v] and arriving atv at timea[v], and another temporal paf
starting fromz at time s’[v] and arriving atv at timea'[v]. Let
P, be a fastest path from to any vertexw € V such thatP is a
prefix-subpath of?,,. Let P, be the path obtained by replaciifiy
with P’ in P,,. Sincea’[v] < a[v], P, is still a valid temporal path.
If s'[v] > s[v], thenP;, is a temporal path with a smaller duration
than P,,, which contradicts to the fact th#t, is a fastest path. If
s'[v] = s[v], then P, also is a fastest path fromto w. In both
cases, if we havés’[v], a’[v]), then we do not neetk[v], a[v]) in
the computation of the duration of the fastest path frono any
vertexw € V. O

In Algorithm 4, every time after removing dominated elensent
in L,,, we have the following property regardidg, .

LEMMA 11. Each time after Line 16 of Algorithm 4 is executed,
for any two elementés[v], a[v]) and (s’[v], a’[v]) in L., either (1)
§'[v] > s[v] anda’[v] > a[v], or (2) s[v] > s'[v] anda[v] > a’[v].

PrOOF First,s[v]#s’[v] since the condition in Line 12 ensures
that no two elements if., will have the same$[v]” value. Then,
assume that'[v]>s[v], then suppose to the contrary théjw]<a[v],
in this case(s[v], a[v]) is dominated by(s'[v], a’'[v]) and is re-
moved in Line 16. Thusy'[v] > a[v]. Case (2) is symmetric.]

We now discuss other details of Algorithm 4. We scan the edge is

stream of the input graph once. For each incoming edge
(u,v,t,A), we check whether the earliest-arrival paths frorto
u can be extended to via e within [ta, t.] (Line 5). If yes, we
pick the path fromr to u with the largest arrival time that is at or

beforet (Line 9), which also has the largest starting time according 21

to Lemma 11 and hence potentially gives the minimum duratfon
the resultant path.

We then updatd.,, as follows. If there is already a record with
the sames[v] in L., we update the correspondiay] in L, if the

currenta[v] (computed in Line 11) is smaller (which means that

the current(s[v], a[v]) pair dominates the old pair). Otherwise, we
insert the new recor@s[v], a[v]) into L,. Then, we apply Lemma
10 to prune dominated elementsiip. During the process, we use
f[v] to record the final fastest-path duration franto v. If the
minimum durationf[v] changes, we update the value fi] in
Lines 17-18.

The following theorem gives our main result for fastest path

computation.

THEOREM 4. Let S={t(e) : eis an out-edge af, t(e) > ta,
tle) + Me) < tw}, dmar = max{din(v,G) : v € V}, and
¢ = min{|S|, dma= }. Algorithm 4 correctly computes the duration
of the fastest path from a source vertexo every vertew € V
within the time intervalt., ¢.,] using only one linear scan of the
graph,O(n + M log c¢) time andO (min{n|S|,n + M}) space.

PROOF We first prove the correctness. Suppose that the fastest

path fromz to v within [t.,t.] exists. Let the fastest path starts
from z at timet,, and arrives at at timet,,. Then, this is also an
earliest-arrival path from to v within the time intervalt,, ty]. By
Lemma 6, there exists an earliest-arrival p&ttirom z to v such
that every prefix-subpath dP is an earliest-arrival path from to
some vertex orP. Let P = (z = v1,v2,..., V%, Ukt1 = v). Let
te[v;] be the earliest-arrival time from to v; within [t., t,], for
1 <i< k+1. Leteq, eg, ..., ex be the edges o, where
e; = (Ui,’l)i+17ti7)\i) for 1 <i<k. Then, we haVQZ‘ > te[vi]
andt; + A\; = te[vig1] for1 <i < k.

We only need to show that the p#ir., ¢,) is inserted intd_.,, so
that f[v] is updated t@, — t, in Line 18. We prove thaft, te[v:])
is inserted intaL,,, for 1 < i < k + 1, by induction oni. When

Algorithm 4: Computing fastest-path duration (one-pass)
Input

: A temporal graphG = (V, E) in its edge stream
representation, source vertextime interval[tq , to]
Output : The duration of the fastest path franto every vertex
v € V within [ta, tw]
1 foreachv € V do
2 Create a sorted list far, L., where an element df,, is a pair
(s[v], alv]) in which s[v] is the starting time of a patF from z
to v, anda[v] is the time that the pat® arrives at and is used as
the key for ordering in_,; initially, L, is empty;

3 Initialize f[z] = 0, andf[v] = coforallv € V' \ {z};

4 foreachincoming edge: = (u, v, t, \) in the edge streardo

5 if t >ty andt + X < t, then

6 if u =z then

7 if (¢t,t) ¢ La then

8 L | Insert(t,t) into Ly;

9 Let (s'[u], a’[u]) be the element i, where
o/[u] = max{alu] : (s[u],alu]) € Lu, alu] < t};

10 s[v] « s'[u];

11 alv] + t+ A\

12 if s[v]isin L, then

13 | Update the correspondingv] in Ly;

14 else

15 | Insert(s[v], a[v]) into Ly,
Removedominated elements L,;
if alv] — s[v] < f[v] then

18 | flv] = afv] — s[v];

19 el_se ift > t,, then
20 |_ Break the for-loop and go to Line 21;

return f[v] for eachw € V;

it =1,z = v, (tz,te) is inserted intal, in Line 8. Wheni = 2,
we insert(s[vz], a[ve]) = (ta, te[v2] = t1 + A1) into L., when
we process:. Now assume that for = j, wherej < k + 1,
(tz,te[vs]) is inserted intal,, when we process;_1. Consider
i = j + 1 and we want to prove that.,te[v;+1]) is inserted
into L., ,. According to Lemma 5¢; comes aftere;_; in the
stream. Thus, when the algorithm scagsby Lemma 11 we ob-
tain a’[v;] = tc[v;] in Line 9, which also means'[v;] = ¢.
This gives(s[vj+1], a[vj+1]) = (tz,te[vj+1] = t; + A;). Thus,
(tz,te[vj+1]) will be inserted intoL,,, ,. Thus, by induction,
(tz, ty) will be inserted intaL,.

Next, we analyze the complexity. It is clear that the aldonit
takes at most one linear scan of the edge stream. The ipdiali
tion in Lines 1-3 takesD(n) time. For eachv € V, the size of
L, is bounded bymin{|S|, din(v, @)} < ¢ = min{|S|, dmaz }-
Searching and updating, take O(log c¢) time. The total time of
removing dominated elements frofn, in Line 16 is bounded by
O(din(v,G)). Thus, the total time for removing dominated ele-
ments fromL, for all v € V'is O(M). Summing up, the total time
complexity isO(n + M log ¢). The space requirement is bounded
by the total size of,,, which is given byO (min(n|S|,n + M)).
Note that|.S| (and hence alse) is a small number in practice.[]

4.4.2 Linear-Time Algorithm for Specific Cases

The log factor in the time complexity of Algorithm 4 is due to
searching and inserting ih,. Thislog factor can be removed for
processing some real-world temporal graphs in which theevaf
A is the same for all edges, or edges in the edge stream do hot jus
arrive in the order of their starting time but are also furthielered
by their ending time. To obtain linear-time complexity fappess-
ing such graphs, we make the following changes in Algorithm 4

1. Foreachy € V, replace the sorted lidt, by a queue?.. Algorithm 5: Computing shortest-path distance

2. In Line 9 when we obtaifs’[u], a’[u]), which is the element Input @ Atemporal graptG = (V, E) in its edge Stlream
with largest arrival time that is less than or equalttave representation, source vertextime interval[ta, t.,]

. Output : The distance of the shortest path franto every vertex
also remove all the elements before it@h,. For example, P v € V Within [ta, to] P y

assume thaf3, 12), (4,14), and (5, 16) are inQ.; when 1 foreachv € V do

the edgee = (u, v, 15, 3) comes in, we linear scaf., and 2 Create a sorted list far, L,,, where an element df,, is a pair
find that(4, 14) is the element with largest arrival time and (d[v], a[v]) in whichd[v] is the distance of a patR from z to v
14 < t(e) = 15. Since the edges are in ascending order of and is used as the key for orderinglin , anda[v] is the time that

| the pathP arrives at; initially, L., is empty;

3 Initialize f[z] = 0, andf[v] = coforallv € V' \ {z};

4 foreachincoming edge: = (u, v, t, \) in the edge streardo
5 if t >ty andt + X < t, then
6
7
8

their starting time, the edges that have not been scanned in
the stream will have starting time at least 15. Thus, we can
remove(3, 12) from Q.. as it will never be used to extend

any temporal path from any more. if u =z then

L if (0,¢t) ¢ Lz then

3. For the insertion of a new elemefy{v], a[v]) into Q., we | insert(0. ¢) into Ly
’ T

only need to compars[v], a[v]) with the elements’[v], a’[v])

at the tail of@,, since for the graphs we handle here, we 9 Let (d'[u], a’[u]) be the element id,, where
haveal[v] > a'[v] and other elements i), are not dom- a'[u] = max{a[u] : (d[u], alul) € Lu, afu] < t};
inated by(s'[v], a’[v]) (and hence not bys[v], afv])). If 10 dfv] < d'[u] +X;

either(s[v], a[v]) or (s'[v], a’[v]) is dominated by the other, 1 ﬁ[s}[;ﬂ;i:]ﬁ" then

we only keep the element that is not dominated as the tail ;3 | Update the correspondintjv] in L;

of Q.; otherwise,(s[v], a[v]) is added aftefs’[v],a’[v]) in 1 else

Q. For exlamr%e, assume thet, 14), (37%2),1 ;")”_"(5’226) 15 | Insert(d[v], a[v]) into Ly;

are currently inQ.; when we try to insert4, 18) into Q., . _

we find that(4, 18) is dominated by5, 16). Thus, we donot 15 R ot Coments L

need to insert4, 18) into Q.. 18 | flv] = dlo);

Now we analyze the time complexity. Every time when we linear 19 else ift > t., then _
scan@,, in Line 9, it takesO(k + 1) time, wherek is the number 20 | Break the for-loop and go to Line 21;
of elements being removed during the search.K.dte the number 5 retum f[v] for eachw € V;
of removed elements fro®., in the i-th search ofQ... We have
O(2(ki + 1)) = O, ki + dour(u, G)) = O(din(u,G) +
dout(u, G)). Thus, the total time for searchin@., and removing

elements fromQ,, for all the vertices isO(M). The total time Based on Lemma 12, we can still use the greedy strategy by care
for inserting new elements intQ,, for all the vertices is clearly fully maintaining the ending time of the paths, since theagy e
bounded byO(A1). Thus, the total time complexity i9(n + M). different shortest paths with different ending time. Farthore, to

eliminate redundant paths within the same time interval apgly
4.5 Shortest Paths the following lemma.

We present an efficient one-pass algorithm for computing the

shortest pa_th from a source vertexo every vertex irG. _ LEMMA 13. Given two temporal paths fromto v, P, and P,
In a static graph, the subpath of a shortest path is also-short \,;ihin [ta, to), if dist(P1) < dist(Ps) andend(P1) < end(P),

est. However, this is not true in a temporal graph according t then we can safely prung in the computation of shortest paths
Lemma 4. Moreover, there may not exist a shortest gath= fromz to any vertex that pass throughwithin [ta, .,].

(z,v1,v2,...,vs) such that every prefix-subpatR; = (x, v1, va,

.., i), is a shortest path from to v;, for 1 < i < k. Thus, we PROOF Let P be a shortest path fromito » such thatP, is a
cannot apply Dijkstra’s greedy strategy directly to conepsitort- prefix-subpath ofP. Clearly, replacing?, with P; in P also gives
est paths in a temporal graph. Rather, we need to consideredit a shortest path from to u within [ta, t.]. O

combinations of paths even though these paths may not beshor
because a non-shortest subpath may grow into a shortest path

Certainly, we cannot consider all combinations of temppeadhs
from z to every vertexo and then take the one with minimum dis-
tance. Fortunately, a careful examination of temporal pkthds to
the following lemma by which we can design an efficient styate
for computing shortest paths in a temporal graph.

Applying the above lemmas in the classic Dijkstra’s aldorit
framework leads to an algorithm that tal@éM log m + M logn)
time and requires random access to the input graph [19]rdsite
ingly we find that we can apply Lemmas 12 and 13 into the frame-
work of Algorithm 4, which requires only one linear scan oéth
input graph. We give our algorithm in Algorithm 5 and disctiss
essential details as follows.

LEMMA 12. LetP = (x = v1,v2,...,vr) be a shortest path .
from z to vy, within the time intervafta, t.]. Then, forl <i <k, For each vertex, the allgorlthm al.so uses a sorteq list. For
! . every element{d[v],a[v]) in L,, defined in Line 2, if there ex-
every prefix-subpatl®; = (z = v1,v2,...,v;) is a shortest path - h |) , . h , d
from z to v; within the time intervalta, end(F;)] ists another elemer(t/’[v], a’[v]) in L., whered'[v] < d[v] an
’ o i a'[v] < afv], or d’'[v] = d[v] anda’[v] < afv], we say that
PROOF Suppose to the contrary that witHin,, end(P;)], there (d'[v], a’[v]) dominates(d[v], a[v]), and call(d[v], a[v]) a domi-
exists another patf, from x to v; with a shorter distance. Since nated elementin L.
end(P]) < end(P;), we can concatenat@;,...,vx) to P/ to By Lemma 13/(d[v], a[v]) can be safely removed froi,. The

obtain another temporal path framto vy, which is a shorter path sorted listL,, will be used to obtain the shortest-path distance with
than P, and contradicts to the fact th&tis a shortest path.] different ending time (i.e., time arriving aj by applying Lemma 12.

Similar to Algorithm 4, every time after Algorithm 5 removes
dominated elements ih,,, we have the following property regard-
ing L,, (proof omitted as it is similar to that of Lemma 11).

LEMMA 14. Each time after Line 16 of Algorithm 5 is executed,
for any two element&i[v], a[v]) and (d’ [v], a’[v]) in L,, either (1)
a'[v]<alv] andd'[v]>d[v], or (2) a[v]<a'[v] andd[v]>d’[v].

Lemma 14 implies that choosing the large$f] in Line 9 is
equivalent to choose the smallestu], thus potentially giving the
minimum distance of the resultant path. Other detailedssiepl-
gorithm 5 follow a similar procedure as in Algorithm 4, anchbe
we omit the details. The following theorem gives our mairutes
for shortest path computation.

THEOREM 5. Algorithm 5 correctly computes the distance of
the shortest path from a source vertexo every vertexw € V
within the time intervalt., ¢.,] using only one linear scan of the
graph, O(n + M log dmaz) time andO(n + M) space, where
dmaz = max{din(v,G) :v € V}.

PROOF Suppose that a shortest path franto v exists and let
P = (x = v1,v2,...,v041 = v) be this path, and let; =
(vi, vit1, ti, A;) IS thei-th edge onP for 1 < ¢ < k. By a pro-
cess similar to the proof of Theorem 4, we can prove by indacti
that the elemen(zle iyt + Ar) will be inserted intoL, by
Algorithm 5 andj[v] will be updated agle s, which gives the
correct shortest-path distance franto v.

Now we analyze the complexity. The size of edghis bounded
by din (v, G). Searching and updatirg, thus takeO (log din (v, G))
time. Following a similar analysis as in the proof of Theoréme
obtainO(n+ M log din (v, G)) = O(n+ M log dma-) total time.
The space requirement is determined by the total siZe, pfvhich
is O(n + M), though in practice the space requirement is signifi-
cantly smaller. I

Finally, we can also achieve a one-pass linear-time alyorfor
computing shortest-path distance in temporal graphs irchvtiie
value of) is uniform or edges also arrive in the order of their ending
time in the edge stream, as described in Section 4.4.2. \etloeni
details as they are similar to Section 4.4.2.

5. AGRAPHTRANSFORMATIONAPPROACH

In this subsection, we propose a graph transformation tqahn
for computing the four types of minimum temporal paths.

We first present how to transform a temporal grépk= (V, E)
into a new graphG' = (V, E). The construction of7 consists of
the following two parts:

1. Vertex creation: for each vertexe V, create vertices iy’
as follows:

(@) LetTin(u,v) = {t+X: (u,v,t,\) € I(u,v)} where
u € I'in(v, G), andTyy (v) = Uuerm(v,G) Tin(u,v),
i.e.,Tin(v) is the set of distinct time instances at which
edges from in-neighbors efarrive atv.
Create|T;»(v)| copies ofv, each labeled witl{v, t)
wheret is a distinct arrival time inT';,(v). Denote
this set of vertices a¥i, (v), i.e., Vin(v) = {(v,1) :
t € Tin(v)}. Sort vertices ifV/i, (v) in descending or-
der of their time, i.e., for anyv, t1), (v, t2) € Vin(v),
(v,t,) is ordered beforév, t2) in Vi, (v) iff t1 > to.

Tou t(a) Tin(b)

(a) Temporal Graph (A= 1)

(b) Transformed Graph

Figure 2: Graph transformation, from G in (a) to G in (b)

(b) Let Tout(v,u) = {t : (v,u,t,A) € H(v,u)} where
uELout (v, G), andTout(”):Uuerom(u,G) Tout(v,u).
Create|T,.:(v)| copies ofv, each labeled witlfv, ¢)
wheret is a distinct starting time ifT,.:(v). Denote
this set of vertices a8 (v), i.€., Vour (v) = {(v,1) :
t € Tout(v)}. Sort vertices iV,.:(v) in descending
order of their time.

2. Edge creation: for each vertexc V, create edges iy as
follows:

(a) For each vertexw, t;,,) in its order inV;,(v), create
a directed edge fronfv, tin) t0 (v, tout) € Vour(v),

whereto,: = min{t : (v,t) € Vour(v),t > tin} and
no edge from any othew, t/,,) € Vin(v) t0 (v, tout)

has been created. Set the weight for each such edge as

0.

Let Vin(v) = {(v,t1), (v,t2),...,(v,tx)}. Create a
directed edge from eadlv, ¢;11) to (v, t;) with weight
0, for1 < i < k. No edge is created # < 1. Create
edges foV,.,:(v) in the same way.

For each temporal edge= (y,v,t,)\) € E, create a
directed edge fronfu,t) € Vout(u) to (v,t +) €
Vin (v), with weight\.

5.1 Earliest-Arrival Paths

We first discuss the computation of single-source earestal
paths. To compute earliest-arrival paths from a sourceexert
to every vertexw € V, we further create a vgrtez(in Giand a
directed edge fromy’ to each verteXz,t) € Vous(x) in G with
weight 0.

Then, we simply run thereadth-first searciiBFS) algorithm in
G from the source vertex’. During the process, if the timeof
a vertex(v, t) is not in the time intervalt., t.], we will stop the
BFS from this vertex. The minimum timgof all visited vertices
(v,t) in Vin(v) is the earliest-arrival time from to v in G.

We illustrate the graph transformation and hGis used to com-
pute the earliest-arrival time by the following example.

(b)

(c

~

EXAMPLE 4. Given a temporal grapld: in Figure 2(a), where
we assume that the traversal timds equal to 1 for all edges, the
transformed grapl@ is shown in Figure 2(b).

Leta be the source vertex i@ and thus we create’ as shown
in G. Now let us start BFS froma’ in G. In the 2nd step, we visit
(b,2), (b,3), (c,3), and(c, 5). Thus, the earliest-arrival time from
atobis 2, and froma to cis 3. In the 3rd step, we visfb, 5) and
(c,6). In the 4th step, we visitf, 6), (f, 7), and(c, 7), from which

we obtain the earliest-arrival time from to f as 6. Finally, we
visit (g, 8), and obtain the earliest-arrival time fromto g as 8. ®

5.2 Latest-Departure Paths

Similar to the computation of single-source earliestvatipaths,
we create a vertex’ in Qand a directed edge from each vertex
(x,t) € Vin(x) to 2z’ in G with weight 0. Then, we perform a
reverse BFS from:’ in G. The maximum time of all visited
vertices(v, t) in V,.:(v) is the latest-departure time from evary
toxinG.

Note thatV;,(a) does not exist in Figure 2(b) since there is no
latest-departure path from any vertexdadn Figure 2(a). But we
can easily compute the latest-departure time (or path) feeny
vertex to other target vertex, e.g,,by a reverse BFS.

5.3 Fastest Paths

For the source vertex in G, we create a vgrtex’ in C{and a
directed edge fromy’ to each verteXz,t) € Vous(x) in G with
weight 0. LetS = {(x,t) : (z,t) € Vour(x),ta < t < tu},
where elements ii$ are sorted in descending order of their time.
Fromz', we first visit the vertex it with largest time, sayz, t1);
then perform BFS frontx, t1) to compute the earliest-arrival time
t[v] from z to everyv and obtain the duration of this earliest-arrival
path agt[v]—¢1). Then, we visit the vertex i with second largest
time, say(z,t2); we conduct BFS fron{z,t2), but we will not
continue the BFS from any vertex that has been visited puslyo
We repeat this process until all verticesShare processed. The
duration of the fastest path fromto everyw in G is the minimum
duration among all the earliest-arrival paths frorto v.

5.4 Shortest Paths

For the source vertex in G, we create a vertex’ in G and a
directed edge from’ to each vertexx,t) € Vout(z) in G with
weight 0. Then, we run Dijkstra’s algorithm & from the source
vertexz’. The minimum distance of the shortest-path frefrto
each(v,t) € Vi, (v) is the shortest-path distance franto v in G.

5.5 Complexity Analysis

Assume thatr < M for a temporal grapltz. From the graph
transformation process, itis easy to see that both the nuafiver-
tices and edges i¥' is bounded by) (). Thus, computing single
source earliest-arrival paths and latest-departure palkiesO (M)
time since only one BFS i6? is required. For computing fastest
paths inGG, since we do not continue the BFS from any previously
visited vertices, we visit each edgedhonly once during the entire
process and hence the time complexity is al¥d/). Finally, for
computing single source shortest pathg3nDijkstra’s algorithm
usesO (M log M) time.

6. APPLICATIONS OF TEMPORAL PATHS

Shortest paths in a static graph have numerous importatit app
cations, in many of these applications, especially thokee® to
network analysis such as centrality computation and dlingtethe
minimum temporal paths can be applied in place of shortakispa
to analyze temporal networks [8]. In [15, 21], various deitms
of “diameter” for temporal graphs were introduced basedten t
concepts of minimum temporal paths. In addition, the fopesy/of
minimum temporal paths can be naturally applied to manyediff
ent types of metrics or applications defined based on theepisic
of temporal paths [1, 10, 11, 12, 13, 14, 16, 17, 18].

Here, we briefly discuss two important applications of thaimi
mum temporal paths.

6.1 Temporal Closeness Centrality

In the analysis of a graph, the closeness centrality of a&exert
v is used to measure its importance in the graph. For example,
the closeness of a person in a social network indicates thtvee
influence of this person in the network, or how easily it wakée to
spread information from this person to others in the network

In a static graplGs = (Vs, Es), theclosenes®f a vertexv €
Vs, denoted bytloseness(v), is defined as:

1
e\ foy dist(v,u)’

In Equation 1, we use the shortest-path distance frdow, i.e.,
dist(v, u), to model the efficiency of the spread of information. In
atemporal graph, the shortest-path distance must be szplycthe
temporalshortest-path distance fromto u since the order of the
time sequence on a temporal path defines the order of comazunic
tion. However, there are also applications in which otheesyof
minimum temporal paths, in particular fastest paths, caaypptied
to define meaningful temporal closeness centrality. Fomgne,
in flight scheduling or logistic/itinerary planning, thesfast path
that one can travel from one place to another is often mor@imp
tant than the distance to be traveled. Thus, the closenasslity
should be defined based on the duration of the fastest path, i.
dist(v, w) in Equation 1 should be replaced 8yra(P,..), where
P, ., is a fastest path fromto u. This fastest-path based closeness
of a vertexwv indicates how fast, in terms of the amount of time
needed, information from can spread to other vertices.

To compute the exact closeness centrality value, we neeaxhe ¢
pute all pairs of paths which is too expensive for a large lgrap
However, approximation methods such as [6] can be natuagHy
plied to compute temporal closeness centrality with guaedhsmall
error bound.

@)

closeness(v) =

6.2 Top-k Nearest Neighbors

Top-k nearest neighbors have many applications such as graph
clustering. We can use the four minimum temporal paths todefi
top-k nearest neighbors of a vertex. Formally, the topearest
neighbors of a vertex € V is a subseX of V' such that'u € K
andv € V' \ K, score(u) > score(v), wherescore(u) is defined
as (1) the earliest-arrival time, or (2) latest-departiumeet or (3)
duration of the fastest path, or (4) distance of the shope#t,
from z to u, respectively.

Our algorithms can be straightforwardly modified to outpuityo
the topk vertices that have the highest score defined based on each
of the minimum temporal paths.

7. EXPERIMENTAL RESULTS

We evaluate the performance of our algorithms and examime th
usefulness of minimum temporal paths in this section. Weathn
the experiments on a machine running Linux on an Intel 3.3GHz
CPU and 16GB RAM.

Temporal graphs. We used 12 real temporal datasets in our ex-
periments, which are from the Koblenz Large Network Coitact
(http://konect.uni-koblenz.de/), and we selected ongelaempo-
ral graph from each of the following categories: Xi v- HepPh
(ar xi v) from the arxiv networksglbl p- coaut hor (dbl p) from
the DBLP coauthor networkgl ec from the network of English
Wikipedia; enr on from the email networksepi n from the trust
and distrust network of Epinionsacebook- wosn- | i nks (f b)
from the facebook networkf | i ckr-growth (f1ickr) from
the social network of Flickrdi gg from the reply network of the
social news website Diggl ashdot - t hr eads (sl ash) from

the reply network of technology website Slashdatki conf | i ct
(confli ct) indicating positive and negative conflicts between
users of Wikipediawi ki pedi a- gr owt h (gr owt h) from the
hyperlink network of the English Wikipedigout ube- u- gr owt h
(yout ube) from the social media networks of YouTube.

Table 1 gives some statistics of the datasets. Apart from the
number of vertices and edges@ and G, we also show the av-
erage degree it (denoted byl.., (u, G)) and inG, (denoted by
davg(u, Gs)). The table shows that the value ofvaries signifi-
cantly for different datasets, indicating the differentdis of tem-
poral activity between two vertices. Note that1 does not imply
that the temporal graph is similar to the correspondingdcsgaaph,
because edges on a temporal path follow an ordered timersegue
This is also revealed by the number of distinct time instarice
G, denoted by|T|, which shows thatG can span over a large
time interval. For example, if we break into snapshots such that
all edges with the same starting time belong to the same bogps
then theconf | i ct graph consists of 273909 snapshots.

7.1 Efficiency of SSMTP Algorithms

To evaluate the performance of our algorithms for computing
single-source minimum temporal pathSSMTPSg, we compare
with the algorithms proposed by Xuan et al. [21], denoted by
Xuan. Note that Xuan can only report the number of hops for short-
est paths. Xuan et al. also did not study latest-departuthes @end
we modified their earliest-arrival path algorithm to complattest-
departure time. We denote our one-pass algorithms presénte
Section 4 byl-passand our graph transformation algorithms pre-
sented in Section 5 bjrans. All algorithms were implemented in
C++ and compiled in the same way.

We use two sets of source vertices: 100 randomly selected ver
tices and 10 highest temporal degree vertices (note thaethe
poral degree, i.ed(u,G), decreases quickly beyond the top 10
highest ones). We sét,, t.,] to be[0, co] in this experiment.

Tables 2 and 3 report the average running time of the algosith
For Trans, there is no big difference between the running tiin
earliest-arrival and latest-departure paths and thatsté$ paths,
and hence we only present the results for fastest paths dyste
limit. We also show the size of the transformed grapm Table 4.

The results show that 1-pass is significantly faster thamXoa
computing all the four types of SSMTPs for all the 12 datasets
average, 1-pass is 13 to 18 times faster than Xuan for priogess
queries with randomly selected sources, and 13 to 251 tiastsrf
than Xuan for processing queries with high-degree sourdés
reason for this huge difference in running time is becaugask
is a one-pass algorithm with much lower complexity than Xuan
which is a rather straightforward adoption of Dijkstra’sasegy or
simply by enumeration of paths which is inefficient.

Table 1: Real temporal graphs (K= 10?) Table 2: Running time in seconds (random sources)
Dataset V] [Es] [E] | davg(u, Gs) | davg(u, G) T ‘TGH 1Earliest-a\;ival iatest-dep;rture . F‘Ia}slest N . Stjrortest N |
ArXi v 28K | 6297K | 9104K 22414 327.26| 262| 2337 i -pass]_Xuan | Lpass| Xuan| Lpass] Trans[Xuan| Lpass] Trans| Xuan]
AT XV 0.0100] 0.1636 | 0.0120] 0.1685] 0.1150] 0.0264] 1.5567] 0.1001] 0.0953] 16510
dbl p 1103K | 8451K [11957K 7.66 10.84] 38 70 bl p 0.0208] 0.2860 0.0220] 0.6443 | 0.1458| 0.0693| 0.7573| 0.1523| 0.5703| L8762
el ec 8K 104K 107K 12.50 12.90 5 | 101012 el ec 0.0002 | 0.0016 | 0.0002 | 0.0016 | 0.0006 | 0.0026 | 0.0302 | 0.0006| 0.0162| 0.0127
enron 87K | 320K | 1135K 3.67 13.01 | 1074 | 213218 enron 0.0014] 0.0099 | 0.0015] 0.0095 | 0.0076 | 0.0154] 0.1726 | 0.0069| 0.0838| 0.0378
epin TR [841K | 841K 538 538 T 539 epin 0.0011] 0.0214 | 0.0012] 0.0172 0.0039 | 0.0086] 0.0202 | 0.0048| 0.0415] 0.1278
S| gl el iS5 Joom s som o oo ool foasosisloire
f1ickr 2303K | 33140K | 33140K 14.39 14.39 1 134 digg 00001 | 0.0017 0.0001| 0.0019] 0.0003 | 0.0001| 0.0059 | 0.0003| 0.0070| 0.0076
di gg 30K 85K 86K 2.80 284 25| 82641 sTash 0.0002 | 0.0044 | 0.0003 | 0.0049 | 0.0010 | 0.0032] 0.0165| 0.0011| 0.0213| 0.0262
sl ash 51K 130K 140K 2.55 2.74 17 89862 conflict 0.0042| 0.0504 | 0.0047| 0.0482| 0.0175| 0.1371| 0.0908 | 0.0227 | 0.3346| 0.4253
confTict [l 118K | 2054K | 29T8K 1740 2471] 562273909 ot bs | 09502907 | U03ea 51752 | 1175 | 50800 | G357 | O.1ed] Sem Laers
growth 1871K | 39953K | 39953K 21.36 21.36 T| 2198 youtuve | O - . : - . - - . -
yout ube || 3224K | 9377K | 12224K 2.91 3.80 2 203

Table 3: Running time in seconds (high-degree sources)

Earliest-arrival | Latest-departure] Fastest Shortest

I-pass| Xuan | 1-pass| Xuan | 1-pass| Trans Xuan | I-pass Trans Xuan

arxiv 0.0119] 0.1829] 0.0121] 0.1726] 0.3969] 0.0565] 45.5396] 0.1673] 0.1433] 2.5805
dbl p 0.0449 | 0.6254 | 0.0407 [0.8303 | 0.7842| 0.4654 9.5193] 0.6706| 1.6710| 4.6050
el ec 0.0003 | 0.0022 | 0.0003 [0.0020 | 0.0017 | 0.0048 1.3386| 0.0013| 0.0313| 0.0178
enron 0.0023 | 0.0217] 0.0023| 0.0217] 0.1093| 0.1053| 22.8077] 0.0329| 0.3469| 0.1563
epin 0.0014 | 0.0339 | 0.0019 0.0277 | 0.0155 [0.0302 4.7978| 0.0102| 0.0928 | 0.2450
fb 0.0038 | 0.0416 | 0.0041| 0.0350 | 0.0531| 0.1558| 16.6954| 0.0400| 0.4816| 0.3764
fTickr 0.0907 [1.6400| 0.1356 | 1.8558| 2.6368 | 1.7497| 81.5611| 1.2522| 5.1928| 17.7573
di gg 0.0002 | 0.0038 | 0.0002| 0.0040 [0.0009 | 0.0018 0.3940 | 0.0008| 0.0177] 0.0227
sl ash 0.0006 | 0.0082 | 0.0006 [0.0088 | 0.0041| 0.0125 1.4768| 0.0032| 0.0487| 0.0503
conflict 0.0055 | 0.0578 | 0.0057 [0.0624 | 0.1013| 0.3264 | 32.6886| 0.0520| 0.7887| 0.8003
growth 0.1794 | 2.0868 | 0.1936 [2.3546 | 4.5404 | 7.7180| 262.7313] 2.8376 | 20.6097 | 29.6612
yout ube 0.0559 | 1.0114 | 0.0610| 1.1920| 0.8317| 0.8199 | 103.9525[0.6120| 3.1188| 5.1966

Table 4: Size of the transformed graphG

[[arxiv] dblp] elec] enron [epin | fb]

V] 433K 5553K 212K 1367K 482K 1637K

|E| 9759K | 16977K 313K 2505K 1219K 3037K
[[[flickr [digg [slTash [conflict [growth [youtube |

V] 12600K 172K 273K 3191K | 34815K 11498K

|E| 44358K 233K 381K 6009K | 77196K 21140K

of 1-pass, but the tradeoff is that the transformed graphriger
than the temporal graph. For computing shortest paths,itie t
complexity of 1-pass and Trans are similar. However, 1-gaiss
faster than Trans in all cases except for énexi v dataset, which
can be explained by the fact thdf| is comparable withE| for
ar xi v but considerably larger thai| for other datasets. When
the sizes of the input graphs are comparable, Trans andslhpaie
comparable performance for computing shortest paths.

7.2 Effect of Varying Time Intervals

For computing the minimum temporal paths, the input time in-
terval [t., t.,] can affect the overall running time significantly. In
this experiment, we test the effect of differdty, ¢.,] on the per-
formance of our algorithms. We test five different time intds, I
to Is. We setl; = [0, |T¢|], where|T¢| is reported in Table 1. For
eachl;, for 1 < ¢ < 4, we divideI; into two equal sub-intervals so
that ;41 is the first sub-interval of;.

We report the average running time (in seconds) for comgutin
fastest and shortest paths using 1-pass for the 100 randssnly
lected source vertices in Tables 5 and 6. The running time for
computing earliest-arrival and latest-departure patbmialler than
that for fastest paths, but follows a similar trend with ttaeying
time intervals. The running time for Trans and for the higigcte
source vertices also follows the same trend. Thus, we omitléa
tails of these results due to space limit.

Tables 5 and 6 clearly show that for all datasets, when the tim
interval becomes smaller, the running time is significargjuced.
Note that although the time interval is halved each timerdinaing
time is reduced in a much faster rate in most cases. This can be
explained as the reduction in the number of temporal edgebea
more than halved, which causes a reduction in the valuestbftio
andr. Another important reason is that as the number of temporal

Compared with Trans, there are a number of cases 1-pass is lesedges decreases, the number of reachable vertices thsdy $hé

efficient for computing fastest paths. This is mainly beeafes
computing fastest paths, the complexity of Trans is beltan that

time constraint also decreases, which also causes a reducthe
search space. Only in a few cases, the reduction of runrimg it

Table 5: Running time for varying intervals (fastest path)

| L[L[L] L] 5]
ar xi v 0.1158 | 0.0037 | 0.0002 | 0.0000 | 0.0000
dbl p 0.1440 | 0.0004 | 0.0000 | 0.0000 | 0.0000
el ec 0.0006 | 0.0002 | 0.0001 | 0.0000 | 0.0000
enron 0.0075| 0.0031 | 0.0011 | 0.0004 | 0.0001
epin 0.0040 | 0.0030 | 0.0024 | 0.0018 | 0.0015
fb 0.0095 | 0.0042 | 0.0024 | 0.0017 | 0.0013
flickr 0.4711| 0.2307 | 0.1405| 0.0496 | 0.0422
di gg 0.0003 | 0.0001 | 0.0001 | 0.0000 | 0.0000
sl ash 0.0010 | 0.0003 | 0.0001 | 0.0000 | 0.0000
conflict 0.0176 | 0.0060 | 0.0020 | 0.0005 | 0.0002
growt h 1.3652 | 0.0176 | 0.0018 | 0.0001 | 0.0000
yout ube 0.1172| 0.0291 | 0.0194 | 0.0099 | 0.0087

Table 6: Running time for varying intervals (shortest path)

| L[L[I] L] 5]
ar xi v 0.0978 | 0.0036 | 0.0002 | 0.0000 | 0.0000
dbl p 0.1520 | 0.0004 | 0.0000 | 0.0000 | 0.0000
el ec 0.0006 | 0.0002 | 0.0001 | 0.0000 | 0.0000
enron 0.0069 | 0.0031 | 0.0012 | 0.0004 | 0.0001
epin 0.0049 | 0.0036 | 0.0027 | 0.0019 | 0.0015
fb 0.0093 | 0.0043 | 0.0024 | 0.0016 | 0.0013
flickr 0.5015| 0.2362 | 0.1431 | 0.0494 | 0.0421
di gg 0.0003 | 0.0001 | 0.0001 | 0.0000 | 0.0000
sl ash 0.0011 | 0.0003 | 0.0001 | 0.0000 | 0.0000
conflict 0.0227] 0.0072 | 0.0022 | 0.0006 | 0.0002
growt h 1.4803 | 0.0177 | 0.0018 | 0.0001 | 0.0000
yout ube 0.1204 | 0.0292 | 0.0195| 0.0100 | 0.0088

less than 2. This is mainly because the reduction in the nuotbe
temporal edges in those cases is less than halved (i.e.,edges
are in the other half of the time period).

This result is encouraging as in real applications, oftamsimay
be only interested in temporal paths within a specific timeogke
e.g., arecent time window or the peak season last year.

7.3 Temporal Analysis vs. Static Analysis

In this experiment, we study the two applications of minimum
temporal paths discussed in Section 6, by comparing withehe
sults from the static graphs. Our objective is to show thatydit
results on temporal graphs can be dramatically differemhfthose
on static graphs, and hence will carry additional importargven
the real accurate information about the temporal data.

Closeness centrality. We compute closeness centrality based on
fastest and shortest paths in a temporal gr@phespectively, and
then compute closeness centrality based on the classteshpaths
in the condensed static gragh; of G. Then, we usdPearson
correlation coefficien{PCC) to measure the degree of linear cor-
relation betweenX = {closeness(v,G) : v € V} andY =
{closeness(v,Gs) : v € Vi}, 1.e., X andY are the closeness val-
ues of the vertices it and inG's, respectively (note that = V;).
Table 7 reports the PCC values, in whielt'C'y and PCC in-
dicate that closeness is defined based on fastest and shatles
in G, respectively. The results show that the closeness vaaras ¢
puted from the static graphs have low correlation with thos@-
puted from the temporal graphs for most datasets. This isumet
prising if fastest paths are used to compute the closendgssya
however, the results show that even if shortest paths am tose
compute the closeness values in temporal graphs, the elesen
values are also significantly different from those computeth
the static graphs. Theout ube dataset is an exception for which
we found that the closeness values of all vertices are ctogerb
because the vertices yrout ube cannot reach the majority of ver-
tices in the graph. Note that for unreachable vertides;,(v, u) or
dura(P,,) in the denominator of Equation 1 is setnoor |T¢|,

Table 7: Correlation between temporal and static closeness

[[arxiv] dblp [elec] enron [epin | fb]
[PCC; || 0.2143] 0.0491] -0.6833 06739 0.3753| -0.6277|
[PCC, || 04097 0.1134| 0.7152 0.6305| 0.3748] _ 0.6906 |
[[[flickr T digg | slash | conflict [growth [youtube |
[[PCC;]| 0.2333] -0.3791] 0.4284] 0.4147] 0.2568] 1]
[PCC, || 0.2318] 0.4332] 0.5681 | 05019 | 0.3958 | 1|
Table 8: NDCG values (fastest path)
3 [100 [200 [300] 400 500]

ar xi v 0.9135] 0.8451 | 0.7906 | 0.7415| 0.7030

dbl p 0.5348 | 0.4564 | 0.4145| 0.3863 | 0.3662

el ec 0.4979| 0.4604 | 0.4621 | 0.4711| 0.4835

enron 0.4522 | 0.4285| 0.4157 | 0.4023 | 0.3962

epin 0.3667 | 0.3184 | 0.3091 | 0.3163 | 0.3241

fb 0.6778 | 0.5518 | 0.4899 | 0.4563 | 0.4351

flickr 0.4107 | 0.3145| 0.2662 | 0.2363 | 0.2165

di gg 0.5026 | 0.4301 | 0.4029 | 0.3889 | 0.3820

sl ash 0.3088 | 0.2698 | 0.2567 | 0.2541 | 0.2567

conflict | 0.4395| 0.3818 | 0.3501 | 0.3312| 0.3160

growt h 0.4677 | 0.3446 | 0.2909 | 0.2638 | 0.2471

yout ube 0.3955| 0.2995| 0.2557 | 0.2299 | 0.2113

Table 9: NDCG values (shortest path)
[k [100 [200 [300 | 400 500]

ar xi v 0.9808 | 0.9596 | 0.9394 | 0.9204 | 0.9047

dbl p 0.7484 | 0.6734 | 0.6255| 0.5919 | 0.5679

el ec 0.7136 | 0.6495 | 0.6202 | 0.6038 | 0.5968

enron 0.8048 | 0.7716 | 0.7466 | 0.7281 | 0.7115

epin 0.5440 | 0.5087 | 0.5044 | 0.5049 | 0.5078

fb 0.8589 | 0.7920 | 0.7536 | 0.7298 | 0.7142

flickr 0.4958 | 0.4085| 0.3712 | 0.3521 | 0.3369

di gg 0.6968 | 0.6103 | 0.5633 | 0.5346 | 0.5149

sl ash 0.5736 | 0.5162 | 0.4912 | 0.4727 | 0.4603

conflict [0.6708 | 0.6338| 0.6076 | 0.5936 | 0.5869

growt h 0.6509 | 0.5772 | 0.5438 | 0.5240 | 0.5100

yout ube 0.6328 | 0.5584 | 0.5215| 0.4967 | 0.4778

resulting in a small reciprocal that can be close to 0 if mestives
are not reachable from

Top-k nearest neighbors. We next compute the top-nearest
neighbors using the four minimum temporal paths, and coepar
with the top4 nearest neighbors using shortest paths in the con-
densed static grapti's. To assess the effectiveness of shortest
paths inGs in capturing the ranking defined by minimum temporal
paths inG, we compute theormalized discounted cumulative gain
(NDCQ) of the top# ranking inG,. The relevance of each tdp-
vertex inGs is given as the corresponding ranking of the vertex in
G computed based on each of the four minimum temporal paths.
The NGCG value varies from 0 to 1, with 1 representing the same
ranking as in the temporal graph. We compute thekopearest
neighbors for the 100 randomly selected source verticesegrait

the average NDCG values in Tables 8-9 (the results for sarlie
arrival and latest-departure paths can be found in [19] wléad

to a similar conclusion as follows).

The results show that the ranking obtained from the statiplyr
can be significantly different from that obtained from thenpsral
graph. The difference becomes particularly obvious when-
creases. Thus, the temporal information is critical in daieing
the top% nearest neighbors in a temporal graph.

The results of both the closeness measure and thg tapking
may not suggest that the results from the static graphs talyto
meaningless. However, the results clearly reveal thatyaima)
temporal graphs may obtain results that are very diffemam fthat
obtained from static graphs. This calls the need for stuglyém-
poral graphs directly, which is particularly necessarydnalyzing
temporal properties of the graph.

8. RELATED WORK

The closest related work is [21], and we have explained in Sec
tion 3 that our path definitions are more general than th€imn-
pared with our one-pass algorithms, their algorithm for pating
earliest-arrival path is rather straightforward adoptdijkstra’s
strategy, while their algorithms for computing fastest aart-
est paths are essentially by enumeration of paths whichef§i-in

cantly different from shortest paths in static graphs. Bhisws the
need for studying temporal graphs directly instead of cosuhg
them into static graphs, and thus we believe that many agijdits
can be developed from minimum temporal paths.

For future work, we plan to develop indexes for answeringigse
on temporal paths, by applying indexing techniques for tesnporal
graphs [2, 3, 4,5, 7].

cient. Thus, even though we solve more general problems, our acknowledgments. We thank the reviewers for their many useful com-

algorithms attain much lower time complexity than theiee(3 he-
orem 1, Propositions 2 and 3 in [21]). Our experimental tssul
also verify that our algorithms are one to two orders of magtd
faster than theirs on average. Minimum temporal paths wee a
studied in our previous work [9]. The focus of that work is emt
poral graph traversals, but we also applied temporal DFS/®F
compute minimum temporal paths with linear time complexity
Many applications of temporal paths were proposed, which we
briefly discuss as follows. Temporal paths were appliedudysthe
connectivity of a temporal network [10], for which disjoit@mpo-
ral paths between any two vertices are computed. In [11]né& si
lar definition of latest-departure path (without the infation of A
for the edges) was proposed to study information latency12f
four definitions of temporal proximity were introduced, whiare
no more than finding earliest-arrival, latest-departure] fastest
paths, but they also did not consider the informatiom\pfvhich
is useful in many applications such as flight scheduling agist
tic/itinerary planning. They also did not propose any aittpon for
path computation. In [16, 17], the earliest-arrival timesvegoplied
to define metrics such as temporal efficiency (i.e., how eaf®y-i
mation flows from one vertex to another) and temporal clisger
coefficient. Temporal paths were also applied to find tenippmna
nected components in [13, 17]. In [18], small-world behavias
analyzed in temporal networks using temporal paths. In, [b&]
tweenness and closeness based on the three types of tepgtbsal
in [21] were briefly mentioned but not studied. In [14], ennai
studies were conducted to measure correlation betweernotamp
paths and closeness defined based on earliest-arrival tienaged
over all starting time instances. Their results provide samsights
about real temporal graphs, but the datasets they used airle mu
smaller than those we used. In [20], a temporal graph is used t
model users’ long-term and short-term preferences oves tind
the temporal information is used for recommendation. Afrarn
that, there are surveys [1, 8] that cover most of the prioppsed
concepts of temporal graphs.

9. CONCLUSIONS

We presented four types of minimum temporal paths. Among
them, only shortest path is a well-known concept in normeaticst

graphs, but we have shown that the concept of shortest path in

temporal graphs is very different from that in static grapfitie
other three types, i.e., earliest-arrival paths, lategtadture paths
and fastest paths, are unique in temporal graphs, and a}l e,
different and important temporal information about thepgraWe
first proposed efficient one-pass algorithms that use ondylion
ear scan of the input graph for computing the minimum tempora
paths, which is scalable for massive temporal graphs. Weanex
posed an alternative solution that transforms a tempoegdtginto

a non-temporal one with no information loss. Experimentsaon
wide range of real-world temporal graphs show that our élgas
are one order to two orders of magnitude faster than theirgist
algorithms [21]. We also demonstrated, through the apjtioa of
closeness centrality computation and fopearest neighbors, that
minimum temporal paths lead to analytic results that araifsig

ments that have helped improve the paper significantly. Téssarch is
supported in part by the CUHK Direct Grant No. 4055017.

][9 A gsﬁe%g,%ﬁhlc%%, . Quattrociocchi, and Nnao.

Time-varying graphs and dynamic networksternational Journal of
Parallel, Emergent and Distributed Systerig(5):387-408, 2012.

[2] J.Cheng, S. Huang, H. Wu, and A. W.-C. Fu. Tf-label: a
topological-folding labeling scheme for reachability guirg in a
large graph. IrSIGMOD Conferencgpages 193-204, 2013.

[3] J.Cheng, Y. Ke, S. Chu, and C. Cheng. Efficient processing
distance queries in large graphs: a vertex cover approach. |
SIGMOD Conferencepages 457-468, 2012.

[4] J. Cheng, Z. Shang, H. Cheng, H. Wang, and J. X. Yu. K-resi¢ho
is in your small world PVLDB, 5(11):1292-1303, 2012.

[5] J.Cheng, Z. Shang, H. Cheng, H. Wang, and J. X. Yu. Efficien
processing of k-hop reachability queri®d.DB J, 23(2):227-252,
2014.

[6] D. Eppstein and J. Wang. Fast approximation of cengrdlit SODA
pages 228-229, 2001.

[7] A.W.-C. Fu, H. Wu, J. Cheng, and R. C.-W. Wong. Is-label: a

independent-set based labeling scheme for point-to-jlistance

querying.PVLDB, 6(6):457-468, 2013.

P. Holme and J. Saraméki. Temporal netwo®sRR

abs/1108.1780, 2011.

S. Huang, J. Cheng, and H. Wu. Temporal graph traversals:

Definitions, algorithms, and applicatioSoRR abs/1401.1919,

2014.

D. Kempe, J. M. Kleinberg, and A. Kumar. Connectivitydan

inference problems for temporal networks Comput. Syst. Sgi.

64(4):820-842, 2002.

G. Kossinets, J. M. Kleinberg, and D. J. Watts. The stmecof

information pathways in a social communication networkK D,

pages 435-443, 2008.

V. Kostakos. Temporal graphBhysica A: Statistical Mechanics and

its Applications 388(6):1007—-1023, 2009.

V. Nicosia, J. Tang, M. Musolesi, G. Russo, C. Mascoid a

V. Latora. Components in time-varying grapRR

abs/1106.2134, 2011.

R. K. Pan and J. Saramaki. Path lengths, correlatiand,centrality

in temporal networksPhys. Rev. E34:016105, 2011.

N. Santoro, W. Quattrociocchi, P. Flocchini, A. Cagtej and

F. Amblard. Time-varying graphs and social network analysi

Temporal indicators and metricSoRR abs/1102.0629, 2011.

J. Tang, M. Musolesi, C. Mascolo, and V. Latora. Tempdistance

metrics for social network analysis. Rroceedings of the ACM

Workshop on Online Social Networksages 31-36, 2009.

[17] J. Tang, M. Musolesi, C. Mascolo, and V. Latora. Chazasing

temporal distance and reachability in mobile and onlineagoc

networks.Computer Communication Revied0(1):118-124, 2010.

J. Tang, S. Scellato, M. Musolesi, C. Mascolo, and Vokat

Small-world behavior in time-varying grapthysical Review E

81(5):055101, 2010.

H. Wu, J. Cheng, S. Huang, Y. Ke, Y. Lu, and Y. Xu. Path peats

in temporal graphs (preliminary version).

www.cse.cuhk.edu.hk/ ~hhwu/temsp.pdf ,2013.

[20] L. Xiang, Q. Yuan, S. Zhao, L. Chen, X. Zhang, Q. Yang, dn8un.
Temporal recommendation on graphs via long- and short-term
preference fusion. IKDD, pages 723-732, 2010.

[21] B.-M. B. Xuan, A. Ferreira, and A. Jarry. Computing stest, fastest,
and foremost journeys in dynamic networks. J. Found. Comput.
Sci, 14(2):267-285, 2003.

(8]
El

[10]

(11]

[12]

(13]

[14]

[15]

[16]

(18]

[19]

