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ABSTRACT
Shortest path is a fundamental graph problem with numerous ap-
plications. However, the concept of classic shortest path is insuf-
ficient or even flawed in a temporal graph, as the temporal infor-
mation determines the order of activities along any path. Inthis
paper, we show the shortcomings of classic shortest path in atem-
poral graph, and study various concepts of “shortest” path for tem-
poral graphs. Computing these temporal paths is challenging as
subpaths of a “shortest” path may not be “shortest” in a temporal
graph. We investigate properties of the temporal paths and propose
efficient algorithms to compute them. We tested our algorithms on
real world temporal graphs to verify their efficiency, and also show
that temporal paths are essential for studying temporal graphs by
comparing shortest paths in normal static graphs.

1. INTRODUCTION
There have been a lot of interests in research on graph data man-

agement and graph mining in recent years, mainly thanks to the
increasing popularity of many online social networks and commu-
nication networks. Existing research has mainly focused onthe
study of static graphs, while some have also considered dynamic
graphs as a sequence of updates to static graphs. However, many
real world graphs are actuallytemporal graphs, in which a vertex
communicates with another vertex at specific time instances. For
example, assume that Figure 1(a) shows an air-transport network,
then the 2 edges froma to b indicate that there is a flight froma
to b on Day 1 and Day 2, i.e., the numbers 1 and 2 on the edges
represent flight departure time.

There are numerous real world applications for which data can
be modeled as a temporal graph. For example, A calls B at time
t in phone call networks, A sends message to B at timet in Short
Message Service or emails networks, A follows B at timet in social
networks, A cites B at timet in citation networks, A works with B
at timet in collaboration networks, information spreads from A to
B at timet in information dissemination networks, to name but a
few. In a survey of temporal networks [8], Holme and Saramki
also describe in details various temporal networks in cell biology,
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Figure 1: Temporal graph G and its condensed static graphGs

neural and brain connections, ecological systems, infra-structural
networks, physical proximity, distributed computing, andso on.

The temporal graphs listed above also have a static version.In
fact, temporal graphs are commonly condensed into static graphs
because their static version is much easier to handle. For example,
computing the strongly connected components (SCCs) of a static
graph has a linear-time algorithm, but computing the SCCs ofa
temporal graph has no known polynomial-time algorithm [13].

Condensing a temporal graph into a static graph loses all thetem-
poral information which is critical to the understanding ofthe re-
lationship between objects in the graph. Not only so, the main
concern is in fact that the resultant static graph often presents erro-
neous information that leads to serious incorrect understanding of
the graph or relationship between objects. We illustrate the above-
mentioned problems by the following example.

EXAMPLE 1. Figure 1(a) shows a temporal graphG. Assume
thatG is an air-transport network, then each vertex represents an
airport and the number on each edge is a flight’s departure day.
For simplicity, we assume that the duration of each flight is 1day.
Figure 1(b) shows the condensed static graphGs of G.

We can see some paths in the static graph may not be a meaning-
ful path in the temporal graph. For example,〈a, b, g, j〉 is a path in
Figure 1(b), but〈a, b, g, j〉 in Figure 1(a) is problematic becauseg
has only one flight toj on Day 2 but we cannot reachg before Day
4 (leavingb on Day 3 and taking 1 day to fly fromb to g).

Now consider a shortest path froma to l in the two graphs. In
Figure 1(b), the shortest path is〈a, i, l〉 with distance 2. But in the
temporal graph in Figure 1(a), if we take the edge(a, i), then we
cannot take either of the flights fromi to l since the flight froma
arrives ati on Day 11. Instead, a valid temporal path is〈a, f, i, l〉
with distance 3, by going froma to f on Day 3, fromf to i on Day
5, and fromi to l on Day 8. �



The above example shows that a condensed static graph can present
misleading information about the original temporal graph,and hence
it is essential to keep the temporal information in the graphs. How-
ever, efficient and effective tools for studying temporal graphs are
severely lacking. In this paper, we focus on the study of “shortest”
paths in a temporal graph, as shortest paths are fundamentalto the
study of a graph and algorithms for computing shortest pathsare
essential building blocks of many advanced graph analysis algo-
rithms (e.g., centrality computation, graph clustering, etc.).

Due to the presence of temporal information, different forms of
“shortest” paths exist and each has its own meaning and signifi-
cance. We define four types of paths in a temporal graph, collec-
tively we call themminimum temporal paths, as they give the
minimum value for different measures: (1)earliest-arrival path
(i.e., a path that gives earliest arrival time starting froma source
x to a targety); (2) latest-departure path (i.e., a path that gives
latest departure time starting fromx in order to reachy by a given
time); (3) fastest path(i.e., the path by which one goes fromx to
y with the minimum elapsed time); and (4)shortest path(i.e., the
path that is shortest fromx to y in terms of overall traversal time
needed on the edges).

Note that a shortest path may not necessarily be a fastest path
(e.g., in a traffic network the shortest path fromx to y may have a
lot of traffic lights, while a highway is longer but is the fastest way
to go fromx toy). Also, a fastest path may not be an earliest-arrival
path (e.g., traveling fromx to y may only take 1 hour at noon due
to less traffic, but one may leave at 9 a.m., take 2 hours to travel
and arrive before noon).

Due to the additional temporal information, computing temporal
paths and their “time-distance” poses new challenges. For exam-
ple, the greedy strategy used to compute shortest paths in a static
graph (e.g., by Dijkstra’s algorithm) is based on the property that a
subpath of a shortest path is also shortest, which is not necessarily
true when computing any of the four minimum temporal paths.

We formally define various concepts of temporal graphs, and the
four types of minimum temporal paths. We investigate usefulprop-
erties of temporal paths to address the challenges of computing
minimum temporal paths discussed above, and propose efficient
one-pass algorithms, as well as a graph transformation approach, to
compute minimum temporal paths. We evaluate the performance of
our algorithms over a wide spectrum of real world temporal graphs,
showing that they significantly outperform existing algorithms. In
addition, we also discuss the applications of minimum temporal
paths, and demonstrate that analytic results obtained directly from
temporal graphs can be dramatically different from those obtained
from static graphs, and hence carry additional important informa-
tion or even the real accurate information about the temporal data.

Paper organization.Section 2 defines notions and notations of
temporal graphs. Section 3 formally defines the minimum tempo-
ral paths. Section 4 presents the one-pass algorithms and Section
5 offers an alternative approach. Section 6 discusses some applica-
tions. Section 7 reports experimental results. Section 8 discusses
related work and Section 9 gives our concluding remarks.

2. NOTATIONS OF TEMPORAL GRAPHS
Let G = (V,E) be a temporal graph, whereV is the set of

vertices ofG andE is the set of edges ofG. An edgee ∈ E is a
quadruple(u, v, t, λ), whereu, v ∈ V , t is thestarting time, λ is
the traversal time to go fromu to v starting at timet, andt + λ

is theending time. We denote the starting time ofe by t(e) and
the traversal time ofe by λ(e). For simplicity of discussion, we
assume thatλ(e) 6= 0 for all e ∈ E, but note that our algorithms
can be extended to handle the case where∃e ∈ E thatλ(e) = 0.

If edges are undirected, then the starting time and traversal time
of an edge are the same fromu to v as fromv to u. We focus on
directed temporal graphs in this paper since an undirected edge can
be modeled by two bi-directed edges.

In Section 1, we give a list of temporal graphs from a wide spec-
trum of applications, we select a few of them to illustrate what tem-
poral information is modeled as follows:

• Phone call or Short Message Service networks: each vertex
represents a person (or simply a mobile device), and an edge
(u, v, t, λ) indicates that vertexu calls or sends a message to
vertexv at timet, and the connection time isλ.

• Social networks (e.g., Facebook, Twitter): each vertex mod-
els a person (or an organization, etc.), and an edge(u, v, t, λ)
can be an interaction betweenu andv (e.g.,u follows v) at
time t which takes timeλ.

• Flight graphs: each vertex represents a location, and an edge
(u, v, t, λ) is a flight fromu to v departing at timet and the
flight duration isλ.

Note that in all the above examples, vertexu may communicate
with vertexv at multiple time instances and in fact, the number
of temporal edges fromu to v can be large for all of the above
graphs. We denote the set of temporal edges fromu to v in G by
Π(u, v), and the number of temporal edges fromu to v in G by
π(u, v), i.e., π(u, v) = |Π(u, v)|. We also define the maximum
number of temporal edges fromu to v, for anyu andv in G, by
π = max{π(u, v) : (u, v) ∈ (V × V )}. The value ofπ can
be large for some real world temporal graphs (e.g., in one of the
temporal graphs used in our experiments,π = 1074).

In a temporal graphG = (V,E), given two temporal edgese1 =
(u1, v1, t1, λ1) ∈ E ande2 = (u2, v2, t2, λ2) ∈ E, we havee1 =
e2 iff (u1 = u2 ∧ v1 = v2 ∧ t1 = t2 ∧ λ1 = λ2). If we condense
temporal edges into static edges, we obtain the correspondingstatic
graph Gs = (Vs, Es) of G, whereVs = V andEs = {(u, v) :
(u, v, t, λ) ∈ E}, that is, the condensation removes all temporal
information from the edges inE and combines all edges with the
same start and end vertices into a single edge.

We define the number of vertices inG andGs asn = |V | =
|Vs|, and the number of edges inG asM = |E| and inGs as
m = |Es|. We define the set ofout-neighbors of a vertexu in
G or Gs asΓout(u,G)=Γout(u,Gs)={v : (u, v, t, λ) ∈ E} =
{v : (u, v) ∈ Es}. We define theout-degree of u in G as
dout(u,G) =

∑
v∈Γout(u,G) π(u, v), and inGs asdout(u,Gs) =

|Γout(u,Gs)|. Thein-neighborsandin-degreeof a vertexu in G

or Gs are defined symmetrically, i.e.,Γin(u,G) = Γin(u,Gs) =
{v : (v, u, t, λ) ∈ E} = {v : (v, u) ∈ Es}, din(u,G) =∑

v∈Γin(u,G) π(v, u), anddin(u,Gs) = |Γin(u,Gs)|.
Figure 1(a) shows a temporal graphG and its corresponding

static graphGs is shown in Figure 1(b). For simplicity, we set
λ = 1 for all edges. We haveΓout(a,G) = Γout(a,Gs) =
{b, c, f, i}, andΓin(b,G) = Γin(b,Gs) = {a}. SinceΠ(a, b) =
{(a, b, 1, 1), (a, b, 2, 1)}, we haveπ(a, b) = 2, din(b,G) = 2
and din(b,Gs) = 1. Similarly, we havedout(a,G) = 5 and
dout(a,Gs) = 4.

3. DEFINITIONS OF TEMPORAL PATHS
A temporal path P in a temporal graphG is a sequence of ver-

ticesP = 〈v1, v2, . . . , vk, vk+1〉, where(vi, vi+1, ti, λi) ∈ E is
the i-th temporal edge onP for 1 ≤ i ≤ k, and(ti + λi) ≤ ti+1

for 1 ≤ i < k. Note that for the last edge(vk, vk+1, tk, λk) onP ,
we do not put a constraint on(tk+λk) sincetk+1 is not defined for



the pathP . In fact,(tk + λk) is theending timeof P , denoted by
end(P ). We also define thestarting time of P asstart(P ) = t1.
We define theduration of P asdura(P ) = end(P )− start(P ),
and thedistanceof P asdist(P ) =

∑k

i=1 λi.
The following example illustrates the concepts of temporalpath.

EXAMPLE 2. An example of a temporal path isP = 〈(a, f, 3, 1),
(f, i, 5, 1), (i, l, 8, 1)〉 in the temporal graphG in Figure 1(a). We
havestart(P ) = 3, end(P ) = 8+1 = 9, dura(P ) = 9− 3 = 6
anddist(P ) = 1 + 1 + 1 = 3.

The stating time of the temporal edges onP follows a chronolog-
ical order, which is important for real world applications such as
itinerary planning. For example, if we choose the edge(a, i, 10, 1)
instead to go froma to i, though the duration and distance are
shorter, we cannot reach the final destinationl as explained in Ex-
ample 1. Thus, the route(a, i, 10, 1) cannot be used as a valid
travel itinerary. �

In the following, we formally define a set of minimum temporal
paths.

DEFINITION 1 (MINIMUM TEMPORAL PATHS). Given a tem-
poral graphG, a source vertexx and a target vertexy in G, and a
time interval[tα, tω], letP(x, y, [tα, tω]) = {P : P is a temporal
path fromx to y such thatstart(P ) ≥ tα, end(P ) ≤ tω}, we
define the following four types of temporal paths fromx to y within
[tα, tω] that have the minimum value for different measures, thus
collectively calledminimum temporal paths:

Earliest-arrival path: P ∈ P(x, y, [tα, tω]) is an earliest-arrival
path ifend(P ) = min{end(P ′) : P ′ ∈ P(x, y, [tα, tω])}.

Latest-departure path: P ∈ P(x, y, [tα, tω]) is a latest-departure
path ifstart(P ) = max{start(P ′) : P ′ ∈ P(x, y, [tα, tω])}.

Fastest path: P ∈ P(x, y, [tα, tω]) is a fastest path ifdura(P ) =
min{dura(P ′) : P ′ ∈ P(x, y, [tα, tω])}.

Shortest path: P ∈ P(x, y, [tα, tω]) is a shortest path ifdist(P ) =
min{dist(P ′) : P ′ ∈ P(x, y, [tα, tω])}.

Note that if a time interval[tα, tω] is not explicitly specified
for the minimum temporal paths, then it is simply taken as[tα =
0, tω = ∞]. However, we may not be always interested in the
entire temporal history of the graph and hence allowing users to
specify[tα, tω] gives higher flexibility and applicability.

The concept of temporal path was introduced in [10]. Later a
number of different types of paths were proposed [1, 11, 12, 14, 15,
16, 17, 21] based on the concept of temporal path. However, many
of the existing path definitions are rather ad hoc, model incomplete
information, and/or use over-complicated notations. There is no
single work that studies all aspects or defines all types of mini-
mum temporal paths that we study in this paper. The most com-
plete existing definitions on minimum temporal paths were pro-
posed in [21], which include three out of four types of paths we
study here (i.e., earliest-arrival, fastest, and shortestpaths). Com-
pared with [21], our temporal path problems are more general: first,
in [21] the traversal timeλ is the same for any edge(u, v), while in
our definitionλ can be different when an edge has a different start-
ing time (which is common such as for flight duration, phone call
duration, etc.); second, their definition and algorithm forshortest
paths can only count the number of hops, while our definition and
algorithm allow edges to have either a traversal time or a weight.

Problem definition: single-source minimum temporal paths
(SSMTP). Given a temporal graphG = (V,E), a vertexx in V ,
and a time interval[tα, tω], the problem ofSSMTP is to find: (1)
the earliest-arrival path fromx to everyv ∈ V , or (2) the latest-
departure path from everyv ∈ V to x, or (3) the fastest path from

x to everyv ∈ V , or (4) the shortest path fromx to everyv ∈ V ,
respectively, within the time interval[tα, tω].

LetP be a minimum temporal path to be computed. For simplic-
ity of discussion, in the presentation of our algorithms forcomput-
ing SSMTP, we only report: (1) earliest-arrival timeend(P ), or (2)
latest-departure timestart(P ), or (3) duration of the fastest path
dura(P ), or (4) distance of the shortest pathdist(P ), respectively.
We note that the algorithms can be straightforwardly extended to
report the corresponding pathP .

The following lemmas give some properties of minimum tempo-
ral paths (some examples for each case are given in [19]).

LEMMA 1. A prefix-subpath of an earliest-arrival path may not
be an earliest-arrival path.

LEMMA 2. A postfix-subpath of a latest-departure path may
not be a latest-departure path.

LEMMA 3. A subpath of a fastest path may not be a fastest
path.

LEMMA 4. A subpath of a shortest path may not be a shortest
path.

Lemmas 1-4 highlight the challenges of computing minimum
temporal paths, as Dijkstra’s greedy strategy cannot be directly ap-
plied to compute minimum temporal paths.

4. ONE-PASS ALGORITHMS FOR COM-
PUTING MINIMUM TEMPORAL PATHS

In this section, we present efficient one-pass algorithms for com-
puting single-source minimum temporal paths.

4.1 Stream Representation of a Temporal Graph
Before we present the one-pass algorithms, we first describethe

data stream representation of a temporal graph.
Theedge streamrepresentation of a temporal graphG is simply

a sequence of all edges inG that come in the order of the time each
edge is created/collected (i.e., the edges are ordered according to
their starting time). If two temporal edges are created/collected at
the same time, their ordering can be arbitrary. For example,if G has
the following edges,{(v1, v2, 2, 5), (v2, v4, 4, 1), (v3, v2, 1, 1)},
then the edge stream ofG appears as follows:(v3, v2, 1, 1), (v1, v2,
2, 5), (v2, v4, 4, 1). The edge stream is a natural format with which
a temporal graph is generated and collected, e.g., the communica-
tion logs captured by telecom operators over time, or the temporal
user behavior captured by social networking sites over time.

The following lemma shows a property of a temporal path in
connection with the edge stream representation.

LEMMA 5. LetP = 〈v1, v2, . . . , vk, vk+1〉 be a temporal path
in G, whereei=(vi, vi+1, ti, λi) ∈ E is thei-th temporal edge on
P for 1 ≤ i ≤ k. For anyei andej onP , if i < j, thenei comes
beforeej (i.e.,ei is ordered beforeej) in the edge stream ofG.

PROOF. By the definition of temporal path, we have(ti+λi) ≤
ti+1 for 1 ≤ i < k, and henceti+1 > ti asλi > 0. Thus, the
starting times ofe1, e2, ..., ek are in strictly ascending order, and
henceei comes beforeej in the edge stream ofG.

4.2 Earliest-Arrival Paths
In this subsection, we present our algorithm for computing the

earliest-arrival time from a source vertexx to every vertex in a tem-
poral graphG within the time interval[tα, tω].



Algorithm 1: Computing earliest-arrival time

Input : A temporal graphG = (V, E) in its edge stream
representation, source vertexx, time interval[tα, tω ]

Output : The earliest-arrival time fromx to every vertexv ∈ V
within [tα, tω ]

1 Initialize t[x] = tα, andt[v] =∞ for all v ∈ V \ {x};
2 foreach incoming edgee = (u, v, t, λ) in the edge streamdo
3 if t+ λ ≤ tω andt ≥ t[u] then
4 if t+ λ < t[v] then
5 t[v]← t+ λ;

6 else ift ≥ tω then
7 Break the for-loop and go to Line 8;

8 return t[v] for eachv ∈ V ;

The classic Dijkstra’s algorithm for computing single-source short-
est paths is based on the fact that the prefix-subpath of a shortest
path is also a shortest path. However, according to Lemma 1, the
prefix-subpath of an earliest-arrival path may not be an earliest-
arrival path. This seems to imply that the greedy strategy togrow
the shortest paths that is applied in Dijkstra’s algorithm cannot be
applied to compute earliest-arrival paths, though the following ob-
servation shows otherwise.

LEMMA 6. LetP be the set of earliest-arrival paths fromx to
a vertexvk within the time interval[tα, tω]. If P 6= ∅, then there
existsP = 〈x, v1, v2, . . . , vk〉 ∈ P such that every prefix-subpath,
Pi = 〈x, v1, v2, . . . , vi〉, is an earliest-arrival path fromx to vi
within [tα, tω], for 1 ≤ i ≤ k.

PROOF. Given any earliest-arrival pathP ∈ P, if not every
prefix-subpath in it is an earliest-arrival path, we can always con-
struct a pathP̂ as follows. We traverseP in reverse order and find
the first vertexvi such that the corresponding prefix-subpathPi is
not an earliest-arrival path fromx to vi. Thus, there exists another
pathP̂i that is an earliest-arrival path fromx to vi. We replacePi

in P by P̂i. The new pathP̂ is still a valid temporal path because
end(P̂i) < end(Pi). In addition,P̂ is an earliest-arrival path from
x to vk (i.e., P̂ ∈ P) becauseend(P̂ ) = end(P ). This process
continues until every prefix-subpath is an earliest-arrival path and
the resultingP̂ is inP, which proves the lemma.

Based on Lemma 6, we can apply the greedy strategy to grow the
earliest-arrival paths in a similar way to Dijkstra’s algorithm. How-
ever, this approach needs to use a minimum priority queue, result-
ing in an algorithm withO(m log π+m log n) time andO(M+n)
space complexity [19], which is too expensive for processing tem-
poral graphs with a large number of temporal edges.

Dijkstra’s greedy strategy requires the entire graph to be present
as random access to vertices and edges are needed. However, for
temporal graphs, Lemma 5 implies that the input graph can be in the
natural edge stream representation, and it is possible to compute the
earliest-arrival paths with only one scan of the graph. We present
our one-pass algorithm in Algorithm 1 and elaborate as follows.

We use an arrayt[v] to keep the current earliest-arrival time from
x to every vertexv ∈ V that has been seen in the stream. According
to Lemma 5, if there is a temporal pathP from x to v so that all
edges onP have been seen in the stream, thent[v] = end(P ) =
t+ λ as updated in Line 5. The condition “t+ λ < t[v]” in Line 4
ensures thatt[v] will be updated with the smallestend(P ) for any
P from x to v within the time interval[tα, tω].

We linearly scanG and for each incoming edgee = (u, v, t, λ)
in the stream, we check whethere meets the time constraint of a
temporal path within[tα, tω], i.e., whethert+λ ≤ tω andt ≥ t[u].

If yes, we grow the temporal path by extending tov via the edge
e. During the process, we updatet[v] when necessary as discussed
earlier. The process terminates when we meet the first edge inthe
stream that has starting time greater than or equal totω (Lines 6-7).

EXAMPLE 3. Consider the temporal graphG in Figure 1(a),
where we assume that the traversal timeλ is 1 for all edges. Leta
be the source vertex. We compute the earliest-arrival time from a

to every vertex inG within the time interval[1, 4].
Initially, t[a] = 1, and t[v] = ∞ for all v ∈ V \ {a}. The

first incoming edge is(a, b, 1, 1), since it satisfies the conditions in
Lines 3-4, we updatet[b] = 1 + 1 = 2 in Line 5. The second edge
is (a, b, 2, 1), the condition in Line 4 is not satisfied. The next edge
is (g, j, 2, 1), sincet[g] = ∞, the condition “t ≥ t[u] = t[g]”
in Line 3 is not met. Then, the edges(b, g, 3, 1), (b, h, 3, 1), and
(a, f, 3, 1) are followed, for which we updatet[g] = 4, t[h] = 4,
andt[f ] = 4. After that the edge(a, c, 4, 1) comes, which satisfies
the condition in Line 6 and the process is terminated. It can be
easily verified that we have obtained the correct earliest-arrival
time froma to every vertex inG within the time interval[1, 4]. �

The following lemma shows that when Algorithm 1 terminates,
t[v] correctly reports the earliest-arrival time fromx to v.

LEMMA 7. For any vertexv ∈ V , if the earliest-arrival path
from x to v within the time interval[tα, tω] exists, thent[v] re-
turned by Algorithm 1 is the corresponding earliest-arrival time;
otherwise,t[v] = ∞.

PROOF. Suppose that the earliest-arrival path fromx to v within
[tα, tω] exists. Then, according to Lemma 6, there exists an earliest-
arrival path fromx to v, P = 〈x = v1, v2, . . . , vk, vk+1 = v〉,
such that every prefix-subpath ofP is an earliest-arrival path from
x to some vertexvi on P . Let te[vi] be the earliest-arrival time
from x to vi, for 1 ≤ i ≤ k + 1. Let e1, e2, . . ., ek be the edges
onP , whereei = (vi, vi+1, ti, λi) for 1 ≤ i ≤ k. Then, we have
ti ≥ te[vi] andti + λi = te[vi+1] for 1 ≤ i ≤ k.

We prove that Algorithm 1 computest[vi] = te[vi], for 1 ≤ i ≤
k + 1, by induction oni. Wheni = 1, x = v1, t[x] = te[x] = tα
is initialized in Line 1 of Algorithm 1, andt[x] will not be updated
any more. Wheni = 2, obviously we havet[v2] = te[v2] = t1 +
λ1 when we processe1, andt[v2] will not be updated again due to
the condition in Line 4. Now assume that fori = j, wherej < k+
1, t[vj ] = te[vj ] = tj−1 + λj−1 when we processej−1. Consider
i = j + 1 and we want to provet[vj+1] = te[vj+1]. According
to Lemma 5,ej comes afterej−1 in the stream. Thus, when the
algorithm scansej , we have the following two cases regarding the
value oft[vj+1]. (1) t[vj+1] = te[vj+1]. In this case, Line 5 will
not be processed due to the condition in Line 4 andt[vj+1] gives the
correct earliest-arrival time fromx to vj+1. (2) t[vj+1] > te[vj+1].
In this case,t[vj+1] is updated tote[vj+1] = tj +λj in Line 5, and
it will not be updated again due to the condition in Line 4. In both
cases, we havet[vj+1] = te[vj+1] and by induction,t[vi] = te[vi]
for 1 ≤ i ≤ k + 1.

Finally, if the earliest-arrival path fromx to v does not exist, then
there is no temporal path fromx to v andt[v] remains to be∞.

The following theorem states our main result for earliest-arrival
path computation.

THEOREM 1. Algorithm 1 correctly computes the earliest-arrival
time from a source vertexx to every vertexv ∈ V within the time
interval [tα, tω] using only one linear scan of the graph,O(n+M)
time andO(n) space.

PROOF. The correctness is proved in Lemma 7. The initial-
ization in Line 1 takesO(n) time. Every temporal edge inG is



Algorithm 2: Computing latest-departure time

Input : A temporal graphG = (V, E) in reverse edge stream
representation, target vertexx, time interval[tα, tω ]

Output : The latest-departure time from every vertexv ∈ V to x
within [tα, tω ]

1 Initialize t[x] = tω , andt[v] = −∞ for all v ∈ V \ {x};
2 foreach edgee = (u, v, t, λ) in the reverse edge streamdo
3 if t ≥ tα then
4 if t+ λ ≤ t[v] then
5 if t > t[u] then
6 t[u]← t;

7 else
8 Break the for-loop and go to Line 9;

9 return t[v] for eachv ∈ V ;

scanned at most once and it takesO(1) time to process every edge.
Thus, the overall time complexity of Algorithm 1 isO(n + M).
We do not keep the edges, but useO(n) space to keept[v] for each
v ∈ V . And clearly, the algorithm takes at most one linear scan of
the edge stream.

4.3 Latest-Departure Paths
Next we present a one-pass algorithm for computing the latest-

departure time from every vertex to a target vertexx in G.
We present the algorithm in Algorithm 2, which is essentially

symmetric to Algorithm 1 as we now scan the edge stream in re-
verse order. The other differences can be easily observed from the
definition of the latest-departure paths, and hence we omit the de-
tailed algorithm description here.

Similar to the computation of earliest-arrival time, the following
lemma shows that we can correctly compute latest-departuretime
(the proof is similar to that of Lemma 7 and hence omitted).

LEMMA 8. For any vertexv ∈ V , if the latest-departure path
fromv to x within [tα, tω] exists, thent[v] returned by Algorithm 2
is the corresponding latest-departure time; otherwise,t[v] = −∞.

The following theorem states our main result for latest-departure
path computation (the proof is similar to that of Theorem 1).

THEOREM 2. Algorithm 2 correctly computes the latest-departure
time from every vertexv ∈ V to a target vertexx within the time
interval [tα, tω] using only one linear scan of the graph,O(n+M)
time andO(n) space.

4.4 Fastest Paths
We now present our algorithm for computing the duration of the

fastest path from a source vertexx to every vertex inG.
A naive way to find the fastest path fromx to a vertexv in G is to

find all temporal paths fromx to v, and then pick the one with the
minimum duration. However, there may exist exponentially many
temporal paths fromx to v. Thus, effective pruning of search space
is needed, and the following lemma is useful for this purpose.

LEMMA 9. LetP be the set of temporal paths fromx to v with
the same starting timet. Then,P ∈ P is a fastest path fromx to v

starting att if P is an earliest-arrival path fromx to v starting at
t.

PROOF. The proof follows directly from the definitions of earliest-
arrival path and fastest path.

Lemma 9 implies that we can compute the fastest path fromx

by finding the earliest-arrival path starting at every distinct time

Algorithm 3: Computing fastest-path duration (multi-passes)

Input : A temporal graphG = (V, E) in its edge stream
representation, source vertexx, time interval[tα, tω ]

Output : The duration of the fastest path fromx to every vertex
v ∈ V within [tα, tω ]

1 Initialize f [x] = 0, andf [v] =∞ for all v ∈ V \ {x};
2 LetS be the set of distinct starting time of the out-edges ofx within

[tα, tω ], i.e.,
S = {t(e) : e is an out-edge ofx, t(e) ≥ tα, t(e) + λ(e) ≤ tω};

3 foreach t ∈ S do
4 Call Algorithm 1 with inputG, x, and time interval[t, tω ];

let t[v] be the earliest-arrival time fromx to v returned by
Algorithm 1, then updatef [v]← min{f [v], t[v]− t};

5 return f [v] for eachv ∈ V ;

instance fromx in the time interval[tα, tω]. Based on this obser-
vation, we design our algorithm as shown in Algorithm 3.

For each distinct starting timet∈S, whereS is defined in Line 2,
the algorithm calls Algorithm 1 to compute the earliest-arrival time
from x to eachv ∈ V \ {x}, within the time interval[t, tω]. Then,
the minimum duration of the earliest-arrival paths starting at differ-
ent starting time is returned as the duration of the fastest path.

We give the correctness and complexity of Algorithm 3 below.

THEOREM 3. Algorithm 3 correctly computes the duration of
the fastest path from a source vertexx to every vertexv ∈ V within
[tα, tω] in O(|S|(n + M)) time andO(n) space, using|S| lin-
ear scans of the graph, whereS = {t(e) : e is an out-edge ofx,
t(e) ≥ tα, t(e) + λ(e) ≤ tω}.

PROOF. The correctness follows from Lemma 9 as Algorithm 3
calls Algorithm 1 to compute all earliest-arrival time fromx to v

starting at every distinct starting time fromx within [tα, tω].
The time complexity follows from the number of times Algo-

rithm 1 is called, while we needO(n) space to keept[v] andf [v]
for eachv ∈ V . The algorithm scansG once for each of the|S|
calls of Algorithm 1.

4.4.1 One-Pass Algorithm with Better Time Bound
In Algorithm 3, there can be potentially much redundant process-

ing due to multiple invocations of Algorithm 1. Every time when
Algorithm 1 is invoked, we need to scan the graph once. Thus, we
want to examine whether we can avoid scanning the graph multi-
ple times and eliminate the redundant processing. To this end, we
design a one-pass algorithm as given in Algorithm 4.

The algorithm uses a sorted list for each vertexv, denoted by
Lv, to keep the earliest-arrival time from the source vertexx to v

at different starting time that may potentially give the duration of
the fastest path fromx to v. For every element(s[v], a[v]) in Lv,
defined in Line 2, if there exists another element(s′[v], a′[v]) in
Lv, wheres′[v] > s[v] anda′[v] ≤ a[v], or s′[v] = s[v] and
a′[v] < a[v], we say that(s′[v], a′[v]) dominates(s[v], a[v]), and
call (s[v], a[v]) a dominated elementin Lv .

The following lemma shows that a dominated element can be
safely pruned fromLv .

LEMMA 10. Given two elements(s[v], a[v]) and (s′[v], a′[v])
in Lv for any vertexv ∈ V , if (s′[v], a′[v]) dominates(s[v], a[v])
in Lv, then(s[v], a[v]) can be removed fromLv without affecting
the computation of the duration of the fastest path fromx to any
vertex inV .

PROOF. Since both(s[v], a[v]) and(s′[v], a′[v]) are inLv, this
implies that there is one temporal pathP starting fromx at time



s[v] and arriving atv at timea[v], and another temporal pathP ′

starting fromx at times′[v] and arriving atv at timea′[v]. Let
Pw be a fastest path fromx to any vertexw ∈ V such thatP is a
prefix-subpath ofPw. LetP ′

w be the path obtained by replacingP
with P ′ in Pw. Sincea′[v] ≤ a[v],P ′

w is still a valid temporal path.
If s′[v] > s[v], thenP ′

w is a temporal path with a smaller duration
thanPw, which contradicts to the fact thatPw is a fastest path. If
s′[v] = s[v], thenP ′

w also is a fastest path fromx to w. In both
cases, if we have(s′[v], a′[v]), then we do not need(s[v], a[v]) in
the computation of the duration of the fastest path fromx to any
vertexw ∈ V .

In Algorithm 4, every time after removing dominated elements
in Lv, we have the following property regardingLv .

LEMMA 11. Each time after Line 16 of Algorithm 4 is executed,
for any two elements(s[v], a[v]) and(s′[v], a′[v]) in Lv, either (1)
s′[v] > s[v] anda′[v] > a[v], or (2)s[v] > s′[v] anda[v] > a′[v].

PROOF. First,s[v]6=s′[v] since the condition in Line 12 ensures
that no two elements inLv will have the same “s[v]” value. Then,
assume thats′[v]>s[v], then suppose to the contrary thata′[v]≤a[v],
in this case(s[v], a[v]) is dominated by(s′[v], a′[v]) and is re-
moved in Line 16. Thus,a′[v] > a[v]. Case (2) is symmetric.

We now discuss other details of Algorithm 4. We scan the edge
stream of the input graph once. For each incoming edgee =
(u, v, t, λ), we check whether the earliest-arrival paths fromx to
u can be extended tov via e within [tα, tω] (Line 5). If yes, we
pick the path fromx to u with the largest arrival time that is at or
beforet (Line 9), which also has the largest starting time according
to Lemma 11 and hence potentially gives the minimum durationof
the resultant path.

We then updateLv as follows. If there is already a record with
the sames[v] in Lv, we update the correspondinga[v] in Lv if the
currenta[v] (computed in Line 11) is smaller (which means that
the current(s[v], a[v]) pair dominates the old pair). Otherwise, we
insert the new record(s[v], a[v]) into Lv . Then, we apply Lemma
10 to prune dominated elements inLv. During the process, we use
f [v] to record the final fastest-path duration fromx to v. If the
minimum durationf [v] changes, we update the value off [v] in
Lines 17-18.

The following theorem gives our main result for fastest path
computation.

THEOREM 4. LetS={t(e) : e is an out-edge ofx, t(e) ≥ tα,

t(e) + λ(e) ≤ tω}, dmax = max{din(v,G) : v ∈ V }, and
c = min{|S|, dmax}. Algorithm 4 correctly computes the duration
of the fastest path from a source vertexx to every vertexv ∈ V

within the time interval[tα, tω] using only one linear scan of the
graph,O(n+M log c) time andO(min{n|S|, n+M}) space.

PROOF. We first prove the correctness. Suppose that the fastest
path fromx to v within [tα, tω] exists. Let the fastest path starts
from x at timetx, and arrives atv at timety. Then, this is also an
earliest-arrival path fromx to v within the time interval[tx, ty]. By
Lemma 6, there exists an earliest-arrival pathP from x to v such
that every prefix-subpath ofP is an earliest-arrival path fromx to
some vertex onP . LetP = 〈x = v1, v2, . . . , vk, vk+1 = v〉. Let
te[vi] be the earliest-arrival time fromx to vi within [tx, ty], for
1 ≤ i ≤ k + 1. Let e1, e2, . . ., ek be the edges onP , where
ei = (vi, vi+1, ti, λi) for 1 ≤ i ≤ k. Then, we haveti ≥ te[vi]
andti + λi = te[vi+1] for 1 ≤ i ≤ k.

We only need to show that the pair(tx, ty) is inserted intoLv, so
thatf [v] is updated toty− tx in Line 18. We prove that(tx, te[vi])
is inserted intoLvi , for 1 ≤ i ≤ k + 1, by induction oni. When

Algorithm 4: Computing fastest-path duration (one-pass)

Input : A temporal graphG = (V, E) in its edge stream
representation, source vertexx, time interval[tα, tω ]

Output : The duration of the fastest path fromx to every vertex
v ∈ V within [tα, tω ]

1 foreach v ∈ V do
2 Create a sorted list forv, Lv , where an element ofLv is a pair

(s[v], a[v]) in which s[v] is the starting time of a pathP from x
to v, anda[v] is the time that the pathP arrives atv and is used as
the key for ordering inLv ; initially, Lv is empty;

3 Initialize f [x] = 0, andf [v] =∞ for all v ∈ V \ {x};
4 foreach incoming edgee = (u, v, t, λ) in the edge streamdo
5 if t ≥ tα andt+ λ ≤ tω then
6 if u = x then
7 if (t, t) /∈ Lx then
8 Insert(t, t) into Lx;

9 Let (s′[u], a′[u]) be the element inLu where
a′[u] = max{a[u] : (s[u], a[u]) ∈ Lu, a[u] ≤ t};

10 s[v]← s′[u];
11 a[v]← t+ λ;
12 if s[v] is in Lv then
13 Update the correspondinga[v] in Lv ;

14 else
15 Insert(s[v], a[v]) into Lv ;

16 Removedominated elementsin Lv ;
17 if a[v]− s[v] < f [v] then
18 f [v] = a[v]− s[v];

19 else ift ≥ tω then
20 Break the for-loop and go to Line 21;

21 return f [v] for eachv ∈ V ;

i = 1, x = v1, (tx, tx) is inserted intoLx in Line 8. Wheni = 2,
we insert(s[v2], a[v2]) = (tx, te[v2] = t1 + λ1) into Lv2 when
we processe1. Now assume that fori = j, wherej < k + 1,
(tx, te[vj ]) is inserted intoLvj when we processej−1. Consider
i = j + 1 and we want to prove that(tx, te[vj+1]) is inserted
into Lvj+1

. According to Lemma 5,ej comes afterej−1 in the
stream. Thus, when the algorithm scansej , by Lemma 11 we ob-
tain a′[vj ] = te[vj ] in Line 9, which also meanss′[vj ] = tx.
This gives(s[vj+1], a[vj+1]) = (tx, te[vj+1] = tj + λj). Thus,
(tx, te[vj+1]) will be inserted intoLvj+1

. Thus, by induction,
(tx, ty) will be inserted intoLv.

Next, we analyze the complexity. It is clear that the algorithm
takes at most one linear scan of the edge stream. The initializa-
tion in Lines 1-3 takesO(n) time. For eachv ∈ V , the size of
Lv is bounded bymin{|S|, din(v,G)} ≤ c = min{|S|, dmax}.
Searching and updatingLv takeO(log c) time. The total time of
removing dominated elements fromLv in Line 16 is bounded by
O(din(v,G)). Thus, the total time for removing dominated ele-
ments fromLv for all v ∈ V isO(M). Summing up, the total time
complexity isO(n+M log c). The space requirement is bounded
by the total size ofLv , which is given byO(min(n|S|, n + M)).
Note that|S| (and hence alsoc) is a small number in practice.

4.4.2 Linear-Time Algorithm for Specific Cases
The log factor in the time complexity of Algorithm 4 is due to

searching and inserting inLv . This log factor can be removed for
processing some real-world temporal graphs in which the value of
λ is the same for all edges, or edges in the edge stream do not just
arrive in the order of their starting time but are also further ordered
by their ending time. To obtain linear-time complexity for process-
ing such graphs, we make the following changes in Algorithm 4.



1. For eachv ∈ V , replace the sorted listLv by a queueQv.

2. In Line 9 when we obtain(s′[u], a′[u]), which is the element
with largest arrival time that is less than or equal tot, we
also remove all the elements before it inQu. For example,
assume that(3, 12), (4, 14), and (5, 16) are inQu; when
the edgee = (u, v, 15, 3) comes in, we linear scanQu and
find that(4, 14) is the element with largest arrival time and
14 < t(e) = 15. Since the edges are in ascending order of
their starting time, the edges that have not been scanned in
the stream will have starting time at least 15. Thus, we can
remove(3, 12) from Qu as it will never be used to extend
any temporal path fromu any more.

3. For the insertion of a new element(s[v], a[v]) into Qv, we
only need to compare(s[v], a[v])with the element(s′[v], a′[v])
at the tail ofQv, since for the graphs we handle here, we
havea[v] ≥ a′[v] and other elements inQv are not dom-
inated by(s′[v], a′[v]) (and hence not by(s[v], a[v])). If
either(s[v], a[v]) or (s′[v], a′[v]) is dominated by the other,
we only keep the element that is not dominated as the tail
of Qv; otherwise,(s[v], a[v]) is added after(s′[v], a′[v]) in
Qv. For example, assume that(2, 14), (3, 15), and(5, 16)
are currently inQv; when we try to insert(4, 18) into Qv,
we find that(4, 18) is dominated by(5, 16). Thus, we do not
need to insert(4, 18) intoQv.

Now we analyze the time complexity. Every time when we linear
scanQu in Line 9, it takesO(k + 1) time, wherek is the number
of elements being removed during the search. Letki be the number
of removed elements fromQu in the i-th search ofQu. We have
O(

∑
i(ki + 1)) = O(

∑
i ki + dout(u,G)) = O(din(u,G) +

dout(u,G)). Thus, the total time for searchingQu and removing
elements fromQu for all the vertices isO(M). The total time
for inserting new elements intoQu for all the vertices is clearly
bounded byO(M). Thus, the total time complexity isO(n+M).

4.5 Shortest Paths
We present an efficient one-pass algorithm for computing the

shortest path from a source vertexx to every vertex inG.
In a static graph, the subpath of a shortest path is also short-

est. However, this is not true in a temporal graph according to
Lemma 4. Moreover, there may not exist a shortest pathP =
〈x, v1, v2, . . . , vk〉 such that every prefix-subpath,Pi = 〈x, v1, v2,
. . . , vi〉, is a shortest path fromx to vi, for 1 ≤ i ≤ k. Thus, we
cannot apply Dijkstra’s greedy strategy directly to compute short-
est paths in a temporal graph. Rather, we need to consider different
combinations of paths even though these paths may not be shortest,
because a non-shortest subpath may grow into a shortest path.

Certainly, we cannot consider all combinations of temporalpaths
from x to every vertexv and then take the one with minimum dis-
tance. Fortunately, a careful examination of temporal paths leads to
the following lemma by which we can design an efficient strategy
for computing shortest paths in a temporal graph.

LEMMA 12. LetP = 〈x = v1, v2, . . . , vk〉 be a shortest path
fromx to vk within the time interval[tα, tω]. Then, for1 ≤ i ≤ k,
every prefix-subpathPi = 〈x = v1, v2, . . . , vi〉 is a shortest path
fromx to vi within the time interval[tα, end(Pi)].

PROOF. Suppose to the contrary that within[tα, end(Pi)], there
exists another pathP ′

i from x to vi with a shorter distance. Since
end(P ′

i ) ≤ end(Pi), we can concatenate〈vi, . . . , vk〉 to P ′
i to

obtain another temporal path fromx to vk, which is a shorter path
thanP , and contradicts to the fact thatP is a shortest path.

Algorithm 5: Computing shortest-path distance

Input : A temporal graphG = (V, E) in its edge stream
representation, source vertexx, time interval[tα, tω ]

Output : The distance of the shortest path fromx to every vertex
v ∈ V within [tα, tω ]

1 foreach v ∈ V do
2 Create a sorted list forv, Lv , where an element ofLv is a pair

(d[v], a[v]) in whichd[v] is the distance of a pathP from x to v
and is used as the key for ordering inLv , anda[v] is the time that
the pathP arrives atv; initially, Lv is empty;

3 Initialize f [x] = 0, andf [v] =∞ for all v ∈ V \ {x};
4 foreach incoming edgee = (u, v, t, λ) in the edge streamdo
5 if t ≥ tα andt+ λ ≤ tω then
6 if u = x then
7 if (0, t) /∈ Lx then
8 Insert(0, t) into Lx;

9 Let (d′[u], a′[u]) be the element inLu where
a′[u] = max{a[u] : (d[u], a[u]) ∈ Lu, a[u] ≤ t};

10 d[v]← d′[u] + λ;
11 a[v]← t+ λ;
12 if a[v] is in Lv then
13 Update the correspondingd[v] in Lv ;

14 else
15 Insert(d[v], a[v]) into Lv ;

16 Removedominated elementsin Lv ;
17 if d[v] < f [v] then
18 f [v] = d[v];

19 else ift ≥ tω then
20 Break the for-loop and go to Line 21;

21 return f [v] for eachv ∈ V ;

Based on Lemma 12, we can still use the greedy strategy by care-
fully maintaining the ending time of the paths, since there may be
different shortest paths with different ending time. Furthermore, to
eliminate redundant paths within the same time interval, weapply
the following lemma.

LEMMA 13. Given two temporal paths fromx to v, P1 andP2,
within [tα, tω], if dist(P1) ≤ dist(P2) andend(P1) ≤ end(P2),
then we can safely pruneP2 in the computation of shortest paths
fromx to any vertex that pass throughv within [tα, tω].

PROOF. Let P be a shortest path fromx to u such thatP2 is a
prefix-subpath ofP . Clearly, replacingP2 with P1 in P also gives
a shortest path fromx to u within [tα, tω].

Applying the above lemmas in the classic Dijkstra’s algorithm
framework leads to an algorithm that takesO(M log π+M log n)
time and requires random access to the input graph [19]. Interest-
ingly we find that we can apply Lemmas 12 and 13 into the frame-
work of Algorithm 4, which requires only one linear scan of the
input graph. We give our algorithm in Algorithm 5 and discussthe
essential details as follows.

For each vertexv, the algorithm also uses a sorted listLv. For
every element(d[v], a[v]) in Lv , defined in Line 2, if there ex-
ists another element(d′[v], a′[v]) in Lv , whered′[v] < d[v] and
a′[v] ≤ a[v], or d′[v] = d[v] and a′[v] < a[v], we say that
(d′[v], a′[v]) dominates(d[v], a[v]), and call(d[v], a[v]) a domi-
nated elementin Lv.

By Lemma 13,(d[v], a[v]) can be safely removed fromLv . The
sorted listLv will be used to obtain the shortest-path distance with
different ending time (i.e., time arriving atv) by applying Lemma 12.



Similar to Algorithm 4, every time after Algorithm 5 removes
dominated elements inLv, we have the following property regard-
ingLv (proof omitted as it is similar to that of Lemma 11).

LEMMA 14. Each time after Line 16 of Algorithm 5 is executed,
for any two elements(d[v], a[v]) and(d′[v], a′[v]) in Lv, either (1)
a′[v]<a[v] andd′[v]>d[v], or (2) a[v]<a′[v] andd[v]>d′[v].

Lemma 14 implies that choosing the largesta′[u] in Line 9 is
equivalent to choose the smallestd′[u], thus potentially giving the
minimum distance of the resultant path. Other detailed steps in Al-
gorithm 5 follow a similar procedure as in Algorithm 4, and hence
we omit the details. The following theorem gives our main result
for shortest path computation.

THEOREM 5. Algorithm 5 correctly computes the distance of
the shortest path from a source vertexx to every vertexv ∈ V

within the time interval[tα, tω] using only one linear scan of the
graph, O(n + M log dmax) time andO(n + M) space, where
dmax = max{din(v,G) : v ∈ V }.

PROOF. Suppose that a shortest path fromx to v exists and let
P = 〈x = v1, v2, . . . , vk+1 = v〉 be this path, and letei =
(vi, vi+1, ti, λi) is thei-th edge onP for 1 ≤ i ≤ k. By a pro-
cess similar to the proof of Theorem 4, we can prove by induction
that the element(

∑k

i=1 λi, tk + λk) will be inserted intoLv by
Algorithm 5 andf [v] will be updated as

∑k

i=1 λi, which gives the
correct shortest-path distance fromx to v.

Now we analyze the complexity. The size of eachLv is bounded
bydin(v,G). Searching and updatingLv thus takeO(log din(v,G))
time. Following a similar analysis as in the proof of Theorem4 we
obtainO(n+M log din(v,G)) = O(n+M log dmax) total time.
The space requirement is determined by the total size ofLv , which
is O(n + M), though in practice the space requirement is signifi-
cantly smaller.

Finally, we can also achieve a one-pass linear-time algorithm for
computing shortest-path distance in temporal graphs in which the
value ofλ is uniform or edges also arrive in the order of their ending
time in the edge stream, as described in Section 4.4.2. We omit the
details as they are similar to Section 4.4.2.

5. A GRAPH TRANSFORMATION APPROACH
In this subsection, we propose a graph transformation technique

for computing the four types of minimum temporal paths.
We first present how to transform a temporal graphG = (V,E)

into a new graph̃G = (Ṽ , Ẽ). The construction of̃G consists of
the following two parts:

1. Vertex creation: for each vertexv ∈ V , create vertices iñV
as follows:

(a) LetTin(u, v) = {t+λ : (u, v, t, λ) ∈ Π(u, v)} where
u ∈ Γin(v,G), andTin(v) =

⋃
u∈Γin(v,G) Tin(u, v),

i.e.,Tin(v) is the set of distinct time instances at which
edges from in-neighbors ofv arrive atv.

Create|Tin(v)| copies ofv, each labeled with(v, t)
wheret is a distinct arrival time inTin(v). Denote
this set of vertices as̃Vin(v), i.e., Ṽin(v) = {(v, t) :

t ∈ Tin(v)}. Sort vertices iñVin(v) in descending or-
der of their time, i.e., for any(v, t1), (v, t2) ∈ Ṽin(v),
(v, t1) is ordered before(v, t2) in Ṽin(v) iff t1 > t2.
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Figure 2: Graph transformation, from G in (a) to G̃ in (b)

(b) Let Tout(v, u) = {t : (v, u, t, λ) ∈ Π(v, u)} where
u∈Γout(v,G), andTout(v)=

⋃
u∈Γout(v,G) Tout(v, u).

Create|Tout(v)| copies ofv, each labeled with(v, t)
wheret is a distinct starting time inTout(v). Denote
this set of vertices as̃Vout(v), i.e.,Ṽout(v) = {(v, t) :

t ∈ Tout(v)}. Sort vertices inṼout(v) in descending
order of their time.

2. Edge creation: for each vertexv ∈ V , create edges iñE as
follows:

(a) For each vertex(v, tin) in its order inṼin(v), create
a directed edge from(v, tin) to (v, tout) ∈ Ṽout(v),
wheretout = min{t : (v, t) ∈ Ṽout(v), t ≥ tin} and
no edge from any other(v, t′in) ∈ Ṽin(v) to (v, tout)
has been created. Set the weight for each such edge as
0.

(b) Let Ṽin(v) = {(v, t1), (v, t2), . . . , (v, tk)}. Create a
directed edge from each(v, ti+1) to (v, ti) with weight
0, for 1 ≤ i < k. No edge is created ifk ≤ 1. Create
edges forṼout(v) in the same way.

(c) For each temporal edgee = (u, v, t, λ) ∈ E, create a
directed edge from(u, t) ∈ Ṽout(u) to (v, t + λ) ∈

Ṽin(v), with weightλ.

5.1 Earliest-Arrival Paths
We first discuss the computation of single-source earliest-arrival

paths. To compute earliest-arrival paths from a source vertex x

to every vertexv ∈ V , we further create a vertexx′ in G̃ and a
directed edge fromx′ to each vertex(x, t) ∈ Ṽout(x) in G̃ with
weight 0.

Then, we simply run thebreadth-first search(BFS) algorithm in
G̃ from the source vertexx′. During the process, if the timet of
a vertex(v, t) is not in the time interval[tα, tω], we will stop the
BFS from this vertex. The minimum timet of all visited vertices
(v, t) in Ṽin(v) is the earliest-arrival time fromx to v in G.

We illustrate the graph transformation and howG̃ is used to com-
pute the earliest-arrival time by the following example.

EXAMPLE 4. Given a temporal graphG in Figure 2(a), where
we assume that the traversal timeλ is equal to 1 for all edges, the
transformed graph̃G is shown in Figure 2(b).

Let a be the source vertex inG and thus we createa′ as shown
in G̃. Now let us start BFS froma′ in G̃. In the 2nd step, we visit
(b, 2), (b, 3), (c, 3), and(c, 5). Thus, the earliest-arrival time from
a to b is 2, and froma to c is 3. In the 3rd step, we visit(b, 5) and
(c, 6). In the 4th step, we visit(f, 6), (f, 7), and(c, 7), from which



we obtain the earliest-arrival time froma to f as 6. Finally, we
visit (g, 8), and obtain the earliest-arrival time froma to g as 8. �

5.2 Latest-Departure Paths
Similar to the computation of single-source earliest-arrival paths,

we create a vertexx′ in G̃ and a directed edge from each vertex
(x, t) ∈ Ṽin(x) to x′ in G̃ with weight 0. Then, we perform a
reverse BFS fromx′ in G̃. The maximum timet of all visited
vertices(v, t) in Ṽout(v) is the latest-departure time from everyv
to x in G.

Note thatṼin(a) does not exist in Figure 2(b) since there is no
latest-departure path from any vertex toa in Figure 2(a). But we
can easily compute the latest-departure time (or path) fromevery
vertex to other target vertex, e.g.,g, by a reverse BFS.

5.3 Fastest Paths
For the source vertexx in G, we create a vertexx′ in G̃ and a

directed edge fromx′ to each vertex(x, t) ∈ Ṽout(x) in G̃ with
weight 0. LetS = {(x, t) : (x, t) ∈ Ṽout(x), tα ≤ t ≤ tω},
where elements inS are sorted in descending order of their time.
Fromx′, we first visit the vertex inS with largest time, say(x, t1);
then perform BFS from(x, t1) to compute the earliest-arrival time
t[v] fromx to everyv and obtain the duration of this earliest-arrival
path as(t[v]−t1). Then, we visit the vertex inS with second largest
time, say(x, t2); we conduct BFS from(x, t2), but we will not
continue the BFS from any vertex that has been visited previously.
We repeat this process until all vertices inS are processed. The
duration of the fastest path fromx to everyv in G is the minimum
duration among all the earliest-arrival paths fromx to v.

5.4 Shortest Paths
For the source vertexx in G, we create a vertexx′ in G̃ and a

directed edge fromx′ to each vertex(x, t) ∈ Ṽout(x) in G̃ with
weight 0. Then, we run Dijkstra’s algorithm oñG from the source
vertexx′. The minimum distance of the shortest-path fromx′ to
each(v, t) ∈ Ṽin(v) is the shortest-path distance fromx to v in G.

5.5 Complexity Analysis
Assume thatn < M for a temporal graphG. From the graph

transformation process, it is easy to see that both the number of ver-
tices and edges iñG is bounded byO(M). Thus, computing single
source earliest-arrival paths and latest-departure pathstakesO(M)

time since only one BFS iñG is required. For computing fastest
paths inG̃, since we do not continue the BFS from any previously
visited vertices, we visit each edge iñG only once during the entire
process and hence the time complexity is alsoO(M). Finally, for
computing single source shortest paths inG̃, Dijkstra’s algorithm
usesO(M logM) time.

6. APPLICATIONS OF TEMPORAL PATHS
Shortest paths in a static graph have numerous important appli-

cations, in many of these applications, especially those related to
network analysis such as centrality computation and clustering, the
minimum temporal paths can be applied in place of shortest paths
to analyze temporal networks [8]. In [15, 21], various definitions
of “diameter” for temporal graphs were introduced based on the
concepts of minimum temporal paths. In addition, the four types of
minimum temporal paths can be naturally applied to many differ-
ent types of metrics or applications defined based on the concepts
of temporal paths [1, 10, 11, 12, 13, 14, 16, 17, 18].

Here, we briefly discuss two important applications of the mini-
mum temporal paths.

6.1 Temporal Closeness Centrality
In the analysis of a graph, the closeness centrality of a vertex

v is used to measure its importance in the graph. For example,
the closeness of a person in a social network indicates the relative
influence of this person in the network, or how easily it will take to
spread information from this person to others in the network.

In a static graphGs = (Vs, Es), theclosenessof a vertexv ∈
Vs, denoted bycloseness(v), is defined as:

closeness(v) =
1

∑
u∈Vs\{v}

dist(v, u)
. (1)

In Equation 1, we use the shortest-path distance fromv tou, i.e.,
dist(v, u), to model the efficiency of the spread of information. In
a temporal graph, the shortest-path distance must be replaced by the
temporalshortest-path distance fromv to u since the order of the
time sequence on a temporal path defines the order of communica-
tion. However, there are also applications in which other types of
minimum temporal paths, in particular fastest paths, can beapplied
to define meaningful temporal closeness centrality. For example,
in flight scheduling or logistic/itinerary planning, the fastest path
that one can travel from one place to another is often more impor-
tant than the distance to be traveled. Thus, the closeness centrality
should be defined based on the duration of the fastest path, i.e.,
dist(v, u) in Equation 1 should be replaced bydura(Pv,u), where
Pv,u is a fastest path fromv tou. This fastest-path based closeness
of a vertexv indicates how fast, in terms of the amount of time
needed, information fromv can spread to other vertices.

To compute the exact closeness centrality value, we need to com-
pute all pairs of paths which is too expensive for a large graph.
However, approximation methods such as [6] can be naturallyap-
plied to compute temporal closeness centrality with guaranteed small
error bound.

6.2 Top-k Nearest Neighbors
Top-k nearest neighbors have many applications such as graph

clustering. We can use the four minimum temporal paths to define
top-k nearest neighbors of a vertex. Formally, the top-k nearest
neighbors of a vertexx ∈ V is a subsetK of V such that∀u ∈ K

andv ∈ V \K, score(u) ≥ score(v), wherescore(u) is defined
as (1) the earliest-arrival time, or (2) latest-departure time, or (3)
duration of the fastest path, or (4) distance of the shortestpath,
from x to u, respectively.

Our algorithms can be straightforwardly modified to output only
the topk vertices that have the highest score defined based on each
of the minimum temporal paths.

7. EXPERIMENTAL RESULTS
We evaluate the performance of our algorithms and examine the

usefulness of minimum temporal paths in this section. We ranall
the experiments on a machine running Linux on an Intel 3.3GHz
CPU and 16GB RAM.

Temporal graphs. We used 12 real temporal datasets in our ex-
periments, which are from the Koblenz Large Network Collection
(http://konect.uni-koblenz.de/), and we selected one large tempo-
ral graph from each of the following categories:arxiv-HepPh
(arxiv) from the arxiv networks;dblp-coauthor (dblp) from
the DBLP coauthor networks;elec from the network of English
Wikipedia;enron from the email networks;epin from the trust
and distrust network of Epinions;facebook-wosn-links (fb)
from the facebook network;flickr-growth (flickr) from
the social network of Flickr;digg from the reply network of the
social news website Digg;slashdot-threads (slash) from



Table 1: Real temporal graphs (K= 103)
Dataset |V | |Es| |E| davg (u,Gs) davg (u,G) π |TG|

arxiv 28K 6297K 9194K 224.14 327.26 262 2337
dblp 1103K 8451K 11957K 7.66 10.84 38 70
elec 8K 104K 107K 12.50 12.90 5 101012
enron 87K 320K 1135K 3.67 13.01 1074 213218
epin 132K 841K 841K 6.38 6.38 1 939
fb 64K 817K 1270K 12.82 19.92 2 736675
flickr 2303K 33140K 33140K 14.39 14.39 1 134
digg 30K 85K 86K 2.80 2.84 25 82641
slash 51K 130K 140K 2.55 2.74 17 89862
conflict 118K 2054K 2918K 17.40 24.71 562 273909
growth 1871K 39953K 39953K 21.36 21.36 1 2198
youtube 3224K 9377K 12224K 2.91 3.80 2 203

the reply network of technology website Slashdot;wikiconflict
(conflict) indicating positive and negative conflicts between
users of Wikipedia;wikipedia-growth (growth) from the
hyperlink network of the English Wikipedia;youtube-u-growth
(youtube) from the social media networks of YouTube.

Table 1 gives some statistics of the datasets. Apart from the
number of vertices and edges inG andGs, we also show the av-
erage degree inG (denoted bydavg(u,G)) and inGs (denoted by
davg(u,Gs)). The table shows that the value ofπ varies signifi-
cantly for different datasets, indicating the different levels of tem-
poral activity between two vertices. Note thatπ=1 does not imply
that the temporal graph is similar to the corresponding static graph,
because edges on a temporal path follow an ordered time sequence.
This is also revealed by the number of distinct time instances in
G, denoted by|TG|, which shows thatG can span over a large
time interval. For example, if we breakG into snapshots such that
all edges with the same starting time belong to the same snapshot,
then theconflict graph consists of 273909 snapshots.

7.1 Efficiency of SSMTP Algorithms
To evaluate the performance of our algorithms for computing

single-source minimum temporal paths (SSMTPs), we compare
with the algorithms proposed by Xuan et al. [21], denoted by
Xuan. Note that Xuan can only report the number of hops for short-
est paths. Xuan et al. also did not study latest-departure paths and
we modified their earliest-arrival path algorithm to compute latest-
departure time. We denote our one-pass algorithms presented in
Section 4 by1-passand our graph transformation algorithms pre-
sented in Section 5 byTrans. All algorithms were implemented in
C++ and compiled in the same way.

We use two sets of source vertices: 100 randomly selected ver-
tices and 10 highest temporal degree vertices (note that thetem-
poral degree, i.e.,d(u,G), decreases quickly beyond the top 10
highest ones). We set[tα, tω] to be[0,∞] in this experiment.

Tables 2 and 3 report the average running time of the algorithms.
For Trans, there is no big difference between the running time of
earliest-arrival and latest-departure paths and that of fastest paths,
and hence we only present the results for fastest paths due tospace
limit. We also show the size of the transformed graphG̃ in Table 4.

The results show that 1-pass is significantly faster than Xuan in
computing all the four types of SSMTPs for all the 12 datasets. On
average, 1-pass is 13 to 18 times faster than Xuan for processing
queries with randomly selected sources, and 13 to 251 times faster
than Xuan for processing queries with high-degree sources.The
reason for this huge difference in running time is because 1-pass
is a one-pass algorithm with much lower complexity than Xuan,
which is a rather straightforward adoption of Dijkstra’s strategy or
simply by enumeration of paths which is inefficient.

Compared with Trans, there are a number of cases 1-pass is less
efficient for computing fastest paths. This is mainly because for
computing fastest paths, the complexity of Trans is better than that

Table 2: Running time in seconds (random sources)
Earliest-arrival Latest-departure Fastest Shortest
1-pass Xuan 1-pass Xuan 1-pass Trans Xuan 1-pass Trans Xuan

arxiv 0.0109 0.1636 0.0120 0.1685 0.1159 0.0264 1.5567 0.1001 0.0953 1.6510
dblp 0.0208 0.2860 0.0220 0.6443 0.1458 0.0693 0.7573 0.1523 0.5703 1.8762
elec 0.0002 0.0016 0.0002 0.0016 0.0006 0.0026 0.0302 0.0006 0.0162 0.0127
enron 0.0014 0.0099 0.0015 0.0095 0.0076 0.0154 0.1726 0.0069 0.0838 0.0378
epin 0.0011 0.0214 0.0012 0.0172 0.0039 0.0086 0.0202 0.0048 0.0415 0.1278
fb 0.0021 0.0113 0.0020 0.0087 0.0094 0.0180 0.3845 0.0093 0.1135 0.1716
flickr 0.0591 1.1019 0.0678 1.0379 0.4675 0.5288 3.8578 0.5014 2.4240 11.2012
digg 0.0001 0.0017 0.0001 0.0019 0.0003 0.0001 0.0059 0.0003 0.0070 0.0076
slash 0.0002 0.0044 0.0003 0.0049 0.0010 0.0032 0.0165 0.0011 0.0213 0.0262
conflict 0.0042 0.0504 0.0047 0.0482 0.0175 0.1371 0.0908 0.0227 0.3346 0.4253
growth 0.1432 1.6286 0.1676 1.9096 1.3442 3.8759 6.2699 1.5027 11.0289 26.3161
youtube 0.0326 0.2207 0.0355 0.1752 0.1175 0.0560 0.8352 0.1193 0.6535 1.5675

Table 3: Running time in seconds (high-degree sources)
Earliest-arrival Latest-departure Fastest Shortest
1-pass Xuan 1-pass Xuan 1-pass Trans Xuan 1-pass Trans Xuan

arxiv 0.0119 0.1829 0.0121 0.1726 0.3969 0.0565 45.5396 0.1673 0.1433 2.5805
dblp 0.0449 0.6254 0.0407 0.8303 0.7842 0.4654 9.5193 0.6706 1.6710 4.6050
elec 0.0003 0.0022 0.0003 0.0020 0.0017 0.0048 1.3386 0.0013 0.0313 0.0178
enron 0.0023 0.0217 0.0023 0.0217 0.1093 0.1053 22.8077 0.0329 0.3469 0.1563
epin 0.0014 0.0339 0.0019 0.0277 0.0155 0.0302 4.7978 0.0102 0.0928 0.2450
fb 0.0038 0.0416 0.0041 0.0350 0.0531 0.1558 16.6954 0.0400 0.4816 0.3764
flickr 0.0907 1.6400 0.1356 1.8558 2.6368 1.7497 81.5611 1.2522 5.1928 17.7573
digg 0.0002 0.0038 0.0002 0.0040 0.0009 0.0018 0.3940 0.0008 0.0177 0.0227
slash 0.0006 0.0082 0.0006 0.0088 0.0041 0.0125 1.4768 0.0032 0.0487 0.0503
conflict 0.0055 0.0578 0.0057 0.0624 0.1013 0.3264 32.6886 0.0520 0.7887 0.8003
growth 0.1794 2.0868 0.1936 2.3546 4.5404 7.7180 262.7313 2.8376 20.6097 29.6612
youtube 0.0559 1.0114 0.0610 1.1920 0.8317 0.8199 103.9525 0.6120 3.1188 5.1966

Table 4: Size of the transformed graphG̃
arxiv dblp elec enron epin fb

|Ṽ | 433K 5553K 212K 1367K 482K 1637K
|Ẽ| 9759K 16977K 313K 2505K 1219K 3037K

flickr digg slash conflict growth youtube

|Ṽ | 12600K 172K 273K 3191K 34815K 11498K
|Ẽ| 44358K 233K 381K 6009K 77196K 21140K

of 1-pass, but the tradeoff is that the transformed graph is larger
than the temporal graph. For computing shortest paths, the time
complexity of 1-pass and Trans are similar. However, 1-passis
faster than Trans in all cases except for thearxiv dataset, which
can be explained by the fact that|Ẽ| is comparable with|E| for
arxiv but considerably larger than|E| for other datasets. When
the sizes of the input graphs are comparable, Trans and 1-pass have
comparable performance for computing shortest paths.

7.2 Effect of Varying Time Intervals
For computing the minimum temporal paths, the input time in-

terval [tα, tω] can affect the overall running time significantly. In
this experiment, we test the effect of different[tα, tω] on the per-
formance of our algorithms. We test five different time intervals,I1
to I5. We setI1 = [0, |TG|], where|TG| is reported in Table 1. For
eachIi, for 1 ≤ i ≤ 4, we divideIi into two equal sub-intervals so
thatIi+1 is the first sub-interval ofIi.

We report the average running time (in seconds) for computing
fastest and shortest paths using 1-pass for the 100 randomlyse-
lected source vertices in Tables 5 and 6. The running time for
computing earliest-arrival and latest-departure paths issmaller than
that for fastest paths, but follows a similar trend with the varying
time intervals. The running time for Trans and for the high-degree
source vertices also follows the same trend. Thus, we omit the de-
tails of these results due to space limit.

Tables 5 and 6 clearly show that for all datasets, when the time
interval becomes smaller, the running time is significantlyreduced.
Note that although the time interval is halved each time, therunning
time is reduced in a much faster rate in most cases. This can be
explained as the reduction in the number of temporal edges can be
more than halved, which causes a reduction in the values of bothM

andπ. Another important reason is that as the number of temporal
edges decreases, the number of reachable vertices that satisfy the
time constraint also decreases, which also causes a reduction in the
search space. Only in a few cases, the reduction of running time is



Table 5: Running time for varying intervals (fastest path)
I1 I2 I3 I4 I5

arxiv 0.1158 0.0037 0.0002 0.0000 0.0000
dblp 0.1440 0.0004 0.0000 0.0000 0.0000
elec 0.0006 0.0002 0.0001 0.0000 0.0000
enron 0.0075 0.0031 0.0011 0.0004 0.0001
epin 0.0040 0.0030 0.0024 0.0018 0.0015
fb 0.0095 0.0042 0.0024 0.0017 0.0013
flickr 0.4711 0.2307 0.1405 0.0496 0.0422
digg 0.0003 0.0001 0.0001 0.0000 0.0000
slash 0.0010 0.0003 0.0001 0.0000 0.0000
conflict 0.0176 0.0060 0.0020 0.0005 0.0002
growth 1.3652 0.0176 0.0018 0.0001 0.0000
youtube 0.1172 0.0291 0.0194 0.0099 0.0087

Table 6: Running time for varying intervals (shortest path)
I1 I2 I3 I4 I5

arxiv 0.0978 0.0036 0.0002 0.0000 0.0000
dblp 0.1520 0.0004 0.0000 0.0000 0.0000
elec 0.0006 0.0002 0.0001 0.0000 0.0000
enron 0.0069 0.0031 0.0012 0.0004 0.0001
epin 0.0049 0.0036 0.0027 0.0019 0.0015
fb 0.0093 0.0043 0.0024 0.0016 0.0013
flickr 0.5015 0.2362 0.1431 0.0494 0.0421
digg 0.0003 0.0001 0.0001 0.0000 0.0000
slash 0.0011 0.0003 0.0001 0.0000 0.0000
conflict 0.0227 0.0072 0.0022 0.0006 0.0002
growth 1.4803 0.0177 0.0018 0.0001 0.0000
youtube 0.1204 0.0292 0.0195 0.0100 0.0088

less than 2. This is mainly because the reduction in the number of
temporal edges in those cases is less than halved (i.e., moreedges
are in the other half of the time period).

This result is encouraging as in real applications, often users may
be only interested in temporal paths within a specific time period,
e.g., a recent time window or the peak season last year.

7.3 Temporal Analysis vs. Static Analysis
In this experiment, we study the two applications of minimum

temporal paths discussed in Section 6, by comparing with there-
sults from the static graphs. Our objective is to show that analytic
results on temporal graphs can be dramatically different from those
on static graphs, and hence will carry additional importantor even
the real accurate information about the temporal data.

Closeness centrality. We compute closeness centrality based on
fastest and shortest paths in a temporal graphG, respectively, and
then compute closeness centrality based on the classic shortest paths
in the condensed static graphGs of G. Then, we usePearson
correlation coefficient(PCC) to measure the degree of linear cor-
relation betweenX = {closeness(v,G) : v ∈ V } andY =
{closeness(v,Gs) : v ∈ Vs}, i.e.,X andY are the closeness val-
ues of the vertices inG and inGs, respectively (note thatV = Vs).

Table 7 reports the PCC values, in whichPCCf andPCCs in-
dicate that closeness is defined based on fastest and shortest paths
in G, respectively. The results show that the closeness values com-
puted from the static graphs have low correlation with thosecom-
puted from the temporal graphs for most datasets. This is notsur-
prising if fastest paths are used to compute the closeness values;
however, the results show that even if shortest paths are used to
compute the closeness values in temporal graphs, the closeness
values are also significantly different from those computedfrom
the static graphs. Theyoutube dataset is an exception for which
we found that the closeness values of all vertices are close to zero
because the vertices inyoutube cannot reach the majority of ver-
tices in the graph. Note that for unreachable vertices,dist(v, u) or
dura(Pv,u) in the denominator of Equation 1 is set ton or |TG|,

Table 7: Correlation between temporal and static closeness
arxiv dblp elec enron epin fb

PCCf 0.2143 0.0491 -0.6833 0.6739 0.3753 -0.6277
PCCs 0.4097 0.1134 0.7152 0.6305 0.3748 0.6906

flickr digg slash conflict growth youtube

PCCf 0.2333 -0.3791 0.4284 0.4147 0.2568 1
PCCs 0.2318 0.4332 0.5681 0.5019 0.3958 1

Table 8: NDCG values (fastest path)
k 100 200 300 400 500

arxiv 0.9135 0.8451 0.7906 0.7415 0.7030
dblp 0.5348 0.4564 0.4145 0.3863 0.3662
elec 0.4979 0.4604 0.4621 0.4711 0.4835
enron 0.4522 0.4285 0.4157 0.4023 0.3962
epin 0.3667 0.3184 0.3091 0.3163 0.3241
fb 0.6778 0.5518 0.4899 0.4563 0.4351
flickr 0.4107 0.3145 0.2662 0.2363 0.2165
digg 0.5026 0.4301 0.4029 0.3889 0.3820
slash 0.3088 0.2698 0.2567 0.2541 0.2567
conflict 0.4395 0.3818 0.3501 0.3312 0.3160
growth 0.4677 0.3446 0.2909 0.2638 0.2471
youtube 0.3955 0.2995 0.2557 0.2299 0.2113

Table 9: NDCG values (shortest path)
k 100 200 300 400 500

arxiv 0.9808 0.9596 0.9394 0.9204 0.9047
dblp 0.7484 0.6734 0.6255 0.5919 0.5679
elec 0.7136 0.6495 0.6202 0.6038 0.5968
enron 0.8048 0.7716 0.7466 0.7281 0.7115
epin 0.5440 0.5087 0.5044 0.5049 0.5078
fb 0.8589 0.7920 0.7536 0.7298 0.7142
flickr 0.4958 0.4085 0.3712 0.3521 0.3369
digg 0.6968 0.6103 0.5633 0.5346 0.5149
slash 0.5736 0.5162 0.4912 0.4727 0.4603
conflict 0.6708 0.6338 0.6076 0.5936 0.5869
growth 0.6509 0.5772 0.5438 0.5240 0.5100
youtube 0.6328 0.5584 0.5215 0.4967 0.4778

resulting in a small reciprocal that can be close to 0 if most vertices
are not reachable fromv.

Top-k nearest neighbors. We next compute the top-k nearest
neighbors using the four minimum temporal paths, and compare
with the top-k nearest neighbors using shortest paths in the con-
densed static graphGs. To assess the effectiveness of shortest
paths inGs in capturing the ranking defined by minimum temporal
paths inG, we compute thenormalized discounted cumulative gain
(NDCG) of the top-k ranking inGs. The relevance of each top-k

vertex inGs is given as the corresponding ranking of the vertex in
G computed based on each of the four minimum temporal paths.
The NGCG value varies from 0 to 1, with 1 representing the same
ranking as in the temporal graph. We compute the top-k nearest
neighbors for the 100 randomly selected source vertices andreport
the average NDCG values in Tables 8-9 (the results for earliest-
arrival and latest-departure paths can be found in [19] which lead
to a similar conclusion as follows).

The results show that the ranking obtained from the static graph
can be significantly different from that obtained from the temporal
graph. The difference becomes particularly obvious whenk in-
creases. Thus, the temporal information is critical in determining
the top-k nearest neighbors in a temporal graph.

The results of both the closeness measure and the top-k ranking
may not suggest that the results from the static graphs are totally
meaningless. However, the results clearly reveal that analyzing
temporal graphs may obtain results that are very different from that
obtained from static graphs. This calls the need for studying tem-
poral graphs directly, which is particularly necessary foranalyzing
temporal properties of the graph.



8. RELATED WORK
The closest related work is [21], and we have explained in Sec-

tion 3 that our path definitions are more general than theirs.Com-
pared with our one-pass algorithms, their algorithm for computing
earliest-arrival path is rather straightforward adoptionof Dijkstra’s
strategy, while their algorithms for computing fastest andshort-
est paths are essentially by enumeration of paths which is ineffi-
cient. Thus, even though we solve more general problems, our
algorithms attain much lower time complexity than theirs (see The-
orem 1, Propositions 2 and 3 in [21]). Our experimental results
also verify that our algorithms are one to two orders of magnitude
faster than theirs on average. Minimum temporal paths were also
studied in our previous work [9]. The focus of that work is on tem-
poral graph traversals, but we also applied temporal DFS/BFS to
compute minimum temporal paths with linear time complexity.

Many applications of temporal paths were proposed, which we
briefly discuss as follows. Temporal paths were applied to study the
connectivity of a temporal network [10], for which disjointtempo-
ral paths between any two vertices are computed. In [11], a simi-
lar definition of latest-departure path (without the information ofλ
for the edges) was proposed to study information latency. In[12],
four definitions of temporal proximity were introduced, which are
no more than finding earliest-arrival, latest-departure, and fastest
paths, but they also did not consider the information ofλ, which
is useful in many applications such as flight scheduling and logis-
tic/itinerary planning. They also did not propose any algorithm for
path computation. In [16, 17], the earliest-arrival time was applied
to define metrics such as temporal efficiency (i.e., how easy infor-
mation flows from one vertex to another) and temporal clustering
coefficient. Temporal paths were also applied to find temporal con-
nected components in [13, 17]. In [18], small-world behavior was
analyzed in temporal networks using temporal paths. In [15], be-
tweenness and closeness based on the three types of temporalpaths
in [21] were briefly mentioned but not studied. In [14], empirical
studies were conducted to measure correlation between temporal
paths and closeness defined based on earliest-arrival time averaged
over all starting time instances. Their results provide some insights
about real temporal graphs, but the datasets they used are much
smaller than those we used. In [20], a temporal graph is used to
model users’ long-term and short-term preferences over time and
the temporal information is used for recommendation. Apartfrom
that, there are surveys [1, 8] that cover most of the prior proposed
concepts of temporal graphs.

9. CONCLUSIONS
We presented four types of minimum temporal paths. Among

them, only shortest path is a well-known concept in normal static
graphs, but we have shown that the concept of shortest path in
temporal graphs is very different from that in static graphs. The
other three types, i.e., earliest-arrival paths, latest-departure paths
and fastest paths, are unique in temporal graphs, and all carry new,
different and important temporal information about the graph. We
first proposed efficient one-pass algorithms that use only one lin-
ear scan of the input graph for computing the minimum temporal
paths, which is scalable for massive temporal graphs. We next pro-
posed an alternative solution that transforms a temporal graph into
a non-temporal one with no information loss. Experiments ona
wide range of real-world temporal graphs show that our algorithms
are one order to two orders of magnitude faster than the existing
algorithms [21]. We also demonstrated, through the applications of
closeness centrality computation and top-k nearest neighbors, that
minimum temporal paths lead to analytic results that are signifi-

cantly different from shortest paths in static graphs. Thisshows the
need for studying temporal graphs directly instead of condensing
them into static graphs, and thus we believe that many applications
can be developed from minimum temporal paths.

For future work, we plan to develop indexes for answering queries
on temporal paths, by applying indexing techniques for non-temporal
graphs [2, 3, 4, 5, 7].
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