
Efficient Algorithms for Temporal
Path Computation

Huanhuan Wu, James Cheng, Yiping Ke, Silu Huang, Yuzhen Huang, and Hejun Wu

Abstract—Shortest path is a fundamental graph problem with numerous applications. However, the concept of classic shortest path is

insufficient. In this paper, we study various concepts of “shortest” path in temporal graphs, called minimum temporal paths. Computing

these minimum temporal paths is challenging as subpaths of a “shortest” path may not be “shortest” in a temporal graph. We propose

efficient algorithms to compute minimum temporal paths and verified their efficiency using large real-world temporal graphs.

Index Terms—Temporal graphs, temporal path, parallel temporal path algorithms
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1 INTRODUCTION

RESEARCH on graph data has been extensively conducted
in recent years thanks to the increasing popularity of

many online social networks and mobile communication
networks. Existing research has mainly focused on the
study of non-temporal graphs, while some have also consid-
ered dynamic graphs as a sequence of updates to non-tem-
poral graphs. However, many real-world graphs are
actually temporal graphs, in which edges have temporal
labels. For example, assume that Fig. 1a shows a flight net-
work, then the two edges from a to b indicate that there is a
flight from a to b on Day 1 and Day 2, i.e., the numbers 1
and 2 on the edges represent flight departure time.

There are numerous real-world applications in which
data can be modeled as a temporal graph. For example, A
calls B at time t in phone call networks, A sends message to
B at time t in Short Message Service or emails networks, A
follows B at time t in social networks, information spreads
from A to B at time t in information dissemination net-
works, to name but a few. Readers may also find various
temporal networks in cell biology, neural and brain connec-
tions, ecological systems, infra-structural networks, physical
proximity, and among others, in a survey of temporal
networks [1].

Temporal graphs are commonly condensed into non-
temporal graphs, by removing all time information from the
temporal graph and collapsing multiple edges between any
two vertices into a single edge, because their non-temporal

version is much easier to handle [2]. Condensing a temporal
graph into a non-temporal graph loses all the temporal
information, which is critical to the understanding of the
relationship between objects in the graph. Not only so, the
main concern is in fact that the resultant non-temporal
graph often presents erroneous information that leads to
serious incorrect understanding of the graph or relationship
between objects. We illustrate the problems by the following
example.

Example 1. Fig. 1a shows a temporal graph G. Assume that
G is a flight network, then each vertex represents an air-
port and the number on each edge is a flight’s departure
day. For simplicity, we assume that the duration of each
flight is one day. Fig. 1b shows the condensed non-tempo-
ral graph Gs of G. We can see some paths in Gs may not
be a meaningful path in G. For example, ha; b; g; ji is a
path in Gs, but ha; b; g; ji in G is problematic because g has
only one flight to j on Day 2 but we cannot reach g before
Day 4 (leaving b on Day 3 and taking one day to fly from
b to g). Now consider a shortest path from a to l in the two
graphs. In Gs, the shortest path is ha; i; li with distance 2.
But in G, if we take the edge ða; iÞ, then we cannot take
either of the flights from i to l since the flight from a
arrives at i on Day 11. Instead, a valid temporal path is
ha; f; i; li with distance 3, by going from a to f on Day 3,
from f to i on Day 5, and from i to l on Day 8.

The above example shows that a condensed non-tempo-
ral graph can present misleading information about the
original temporal graph, and hence it is essential to keep the
temporal information in the graphs. However, efficient
algorithms for studying temporal graphs are lacking. In this
paper, we focus on the study of “shortest” paths in a tempo-
ral graph, as shortest paths are fundamental to the study of
a graph and algorithms for computing shortest paths are
essential building blocks of many advanced graph analysis
algorithms (e.g., centrality computation [3], [4], graph clus-
tering [5], etc.).

Due to the presence of temporal information, different
forms of “shortest” paths exist and each has its ownmeaning
and significance. We study four types of temporal paths
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(also commonly called “journeys” in a temporal graph) [6],
[7], collectively we call them minimum temporal paths, as they
give the minimum value for different measures: (1) foremost
path (i.e., a path that gives the earliest time one can reach a
target y from a source x); (2) reverse-foremost path (i.e., a path
that gives the latest time one must leave x in order to reach y
before a given time); (3) fastest path (i.e., a path by which one
goes from x to y using the minimum elapsed time); and (4)
shortest path (i.e., a path that is shortest from x to y in terms of
the overall traversal time needed on the edges).

Due to the additional temporal information, computing
temporal paths and their “time-distance” poses new chal-
lenges. For example, the greedy strategy used to compute
shortest paths in a non-temporal graph (e.g., by Dijkstra’s
algorithm) is based on the property that a subpath of a
shortest path is also shortest, which is not necessarily true
when computing any of the four minimum temporal paths.
We investigate useful properties of temporal paths to devise
efficient sequential algorithms to compute the minimum
temporal paths, including one-pass algorithms and a graph
transformation approach. Since the size of temporal graphs
can be large, we also propose scalable parallel algorithms to
compute the minimum temporal paths. We evaluate the
performance of our algorithms using a wide spectrum of
real-world temporal graphs, showing that they significantly
outperform existing algorithms. Our results also verify the
scalability of our parallel algorithms.

Note that in this paper, we assume that the entire tempo-
ral graph is given, i.e., it is available to the algorithms so
that we can design efficient off-line algorithms. When the
full knowledge of the input temporal graph is not available,
Casteigts et al. [8] proposed an algorithm for the problem of
measuring temporal lags (similar to reverse-foremost path)
in a distributed setting, and they also showed that the algo-
rithm can be applied to compute foremost and fastest
broadcast trees in periodically-varying graphs. In addition,
Casteigts et al. [9] further studied the distributed version of
three problems (shortest, fastest, and foremost broadcast) in
three different classes of dynamic graphs. By comparing the
feasibility of these problems within different classes, they
obtained a knowledge requirement hierarchy among the
three problems, and a computational relationship hierarchy
among the different classes of dynamic graphs. Since the
focuses of [8], [9] and our work are different, it is difficult to
apply the algorithms of [8], [9] for efficient off-line analytics,
while it is also non-trivial to extend our algorithms for the
online setting (which we leave to future work).

Paper Outline. Section 2 gives the notations of temporal
graphs. Section 3 presents the minimum temporal paths.
Sections 4 and 5 discuss the one-pass algorithms and the
graph transformation approach. Section 6 presents the paral-
lel algorithms. Section 7 reports experimental results. Section 8
discusses relatedwork and Section 9 concludes thework.

2 NOTATIONS OF TEMPORAL GRAPHS

The frequently used notations are listed in Table 1. Let
G ¼ ðV;EÞ be a temporal graph, where V is the set of verti-
ces of G and E is the set of edges of G. An edge e 2 E is a
quadruple ðu; v; t; �Þ, where u; v 2 V , t is the starting time, �
is the traversal time to go from u to v starting at time t, and
tþ � is the ending time. We denote the starting time of e by
tðeÞ and the traversal time of e by �ðeÞ. For simplicity of dis-
cussion, we assume that �ðeÞ 6¼ 0 for all e 2 E, but note that
our algorithms can be extended to handle the case where
there exists and edge e in E that �ðeÞ ¼ 0.

If edges are undirected, then the starting time and tra-
versal time of an edge are the same from u to v as from v to u.
We focus on directed temporal graphs in this paper since an
undirected edge can bemodeled by two bi-directed edges.

In Section 1, we gave a list of temporal graphs from a
wide spectrum of applications, we select a few of them to
illustrate what temporal information is modeled as follows:

� Phone call or Short Message Service networks: Each
vertex represents a person (or simply a mobile

Fig. 1. Temporal graph G and its non-temporal versionGs.

TABLE 1
Frequently-Used Notations

Notation Description

G ¼ ðV;EÞ A temporal graph
e ¼ ðu; v; t; �Þ 2 E A temporal edge
tðeÞ The starting time of edge e
�ðeÞ The traversal time of edge e
Pðu; vÞ The set of temporal edges from u to v
pðu; vÞ The number of temporal edges from

u to v
p Max. # of temporal edges between

any two vertices in G
Gs ¼ ðVs; EsÞ The corresponding non-temporal

graph of G
n The number of vertices in G (Gs)
m The number of edges in Gs

M The number of edges in G
Goutðu;GÞ (Ginðu;GÞ) The set of out-neighbors (in-neigh-

bors) of a vertex u in G
doutðu;GÞðdinðu;GÞÞ The out-degree (in-degree) of a vertex

u in G
P A temporal path

P ¼ hv1; v2; . . . ; vk; vkþ1i
ei ¼ ðvi; viþ1; ti; �iÞ The ith temporal edge on P
endðP Þ The ending time of P ,

endðP Þ ¼ tk þ �k

startðP Þ The starting time of P , startðP Þ ¼ t1
duraðP Þ The duration of P ,

duraðP Þ ¼ endðP Þ � startðP Þ
distðP Þ The distance of P , distðP Þ ¼Pk

i¼1 �i

nextST ððu; vÞ; tÞ The earliest time u can traverse to v
starting at time t

prevST ððu; vÞ; tÞ The latest time v can be traversed
from u arriving by time t
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device), and an edge ðu; v; t; �Þ indicates that vertex u
calls or sends a message to vertex v at time t, and the
call duration or the message transmission time is �.

� Social networks (e.g., Facebook, Twitter): Each vertex
models a person (or an organization, etc.), and an
edge ðu; v; t; �Þ can be an interaction between u and v
at time t and lasts for a duration of �.

� Flight graphs: Each vertex represents a location, and
an edge ðu; v; t; �Þ is a flight from u to v departing at
time t and the flight duration is �.

Note that in all the above examples, vertex umay commu-
nicate with vertex v at multiple time instances and in fact, the
number of temporal edges from u to v can be large for all of
the above graphs. We denote the set of temporal edges from
u to v in G by Pðu; vÞ, and the number of temporal edges
from u to v in G by pðu; vÞ, i.e., pðu; vÞ ¼ jPðu; vÞj. We also
define the maximum number of temporal edges from u to v,
for any u and v in G, by p ¼ maxfpðu; vÞ : ðu; vÞ 2 ðV � V Þg.
The value of p can be large for some real-world temporal
graphs (e.g., in one of the temporal graphs used in our
experiments, p ¼ 1; 643; 088).

In a temporal graph G ¼ ðV;EÞ, given two temporal
edges e1 ¼ ðu1; v1; t1; �1Þ 2 E and e2 ¼ ðu2; v2; t2; �2Þ 2 E, we
have e1 ¼ e2 iff ðu1 ¼ u2 ^ v1 ¼ v2 ^ t1 ¼ t2 ^ �1 ¼ �2Þ. If we
condense temporal edges into non-temporal edges, we
obtain the corresponding non-temporal graph Gs ¼ ðVs; EsÞ of
G, where Vs ¼ V and Es ¼ fðu; vÞ : ðu; v; t; �Þ 2 Eg, i.e., all
temporal information is removed from the edges in E and
combines all edges with the same start and end vertices into
a single edge.

We define the number of vertices in G and Gs as
n ¼ jV j ¼ jVsj, and the number of edges inG asM ¼ jEj and
inGs asm ¼ jEsj. We define the set of out-neighbors of a vertex
u in G or Gs as Goutðu;GÞ ¼ Goutðu;GsÞ ¼ fv : ðu; v; t; �Þ
2 Eg ¼ fv : ðu; vÞ 2 Esg. We define the out-degree of u in G as
doutðu;GÞ ¼

P
v2Goutðu;GÞ pðu; vÞ, and in Gs as doutðu;GsÞ ¼ j

Goutðu;GsÞj. The in-neighbors and in-degree of a vertex u inG or
Gs are defined symmetrically, i.e., Ginðu;GÞ ¼ Ginðu;GsÞ ¼
fv : ðv; u; t; �Þ 2 Eg ¼ fv : ðv; uÞ 2 Esg, dinðu;GÞ ¼

P
v2Ginðu;GÞ

pðv; uÞ, and dinðu;GsÞ ¼ jGinðu;GsÞj.
Fig. 1a shows a temporal graph G and its corresponding

non-temporal graph Gs is shown in Fig. 1b. For simplicity,
we set � ¼ 1 for all edges. We have Goutða;GÞ ¼ Goutða;
GsÞ ¼ fb; c; f; ig, and Ginðb; GÞ ¼ Ginðb;GsÞ ¼ fag. Since
Pða; bÞ ¼ fða; b; 1; 1Þ; ða; b; 2; 1Þg, we have pða; bÞ ¼ 2,
dinðb;GÞ ¼ 2 and dinðb;GsÞ ¼ 1. Similarly, we have
doutða;GÞ ¼ 5 and doutða;GsÞ ¼ 4.

3 DEFINITIONS OF TEMPORAL PATHS

A temporal path P [6] (also commonly called a “journey”) in
a temporal graph G is a sequence of edges P ¼
he1; e2; . . . ; eki, where ei ¼ ðvi; viþ1; ti; �iÞ 2 E is the ith tem-
poral edge on P for 1 � i � k, and ðti þ �iÞ � tiþ1 for
1 � i < k. Note that for the last edge ðvk; vkþ1; tk; �kÞ on P ,
we do not put a constraint on ðtk þ �kÞ since tkþ1 is not
defined for the path P . In fact, ðtk þ �kÞ is the ending time of
P , denoted by endðP Þ. We also define the starting time of P
as startðP Þ ¼ t1. We define the duration of P as duraðP Þ ¼
endðP Þ � startðP Þ, and the distance of P as distðP Þ ¼
Pk

i¼1 �i. We illustrate the concepts as follows.

Example 2. An example of a temporal path isP ¼ hða; f; 3; 1Þ;
ðf; i; 5; 1Þ; ði; l; 8; 1Þi in the temporal graph G in Fig. 1a. We
have startðP Þ ¼ 3, endðP Þ ¼ 8þ 1 ¼ 9, duraðP Þ ¼ 9� 3 ¼
6 and distðP Þ ¼ 1þ 1þ 1 ¼ 3.

The stating time of the temporal edges on P follows a
chronological order, which is important for real-world
applications such as itinerary planning. For example, if we
choose the edge ða; i; 10; 1Þ instead to go from a to i, though
the duration and distance are shorter, we cannot reach the
final destination l as explained in Example 1. Thus, the
route ða; i; 10; 1Þ cannot be used as a valid travel itinerary.

In this paper, we study the following four types of mini-
mum temporal paths [7].

Definition 1 (Minimum Temporal Paths). Given a tempo-
ral graph G, a source vertex x and a target vertex y in G, and a
time interval ½ta; tv�, let Pðx; y; ½ta; tv�Þ ¼ fP : P is a temporal
path from x to y such that startðP Þ � ta, endðP Þ � tvg, we
define the following four types of temporal paths from x to y
within ½ta; tv� that have the minimum value for different meas-
ures, thus collectively calledminimum temporal paths:

Foremost Path. P 2 Pðx; y; ½ta; tv�Þ is an foremost path if
endðP Þ ¼ minfendðP 0Þ : P 0 2 Pðx; y; ½ta; tv�Þg.

Reverse-Foremost Path. P 2 Pðx; y; ½ta; tv�Þ is a reverse-
foremost path if startðP Þ ¼ maxfstartðP 0Þ : P 0 2 Pðx; y;
½ta; tv�Þg.

Fastest Path. P 2 Pðx; y; ½ta; tv�Þ is a fastest path if
duraðP Þ ¼ minfduraðP 0Þ : P 0 2 Pðx; y; ½ta; tv�Þg.

Shortest Path. P 2 Pðx; y; ½ta; tv�Þ is a shortest path if
distðP Þ ¼ minfdistðP 0Þ : P 0 2 Pðx; y; ½ta; tv�Þg.
When a time interval ½ta; tv� is not explicitly specified for

the minimum temporal paths, we simply take it as
½ta ¼ 0; tv ¼ 1�. However, we may not be always interested
in the entire temporal history of the graph and hence allow-
ing users to specify ½ta; tv� gives higher flexibility. Note that
some recent papers (e.g., [10], [11]) use the term “earliest-
arrival path” for “foremost path”, and “latest-departure
path” for “reverse-foremost path”. In this paper we use the
terms defined in earlier work [7].

The concept of temporal pathwas introduced in [6]. Three
out of the four types of paths we study here (i.e., foremost,
fastest, and shortest paths) were studied in [7]. Compared
with [7], our temporal path problems are more general: first,
in [7] the traversal time � is the same for any edge ðu; vÞ,
while in our definition � can be different when an edge has a
different starting time (which is common such as for flight
duration, phone call duration, etc.); second, their definition
and algorithm for shortest paths can only count the number
of hops, while our definition and algorithm allow edges to
have either a traversal time or a weight.

Problem Definition: Single-Source Minimum Temporal Paths
(SSMTP). Given a temporal graph G ¼ ðV;EÞ, a vertex x in
V , and a time interval ½ta; tv�, the problem of SSMTP is to
find: (1) the foremost path from x to every v 2 V , or (2) the
reverse-foremost path from every v 2 V to x, or (3) the fastest
path from x to every v 2 V , or (4) the shortest path from x to
every v 2 V , respectively, within the time interval ½ta; tv�.

Let P be a minimum temporal path to be computed. For
simplicity of discussion, in the presentation of our algo-
rithms for computing SSMTP, we only report: (1) foremost
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time endðP Þ, or (2) reverse-foremost time startðP Þ, or (3) dura-
tion of the fastest path duraðP Þ, or (4) distance of the shortest
path distðP Þ, respectively. We note that the algorithms can
be straightforwardly extended to report the corresponding
path P .

Properties of Minimum Temporal Paths. The following lem-
mas give some properties of minimum temporal paths.

Lemma 1. A prefix-subpath of an foremost path may not be an
foremost path.

Consider the temporal graphG in Fig. 1a, P ¼ hða; b; 2; 1Þ;
ðb; g; 3; 1Þ; ðg; k; 6; 1Þi is an foremost path from a to k with
endðP Þ ¼ 6þ 1 ¼ 7; but its prefix subpath P1 ¼ hða; b; 2; 1Þi is
not an foremost path from a to b, since endðP1Þ ¼ 2þ 1 ¼ 3
while P2 ¼ hða; b; 1; 1Þi has endðP2Þ ¼ 1þ 1 ¼ 2.

Lemma 2. A postfix-subpath of a reverse-foremost path may not
be a reverse-foremost path.

For example, P ¼ hða; c; 4; 1Þ; ðc; h; 6; 1Þ; ðh; i; 7; 1Þ;
ði; l; 8; 1Þi in Fig. 1a is a reverse-foremost path from a to lwith
startðP Þ ¼ 4; but its postfix subpath P1 ¼ hði; l; 8; 1Þi is not a
reverse-foremost path from i to l, as P2 ¼ hði; l; 9; 1Þi is a path
from i to lwith startðP2Þ ¼ 9 > startðP1Þ ¼ 8.

Lemma 3. A subpath of a fastest path may not be a fastest path.

For example, P ¼ hða; c; 4; 1Þ; ðc; h; 6; 1Þ; ðh; k; 7; 1Þi in
Fig. 1a is a fastest path from a to k with duraðP Þ ¼ ð7þ 1Þ
�4 ¼ 4; but its prefix subpath P1 ¼ hða; c; 4; 1Þ; ðc; h; 6; 1Þi is
not a fastest path from a to h, instead P2 ¼ hða; b; 2; 1Þ;
ðb; h; 3; 1Þi is a fastest path from a to h with duraðP2Þ ¼
ð3þ 1Þ � 2 ¼ 2.

Lemma 4. A subpath of a shortest path may not be a shortest
path.

For example, P ¼ hða; f; 3; 1Þ; ðf; i; 5; 1Þ; ði; l; 8; 1Þi in Fig. 1a
is a shortest path from a to lwith distðP Þ ¼ 1þ 1þ 1 ¼ 3; but
its prefix subpath P1 ¼ hða; f; 3; 1Þ; ðf; i; 5; 1Þi is not a shortest
path from a to i, instead P2 ¼ hða; i; 10; 1Þi is a shortest path
from a to iwith distðP2Þ ¼ 1.

Lemmas 1, 2, 3, and 4 highlight the challenges of comput-
ing minimum temporal paths, as Dijkstra’s greedy strategy
cannot be directly applied to compute minimum temporal
paths.

4 ONE-PASS ALGORITHMS FOR COMPUTING

MINIMUM TEMPORAL PATHS

In this section, we present efficient one-pass algorithms for
computing single-source minimum temporal paths. Due to
the space limit, the proofs of some lemmas and theorems are
given in the appendix, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TKDE.2016.2594065, while other less obvious
proofs are kept in the paper to help understanding. Since the
one-pass algorithm for computing reverse-foremost time is
similar to that of computing foremost time, and the algorithm
for computing shortest-path distance is similar to that of com-
puting fastest-path duration, we also give the one-pass algo-
rithms for computing reverse-foremost time and shortest-
path distance in the appendix, available in the online supple-
mentalmaterial.

4.1 Stream Representation of a Temporal Graph

Before we present the one-pass algorithms, we first describe
the data stream representation of a temporal graph.

The edge stream representation of a temporal graph G is
simply a sequence of all edges in G that come in the order
of the time each edge is created/collected (i.e., the edges are
ordered according to their starting time). If two temporal
edges are created/collected at the same time, their ordering
can be arbitrary. For example, if G has the following edges,
fðv1; v2; 2; 5Þ, ðv2; v4; 4; 1Þ, ðv3; v2; 1; 1Þg, then the edge stream
of G appears as follows: ðv3; v2; 1; 1Þ, ðv1; v2; 2; 5Þ, ðv2;
v4; 4; 1Þ. The edge stream is a natural format with which a
temporal graph is generated and collected, e.g., the commu-
nication logs captured by telecom operators over time, or
the temporal user behavior captured by social networking
sites over time. In this paper, we assume that the temporal
graph is in edge stream representation. If not, the pre-proc-
essing takes OðM logMÞ time to sort the edges into the edge
stream representation.

The following lemma shows a property of a temporal
path in connection with the edge stream representation.

Lemma 5. Let P ¼ hv1; v2; . . . ; vk; vkþ1i be a temporal path inG,
where ei ¼ ðvi; viþ1; ti; �iÞ 2 E is the ith temporal edge on P
for 1 � i � k. For any ei and ej on P , if i < j, then ei comes
before ej (i.e., ei is ordered before ej) in the edge stream of G.

Proof. By the definition of temporal path, we have ðti þ �iÞ �
tiþ1 for 1 � i < k, and hence tiþ1 > ti as �i > 0. Thus, the
starting times of e1, e2, . . ., ek are in strictly ascending order,
and hence ei comes before ej in the edge stream ofG. tu

4.2 Foremost Paths

In this section, we present our algorithm for computing the
foremost time from a source vertex x to every vertex in a
temporal graph Gwithin the time interval ½ta; tv�.

The classic Dijkstra’s algorithm for computing single-
source shortest paths is based on the fact that the prefix-sub-
path of a shortest path is also a shortest path. However,
according to Lemma 1, the prefix-subpath of an foremost
path may not be an foremost path. This seems to imply that
the greedy strategy to grow the shortest paths that is
applied in Dijkstra’s algorithm cannot be applied to com-
pute foremost paths, though the following observation
shows otherwise.

Lemma 6. Let P be the set of foremost paths from x to a vertex vk
within the time interval ½ta; tv�. If P 6¼ ;, then there exists
P ¼ hx; v1; v2; . . . ; vki 2 P such that every prefix-subpath,
Pi ¼ hx; v1; v2; . . . ; vii, is an foremost path from x to vi within
½ta; tv�, for 1 � i � k.

Proof. Given any foremost path P 2 P, if not every prefix-
subpath in it is an foremost path, we can always construct

a path P̂ as follows. We traverse P in reverse order and
find the first vertex vi such that the corresponding prefix-
subpath Pi is not an foremost path from x to vi. Thus,

there exists another path P̂i that is an foremost path from

x to vi. We replace Pi in P by P̂i. The new path P̂ is still a

valid temporal path because endðP̂iÞ < endðPiÞ. In addi-

tion, P̂ is an foremost path from x to vk (i.e., P̂ 2 P)
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because endðP̂ Þ ¼ endðP Þ. This process continues until
every prefix-subpath is an foremost path and the result-

ing P̂ is in P, which proves the lemma. tu
Based on Lemma 6, we can apply the greedy strategy to

grow the foremost paths in a similar way to Dijkstra’s algo-
rithm.However, this approach needs to use aminimumprior-
ity queue, resulting in an algorithmwithOðm logpþm lognÞ
time andOðM þ nÞ space complexity [12], which is inefficient
for processing large temporal graphs in practice.

Dijkstra’s greedy strategy requires the entire graph to be
present as random access to vertices and edges are needed.
However, for temporal graphs, Lemma 5 implies that the
input graph can be in the natural edge stream representa-
tion, and it is possible to compute the foremost paths with
only one scan of the graph. We present our one-pass algo-
rithm in Algorithm 1 and elaborate as follows.

Algorithm 1. Computing Foremost Time

Input: A temporal graph G ¼ ðV;EÞ in its edge stream repre-
sentation, source vertex x, time interval ½ta; tv�

Output: The foremost time from x to every vertex v 2 V
within ½ta; tv�

1 Initialize t½x� ¼ ta, and t½v� ¼ 1 for all v 2 V n fxg;
2 foreach incoming edge e ¼ ðu; v; t; �Þ in the edge stream do
3 if tþ � � tv and t � t½u� then
4 if tþ � < t½v� then
5 t½v�  tþ �;
6 else if t � tv then
7 Break the for-loop and go to Line 8;
8 return t½v� for each v 2 V ;

We use an array t½v� to keep the current foremost time
from x to every vertex v 2 V that has been seen in the
stream. According to Lemma 5, if there is a temporal path
P from x to v so that all edges on P have been seen in the
stream, then t½v� ¼ endðP Þ ¼ tþ � as updated in Line 5.
The condition “tþ � < t½v�” in Line 4 ensures that t½v� will
be updated with the smallest endðP Þ for any P from x to v
within the time interval ½ta; tv�.

We linearly scan G and for each incoming edge
e ¼ ðu; v; t; �Þ in the stream, we check whether e meets the
time constraint of a temporal path within ½ta; tv�, i.e.,
whether tþ � � tv and t � t½u�. If yes, we grow the tempo-
ral path by extending to v via the edge e. During the process,
we update t½v�when necessary as discussed earlier. The pro-
cess terminates when we meet the first edge in the stream
that has starting time greater than or equal to tv (Lines 6-7).

Example 3. Consider the temporal graph G in Fig. 1a,
where we assume that the traversal time � is 1 for all
edges. Let a be the source vertex. We compute the fore-
most time from a to every vertex in G within the time
interval ½1; 4�.

Initially, t½a� ¼ 1, and t½v� ¼ 1 for all v 2 V n fag. The
first incoming edge is ða; b; 1; 1Þ, since it satisfies the con-
ditions in Lines 3-4, we update t½b� ¼ 1þ 1 ¼ 2 in Line 5.
The second edge is ða; b; 2; 1Þ, the condition in Line 4 is
not satisfied. The next edge is ðg; j; 2; 1Þ, since t½g� ¼ 1,
the condition “t � t½u� ¼ t½g�” in Line 3 is not met. Then,
the edges ðb; g; 3; 1Þ, ðb; h; 3; 1Þ, and ða; f; 3; 1Þ are

followed, for which we update t½g� ¼ 4, t½h� ¼ 4, and
t½f� ¼ 4. After that the edge ða; c; 4; 1Þ comes, which satis-
fies the condition in Line 6 and the process is terminated.
It can be easily verified that we have obtained the correct
foremost time from a to every vertex in Gwithin the time
interval ½1; 4�.
The following lemma shows that when Algorithm 1 ter-

minates, t½v� correctly reports the foremost time from x to v.

Lemma 7. For any vertex v 2 V , if the foremost path from x to v
within the time interval ½ta; tv� exists, then t½v� returned by
Algorithm 1 is the corresponding foremost time; otherwise,
t½v� ¼ 1.

The following theorem states our main result for fore-
most path computation.

Theorem 1. Algorithm 1 correctly computes the foremost time
from a source vertex x to every vertex v 2 V within the time
interval ½ta; tv� using only one linear scan of the graph,
OðnþMÞ time and OðnÞ space.

4.3 Fastest Paths

We now present our algorithm for computing the duration of
the fastest path from a source vertex x to every vertex inG.

A naive way to find the fastest path from x to a vertex v
in G is to find all temporal paths from x to v, and then pick
the one with the minimum duration. However, there may
exist exponentially many temporal paths from x to v. Thus,
effective pruning of search space is needed, and the follow-
ing lemma is useful for this purpose.

Lemma 8. Let P be the set of temporal paths from x to v with the
same starting time t. Then, P 2 P is a fastest path from x to v
starting at t if P is an foremost path from x to v starting at t.

Lemma 8 implies that we can compute the fastest path
from x by finding the foremost path starting at every dis-
tinct time instance from x in the time interval ½ta; tv�. Based
on this observation, we design our algorithm as shown in
Algorithm 2.

For each distinct starting time t 2 S, where S is defined in
Line 2, the algorithm calls Algorithm 1 to compute the fore-
most time from x to each v 2 V n fxg, within the time inter-
val ½t; tv�. Then, the minimum duration of the foremost
paths starting at different starting time is returned as the
duration of the fastest path.

We give the correctness and complexity of Algorithm 2
below.

Theorem 2. Algorithm 2 correctly computes the duration of the
fastest path from a source vertex x to every vertex v 2 V within
½ta; tv� in OðjSjðnþMÞÞ time and OðnÞ space, using jSj linear
scans of the graph, where S ¼ ftðeÞ : e is an out-edge of x;
tðeÞ � ta; tðeÞ þ �ðeÞ � tvg.
A One-Pass Algorithm with Better Time Bound.
In Algorithm 2, there can be potentially much redundant

processing due to multiple invocations of Algorithm 1.
Every time when Algorithm 1 is invoked, we need to scan
the graph once. Thus, we want to examine whether we can
avoid scanning the graph multiple times and eliminate the
redundant processing. To this end, we design a one-pass
algorithm as given in Algorithm 3.
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Algorithm 2. Computing Fastest-Path Duration
(Multi-Passes)

Input: A temporal graph G ¼ ðV;EÞ in its edge stream
representation, source vertex x, time interval ½ta; tv�

Output: The duration of the fastest path from x to every
vertex v 2 V within ½ta; tv�

1 Initialize f½x� ¼ 0, and f ½v� ¼ 1 for all v 2 V n fxg;
2 Let S be the set of distinct starting time of the out-edges of x

within ½ta; tv�, i.e., S ¼ ftðeÞ : e is an out-edge of x; tðeÞ � ta;
tðeÞ þ �ðeÞ � tvg;

3 foreach t 2 S do
4 Call Algorithm 1 with inputG, x, and time interval ½t; tv�;

let t½v� be the foremost time from x to v returned by
Algorithm 1, then update f ½v�  minff ½v�; t½v� � tg;

5 return f ½v� for each v 2 V ;

Algorithm 3. Computing Fastest-Path Duration
(One-Pass)

Input: A temporal graph G ¼ ðV;EÞ in its edge stream
representation, source vertex x, time interval ½ta; tv�

Output: The duration of the fastest path from x to every
vertex v 2 V within ½ta; tv�

1 foreach v 2 V do
2 Create a sorted list for v, Lv, where an element of Lv is a

pair ðs½v�; a½v�Þ in which s½v� is the starting time of a
path P from x to v, and a½v� is the time that the path P
arrives at v and is used as the key for ordering in Lv;
initially, Lv is empty;

3 Initialize f ½x� ¼ 0, and f ½v� ¼ 1 for all v 2 V n fxg;
4 foreach incoming edge e ¼ ðu; v; t; �Þ in the edge stream do
5 if t � ta and tþ � � tv then
6 if u ¼ x then
7 if ðt; tÞ =2 Lx then
8 Insert ðt; tÞ into Lx;
9 Let ðs0½u�; a0½u�Þ be the element in Lu where

a0½u� ¼maxfa½u� : ðs½u�; a½u�Þ 2 Lu; a½u� � tg;
10 s½v�  s0½u�;
11 a½v�  tþ �;
12 if s½v� is in Lv then
13 Update the corresponding a½v� in Lv;
14 else
15 Insert ðs½v�; a½v�Þ into Lv;
16 Remove dominated elements in Lv;
17 ifa½v� � s½v� < f ½v� then
18 f ½v� ¼ a½v� � s½v�;
19 else if t � tv then
20 Break the for-loop and go to Line 21;
21 return f ½v� for each v 2 V ;

The algorithm uses a sorted list for each vertex v,
denoted by Lv, to keep the foremost time from the source
vertex x to v at different starting time that may potentially
give the duration of the fastest path from x to v. For every
element ðs½v�; a½v�Þ in Lv, defined in Line 2, if there exists
another element ðs0½v�; a0½v�Þ in Lv, where s0½v� > s½v� and
a0½v� � a½v�, or s0½v� ¼ s½v� and a0½v� < a½v�, we say that
ðs0½v�; a0½v�Þ dominates ðs½v�; a½v�Þ, and call ðs½v�; a½v�Þ a domi-
nated element in Lv.

The following lemma shows that a dominated element
can be safely pruned from Lv.

Lemma 9. Given two elements ðs½v�; a½v�Þ and ðs0½v�; a0½v�Þ in Lv

for any vertex v 2 V , if ðs0½v�; a0½v�Þ dominates ðs½v�; a½v�Þ in
Lv, then ðs½v�; a½v�Þ can be removed from Lv without affecting
the computation of the duration of the fastest path from x to
any vertex in V .

Proof. Since both ðs½v�; a½v�Þ and ðs0½v�; a0½v�Þ are in Lv, this
implies that there is one temporal path P starting from x
at time s½v� and arriving at v at time a½v�, and another tem-
poral path P 0 starting from x at time s0½v� and arriving at v
at time a0½v�. Let Pw be a fastest path from x to any vertex
w 2 V such that P is a prefix-subpath of Pw. Let P

0
w be the

path obtained by replacing P with P 0 in Pw. Since
a0½v� � a½v�, P 0w is still a valid temporal path. If s0½v� > s½v�,
then P 0w is a temporal path with a smaller duration than

Pw, which contradicts to the fact that Pw is a fastest path.
If s0½v� ¼ s½v�, then P 0w also is a fastest path from x to w. In

both cases, if we have ðs0½v�; a0½v�Þ, then we do not need
ðs½v�; a½v�Þ in the computation of the duration of the fastest
path from x to any vertex w 2 V . tu
In Algorithm 3, every time after removing dominated ele-

ments inLv, we have the following property regardingLv.

Lemma 10. Each time after Line 16 of Algorithm 3 is executed,
for any two elements ðs½v�; a½v�Þ and ðs0½v�; a0½v�Þ in Lv, either
(1) s0½v� > s½v� and a0½v� > a½v�, or (2) s½v� > s0½v� and
a½v� > a0½v�.

Proof. First, s½v� 6¼ s0½v� since the condition in Line 12
ensures that no two elements in Lv will have the same
“s½v�” value. Then, assume that s0½v� > s½v�, then suppose
to the contrary that a0½v� � a½v�, in this case ðs½v�; a½v�Þ is
dominated by ðs0½v�; a0½v�Þ and is removed in Line 16.
Thus, a0½v� > a½v�. Case (2) is symmetric. tu
We now discuss other details of Algorithm 3. We scan the

edge stream of the input graph once. For each incoming
edge e ¼ ðu; v; t; �Þ, we check whether the foremost paths
from x to u can be extended to v via e within ½ta; tv� (Line 5).
If yes, we pick the path from x to u with the largest arrival
time that is at or before t (Line 9), which also has the largest
starting time according to Lemma 10 and hence potentially
gives the minimum duration of the resultant path.

We then update Lv as follows. If there is already a record
with the same s½v� in Lv, we update the corresponding a½v�
in Lv if the current a½v� (computed in Line 11) is smaller
(which means that the current ðs½v�; a½v�Þ pair dominates the
old pair). Otherwise, we insert the new record ðs½v�; a½v�Þ
into Lv. Then, we apply Lemma 9 to prune dominated ele-
ments in Lv. During the process, we use f ½v� to record the
final fastest-path duration from x to v. If the minimum dura-
tion f ½v� changes, we update the value of f½v� in Lines 17-18.

The following theorem gives our main result for fastest
path computation.

Theorem 3. Let S ¼ ftðeÞ : e is an out-edge of x; tðeÞ � ta;
tðeÞ þ �ðeÞ � tvg, dmax ¼ maxfdinðv;GÞ : v 2 V g, and
c ¼ minfjSj; dmaxg. Algorithm 3 correctly computes the dura-
tion of the fastest path from a source vertex x to every vertex
v 2 V within the time interval ½ta; tv� using only one linear scan
of the graph, OðnþM log cÞ time and OðminfnjSj; nþMgÞ
space.
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Proof. We first prove the correctness. Suppose that the fast-
est path from x to v within ½ta; tv� exists. Let the fastest
path starts from x at time tx, and arrives at v at time ty.
Then, this is also an foremost path from x to v within the
time interval ½tx; ty�. By Lemma 6, there exists an foremost
path P from x to v such that every prefix-subpath of P is
an foremost path from x to some vertex on P . Let
P ¼ hx ¼ v1; v2; . . . ; vk; vkþ1 ¼ vi. Let te½vi� be the foremost
time from x to vi within ½tx; ty�, for 1 � i � kþ 1. Let e1,
e2, . . . , ek be the edges on P , where ei ¼ ðvi; viþ1; ti; �iÞ for
1 � i � k. Then, we have ti � te½vi� and ti þ �i ¼ te½viþ1�
for 1 � i � k.

We only need to show that the pair ðtx; tyÞ is inserted
into Lv, so that f ½v� is updated to ty � tx in Line 18. We
prove that ðtx; te½vi�Þ is inserted into Lvi , for 1 � i � kþ 1,

by induction on i. When i ¼ 1, x ¼ v1, ðtx; txÞ is inserted
into Lx in Line 8. When i ¼ 2, we insert
ðs½v2�; a½v2�Þ ¼ ðtx; te½v2� ¼ t1 þ �1Þ into Lv2 when we pro-

cess e1. Now assume that for i ¼ j, where j < kþ 1,
ðtx; te½vj�Þ is inserted into Lvj when we process ej�1. Con-
sider i ¼ jþ 1 and we want to prove that ðtx; te½vjþ1�Þ is
inserted into Lvjþ1 . According to Lemma 5, ej comes after

ej�1 in the stream. Thus, when the algorithm scans ej, by
Lemma 10 we obtain a0½vj� ¼ te½vj� in Line 9, which also
means s0½vj� ¼ tx. This gives ðs½vjþ1�; a½vjþ1�Þ ¼ ðtx; te½vjþ1�
¼ tj þ �jÞ. Thus, ðtx; te½vjþ1�Þ will be inserted into Lvjþ1 .

Thus, by induction, ðtx; tyÞwill be inserted into Lv.
Next, we analyze the complexity. It is clear that the

algorithm takes at most one linear scan of the edge
stream. The initialization in Lines 1-3 takes OðnÞ time.
For each v 2 V , the size of Lv is bounded by
minfjSj; dinðv;GÞg � c ¼ minfjSj; dmaxg. Searching and
updating Lv take Oðlog cÞ time. The total time of remov-
ing dominated elements from Lv in Line 16 is bounded
by Oðdinðv;GÞÞ. Thus, the total time for removing domi-
nated elements from Lv for all v 2 V is OðMÞ. Summing
up, the total time complexity is OðnþM log cÞ. The space
requirement is bounded by the total size of Lv, which is
given by OðminðnjSj; nþMÞÞ. Note that jSj (and hence
also c) is a small number in practice. tu

5 A GRAPH TRANSFORMATION APPROACH

In this section, we propose a graph transformation tech-
nique for computing the four types of minimum temporal
paths.

We first present how to transform a temporal graph

G ¼ ðV;EÞ into a new graph ~G ¼ ð ~V ; ~EÞ. The construction of
~G consists of the following two parts:

1) Vertex creation: For each vertex v 2 V , create vertices

in ~V as follows:
a) Let Tinðu; vÞ ¼ ftþ � : ðu; v; t; �Þ 2 Pðu; vÞgwhere

u 2 Ginðv;GÞ, and TinðvÞ ¼
S

u2Ginðv;GÞTinðu; vÞ,
i.e., TinðvÞ is the set of distinct time instances at
which edges from in-neighbors of v arrive at v.

Create jTinðvÞj copies of v, each labeled with
ðv; tÞ where t is a distinct arrival time in TinðvÞ.
Denote this set of vertices as ~VinðvÞ, i.e.,
~VinðvÞ ¼ fðv; tÞ : t 2 TinðvÞg. Sort vertices in

~VinðvÞ in descending order of their time, i.e., for

any ðv; t1Þ; ðv; t2Þ 2 ~VinðvÞ, ðv; t1Þ is ordered before

ðv; t2Þ in ~VinðvÞ iff t1 > t2.
b) Let Toutðv; uÞ ¼ ft : ðv; u; t; �Þ 2 Pðv; uÞg where u

2 Goutðv;GÞ, and ToutðvÞ ¼
S

u2Goutðv;GÞToutðv; uÞ.
Create jToutðvÞj copies of v, each labeled with

ðv; tÞ where t is a distinct starting time in ToutðvÞ.
Denote this set of vertices as ~VoutðvÞ, i.e.,
~VoutðvÞ ¼ fðv; tÞ : t 2 ToutðvÞg. Sort vertices in
~VoutðvÞ in descending order of their time.

2) Edge creation: For each vertex v 2 V , create edges in
~E as follows:

a) For each vertex ðv; tinÞ in its order in ~VinðvÞ, create
a directed edge from ðv; tinÞ to ðv; toutÞ 2 ~VoutðvÞ,
where tout ¼ minft : ðv; tÞ 2 ~VoutðvÞ; t � ting and

no edge from any other ðv; t0inÞ 2 ~VinðvÞ to ðv; toutÞ
has been created. Set the weight for each such
edge as 0.

b) Let ~VinðvÞ ¼ fðv; t1Þ; ðv; t2Þ; . . . ; ðv; tkÞg. Create a
directed edge from each ðv; tiþ1Þ to ðv; tiÞ with
weight 0, for 1 � i < k. No edge is created if

k � 1. Create edges for ~VoutðvÞ in the same way.
c) For each temporal edge e ¼ ðu; v; t; �Þ 2 E, create

a directed edge from ðu; tÞ 2 ~VoutðuÞ to

ðv; tþ �Þ 2 ~VinðvÞ, with weight �.

5.1 Foremost Paths

We first discuss the computation of single-source foremost
paths. To compute foremost paths from a source vertex x to

every vertex v 2 V , we further create a vertex x0 in ~G and a

directed edge from x0 to each vertex ðx; tÞ 2 ~VoutðxÞ in ~G
with weight 0.

Then, we simply run the breadth-first search (BFS) algo-
rithm in ~G from the source vertex x0. During the process, if
the time t of a vertex ðv; tÞ is not in the time interval ½ta; tv�,
we will stop the BFS from this vertex. The minimum time t

of all visited vertices ðv; tÞ in ~VinðvÞ is the foremost time
from x to v in G.

We illustrate the graph transformation and how ~G is
used to compute the foremost time by the following
example.

Example 4. Given a temporal graph G in Fig. 2a, where we
assume that the traversal time � is equal to 1 for all edges,

the transformed graph ~G is shown in Fig. 2b.
Let a be the source vertex in G and thus we create a0 as

shown in ~G. Now let us start BFS from a0 in ~G. In the 2nd
step, we visit ðb; 2Þ, ðb; 3Þ, ðc; 3Þ, and ðc; 5Þ. Thus, the fore-
most time from a to b is 2, and from a to c is 3. In the 3rd
step, we visit ðb; 5Þ and ðc; 6Þ. In the 4th step, we visit
ðf; 6Þ, ðf; 7Þ, and ðc; 7Þ, from which we obtain the fore-
most time from a to f as 6. Finally, we visit ðg; 8Þ, and
obtain the foremost time from a to g as 8.

5.2 Reverse-Foremost Paths

Similar to the computation of single-source foremost paths,
we create a vertex x0 in ~G and a directed edge from each ver-

tex ðx; tÞ 2 ~VinðxÞ to x0 in ~Gwith weight 0. Then, we perform
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a reverse BFS from x0 in ~G. The maximum time t of all vis-

ited vertices ðv; tÞ in ~VoutðvÞ is the reverse-foremost time
from every v to x in G.

Note that ~VinðaÞ does not exist in Fig. 2b since there is
no reverse-foremost path from any vertex to a in Fig. 2a.
But we can easily compute the reverse-foremost time (or
path) from every vertex to other target vertex, e.g., g, by a
reverse BFS.

5.3 Fastest Paths

For the source vertex x in G, we create a vertex x0 in ~G and a

directed edge from x0 to each vertex ðx; tÞ 2 ~VoutðxÞ in ~G

with weight 0. Let S ¼ fðx; tÞ : ðx; tÞ 2 ~VoutðxÞ; ta � t � tvg,
where elements in S are sorted in descending order of their
time. From x0, we first visit the vertex in S with largest time,
say ðx; t1Þ; then perform BFS from ðx; t1Þ to compute the
foremost time t½v� from x to every v and obtain the duration
of this foremost path as ðt½v� � t1Þ. Then, we visit the vertex
in S with second largest time, say ðx; t2Þ; we conduct BFS
from ðx; t2Þ, but we will not continue the BFS from any ver-
tex that has been visited previously. We repeat this process
until all vertices in S are processed. The duration of the fast-
est path from x to every v in G is the minimum duration
among all the foremost paths from x to v.

5.4 Shortest Paths

For the source vertex x in G, we create a vertex x0 in ~G and a

directed edge from x0 to each vertex ðx; tÞ 2 ~VoutðxÞ in ~G

with weight 0. Then, we run Dijkstra’s algorithm on ~G from
the source vertex x0. The minimum distance of the shortest-

path from x0 to each ðv; tÞ 2 ~VinðvÞ is the shortest-path dis-
tance from x to v in G.

5.5 Complexity Analysis

Assume that n < M for a temporal graph G. From the
graph transformation process, it is easy to see that both the

number of vertices and edges in ~G is bounded by OðMÞ.
Thus, computing single source foremost paths and reverse-

foremost paths takes OðMÞ time since only one BFS in ~G is

required. For computing fastest paths in ~G, since we do not
continue the BFS from any previously visited vertices, we

visit each edge in ~G only once during the entire process and
hence the time complexity is also OðMÞ. Finally, for

computing single source shortest paths in ~G, Dijkstra’s algo-
rithm uses OðM logMÞ time.

6 PARALLEL ALGORITHMS

To process massive graphs that are too large to be handled
by algorithms running on a single computer, parallel algo-
rithms offer a good recourse. In this section, we present ver-
tex-centric parallel algorithms based on Pregel’s computing
model [13].

In Pregel model, each vertex is an independent computa-
tional unit. The system (e.g., Pregel) distributes (by hashing)
vertices to workers in a cluster, where each vertex v is asso-
ciated with its adjacency list (i.e., the set of v’s neighbors). A
vertex v may also assign extra fields depending on the algo-
rithm. A program in Pregel implements a user-defined com-
pute() function and proceeds in iterations, called supersteps,
based on the bulk synchronous parallel (BSP) model. In
each superstep, the program runs compute() for each active
vertex, v, in which v receives incoming messages from its
neighbors sent in the previous superstep, modifies its value,
sends messages to its neighbors (to be received in the next
superstep), and finally votes to halt. The program termi-
nates when all vertices vote to halt and there is no pending
message for the next superstep.

Before we present our algorithms, we first describe the
adjacency list representation [14] data format for storing a
temporal graph in the vertex-centric setting. First, each ver-
tex u 2 V is assigned a unique ID, and keeps the set of u’s
out-neighbors, Goutðu;GÞ, where the out-neighbors are
sorted by their IDs. As for each neighbor v 2 Goutðu;GÞ, the
edge ðu; vÞ may have different “starting time”s. Thus, for
each v 2 Goutðu;GÞ, v is associated with a set of “starting
time”s, sorted in ascending order of the time values. In
addition, each starting time t is also associated with the tra-
versal time from u to v starting at time t.

For simplicity of discussion, for each distinct pair ðu; vÞ,
given any two temporal edges ðu; v; t1; �1Þ and ðu; v; t2; �2Þ,
we assume �1 ¼ �2. Thus, in the following discussions, we
simply use �ðu; vÞ to denote the traversal time from u to v at
any starting time. We note that our algorithms can be easily
extended to handle the case �1 6¼ �2.

In this section, we only present the parallel algorithms
for computing foremost time and fastest-path duration, by
adopting the idea of the algorithms in our preliminary
work [12]. The parallel algorithms for computing reverse-
foremost time and shortest-path distance are in the appen-
dix, available in the online supplemental material, which
are similar to that of computing foremost time and fastest-
path duration.

6.1 Foremost Paths

In this section, we present our parallel algorithm for com-
puting the foremost time from a source vertex x to every ver-
tex in a temporal graph Gwithin the time interval ½ta; tv�.

We define nextST ððu; vÞ; tÞ ¼ minftðeÞ þ �ðeÞ : e is an
edge from u to v; tðeÞ � tg, and nextST ððu; vÞ; tÞ ¼ 1 if no e
with tðeÞ � t exists. Intuitively, nextST ððu; vÞ; tÞ is the earli-
est time at v that u can traverse to v starting at time t, while
the value1 indicates that there is no such edge from u to v
with starting time at or after t.

Fig. 2. Graph transformation, from G in (a) to ~G in (b).
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Based on Lemma 6, we can design a parallel algorithm to
grow the foremost paths as shown in Algorithm 4. Every
vertex v keeps two fields: tðvÞ and Lv, where tðvÞ keeps the
foremost time from the source vertex x to v within time
interval ½ta; tv�, and Lv keeps a value p½u� for every
u 2 Goutðv;GÞ, which is an upper bound of the foremost
time from x to uwithin ½ta; tv�.

Algorithm 4. Parallel Computation of Foremost Time

Input: A temporal graph G ¼ ðV;EÞ, source vertex x, time
interval ½ta; tv�

Output: The foremost time tðvÞ from x to every vertex v 2 V
within ½ta; tv�

1 Each vertex v 2 V keeps two fields: tðvÞ and Lv, where Lv

keeps a value p½u� for every u 2 Goutðv;GÞ;
2 Initially, all vertices are active, the master calls v:computeðÞ

for each v 2 V to start the computation;
3 v.compute(messages):
4 begin
5 if superstep # ¼ 1 then
6 if v is x then
7 Set tðvÞ  ta, p½u�  1 for every u 2 Goutðv;GÞ;
8 foreach u 2 Goutðv;GÞ do
9 if nextST ððv; uÞ; tðvÞÞ � tv then
10 p½u�  nextST ððv; uÞ; tðvÞÞ;
11 Send a message <p½u�> to u;
12 else
13 Set tðvÞ  1, p½u�  1 for every

u 2 Goutðv;GÞ;
14 else
15 Set local variable flag false;
16 foreach message, <t> , received inmessages do
17 if tðvÞ > t then
18 tðvÞ  t;
19 flag true;
20 if flag is true then
21 foreach u 2 Goutðv;GÞ do
22 if nextST ððv; uÞ; tðvÞÞ < p½u� and

nextST ððv; uÞ; tðvÞÞ � tv then
23 p½u�  nextST ððv; uÞ; tðvÞÞ;
24 Send a message <p½u�> to u;
25 v votes to halt;
26 end

The algorithm processes in supersteps. In the first super-
step (Line 13), each vertex v 2 V , except the source vertex x,
initializes tðvÞ and p½u�, for every u 2 Goutðv;GÞ, to 1, indi-
cating that v has not been reached from x and u has not
been reached from x via v. On the other hand (Lines 7-11),
the source vertex x sets its tðxÞ value to ta, and sets p½u� to
the potential foremost time, nextST ððx; uÞ; tðxÞÞ, for each
u 2 Goutðx;GÞ. Vertex x then sends a message, which is the
new value p½u�, to each out-neighbor u.

In each of the subsequent supersteps, when a vertex v
receives messages from its neighbors, v is activated and pro-
cesses the following (Lines 15-25). Note that the messages
received by v are a set of potential foremost time that x traver-
ses to v via one of v’s in-neighbors. If the minimumvalue, t, of
the receivedmessage values is less than its current tðvÞ value,
v updates tðvÞ to t. Then, for each out-neighbor u 2 Goutðv;GÞ,
if x can reach u via the edge ðv; uÞ at a time earlier than p½u�
and tv, i.e., nextST ððv; uÞ; tðvÞÞ < p½u� and nextST ððv; uÞ;

tðvÞÞ � tv, the algorithm updates p½u� to the new potential
foremost time, nextST ððv; uÞ; tðvÞÞ, and also sends nextST
ððv; uÞ; tðvÞÞ as a message to u. The above superstep repeats
until all vertices vote to halt and there is no more message
pending for the next superstep, at which point tðvÞ stores the
final foremost time from the source vertex x to v.

The following theorem shows that when Algorithm 4 ter-
minates, tðvÞ correctly keeps the foremost time from x to v.

Theorem 4. Algorithm 4 correctly computes the foremost time
from a source vertex x to every vertex v 2 V within the time
interval ½ta; tv�.

6.2 Fastest Paths

In this section, we present our parallel algorithm for com-
puting the duration of the fastest path from a source vertex x
to every vertex in G. Lemma 8 implies that we can compute
the fastest path by calling Algorithm 4 to compute the fore-
most path starting at every time instance in the time range
½ta; tv�. However, there can be too many rounds of computa-
tion. Thus, we design a parallel algorithm, as given in Algo-
rithm 5, to address this problem and to eliminate redundant
processing.

Algorithm 5. Parallel Computation of Fastest-Path
Duration

Input: A temporal graph G ¼ ðV;EÞ, source vertex x, time
interval ½ta; tv�

Output: The fastest-path duration fðvÞ from x to every vertex
v 2 V within ½ta; tv�

1 Each vertex v 2 V keeps two fields: fðvÞ and a sorted list Lv,
where an element of Lv is a pair ðs½v�; a½v�Þ in which s½v� is
the starting time of a path P from x to v, and a½v� is the time
that the path P arrives at v and is used as the key for order-
ing in Lv;

2 Initially, all vertices are active, the master calls v:computeðÞ
for each v 2 V to start the computation;

3 v.compute(messages):
4 begin
5 if superstep # ¼ 1 then
6 if v is x then
7 Set fðvÞ  0, Lv  ;;
8 foreach out-edge ðv; u; t; �Þ of v with t � ta and

tþ � � tv do
9 Insert ðt; tÞ into Lv;
10 Send a message <ðt; tþ �Þ> to u;
11 else
12 Set fðvÞ  1, Lv  ;;
13 else
14 foreachmessage, <ðs; aÞ> , received inmessagesdo
15 if ðs; aÞ is not dominated by any pair in Lv then
16 Insert ðs; aÞ into Lv;
17 Remove dominated elements in Lv;
18 if a� s < fðvÞ then
19 fðvÞ  a� s;
20 foreach u 2 Goutðv;GÞ do
21 if nextST ððv; uÞ; aÞ � tv then
22 Send a message

<ðs; nextST ððv; uÞ; aÞÞ> to u;
23 v votes to halt;
24 end
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In Algorithm 5, every vertex v keeps two fields: fðvÞ and
Lv, where fðvÞ keeps the duration of the fastest path from
the source vertex x to vwithin time interval ½ta; tv�, and Lv is
a sorted list of pairs that keeps the foremost time from the
source vertex x to v at different starting time. The concepts
of dominated element and dominates in Algorithm 5 are
defined in the same way as in Section 4.3.

In the first superstep, the source vertex x sets fðxÞ to 0.
Then, for every out-edge ðx; u; t; �Þ of x, if the edge can be
used to grow a temporal path from x within the time inter-
val ½ta; tv�, x first inserts the pair ðt; tÞ into Lx, which indi-
cates that there is a path from x starting at time t and
arriving at x at time t. Then x sends out the pair ðt; tþ �Þ to
its out-neighbor u, which indicates that there is a path from
x starting at time t and arriving at u at time ðtþ �Þ. For each
other vertex v 6¼ x, the algorithm simply initializes fðvÞ to
be1 and Lv to be the empty set.

In each of the subsequent supersteps, if a vertex v receives
messages from its neighbors, v is activated and processes the
following (Lines 14-23). If a received pair ðs; aÞ is not domi-
nated by any pair in Lv, it may potentially give the minimum
duration ða� sÞ, and hence we insert ðs; aÞ into Lv. After we
insert the pair ðs; aÞ, we also remove dominated elements
from Lv. We then check whether ða� sÞ is smaller than fðvÞ,
and update fðvÞ to ða� sÞ if this is the case. Then, for each
out-neighbor u of v, we send out a pair ðs; nextST ððv; uÞ; aÞÞ
to u if u can be used to grow a temporal path within the time
interval ½ta; tv�. The above superstep repeats until all vertices
vote to halt and there is no more message pending for the
next superstep, at which point fðvÞ stores the final fastest-
path duration from the source vertex x to v.

The following theorem shows that when Algorithm 5 ter-
minates, fðvÞ correctly keeps the fastest-path duration from
x to v.

Theorem 5. Algorithm 5 correctly computes the fastest-path
duration from a source vertex x to every vertex v 2 V within
the time interval ½ta; tv�.

Proof. Suppose that the fastest path from x to v within
½ta; tv� exists. Let the fastest path start from x at time tx,
and arrive at v at time ty. Then, this is also an foremost
path from x to v within the time interval ½tx; ty�.
By Lemma 6, there exists an foremost path P ¼ hx ¼ v1;
v2; . . . ; vk; vkþ1 ¼ vi from x to v such that every prefix-
subpath, Pi ¼ hx; v1; v2; . . . ; vii, of P is an foremost path
from x to vi within ½tx; ty�, for 1 � i � kþ 1. Let teðviÞ be
the foremost time from x to vi within ½tx; ty�, for
1 � i � kþ 1. Then, we have nextST ððvi; viþ1Þ; teðviÞÞ ¼
teðviþ1Þ, for 1 � i � k. Let e1 ¼ ðv1; v2; t1; �1Þ be the first
edge on P , then, we have t1 ¼ tx, and t1 þ �1 ¼ teðv2Þ.

We only need to show that the pair ðtx; tyÞ is inserted
into Lv, by which fðvÞ is correctly computed as ðty � txÞ
in Line 19. We prove that ðtx; teðviÞÞ is inserted into Lvi ,

for 1 � i � kþ 1, by induction on i. When i ¼ 1, x ¼ v1,
because of edge e1 ¼ ðv1; v2; t1; �1Þ ¼ ðv1; v2; tx; �1Þ, ðtx; txÞ
is inserted into Lx in Line 9. Then, vertex x will send a
message <ðtx; tx þ �1Þ> , i.e., < ðtx; teðv2ÞÞ> to vertex
v2. Vertex v2 will receive the message in the next super-
step, and insert <ðtx; teðv2ÞÞ> into Lv2 .

Now assume that after some supersteps, for i ¼ j,
where j < kþ 1, ðtx; teðvjÞÞ is inserted into Lvj . Consider

i ¼ jþ 1 and we want to prove that ðtx; teðvjþ1ÞÞ is
inserted into Lvjþ1 . Vertex vj will send a message

<ðtx; teðvjþ1ÞÞ> to vjþ1. When vjþ1 receives the message,
to prove that ðtx; teðvjþ1ÞÞ will be inserted to Lvjþ1 , we

only need to show that ðtx; teðvjþ1ÞÞwill satisfy the condi-
tion in Line 15 (i.e., ðtx; teðvjþ1ÞÞ is not dominated by any
pair in Lvjþ1 ). We prove this by contradiction. Assume

that ðtx; teðvjþ1ÞÞ is dominated by some pair ðs0; a0Þ in

Lvjþ1 . It indicates that there is a path P̂jþ1 starting from x

at time s0, and arriving at vjþ1 at time a0, where (1)
s0 > tx and a0 � teðvjþ1Þ, or (2) s0 ¼ tx and a0 < teðvjþ1Þ.
We first prove Case (1). If s0 > tx and a0 � teðvjþ1Þ, we

replace Pjþ1 in P by P̂jþ1. The new path P̂ is still a valid

temporal path because a0 � teðvjþ1Þ. The duration of P̂ is
equal to ty � s0, which is smaller than ty � tx. This leads
to a contradiction that P is not a fastest path from x to v
within ½ta; tv�. Next we prove Case (2). If s0 ¼ tx and
a0 < teðvjþ1Þ, it indicates that Pjþ1 is not an foremost
path from x to vjþ1 within ½tx; ty�, which is a contradic-
tion. Thus, ðtx; teðvjþ1ÞÞ is not dominated by any pair in
Lvjþ1 . Hence, the condition in Line 15 is satisfied, and

ðtx; teðvjþ1ÞÞ will be inserted to Lvjþ1 . Thus, by induction,

ðtx; tyÞwill be inserted into Lv. tu

6.3 A Graph Transformation Approach

In this section, we present a parallel graph transformation
technique for computing the four types of minimum tempo-
ral paths.

6.3.1 Foremost Paths

We first discuss the parallel algorithm of computing single
source foremost paths. Similar to Section 5.1, to compute
foremost paths from a source vertex x to every vertex v 2 V ,

we create a vertex x0 in the transformed graph ~G and a

directed edge from x0 to each vertex ðx; tÞ 2 ~VoutðxÞ in ~G.
Then, we simply run the parallel breadth-first search (BFS)

algorithm for a non-temporal graph [13] in ~G from the source
vertex x0, that is, if a vertex is visited, it will not be activated
any more. During the process, if the time t of a vertex ðv; tÞ is
not within the time interval ½ta; tv�, we will stop the BFS from
this vertex. Theminimum time t of all visited vertices ðv; tÞ in
~VinðvÞ is the foremost time from x to v inG.

6.3.2 Reverse-Foremost Paths

Similar to the computation of single-source foremost paths,
we create a vertex x0 in the transformed graph ~G and a

directed edge from each vertex ðx; tÞ 2 ~VinðxÞ to x0 in ~G.
Then, we perform a reverse parallel BFS from the source

vertex x0 in ~G. The maximum time t of all visited vertices

ðv; tÞ in ~VoutðvÞ is the reverse-foremost time from every v to x
in G.

6.3.3 Fastest Paths

We start a multiple-source parallel BFS algorithm for a non-
temporal graph [13] as follows. Each vertex ðx; tÞ 2 ~VoutðxÞ
in the transformed graph ~G, where ta � t � tv, is a source

vertex for the parallel BFS. Each vertex ðu; t0Þ in ~G keeps a
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field tm. For any vertex ðu; t0Þ, tm records the largest time

instance t of any source vertex ðx; tÞ 2 ~VoutðxÞ that can reach

ðu; t0Þ in ~G. During the computation, only if the value tm of a
vertex ðu; t0Þ is updated, it sends out a message tm to its out-
neighbors. The duration from x to every vertex ðu; t0Þ is
computed as ðt0 � tmÞ. The duration of the fastest path from
x to every v in G is the minimum ðt0 � tmÞ among all the ver-

tices ðv; t0Þ in ~VinðvÞ.

6.3.4 Shortest Paths

For the source vertex x in G, we create a vertex x0 in the

transformed graph ~G and a directed edge from x0 to each

vertex ðx; tÞ 2 ~VoutðxÞ in ~G. Then, we run the parallel single
source shortest-path algorithm for a non-temporal

graph [13] from the source vertex x0 in ~G. Among the short-

est-path from x0 to each ðv; tÞ 2 ~VinðvÞ, the minimum dis-
tance is the shortest-path distance from x to v in G.

7 EXPERIMENTAL RESULTS

We evaluate the performance of our algorithms and examine
the usefulness ofminimum temporal paths in this section.We
ran the sequential algorithms on a machine running Linux on
an Intel 3.3 GHz CPU and 16 GB RAM. We implemented our
parallel algorithms in Pregel+ [15] and ran on a cluster of 15
machines, where each machine has 24 cores (two 2.0 GHz
Intel Xeon E5-2620CPU) and 48GBRAM, running 64-bit Cen-
tOS 6.5 with Linux kernel 2.6.32. The connectivity between
any pair of nodes in the cluster is 1 Gbps.

Temporal Graphs. We used 13 real temporal datasets in our
experiments, 12 of them are from the Koblenz Large Network
Collection,1 and we selected one large temporal graph from
each of the following categories: arxiv-HepPh (arxiv)
from the arxiv networks; dblp-coauthor (dblp) from the
DBLP coauthor networks; elec from the network of English
Wikipedia; enron from the email networks; epin from the
trust and distrust network of Epinions; facebook -wosn-

links (fb) from the facebook network; flickr -growth

(flickr) from the social network of Flickr; digg from the
reply network of the social news website Digg; slashdot-
threads (slash) from the reply network of technology

website Slashdot; wikiconflict (conflict) indicating posi-
tive and negative conflicts between users of Wikipedia;
wikipedia-growth (growth) from the hyperlink network
of the English Wikipedia; youtube-u -growth (youtube)
from the social media networks of YouTube; delicious-ut
(delicious) from the network of ‘delicious’; edit-enwiki
(edit) from the edit network of the English Wikipedia;
network-flow (flow) is the Yahoo! Network Flows Data,2

version 1.0. Note that flow cannot fit in the main memory of a
singlemachine.

Table 2 gives some statistics of the datasets. Apart from
the number of vertices and edges in G and Gs, we also show
the average degree in G (denoted by davgðu;GÞ) and in Gs

(denoted by davgðu;GsÞ). The table shows that the value of p

varies significantly for different datasets, indicating the dif-
ferent levels of temporal activity between two vertices. Note
that p ¼ 1 does not imply that the temporal graph is similar
to the corresponding non-temporal graph, because edges on
a temporal path follow an ordered time sequence. This is
also revealed by the number of distinct time instances in G,
denoted by jTGj, which shows that G can span over a large
time interval. For example, if we break G into snapshots
such that all edges with the same starting time belong to the
same snapshot, then the conflict graph consists of 273,909
snapshots.

7.1 Efficiency of Sequential SSMTP Algorithms

To evaluate the performance of our sequential algorithms for
computing single-source minimum temporal paths, we com-
pare with the algorithms proposed by Xuan et al. [7], denoted
by Xuan. Note that Xuan can only report the number of hops
for shortest paths. Xuan et al. also did not study reverse-
foremost paths and we modified their foremost path algo-
rithm to compute reverse-foremost time. We denote our one-
pass algorithms presented in Section 4 by one-pass and our
graph transformation algorithms presented in Section 5 by
Trans. All algorithms were implemented in C++ and com-
piled in the same way. We use 100 randomly selected source
vertices, and set ½ta; tv� to be ½0;1� in this experiment.

Tables 3 reports the average running time of the algo-

rithms. We also show the size of the transformed graph ~G in

TABLE 2
Real Temporal Graphs (K ¼ 103)

Dataset jV j jEsj jEj davgðu;GsÞ davgðu;GÞ p jTGj
arxiv 28 K 6,297 K 9,194 K 224.14 327.26 262 2,337
dblp 1,103 K 8,451 K 11,957 K 7.66 10.84 38 70
elec 8 K 104 K 107 K 12.50 12.90 5 101,012
enron 87 K 320 K 1,135 K 3.67 13.01 1,074 213,218
epin 132 K 841 K 841 K 6.38 6.38 1 939
fb 64 K 817 K 1,270 K 12.82 19.92 2 736,675
flickr 2,303 K 33,140 K 33,140 K 14.39 14.39 1 134
digg 30 K 85 K 86 K 2.80 2.84 25 82,641
slash 51 K 130 K 140 K 2.55 2.74 17 89,862
conflict 118 K 2,054 K 2,918 K 17.40 24.71 562 273,909
growth 1,871 K 39,953 K 39,953 K 21.36 21.36 1 2,198
youtube 3,224 K 9,377 K 12,224 K 2.91 3.80 2 203
flow 103,661 K 776,456 K 3,018,067 K 7.49 29.11 1,643,088 113,899,690

1. http://konect.uni-koblenz.de/ 2. http://webscope.sandbox.yahoo.com/catalog.php?datatype=g
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Table 4. The results show that the one-pass algorithms are
significantly faster than Xuan for all the 12 datasets. On
average, the one-pass algorithms are 13 to 18 times faster
than Xuan. The reason for this big difference in running
time is mainly because the one-pass algorithms have lower
time complexity than Xuan in general, which we briefly
explain as follows (more details can be found in
Appendix O, available in the online supplemental material).
First, the time complexity of Xuan for computing foremost
and reverse-foremost time is Oðmðlogpþ lognÞÞ, while that
of one-pass is OðnþMÞ. However, in real-world temporal
networks, M is not much larger than m (see Table 2). Also,
one-pass only reads the graph once sequentially, while
Xuan requires random accesses and needs to maintain a
heap. Second, to compute the fastest paths, the time com-
plexity of Xuan is Oðmnpðlogpþ lognÞÞ, while that of one-
pass is Oðmpðlogpþ lognÞÞ. Thus, one-pass has much lower
time complexity than Xuan and hence also much better per-
formance. Third, to compute the shortest paths, the time
complexity of Xuan is Oðmn logpÞ, while that of one-pass is
Oðmpðlogpþ lognÞÞ. Thus, our algorithm has lower com-
plexity and hence also better performance.

Although both one-pass and Trans have linear time com-
plexity for computing foremost and reverse-foremost paths,
one-pass is significantly faster than Trans for processing
many datasets. This is mainly because of the following two
reasons. First, one-pass performs fewer operations in the
path computation than Trans; for example, Trans needs to
maintain a queue data structure during the path computa-
tion. Second, the transformed graph is larger than the origi-
nal temporal graph, as shown in Tables 2 and 4. In fact, the
results show that for Trans, there is no big difference
between the running time of foremost/reverse-foremost
paths and the running time of fastest paths, because the
Trans algorithms for computing these three types of paths
are all based on BFS and have the same complexity. Thus,
one-pass is preferred for computing foremost and reverse-
foremost paths.

For computing fastest paths, however, there are a num-
ber of cases Trans is faster than one-pass. This is mainly
because for computing fastest paths, the time complexity of
Trans is lower than that of one-pass, but the tradeoff is that
the transformed graph is larger than the original temporal
graph. As a result, although theoretically the Trans

algorithm has lower time complexity than the one-pass
algorithm, practically the one-pass algorithm may have bet-
ter performance in some cases mainly because the input to
the one-pass algorithm is smaller, i.e., the original temporal
graph is smaller than the corresponding transformed graph.
Thus, when the size of the transformed graph is not too
much larger than that of the original temporal graph, Trans
is often faster and should be used instead of one-pass for
computing fastest paths; otherwise, one-pass should be
used.

For computing shortest paths, the time complexity of
one-pass and Trans are similar. However, one-pass is faster
than Trans in all cases except for the arxiv dataset, which
can be explained by the fact that the size of the transformed
graph is comparable with that of the original temporal
graph for arxiv. Thus, the one-pass algorithm should be
used for computing shortest paths except that when the size
of the transformed graph is comparable with that of the
original temporal graph.

7.2 Efficiency of Parallel SSMTP Algorithms

We denote our parallel algorithms presented in Section 6.1
to Section 6.2 by para, and the graph-transformation-based
parallel algorithms presented in Section 6.3 by paraT.

Table 5 reports the average running time of the parallel
algorithms for computing the four types minimum tempo-
ral paths from 100 randomly selected source vertices. Since
the dataset flow cannot fit in main memory, we cannot get
its transformed graph, and thus not able to run paraT on
flow. The results show that our parallel algorithm para is
significantly faster than paraT in computing all the four
types of SSMTPs. On average, para is around one order of

TABLE 3
Running Time in Seconds

Foremost Reverse-Foremost Fastest Shortest

1-pass Trans Xuan 1-pass Trans Xuan 1-pass Trans Xuan 1-pass Trans Xuan

arxiv 0.0109 0.0283 0.1636 0.0120 0.0549 0.1685 0.1159 0.0264 1.5567 0.1001 0.0953 1.6510
dblp 0.0208 0.0689 0.2860 0.0220 0.0820 0.6443 0.1458 0.0693 0.7573 0.1523 0.5703 1.8762
elec 0.0002 0.0031 0.0016 0.0002 0.0026 0.0016 0.0006 0.0026 0.0302 0.0006 0.0162 0.0127
enron 0.0014 0.0187 0.0099 0.0015 0.0199 0.0095 0.0076 0.0154 0.1726 0.0069 0.0838 0.0378
epin 0.0011 0.0091 0.0214 0.0012 0.0032 0.0172 0.0039 0.0086 0.0202 0.0048 0.0415 0.1278
fb 0.0021 0.0232 0.0113 0.0020 0.0089 0.0087 0.0094 0.0180 0.3845 0.0093 0.1135 0.1716
flickr 0.0591 0.5692 1.1019 0.0678 0.2759 1.0379 0.4675 0.5288 3.8578 0.5014 2.4240 11.2012
digg 0.0001 0.0001 0.0017 0.0001 0.0001 0.0019 0.0003 0.0001 0.0059 0.0003 0.0070 0.0076
slash 0.0002 0.0033 0.0044 0.0003 0.0058 0.0049 0.0010 0.0032 0.0165 0.0011 0.0213 0.0262
conflict 0.0042 0.1425 0.0504 0.0047 0.1624 0.0482 0.0175 0.1371 0.0908 0.0227 0.3346 0.4253
growth 0.1432 4.2159 1.6286 0.1676 6.0869 1.9096 1.3442 3.8759 6.2699 1.5027 11.0289 26.3161
youtube 0.0326 0.0628 0.2207 0.0355 0.0105 0.1752 0.1175 0.0560 0.8352 0.1193 0.6535 1.5675

TABLE 4
Size of the Transformed Graph ~G

arxiv dblp elec enron epin fb

j ~V j 433 K 5,553 K 212 K 1,367 K 482 K 1,637 K

j ~Ej 9,759 K 16,977 K 313 K 2,505 K 1,219 K 3,037 K

flickr digg slash conflict growth youtube

j ~V j 12,600 K 172 K 273 K 3,191 K 34,815 K 11,498 K

j ~Ej 44,358 K 233 K 381 K 6,009 K 77,196 K 21,140 K
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magnitude faster than paraT, which can be explained as
follows.

There are four main costs in running an algorithm in Pre-
gel-like systems [16]: (1) computation cost per superstep;
(2) communication cost per superstep; (3) memory used per
superstep; and (4) the total number of supersteps. The cost
of (1) is linear (or multiplied by a log factor) to the size of
the input graphs for both the para and paraT algorithms,
because the algorithms are simple breadth-first parallel tra-
versal algorithms. The cost of (1) is not the dominant cost
since the path computation tasks are not computation-inten-
sive but communication-intensive. As reported in Fig. 3, the
total number of messages (i.e., the communication cost)
required by the para and paraT algorithms are large, which
is the dominating factor in the total cost. Fig. 3 shows the
total number of messages (averaged over the four types of
SSMTPs) of the para and paraT algorithms, from which we
can see that paraT sends considerably larger number of
messages than para in all cases. This is because many mes-
sages in paraT are sent from the vertex copies of a vertex to
other vertex copies (with different timestamps) of the same
vertex in the transformed graph, e.g., from ða; 1Þ to ða; 2Þ in
Fig. 2b; on the other hand, para runs on the original tempo-
ral graph and hence there are no such messages from the
same vertex to its copies. Fig. 4 presents the number of
supersteps taken by the para and paraT algorithms (aver-
aged over the four types of SSMTPs), which reveals another
main performance bottleneck of the paraT algorithms, i.e.,
the paraT algorithms use significantly larger number of

supersteps than the para algorithms in all cases. This is
because paraT runs on the transformed graph, in which
messages propagate along a much longer path from one
vertex to another vertex. For example, it takes only two
steps to propagate a message from a to g by para in the tem-
poral graph in Fig. 2a, but it takes at least five steps to prop-
agate a message from a to g by paraT in the transformed
graph in Fig. 2b. For parallel computing, the elapsed run-
ning time at each superstep is determined by the time taken
by the slowest worker. Since each superstep of computation
is synchronized, the total running time is the summation of
the running time of the slowest worker at each superstep.
Thus, the total running time can be significantly longer if
some of the supersteps have a slow worker. Finally, the
space used by the para and paraT algorithms are compara-
ble, which we report in Fig. 6 in Appendix M, available in
the online supplemental material.

We also observed that for paraT, the running time of com-
puting foremost paths, reverse-foremost paths, and fastest
paths are similar, because all of them are computed using
algorithms similar to a parallel BFS algorithm. The running
time of computing shortest paths with paraT is considerably
longer, because the algorithm runs a parallel single-source
shortest-path algorithmwhich takesmore supersteps.

7.3 Scalability of Parallel SSMTP Algorithms

In this experiment, we test the scalability of our parallel algo-
rithms. Since para ismuch faster than paraT, and the synthetic
datasets cannot fit in memory in order to generate the

TABLE 5
Running Time in Seconds of the Para and ParaTAlgorithms

Foremost Reverse-Foremost Fastest Shortest

para paraT para paraT para paraT para paraT

flickr 0.4123 1.8051 0.2671 1.8180 0.9941 1.8247 0.5294 2.2137
growth 1.0346 9.3117 1.1756 9.2801 2.7393 9.6183 1.2670 25.6463
youtube 0.1864 0.9284 0.1351 0.9205 0.1794 0.9195 0.1804 1.0534
flow 8.8696 - 11.0731 - 596.2914 - 120.8690 -

Fig. 4. The number of supersteps of the para and paraTalgorithms.

Fig. 3. The number of messages of the para and paraTalgorithms.
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transformed graphs, we only study the scalability of para. We
generate synthetic temporal graphs with different number of
vertices n, different p value, different average degree in Gs

(denoted by davgðu;GsÞ) and in G (denoted by davgðu;GÞ). As

default values, we set n ¼ 40M (M ¼ 106), p ¼ 200,
davgðu;GsÞ ¼ 10, davgðu;GÞ ¼ 20, and jTGj ¼ 100;000. Then,
we vary the value of n, p, davgðu;GÞ and davgðu;GsÞ, respec-
tively, while fixing other parameters as their default values.

As Fig. 5a shows, when we increase the number of
vertices from 20 to 160 M, the running time of para
increases approximately linearly with the number of ver-
tices. Similarly, Figs. 5c and 5d show that the running
time of para increases linearly when davgðu;GÞ and
davgðu;GsÞ increase. However, Fig. 5b shows that the run-
ning time of para is not significantly affected by the
value of p. This is because p is the maximum number of
temporal edges between any two vertices, while the
average number of temporal edges between any two ver-
tices in the graph remains the same as determined by
the default values davgðu;GsÞ ¼ 10 and davgðu;GÞ ¼ 20. As
a result, the total number of messages sent by the paral-
lel algorithms remain roughly the same for different val-
ues of p. This also shows that our parallel algorithms are
efficient in the case when some vertices (in some work-
ers) have skewed number of temporal edges. Thus, the
results verify the scalability of our parallel algorithm
with respect to the increases in n, p, davgðu;GÞ, and
davgðu;GsÞ.

8 RELATED WORK

A preliminary version of this paper [10] proposed sequen-
tial algorithms for SSMTP, which are not scalable for han-
dling large graphs. Although the one-pass algorithms only
need to scan the input graph once, they still have high mem-
ory consumption. In this paper we propose scalable parallel
algorithms as a solution.

The closest related work is [7], and we have explained in
Section 3 that our path definitions are more general than
theirs. Compared with our one-pass algorithms, their algo-
rithm for computing foremost path is rather straightforward
adoption of Dijkstra’s strategy, while their algorithms for
computing fastest and shortest paths are essentially by enu-
meration of paths which is inefficient. Thus, even though
we solve more general problems, our algorithms attain
lower time complexity in general (see a detailed analysis in
Appendix O, available in the online supplemental material).
Our experimental results also verify that our algorithms are
one to two orders of magnitude faster than theirs on aver-
age. Our previous work on temporal graph traversals [17]

can also be applied to compute minimum temporal paths
with linear time complexity, but it is not clear how the algo-
rithms can be parallelized for handling large graphs.

Temporal paths were applied to study the connectivity of
a temporal network [6], for which disjoint temporal paths
between any two vertices are computed. In [18], a similar
definition of reverse-foremost path (without the information
of � for the edges) was proposed to study information
latency. In [19], four definitions of temporal proximity were
introduced, which are no more than finding foremost,
reverse-foremost, and fastest paths, but they also did not
consider the information of �. In [20], [21], the foremost time
was applied to define metrics such as temporal efficiency
and temporal clustering coefficient. Temporal paths were
also applied to find temporal connected components in [2],
[21]. In [22], small-world behavior was analyzed in temporal
networks using temporal paths. In [23], betweenness and
closeness based on the three types of temporal paths in [7]
were discussed. In [24], empirical studies were conducted to
measure correlation between temporal paths and closeness
defined based on foremost time averaged over all starting
time instances. Their results provide some insights about
real temporal graphs, but the datasets they used are much
smaller than those we used. In [11], [25], indexing techniques
were proposed to answer point-point path queries, which
are expensive for computing single-sourceminimum tempo-
ral paths. In [26], a temporal graph is used to model users’
long-term and short-term preferences over time and the tem-
poral information is used for recommendation. Apart from
that, there are surveys [1], [27], [28], [29] that cover most of
the prior proposed concepts of temporal graphs.

9 CONCLUSIONS

We presented four types of minimum temporal paths.
Among them, only shortest path is a well-known concept in
normal non-temporal graphs, but we have shown that the
concept of shortest path in temporal graphs is very different
from that in non-temporal graphs. The other three types,
i.e., foremost paths, reverse-foremost paths and fastest
paths, are unique in temporal graphs, and all carry new, dif-
ferent and important temporal information about the graph.
We first proposed efficient one-pass algorithms that use
only one linear scan of the input graph for computing the
minimum temporal paths. We next proposed an alternative
solution that transforms a temporal graph into a non-
temporal one with no information loss. For processing very
large temporal graphs, both the one-pass and graph-
transformation-based algorithms may require too much
memory and may not scale, hence we proposed scalable

Fig. 5. Performance on synthetic graphs with different values of n, p, davgðu;GÞ, and davgðu;GsÞ:
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parallel algorithms for computing the minimum temporal
paths. Experiments on a wide range of real-world temporal
graphs show that both of our sequential algorithms are one
order to two orders of magnitude faster than the existing
algorithms [7]. For processing large temporal graphs, the
results show the scalability of our parallel algorithms.
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