
Efficient Processing of Growing Temporal Graphs

Huanhuan Wu, Yunjian Zhao, James Cheng, Da Yan

Department of Computer Science and Engineering, The Chinese University of Hong Kong
{hhwu,yjzhao,jcheng,yanda}@cse.cuhk.edu.hk

Abstract. Temporal graphs are useful in modeling real-world networks. For ex-
ample, in a phone call network, people may communicate with each other in mul-
tiple time periods, which can be modeled as multiple temporal edges. However,
the size of real-world temporal graphs keeps increasing rapidly (e.g., considering
the number of phone calls recorded each day), which makes it difficult to effi-
ciently store and analyze the complete temporal graphs. We propose a new model,
called equal-weight damped time window model, to efficiently manage temporal
graphs. In this model, each time window is assigned a unified weight. This model
is flexible as it allows users to control the tradeoff between the required storage
space and the information loss. It also supports efficient maintenance of the win-
dows as new data come in. We then discuss applications that use the model for
analyzing temporal graphs. Our experiments demonstrated that we can handle
massive temporal graphs efficiently with limited space.

1 Introduction

A temporal graph is a graph in which the relationship between vertices is not just mod-
eled by an edge between them, but the time period when the relationship happens is also
recorded. For example, two personsA andB talked on the phone in time periods [t1, t2]
and [t3, t4] are modeled as two temporal edges, (A,B, [t1, t2]) and (A,B, [t3, t4]). An
example of a temporal graph is shown in Figure 1(a).

Graphs are used ubiquitously to model relationships between objects in real world.
However, the graph data in many applications are actually better to be modeled as tem-
poral graphs. For example, in communication networks, including online social net-
works, messaging networks, phone call networks, etc., people communicate with each
other in different time periods. Temporal graphs collected from these applications carry
rich time information, and have been shown to possess many important time-related
patterns that cannot be found from non-temporal graphs [8,9,10,13,17,19,25].

However, existing work overlooks one serious problem presented by temporal graphs
in real world applications, that is, the number of temporal edges (or temporal records)
can be extremely huge so that it becomes overly expensive to store and process a tem-
poral graph. For example, in a temporal graph that models phone-call records, a person
may talk on the phone many times in different time periods in a day, where each phone
call is represented by a temporal edge with the corresponding time period. The total
number of temporal edges accumulated over time for all persons can easily become
overwhelming. Note that while the number of temporal edges usually increases at a
steady rate over time, the number of vertices, on the other hand, does not increase too
much over time after passing the growth stage.

The problem in the above example is actually a real problem presented to us by
a telecommunications operator, who collects phone-call and messaging records repre-
sented as a temporal graph that becomes too large over time for them to manage (mil-
lions to tens of millions of new temporal edges added each day). While analyzing only a
short recent window of the data is useful, the telecom operator is also very keen in stor-
ing and analyzing the temporal graph over a long period of time (e.g., in recent years),
and possibly the entire history, in an efficient way. Motivated by this, we propose a new
model to efficiently manage a temporal graph.

Our new model considers the input temporal graph as a continuous stream, which
captures how the temporal graph is collected in real-life applications (e.g., new call/message
records are accumulated in the order of the calling/sending time). However, the sheer
size of the stream over the entire time history renders analysis (and even storage) of the
original temporal graph too costly. To address this problem, we consider a damped time
window model (also called tilted time window) [5], where a decay function is applied
to depreciate the importance of records in an older window. However, the windows
defined by existing damped time window models do not have a unified weight and
hence the importance of records in different windows cannot be easily compared. For
example, which of the following patterns is more important: a pattern that A and B
communicated 10 times in a recent window (e.g., last week), or a pattern that A and B
communicated 10,000 times in an older window (e.g., last year)?

We design a new damped time window model that gives a unified weight to each
time window, called equal-weight damped time window, and represents the temporal
graph falling into each window (i.e., a time period) as a weighted graph. The weighted
graphs from different time windows can then be compared and analyzed.

The main contributions of our work are as follows:

– Our equal-weight damped time window distributes a unified weight to each time
window, which makes it easy to compare different time windows.

– Our model can handle massive temporal graphs with limited space requirement,
and support efficient graph analysis with little information loss.

– The equal-weight design in our model also leads to natural and efficient update
maintenance of the entire window (within a bounded storage space).

– We present an application that analyzes the connectivity of a temporal graph with
our new model. More applications such as community finding can be found in [23].
We verified the effectiveness and efficiency of our method by extensive experiments
on large temporal graph datasets.

Outline. Section 2 presents the equal-weight time window model. Section 3 discusses
one application based on our model. Section 4 reports experimental results. Section 5
discusses related work. Section 6 concludes the paper.

2 Equal-Weight Damped Time Window

Different window models have been proposed for processing a data stream. Among
which, the landmark window model [14] considers the entire history of a stream with-
out distinguishing the importance of recent and old records, while the sliding window

model [6] focuses on the most recent window only. Our work is motivated by applica-
tion needs from a telecom operator that requires to analyze historical data while giving
more importance to recent data. For this purpose, the damped time window model [5]
seems to suit the requirement. We introduce our damped time window model in this
section, and discuss its difference with existing ones.

We first define the notations related to a temporal graph. Let G = (V,E) be a
temporal graph, where V is the set of vertices and E is the set of edges in G. An edge
e ∈ E is a quadruple (u, v, [ti, tj]), where u, v ∈ V, and [ti, tj] is the time that e is
active. We focus our discussion on undirected temporal graphs, while we note that it is
not difficult to extend our method to directed temporal graphs.

2.1 The Weight Function

In a damped time window model, a decaying weight function is used to depreciate the
importance of a record over time. In the setting of a temporal graph, we use such a
function to assign weight to temporal edges in the graph. We first present the weight
density function as follows.

Definition 1 (Weight density function). Let tτ be the current time. The weight density
of a record at time t (with respect to tτ) is defined as

f(t) = eλ(t−tτ),

where λ ≥ 0 is a decaying constant.

Note that t ≤ tτ , and t is a time in the past if t < tτ .
In Definition 1, f(t) is an exponentially decaying function, which is used through-

out the paper as it has been widely adopted [11,24]. But f(t) can also be defined differ-
ently (e.g., as a linear decaying function) depending on the application. Based on f(t),
we define our weight function as follows.

Definition 2 (Weight function). The weight of a temporal edge (u, v, [t1, t2]) is given
as the integral

F (t1, t2) =

∫ t2

t1

f(t)dt.

Let W = [tx, ty] be a given time window. With the weight function, we represent
the part of a temporal graph G = (V,E) that falls into W as a weighted graph GW
defined as follows.

Definition 3 (Weighted graph). The weighted graph of a temporal graph G = (V,E)
within a time window W = [tx, ty] is given by GW = (VW , EW , ΠW), where:

– VW = V,
– EW = {(u, v) : (u, v, [ti, tj]) ∈ EW }, where EW = {(u, v, [ti, tj]) ∈ E : [ti, tj]∩
[tx, ty] 6= ∅},

– ΠW is a function that assigns each edge e = (u, v) ∈ EW a weight ΠW (e) =∑
(u,v,[ti,tj])∈EW F (max(ti, tx),min(tj , ty)).

a

g

cb

f

[1,2] [2,3] [2,3] [4,5]

[5,6] [1,6] [7,8]

a

cb

f

[7,9]

[11,14]

(a) (b)

1 2

3

g

Fig. 1. (a) a temporal graph G, and (b) the weighted graph G[2,5]

Example 1. Figure 1(a) shows a temporal graph and Figure 1(b) shows the correspond-
ing weighted graph G[2,5] within the time window [2, 5]. For simplicity, we assume that
λ = 0 and hence f(t) = 1. Thus, the weight of edge (a, b) is F (2, 3) = 1, the weight
of edge (a, c) is F (2, 3) + F (4, 5) = 2, and the weight of edge (c, f) is F (2, 5) = 3.
The weight of all other edges is 0.

2.2 The Equal-Weight Window Model

Next, we determine the size of each window in a data stream given the weight function.
Existing damped time window model [5] usually sets the sizes of the windows in a

stream by an exponentially increasing function (e.g., 20T , 21T , 22T , 23T , . . ., where
the windows are disjoint and the most recent window has a size 20T), or by the lengths
of conventional time units (e.g., hour, day, month, year, . . .). These window size settings
may seem to be intuitive, but they are primarily designed for mining frequent itemsets
from a stream and are not suitable for our problem of handling a temporal graph stream
(see more discussion in “Advantages of the new model” at the end of this subsection).
We introduce an equal-weight scheme as follows.

Let [t0, tτ] be the time period of the entire stream up to the current time tτ . To limit
the space requirement for handling a large temporal graph, we divide the stream into
θ windows for a given constant number θ. We first define the equal-weight window
condition as follows.

Definition 4 (Equal-weight window condition).
Consider that the probability distribution of any edge being active at any time follows
a uniform distribution. Under this distribution, the equal-weight condition is satisfied
if the stream is divided into θ windows such that the weighted graph of each window is
the same in expectation.

Intuitively, Definition 4 states that if the probability of any edge being active does
not change over time, then the weight of the edge should not change in any of the θ
windows.

Let the time periods of the θ windows be [t0, t1], [t1, t2], . . ., [tθ−1, tτ]. Then, ap-
plying Definition 4, we have∫ t1

t0

f(t)dt =

∫ t2

t1

f(t)dt = ... =

∫ tτ

tθ−1

f(t)dt =
1

θ

∫ tτ

t0

f(t)dt.

Take f(t) = eλ(t−tτ). We first determine t1 as follows:∫ t1

t0

f(t)dt =
1

θ

∫ tτ

t0

f(t)dt

⇒ 1

λ
(eλ(t1−tτ) − eλ(t0−tτ)) = 1

θλ
(eλ(tτ−tτ) − eλ(t0−tτ))

⇒ θ(eλt1 − eλt0) = eλtτ − eλt0

⇒ eλt1 =
eλtτ + (θ − 1)eλt0

θ

⇒ t1 =
1

λ
ln
eλtτ + (θ − 1)eλt0

θ
.

Similarly, we obtain ti, where 1 ≤ i ≤ θ − 1, as follows:

ti =
1

λ
ln
i× eλtτ + (θ − i)eλt0

θ
.

Based on the above analysis, we define equal-weight damped time window model
as follows.

Definition 5 (Equal-weight damped window model). Given a stream that spans the
time period [t0, tτ], and an integer θ, equal-weight damped time window model divides
the stream into θ windows spanning time periods [t0, t1], [t1, t2], . . ., [tθ−1, tτ], where
ti =

1
λ ln i×eλtτ+(θ−i)eλt0

θ , for 1 ≤ i ≤ θ − 1.

Based on Definition 5, we obtain θ weighted graphs derived from the temporal graph
that falls into each of the θ windows in the stream. The value of θ is determined by users,
which controls the space requirement and the efficiency of graph analysis, as well as the
degree of information loss (from the original temporal graph to the θ weighted graphs).
The larger the value of θ, the finer is the granularity of the windows and the less is the
information loss, but also the more is the memory space needed.
Advantages of the new model. The equal-weight damped time window model has
the following advantages: (A1) it is a generalization of existing damped time window
models; (A2) it gives equal importance to each window, which makes it easy to compare
the graphs from different windows; and (A3) it provides a systematical way for update
maintenance of the windows.

For (A1), by defining an appropriate weight density function, we can apply our
proposed equal-weight scheme to compute the size of each window for existing damped
time window models. Take the logarithmic tilted-time window model as an example,
where an exponentially increasing function (e.g., 20T , 21T , 22T , 23T , . . .) is used.
Assume that the time span of the entire stream is [0, 2θ − 1], then the weight density
function is defined as follows:

f(t) =

1, 0 ≤ t < 2θ−1

2, 2θ−1 ≤ t < 2θ−1 + 2θ−2

..., ...
2θ−1, 2θ − 2 ≤ t ≤ 2θ − 1

For (A2), if the weights of an edge (u, v) in two different windows W1 and W2

are the same, then it implies that the probability of (u, v) being active remains the
same in W1 and W2. Now if the probability of (u, v) being active is higher in W1,
then apparently the weight of (u, v) in W1 is also higher than that in W2. This may
not be true if existing damped time windows are used unless we define an appropriate
f(t) function for them, and apply our scheme proposed in this section to determine the
window sizes.

For (A3), we show that our model provides a systematical way for update mainte-
nance of the windows in Section 2.3.

2.3 Window Maintenance

As time goes on, new temporal edges are created and the windows need to be updated.
We devise an update scheme for our window model as follows.

Let [t0, t1], [t1, t2], . . ., [tθ−1, tθ] denote the θ existing windows, and [tθ, tθ+1] de-
note the new window. As the current time changes from tτ = tθ to t′τ = tθ+1, the
weight density function f(t) changes from f(t) = eλ(t−tθ) to f(t) = eλ(t−tθ+1). Lem-
mas 1 and 2 state the change needed.

Due to the space limitation, the proofs for all the lemmas and theorems are given in
the full version of this paper [23].

Lemma 1. If the current time changes from tτ to t′τ , for any temporal edge whose
weight w is last updated at time tτ , the weight should be updated as follows:

w ← w × eλ(tτ−t
′
τ).

Lemma 2. Given a weighted graph G = (V,E,Π) of any window, if the current time
changes from tτ to t′τ , the weight w of each edge in E which is computed at time tτ
should be updated as follows

w ← w × eλ(tτ−t
′
τ).

Lemma 2 shows that it is simple to update the weighted graphs of the existing
windows as new windows are created in the stream. However, we still need to determine
at what point a new window, i.e., [tθ, tθ+1], should be created in the stream, which is to
determine tθ+1. Following our discussion in Section 2.2, we have∫ tθ

tθ−1

f(t)dt =

∫ tθ+1

tθ

f(t)dt

⇒ eλtθ − eλtθ−1 = eλtθ+1 − eλtθ

⇒ tθ+1 =
1

λ
ln(2eλtθ − eλtθ−1).

Similarly, we can also compute the windows that are to follow in the stream, i.e.,
[tθ+1, tθ+2], However, in this way, the number of windows keeps increasing, and the
size of a new window (i.e., the time span of the window) becomes smaller and smaller.

To solve these issues, we propose to merge windows to bound the number of windows in
the stream within the range [θ, 2θ]. Specifically, when the number of windows reaches
2θ, we merge every two consecutive windows into one window. In this way, every
window in the stream after merging still satisfies the equal-weight window condition.
In fact, we can also merge more than two windows into a single window if necessary.

3 Window-Based Network Analysis

We now discuss network analysis based on the equal-weight damped time window
model, which we illustrate using an application of connectivity analysis in this sec-
tion. We also discuss other applications (e.g., community finding) and give a list of
open problems about analyzing large temporal graphs using our model, but due to the
space limitation we present the details in the full version of this paper [23].

Let G1, G2, . . ., Gθ denote the θ weighted graphs derived from the θ windows in
the stream.

3.1 Connectivity Analysis

Given a weighted graph G = (V,E,Π) of a window in the stream (defined in Def-
inition 3, and here the window W is omitted for simplicity), we define a measure of
connectivity between two vertices u and v in G as follows.

Definition 6 (Connectivity). Let P(u, v) = {P (u, v) : P (u, v) is a path from u to v
in G}. The connectivity of a path P (u, v), denoted by γ(P (u, v)), is defined as the
minimum edge weight among the edges on P (u, v). The connectivity between u and v,
denoted by γ(u, v), is defined as γ(u, v) = max{γ(P (u, v)) : P (u, v) ∈ P(u, v)}.

Since the weight of each edge in a weighted graph indicates the strength of rela-
tionship (or interaction, communication, etc.) between the two end points in the cor-
responding temporal graph within the time span of the window, the value of γ(u, v)
reflects the connectivity between u and v within the window, for example, the amount
of information that can be passed between u and v via any path within the time span.

Given a connectivity query γ(u, v), we can answer it using an algorithm similar to
Dijkstra’s algorithm, as shown in Algorithm 1. Algorithm 1 uses a maximum priority
queueQ to keep the current largest connectivity value, c[x], of a path from u to a visited
vertex x ∈ V . The algorithm starts from one of the query vertices, u, greedily grows the
paths by extending to u’s neighbors, and then further grows to the neighbors’ neighbors
until reaching the other query vertex v. During the greedy process, the c[x] value of a
vertex x is updated whenever a larger connectivity value from u to x is found. At each
iteration, the vertex with maximum c[.] is extracted from Q to update the c[.] values of
its neighbors.

We now show the correctness and complexity (the proof is given in [23]).

Theorem 1. Algorithm 1 correctly computes the connectivity value γ(u, v) inO((|E|+
|V |) log |V |) time.

Algorithm 1: Compute γ(u, v)
Input : A weighted graph G = (V,E,Π), two query vertices u and v
Output: γ(u, v)

1 Initialize c[u]←∞, c[x]← 0 for every vertex x ∈ V \ {u};
2 Let Q be a maximum priority queue, where an element of Q is a pair (x, c[x]) and c[x]

being the key;
3 Initialize Q by inserting a single element (u, c[u]);
4 while Q is not empty do
5 (x, c[x])← Extract-Max(Q);
6 if x = v then
7 Goto Line 12;

8 foreach neighbor vertex, y, of x do
9 if c[y] < min(c[x], Π(x, y)) then

10 c[y]← min(c[x], Π(x, y));
11 If y is not in Q, push (y, c[y]) into Q; otherwise, update c[y] in Q;

12 return γ(u, v) = c[v];

The complexity of Algorithm 1, even if Fibonacci heap is used, is too high to process
a connectivity query online. One may pre-compute the connectivity values for all pairs
of vertices. However, the space complexity of this method is O(|V |2), and the pre-
computation requires O((|E| + |V |)|V | log |V |) time, both of which are impractical
for handling a large graph. We propose a more efficient way to process connectivity
queries, with linear index space.

First, we compute a maximum spanning tree, MaxST, of the weighted graph G.
Without loss of generality, we assume G is connected. If not, we can consider each
connected component of G separately. A MaxST has the cut property. A cut is a parti-
tion of the vertex set of a graph into two disjoint subsets. We say that an edge crosses
the cut if it has one endpoint in each subset of the partition. The cut property states
that for any cut C in the graph, if the weight of an edge e crossing C is larger than the
weights of all the other edges crossing C, then e must be contained in every MaxST.

Given a MaxST, T , there is a unique path connecting any two vertices in T . Let
γT (u, v) denote the connectivity value between u and v in the MaxST T . Based on the
cut property, we have the following lemma (the proof is given in [23]).

Lemma 3. Given a MaxST T of a weighted graph G, γ(u, v) = γT (u, v), for any pair
of vertices u and v in G.

Based on Lemma 3, a connectivity query γ(u, v) can be answered by first finding
the unique path between u and v in the MaxST T , and then returning the minimum
edge weight on the path. The query time complexity is O(|V |), which is much better
than that of Algorithm 1. Next, we show that we can further reduce the querying time
complexity to O(1) time.

We first introduce the concept of Cartesian tree [18], which is a binary tree derived
from a sequence of numbers. Given an array A of n numbers (A[0] to A[n − 1]), the

a

g

c

86

12

b

f

(b)(a)

4

9 5

8

a

g

c

86

12

b

f

9

Fig. 2. (a) a weighted graph G, and (b) a MaxST T

(a,b,6)

(a,c,8)

a c

(b,g,9)

(b,f,12)g

b f

Fig. 3. The Cartesian tree CT of T in Figure 2(b)

root of the Cartesian tree is the minimum number among all the n numbers. Let A[i]
be the minimum number, i.e., the root. Then, its left subtree is computed recursively
on the numbers A[0] to A[i− 1], while its right subtree is computed recursively on the
numbers A[i+ 1] to A[n− 1].

We construct a Cartesian tree, CT , based on a MaxST T . The root node of CT is
the edge with the minimum weight among all the edges in T . Then, by removing this
edge, T will be partitioned into two subtrees. Following a similar procedure, we can
recursively construct the left and right subtrees of the root node. When removing an
edge (u, v), if u (and/or v) is not an end point of any remaining edges in T , then we
also create a leaf node u (and/or v) as the child of the node (u, v) in CT . Thus, the set
of leaf nodes in the tree CT corresponds to the set of vertices in T .

Based on the Cartesian tree CT , given a connectivity query γ(u, v), we first find the
lowest common ancestor (LCA) of the two leaves u and v in CT , and then return the
weight of the edge in T that corresponds to the LCA. The following example demon-
strates the concepts of MaxST, Cartesian tree, and how to answer a connectivity query.

Example 2. Figure 2(a) shows a weighted graph G and Figure 2(b) shows a MaxST
T of G. It is easy to verify γ(u, v) = γT (u, v). For example, γ(c, f) = 6 in G and
γT (c, f) = 6 in T . Figure 3 shows the Cartesian tree CT of T . The root node of
CT is the edge (a, b, 6), since this edge is the one with the minimum weight in T .
Removing (a, b, 6) partitions T into two components {a, c} and {b, f, g}. Following a
similar procedure recursively, we obtain CT . The leaves of CT are the vertices in T .
Then, to find the connectivity value between any two vertices, we find the LCA of these
two vertices in CT . For example, given a connectivity query γ(f, g), we find that the

edge (b, g, 9) is the LCA of the leaves f and g in CT . Thus, we return 9 as the answer
for γ(f, g). It is easy to verify that the answer is correct.

Now, we give the complexity of processing a connectivity query and of constructing
the index (the proof is given in [23]).

Theorem 2. A connectivity query γ(u, v) can be answered in O(1) time with an index
using O(|V |) space, and the index construction time is O((|E|+ |V |) log |V |).

Given the θ weighted graphs G1, G2, . . ., Gθ from the θ windows in the stream,
we define the connectivity between u and v in the entire θ windows as Γ (u, v) =
min{γ1(u, v), . . . , γθ(u, v)}, where γi(u, v) is the connectivity value γ(u, v) in the
weighted graph Gi, for 1 ≤ i ≤ θ. Since θ is a constant, the query Γ (u, v) can be
answered in constant time with indexes of size linear to the number of vertices.

3.2 Queries on a Random Window

Besides the need of analysis on a temporal graph in the whole time window, users
may also be interested in analyzing the graph in any time period. For example, user A
is interested in time window [1, 20], while user B is interested in time range [10, 40].
To satisfy each user’s need, the naive way is to store the complete temporal graph and
extract the temporal subgraph from the required time range, which is not practical due to
the massive size of the complete graph. We discuss how to efficiently obtain a weighted
graph of any time period based on the equal-weight damped time window model.

Given a random windowW = [tx, ty], we are required to returnGW = (V,EW , ΠW).
Given θ weighted graphs,G1 = (V,E1, Π1),G2 = (V,E2, Π2), . . .,Gθ = (V,Eθ, Πθ),
we return an approximate weighted graph G′W of GW as follows.

Let ti < tx ≤ ti+1 and tj ≤ ty < tj+1. First, we return an approximate weighted
graph G′[tx,ti+1]

of G[tx,ti+1]. G
′
[tx,ti+1]

= (V,E′[tx,ti+1]
, Π ′[tx,ti+1]

) is computed as fol-
lows:

– E′[tx,ti+1]
= Ei+1,

– Π ′[tx,ti+1]
(e) = Πi+1(e)×

∫ ti+1
tx

f(t)dt∫ ti+1
ti

f(t)dt
, for each e ∈ E′[tx,ti+1]

.

In other words, G′[tx,ti+1]
is computed based on Gi+1 = (V,Ei+1, Πi+1) in expec-

tation. Similarly, we compute an approximate weighted graph G′[tj ,ty] of G[tj ,ty]. Then,
we have G′W = (V,E′W , Π

′
W) as follows:

– E′W = E′[tx,ti+1]
∪ Ei+2 ∪ . . . ∪ E′[tj ,ty],

– Π ′W (e) = Π ′[tx,ti+1]
(e) +Πi+2(e) + . . .+Π ′[tj ,ty](e), for each e ∈ E′W .

4 Experimental Results

We evaluated the usefulness of our equal-weight window model by showing the quality
of the θ weighted graphs obtained based on the model, and the efficiency and quality

Table 1. Real temporal graphs (K = 103)

Dataset |V| |E| davg(v,G) |TG|
phone 1,237 338,008,540 273,248.62 3,369
arxiv 28,094 9,193,606 327.24 2,337
elec 8,298 214,028 25.79 101,063
enron 87,274 2,282,904 26.16 220,364
facebook 46,953 1,730,624 36.86 867,939
lastfm 174,078 38,254,660 219.76 17,498,009
email 168 164,613 979.84 57,842
conflict 118,101 5,903,522 49.99 312,457

of graph analysis based on these weighted graphs. We also verified the efficiency of
dynamic update maintenance and the scalability of our method, where the results of
them are reported in [23] due to the space limitation. All the experiments were run on
a Linux machine with an Intel 3.3GHz CPU and 16GB RAM. All the programs were
implemented in C++ and complied using G++ 4.8.2.

We used 8 real temporal graphs for our experiments, as shown in Table 1, where we
list the number of vertices and edges in each graph G, the average degree in G (denoted
by davg(v,G)), and the number of distinct time instances in G (denoted by |TG|). The
phone graph consists of call records in Ivory Coast [1], where the call records were
collected over a span of 150 days. The other 7 graphs were obtained from the Koblenz
Large Network Collection (http://konect.uni-koblenz.de/), where one large temporal
graph was selected from each of the following 7 categories: arxiv-HepPh (arxiv)
from the arxiv networks; elec from the network of English Wikipedia; enron from
the email networks; facebook-links (facebook) from the facebook network;
lastfm-band (lastfm) from the music website last.fm; radoslaw-email (email)
from the internal email communication network between employees of a mid-sized
manufacturing company; wikiconflict (conflict) indicating conflicts between
users of Wikipedia.

4.1 Results on Weighted Graph Construction

In this experiment, we evaluated the space requirement and the construction time of the
θ weighted graphs for each of the temporal graphs, and then we measured the quality
of the weighted graphs. We tested θ from 10 to 50. We set the value of λ = 10−x for
the weight density function given in Definition 1, where 10x ≤ |TG| < 10x+1, that is,
λ = 10−blog10 |TG|c. For example, for the phone graph, λ = 10−3.
Space requirement. We first report the space requirement for the θ weighted graphs,
as a percentage of the original temporal graph shown in Figure 4. As the value of θ
increases, the total size of the θ weighted graphs also increases. But the rate of increase
is slow. For graphs with high average degree, the total size of the θ weighted graphs
is only a small percentage of the original temporal graph. For example, for the phone
graph, even the total size of 50 weighted graphs is less than 10% of the original temporal
graph. We emphasize that for temporal graphs, the set of vertices remains relatively
stable while the number of temporal edges grows linearly over time, and thus the result

20

40

60

80

100

phone arxiv elec enron facebook lastfm email conflict

P
er

ce
nt

ag
e

Θ=10 Θ=20 Θ=30 Θ=40 Θ=50

Fig. 4. The total size of the θ weighted graphs compared with the original temporal graph G

Table 2. Construction time of θ weighted graphs (in seconds)

Dataset θ = 10 θ = 20 θ = 30 θ = 40 θ = 50

phone 130.3067 137.6559 143.6432 148.6535 153.1762
arxiv 4.0591 4.2070 4.3718 4.4772 4.5788
elec 0.1110 0.1168 0.1229 0.1266 0.1292
enron 0.8419 0.9031 0.9600 1.0041 1.0473
facebook 0.6245 0.6743 0.6996 0.7325 0.7581
lastfm 12.6525 13.2842 14.0147 14.6400 15.5061
email 0.0511 0.0548 0.0575 0.0607 0.0617
conflict 2.8762 2.9693 3.0447 3.1341 3.2189

0.2

0.4

0.6

0.8

1.0

phone arxiv elec enron facebook lastfm email conflict

P
C

C

Θ=10 Θ=20 Θ=30 Θ=40 Θ=50

Fig. 5. PCC between G′
W and GW for different θ

verifies that our method can handle large temporal graphs as they grow over time, with
small space requirement.

Construction time. Table 2 reports the time taken to read the temporal graphs from
disk and construct the corresponding θ weighted graphs, for different values of θ. The
construction is fast for all graphs as we only need to scan the graphs once, regardless of
the value of θ. The construction time increases as θ increases because more weighted
graphs need to be constructed, but the rate of increase is slow as scanning the original
temporal graph dominates the cost.

Quality of results. Next, we examine the quality of the weighted graphs. To do this,
we constructed a weighted graph,GW , directly from the original temporal graph within
a time window W , as defined in Definition 3. We also constructed an approximate
weighted graph G′W of GW from the θ weighted graphs as discussed in Section 3.2.
Then, we compared GW and G′W .

We computed GW and G′W for 100 randomly generated windows, W = [tx, ty],
where we ensured that W is a valid window by ensuring tx < ty . We use Pearson
correlation coefficient (PCC) to measure the degree of linear correlation between G′W
and GW , and report the results in Figure 5.

0.2

0.4

0.6

0.8

1.0

phone arxiv elec enron facebook lastfm email conflict

P
C

C

0.6X 0.8X 1.0X 1.2X 1.4X

Fig. 6. PCC between G′
W and GW for different λ (θ = 30)

Table 3. Average query processing time of connectivity queries (in milliseconds)

θ = 10 θ = 20 θ = 30 θ = 40 θ = 50
Index Online Index Online Index Online Index Online Index Online

phone 0.0041 24.0973 0.0059 42.0291 0.0082 56.7214 0.0095 71.6784 0.0116 85.7897
arxiv 0.0045 21.6051 0.0081 19.8686 0.0127 18.9631 0.0160 18.3361 0.0188 17.8703
elec 0.0029 0.5434 0.0057 0.5460 0.0083 0.6127 0.0108 0.6866 0.0140 0.7909
enron 0.0049 5.6191 0.0103 6.2276 0.0132 6.8081 0.0186 7.7741 0.0230 8.7257
facebook 0.0052 5.7762 0.0095 5.5650 0.0141 5.6486 0.0185 5.9857 0.0231 6.4586
lastfm 0.0062 31.5103 0.0122 34.3018 0.0201 40.0901 0.0249 43.6900 0.0331 46.0317
email 0.0004 0.1239 0.0008 0.1856 0.0016 0.2295 0.0022 0.2649 0.0030 0.3012
conflict 0.0052 15.5628 0.0098 14.3276 0.0149 13.6799 0.0195 14.3760 0.0255 15.2124

The result shows that we obtain high PCC values in most of the cases, which implies
that analysis conducted on the approximate graph G′W shares similar patterns/trends
with that conducted on the exact graph GW (we further verify this point by applying
the application in Section 3. The results can be found in [23] (e.g., Figure 8 in [23])
which lead to a similar conclusion as Figure 5. As θ increases from 10 to 50, the PCC
values also increase, verifying that a larger θ leads to less information loss and hence
higher correlation between G′W and GW . For a number of graphs, the PCC values are
close to 1. The results are particularly impressive for the phone graph, for which the
space requirement is also very small as shown in Figure 4.

Next, we tested the effect of different values of λ. In all the other experiments, we
set λ = 10−blog10 |TG|c as default. In this experiment, we tested λ at 0.6, 0.8, 1.0, 1.2,
and 1.4 of its default value, and fixed θ = 30. The result, as reported in Figure 6, shows
that the PCC values are not much affected by the change in λ, and in all cases the PCC
values are high.
Efficiency of graph analysis. We also evaluated the efficiency of using the θ weighted
graphs for connectivity analysis. We varied θ from 10 to 50, and tested 1000 randomly
generated connectivity queries. We used the index presented in Section 3.1 to answer the
queries, and compared with the online algorithm given in Algorithm 1. We denote these
two methods by Index and Online, respectively. Table 3 reports the average processing
time per query. The result shows that Index is more than 3 orders of magnitude faster
than Online, verifying the efficiency of our method. The index construction time and the
index size are also small, which are linear to the number of vertices (as shown Table 1).

Due to the space limitation, we report more results in [23], which show that our
method is efficient and effective for core community analysis in temporal graphs, is fast
in dynamic update maintenance, and has good scalability.

5 Related Work

Much of the work on temporal graphs, also called time-varying graphs or timetable
graphs, was related to temporal paths. Temporal paths have been applied to study the
connectivity of a temporal graph [9], the information latency in a temporal network [10],
small-world behavior [17], and to find temporal connected components [16]. Tempo-
ral paths have also been used to define metrics for temporal network analysis, such
as temporal efficiency and temporal clustering coefficient [15,16], and temporal close-
ness [13]. Algorithms for computing temporal paths were discussed in [19,20,25]. In-
dexing method for answering reachability and time-based path queries in a temporal
graph was proposed in [22]. Diversified subgraph pattern mining in a temporal graph
was introduced in [30]. Core decomposition in a large temporal graph was studied
in [21]. Readers can also refer to more comprehensive surveys on temporal graphs [4,8,12],
and more related work can be found in the full version of this paper [23].

There are also works on storing temporal graphs in a compact way [2,3,7]. In [2],
a compressed suffix array strategy was proposed to store temporal graphs. In [3], two
data structures, compact adjacency sequence and compact events ordered by time, were
proposed to represent temporal graphs. However, all these methods need to store each
temporal edge, and their performance is not better than the gzip compression.

6 Conclusions

We proposed the equal-weight damped time window model for processing massive
growing temporal graphs. Our model allows users to set the number of windows to
trade off between the required space and the information loss. Based on this model,
we presented an application of connectivity analysis to analyze the temporal graph. We
conducted comprehensive experiments to verify the usefulness and efficiency of our
method for analyzing large temporal graphs. As for future work, we plan to explore
how to integrate the proposed time window model into our prior work on distributed
graph processing systems [26,27,28,29] to analyze massive dynamic temporal graphs.
Acknowledgements. We thank the reviewers for their valuable comments. The authors
are supported by the Hong Kong GRF 2150851 and 2150895, ITF 6904079, MSRA
grant 6904224, and CUHK Grants 3132964 and 3132821.

References

1. V. D. Blondel, M. Esch, C. Chan, F. Clérot, P. Deville, E. Huens, F. Morlot, Z. Smoreda,
and C. Ziemlicki. Data for development: the D4D challenge on mobile phone data. CoRR,
abs/1210.0137, 2012.

2. N. R. Brisaboa, D. Caro, A. Fariña, and M. A. Rodrı́guez. A compressed suffix-array strategy
for temporal-graph indexing. In SPIRE, pages 77–88, 2014.

3. D. Caro, M. A. Rodrı́guez, and N. R. Brisaboa. Data structures for temporal graphs based on
compact sequence representations. Inf. Syst., 51:1–26, 2015.

4. A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro. Time-varying graphs and
dynamic networks. International Journal of Parallel, Emergent and Distributed Systems,
27(5):387–408, 2012.

5. Y. Chen, G. Dong, J. Han, B. W. Wah, and J. Wang. Multi-dimensional regression analysis
of time-series data streams. In VLDB, pages 323–334, 2002.

6. M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining stream statistics over sliding
windows. SIAM J. Comput., 31(6):1794–1813, 2002.

7. G. de Bernardo, N. R. Brisaboa, D. Caro, and M. A. Rodrı́guez. Compact data structures for
temporal graphs. In DCC, page 477, 2013.

8. P. Holme and J. Saramäki. Temporal networks. CoRR, abs/1108.1780, 2011.
9. D. Kempe, J. M. Kleinberg, and A. Kumar. Connectivity and inference problems for temporal

networks. J. Comput. Syst. Sci., 64(4):820–842, 2002.
10. G. Kossinets, J. M. Kleinberg, and D. J. Watts. The structure of information pathways in a

social communication network. In KDD, pages 435–443, 2008.
11. J. Lai, C. Wang, and P. S. Yu. Dynamic community detection in weighted graph streams. In

SDM, pages 151–161, 2013.
12. M. Müller-Hannemann, F. Schulz, D. Wagner, and C. D. Zaroliagis. Timetable information:

Models and algorithms. In ATMOS, pages 67–90, 2004.
13. R. K. Pan and J. Saramäki. Path lengths, correlations, and centrality in temporal networks.

Phys. Rev. E, 84:016105, 2011.
14. C. Perng, H. Wang, S. R. Zhang, and D. S. P. Jr. Landmarks: a new model for similarity-based

pattern querying in time series databases. In ICDE, pages 33–42, 2000.
15. J. Tang, M. Musolesi, C. Mascolo, and V. Latora. Temporal distance metrics for social

network analysis. In WOSN, pages 31–36, 2009.
16. J. Tang, M. Musolesi, C. Mascolo, and V. Latora. Characterising temporal distance and

reachability in mobile and online social networks. Computer Communication Review,
40(1):118–124, 2010.

17. J. Tang, S. Scellato, M. Musolesi, C. Mascolo, and V. Latora. Small-world behavior in time-
varying graphs. Physical Review E, 81(5):055101, 2010.

18. J. Vuillemin. A unifying look at data structures. Commun. ACM, 23(4):229–239, 1980.
19. H. Wu, J. Cheng, S. Huang, Y. Ke, Y. Lu, and Y. Xu. Path problems in temporal graphs.

PVLDB, 7(9):721–732, 2014.
20. H. Wu, J. Cheng, Y. Ke, S. Huang, Y. Huang, and H. Wu. Efficient algorithms for temporal

path computation. IEEE Trans. Knowl. Data Eng., 28(11):2927–2942, 2016.
21. H. Wu, J. Cheng, Y. Lu, Y. Ke, Y. Huang, D. Yan, and H. Wu. Core decomposition in large

temporal graphs. In IEEE International Conference on Big Data, pages 649–658, 2015.
22. H. Wu, Y. Huang, J. Cheng, J. Li, and Y. Ke. Reachability and time-based path queries in

temporal graphs. In ICDE, pages 145–156, 2016.
23. H. Wu, Y. Zhao, J. Cheng, and D. Yan. Efficient processing of growing temporal graphs.

2016. http://www.cse.cuhk.edu.hk/%7ejcheng/papers/tm_tr.pdf.
24. W. Xie, Y. Tian, Y. Sismanis, A. Balmin, and P. J. Haas. Dynamic interaction graphs with

probabilistic edge decay. In ICDE, pages 1143–1154, 2015.
25. B.-M. B. Xuan, A. Ferreira, and A. Jarry. Computing shortest, fastest, and foremost journeys

in dynamic networks. Int. J. Found. Comput. Sci., 14(2):267–285, 2003.
26. D. Yan, J. Cheng, Y. Lu, and W. Ng. Blogel: A block-centric framework for distributed

computation on real-world graphs. PVLDB, 7(14):1981–1992, 2014.
27. D. Yan, J. Cheng, Y. Lu, and W. Ng. Effective techniques for message reduction and load

balancing in distributed graph computation. In WWW, pages 1307–1317, 2015.
28. D. Yan, J. Cheng, M. T. Özsu, F. Yang, Y. Lu, J. C. S. Lui, Q. Zhang, and W. Ng. A general-

purpose query-centric framework for querying big graphs. PVLDB, 9(7):564–575, 2016.
29. F. Yang, J. Li, and J. Cheng. Husky: Towards a more efficient and expressive distributed

computing framework. PVLDB, 9(5):420–431, 2016.
30. Y. Yang, D. Yan, H. Wu, J. Cheng, S. Zhou, and J. C. S. Lui. Diversified temporal subgraph

pattern mining. In SIGKDD, pages 1965–1974, 2016.

