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Abstract

Most existing low-n-rank minimization algorithms for ten-

sor completion suffer from high computational cost due to

involving multiple singular value decompositions (SVDs) at

each iteration. To address this issue, we propose a novel

factor matrix rank minimization method for tensor com-

pletion problems. Based on the CANDECOMP/PARAFAC

(CP) decomposition, we first formulate a factor matrix rank

minimization model by deducing the relation between the

rank of each factor matrix and the mode-n rank of a ten-

sor. Then, we introduce a tractable relaxation of our rank

function, which leads to a convex combination problem of

much smaller scale matrix nuclear norm minimization. Fi-

nally, we develop an efficient alternating direction method of

multipliers (ADMM) scheme to solve the proposed problem.

The experimental results on both synthetic and real-world

data validate the effectiveness of our approach. Moreover,

our method is significantly faster than the state-of-the-art

approaches and scales well to handle large datasets.

1 Introduction

Multi-way data analysis is an important topic in signal
processing [7], numerical linear algebra [6], computer
vision [19], [20], data mining [16], [29], machine learn-
ing [27], neuroscience [22], and so on. As a generaliza-
tion of scalars, vectors (first-order tensors) and matrices
(second-order tensors), higher-order tensors are becom-
ing increasingly popular. However, the values of their
entries may be missing due to problems in the acqui-
sition process, e.g., loss of information or cost of ex-
periments to obtain complete data too high. In this
paper, we study the tensor completion problem, which
is to estimate the missing values in the tensor. The ten-
sor completion problem has been successfully applied
to a wide range of real-world problems, such as visual
data [19], [20], EEG data [1], [22], and hyperspectral
data analysis [10], social network analysis [29] and link
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prediction [33].
In recent years, sparse vector recovery and low-rank

matrix completion problems have been intensively stud-
ied. Although the l0-norm and the rank minimization
have been proven to be strong global constraints and
good measures of sparsity, the optimization problem in-
volving the l0-norm or the rank minimization is NP-hard
in general due to their discrete nature. The l1-norm
and the nuclear norm (also known as the trace norm)
are widely used to approximate the l0-norm and the
rank of a matrix, and the resulting problems are convex
optimization problems. In addition, some researchers
[4], [5], [24] have provided theoretical guarantee that
the task of the l0-norm minimization or the rank min-
imization problem can be accomplished via solving the
l1-norm or the nuclear norm minimization under some
reasonable conditions. In fact, the l1-norm and the nu-
clear norm have been shown to be the tightest convex
surrogates to the l0-norm and the rank function, respec-
tively [5], [8].

As the generalization of sparse vector recovery
and low-rank matrix completion, the low-rank tensor
recovery problem has drawn lots of attention from
researchers in the past several years [15]. Compared
with vectors and matrices, a tensor can be used to
express more complicated intrinsic structures of higher-
order data. In this paper we are particularly interested
in the low-rank tensor completion problem, which is to
find a tensor X of the (nearly) lowest rank from a subset
of the entries of the tensor T such that XΩ = TΩ, where
XΩ denotes the restriction of the tensor on the known
entries given by Ω. Liu et al. [19] indicated that tensor
completion utilizes all information along all dimensions,
while matrix completion only considers the constraints
along two particular dimensions.

Recently, several works [10], [19], [20], [27], [28] ex-
tended the framework of trace norm regularization to
the estimation of a partially observed low-rank tensor.
Liu et al. [19] first introduced an extension of the trace
norm to the tensor completion problem. In a subsequent
paper [20], they defined the trace norm of a tensor as a
convex combination of trace norms of its unfolded matri-
ces. There are some similar tensor completion methods
in [10], [27]. As a result, the tensor completion problem
is converted into a convex combination of the nuclear



norm minimization of the involved matrices. However,
the tensor nuclear norm minimization (TNNM) problem
has to be solved iteratively and involves multiple SVDs
at each iteration. Therefore, all these algorithms for
TNNM suffer from high computational cost of multiple
SVDs.

Tensor decomposition is a type of classical higher-
order data analysis method and gives a concise repre-
sentation of the underlying structure of the tensor, re-
vealing that the tensor data can be modeled as lying
close to a low-dimensional subspace. Two most popular
tensor decomposition methods, the Tucker decomposi-
tion [9], [31] and the CANDECOMP/PARAFAC (CP)
decomposition [1], [11], are also used to solve tensor
completion problems. However, those tensor decompo-
sition models do require the ability to reliably estimate
the rank of the involved tensor.

In this paper, we focus on addressing two issues
for the low-rank tensor completion problem, i.e., the
robustness of the given tensor rank and the compu-
tational cost. We propose a novel factor matrix nu-
clear norm minimization (NNCP) method based on the
CP decomposition for tensor completion problems. The
experimental results on both synthetic and real-world
data validate both the efficiency and effectiveness of our
NNCP approach. The main contributions of this paper
are as follows:

1. We deduce the relation of the rank of between
each factor matrix and the corresponding unfolded
matrix of a tensor, and formulate a factor matrix
rank minimization model.

2. We introduce a tractable relaxation of the rank
function into our factor matrix rank minimization
model, and then obtain a convex combination
problem of much smaller factor matrix nuclear
norm minimization.

3. We present an efficient alternating direction
method of multipliers (ADMM) scheme to solve the
proposed problem.

2 Notions and Related Work

Before reviewing previous work, we first introduce some
basic tensor notions and terminologies. A matrix is
denoted by an upper-case letter, e.g., X, the entries
as lower-case letters, e.g., xij . An N-order tensor is
denoted by a calligraphic letter, e.g., X ∈ RI1×I2···IN ,
and its entries are denoted by xi1,i2··· ,iN . The order N
of a tensor is the number of dimensions, also known as
ways or modes. Fibers are the higher-order analogue
of matrix rows and columns. A fiber is defined by
fixing every index but one. The mode-n fibers are all

vectors xi1,··· ,in−1,in+1,··· ,iN that are obtained by fixing
the values of {i1, · · · , iN}\in.

The mode-n unfolding, also known as matricization,
of an N-order tensor X ∈ RI1×I2···IN is denoted by
X(n) ∈ RIn×Πj ̸=nIj , which is a rearrangement of the
entries of X into the matrix X(n) such that the mode-n
fiber becomes the row index and all other (N−1) modes
become column indices in lexicographical order. The
tensor element (i1, i2, · · · , iN ) is mapped to the matrix
element (in, j), where

j = 1 +
∑N

k=1,k ̸=n(ik − 1)Jk with Jk =
∏k−1

m=1,m ̸=n Im.

The inner product of two same-sized tensors A ∈
RI1×I2···IN and B ∈ RI1×I2···IN is the sum of the product
of their entries, < A,B >= Σi1,···iN ai1,···iN bi1,···iN . The
Frobenius norm of an N -order X ∈ RI1×I2···IN is defined
as:

∥X∥F :=
√∑I1

i1=1 · · ·
∑IN

iN=1 x
2
i1,··· ,iN .

Let A and B be two matrices of size m×n and p×q
respectively. The Kronecker product of two matrices A
and B, denoted by A ⊗ B, is an mp × nq matrix given
by: A⊗ B = [aijB]mp×nq.

Let A = [a1 a2 · · · ar] and B = [b1 b2 · · · br] be
two column matrices of size m×r and n×r respectively.
Then the Khatri-Rao product of two matrices A and B
is defined as the column-wise Kronecker product and
represented by ⊙:

A⊙ B = [a1 ⊗ b1 a2 ⊗ b2 · · · ar ⊗ br].

2.1 Low-n-Rank Tensor Estimation For the ten-
sor completion problem, Liu et al. [19] and Signoretto
et al. [28] have proposed an extension of low-rank ma-
trix completion concept to tensor data. With an exact
analogue to the definition of the matrix rank, the rank
of a tensor X , denoted by rank(X ), is defined as follows.

Definition 2.1. The rank of a tensor is the smallest
number of rank-one tensors that generate the tensor as
their sum, i.e., the smallest R such that

X =
∑R

i=1 a
1
i ◦ a2i ◦ · · · ◦ aNi ,

where ◦ denotes the outer product of some vectors, i.e.,
(a1i ◦ a2i ◦ · · · ◦ aNi )i1,i2··· ,iN = [a1i ]i1 [a

2
i ]i2 · · · [a

N
i ]iN .

This definition of the rank of a tensor is an extension
of the rank of a matrix, but with different properties. A
key difference is that the rank of a tensor is difficult to
handle, as there is no straightforward way to determine
the rank of a given tensor. In fact, the problem is NP-
hard [13], [15], [17]. Fortunately, the n-rank of a tensor
X , denoted by n-rank(X ), is easy to compute, which
consists of the matrix ranks of the mode-n matricization
of the tensor.



Definition 2.2. The n-rank of an N-order tensor X ∈
RI1×I2···IN is the tuple of the ranks of the mode-n
unfolding,

n-rank(X ) =(rank(X(1)),rank(X(2)),· · · ,rank(X(N))),

where rank(X(n)) is called the mode-n rank.

Liu et al. [20] and Gandy et al. [10] have proposed
to minimize the weighted tensor n-rank model for tensor
completion problems as follows:

(2.1) min
X

N∑
n=1

wnrank(X(n)), s.t., XΩ = TΩ,

where wn’s are pre-specified weights, and X(n) denotes
the unfolded matrix along the n-th mode on the tensor
X . And the entries of T in the set Ω are given while the
remaining elements are missing. In order to keep things
simple, the weighted sum of the ranks of the different
unfolded matrices is used to take the place of the n-rank
of the involved tensor. In addition, Gandy et al. [10]
have presented an unweighted model, i.e., a special case
of the above model (2.1), where wn = 1, n = 1, . . . ,N.

The non-convex optimization problem (2.1) can be
solved by convex relaxation replacing the rank of the
matrix with the nuclear norm as follows:

(2.2) min
X

N∑
n=1

wn∥X(n)∥∗, s.t., XΩ = TΩ,

where the nuclear norm of the tensor X is defined as

(2.3) ∥X∥∗ =

N∑
n=1

wn∥X(n)∥∗,

and ∥X(n)∥∗ denotes the nuclear norm of the matrix
X(n), i.e., the sum of its singular values. In the pres-
ence of noise, we obtain a corresponding unconstrained
formulation:

(2.4) min
X

N∑
n=1

wn∥X(n)∥∗ +
λ

2
∥XΩ − TΩ∥2F ,

where λ > 0 is a regularization parameter.
In fact, each mode-n unfolded matrix X(n) shares

the same entries and cannot be optimized indepen-
dently. Recently, some nuclear norm minimization algo-
rithms have been proposed to successfully address the
visual data and hyperspectral data recovery problems
[20], [10]. However, all those algorithms have to be
solved iteratively and involve multiple SVDs at each it-
eration, thus suffering from high computational cost.
Furthermore, many additional variables are introduced

Figure 1: Illustration of an R-component CP model for
a three-order tensor.

to split these interdependent terms in (2.2) and (2.4)
such that they can be solved independently. As a re-
sult, all those algorithms for the convex combination
of multiple nuclear norm minimization problems suffer
from high computational cost.

2.2 Tensor Decompositions for Completion
Next, we will introduce two tensor decomposition mod-
els for tensor completion problems. In [1], Acar et al.
presented a weighted least squares model for three-order
tensor decomposition problems with missing entries:

(2.5) min
U1,··· ,UN

∥W ∗ (T − U1 ◦ U2 · · · ◦ UN )∥2F ,

where the symbol ∗ denotes the Hadamard (element-
wise) product, U1 ◦ U2 · · · ◦ UN is the CP model based
decomposition, and Un ∈ RIn×R are referred to as the
factor matrices which are the combination of the vec-
tors from the rank-one components (e.g., as shown in
Fig. 1, U1 = [a1, a2, . . . , aR]), and R is a positive inte-
ger. Moreover, W is a nonnegative weight tensor with
the same size as T ,

wi1,i2··· ,iN =

{
1 if ti1,i2··· ,iN is known,

0 otherwise.

In [9], the Tucker model is formulated as follows:

(2.6) min
Un,C

∥W ∗ (T − C ×1 U1 ×2 · · · ×N UN )∥2F ,

where Un ∈ RIn×Rn , C ∈ RR1×R2···RN is a core tensor
with the given ranks (R1, R2, · · · , RN ), and ×n denotes
the n-mode matrix product (see [15]).

Recently, some extensions of both basic decompo-
sition models and corresponding algorithms were devel-
oped for tensor estimation problems. However, to solve
the tensor approximation and completion problems, a
suitable rank value needs to be given, and it was shown
that both the tucker and CP models have a poor per-
formance while real-world data have a high rank [20].



3 Factor Matrix Nuclear Norm Minimization
Model

The major bottleneck of existing tensor completion al-
gorithms for solving the optimization problems (2.2)
and (2.4) is the high computational cost of multiple
SVDs on the large matrices at each iteration. Moti-
vated by this, we formulate a novel factor matrix rank
minimization model by deducing the relation between
the rank of each factor matrix and the mode-n rank
of a tensor. In other words, our model is to minimize
the n-rank of factor matrices of the CP decomposition
instead of low-n-rank of the involved tensor.

3.1 The Rank of Factor Matrices Let X ∈
RI1×I2···IN be an N -order low-rank tensor with tensor
rank r, then the CP model of the tensor X is written as
follows:

(3.7) X = U1 ◦ U2 · · · ◦ UN =

r∑
i=1

u
(i)
1 ◦ u(i)2 · · · ◦ u(i)N ,

where Un = [u
(1)
n u

(2)
n · · ·u(r)n ] ∈ RIn×r, n = 1, · · · , N

denote the factor matrices of the tensor X .

Theorem 3.1. Let X(n), n = 1,· · · , N be the unfolded
matrices of the tensor X with the rank r, and Un,
n = 1,· · · , N be the factor matrices. Then

(3.8) rank(X(n)) ≤ rank(Un), n = 1, · · · , N.

Proof. Since X = U1 ◦ U2 · · · ◦ UN , we have

X(n) = Un(UN ⊙ · · ·Un+1 ⊙ Un−1 ⊙ · · ·U1)
T ,

n = 1, · · · ,N.
(3.9)

Thus

rank(X(n)) = rank(Un(UN ⊙· · ·Un+1⊙Un−1⊙· · ·U1)
T )

≤ rank(Un), n = 1, · · · ,N.

From the above theorem, it is clear that the factor
matrices Un ∈ RIn×r, n = 1, · · · , N have a much
smaller size than the mode-n unfolded matrices X(n) ∈
RIn×Πj ̸=nIj , while the rank of each factor matrix is an
upper bound on the rank of the corresponding unfolded
matrix. In the following subsection, we will propose a
new model that uses the rank of the factor matrices Un,
i.e., rank(Un), instead of the mode-n rank of the tensor
in (2.1), i.e., rank(X(n)).

3.2 Our Model Suppose that the unknown tensor
X ∈ RI1×I2···IN is low rank, our rank minimization
model based on the CP decomposition for tensor com-

pletion can be expressed as follows:

min
X ,Un

N∑
n=1

wnrank(Un),

s.t., X = U1 ◦ · · · ◦UN, XΩ = TΩ,

(3.10)

where X and T ∈ RI1×I2···IN , U ∈ RIn×R, and
R denotes a upper bound of the tensor rank and
is a positive integer. Moreover, the factor matrix
rank minimization is a relaxation form of the mode-n
rank minimization of the tensor along each mode. In
addition, several researchers [14] have provided some
tensor rank estimation strategies to compute a good
value r for the rank of the tensor. Thus, we only set
a relatively large integer R such that R ≥ r.

Due to the discrete nature of the rank, the above
model (3.10) can be relaxed by replacing the rank
function with the nuclear norm as follows:

min
X ,Un

N∑
n=1

wn∥Un∥∗,

s.t., X = U1 ◦ · · · ◦ UN , XΩ = TΩ.

(3.11)

Furthermore, the relaxed version is formulated by relax-
ing the CP decomposition constraint term in (3.11):

min
X ,Un

N∑
n=1

wn∥Un∥∗ +
λ

2
∥X − U1 ◦ · · · ◦ UN∥2F ,

s.t., XΩ = TΩ.

(3.12)

The above model (3.12) is called as a factor matrix
nuclear norm minimization (NNCP) approach based on
the CP decomposition. We only need to perform SVD
in some much smaller scale involved factor matrices, and
hence the NNCP algorithm we present in Section 4 is
very efficient. Meanwhile, the performance of NNCP is
much more robust to the given tensor rank R than the
Tucker and the CP methods, which will be verified by
our experiments.

4 NNCP Algorithm

Recently, it has been shown in [2], [32], [21] that the
alternating direction method of multipliers (ADMM) is
very efficient for some convex or non-convex program-
ming problems from various applications. We also refer
to [18], [20], [26] for some recently exploited applications
of ADMM. In this paper we also propose an ADMM
scheme for solving the proposed model (3.12), and the
problem (3.12) is reformulated into the following equiv-



alent form:

min
X ,Un,Mn

N∑
n=1

wn∥Mn∥∗ +
λ

2
∥X − U1 · · · ◦ UN∥2F ,

s.t., XΩ = TΩ, Mn = Un, n = 1, · · · ,N,

(4.13)

where Mn, n = 1, · · · ,N are auxiliary variables.

4.1 Solving Scheme. The partial augmented La-
grangian function for (4.13) is given by:

L(M1, · · · ,MN ,X ,U1, · · · ,UN ,Y1, · · · ,YN , µ)

=
N∑

n=1

(wn∥Mn∥∗ + ⟨Yn,Mn −Un⟩+
µ

2
∥Mn −Un∥2F )

+
λ

2
∥X − U1 ◦ U2 · · · ◦ UN∥2F ,

(4.14)

where Yn ∈ RIn×R, n = 1, · · · ,N are the Lagrange
multipliers, and µ > 0 is a penalty parameter.

In the following, we present an ADMM it-
erative scheme to minimize L with respect to
(M1, · · ·MN,X ,U1, · · ·UN,Y1, · · ·YN). More specifi-
cally, to update the variables Mn, n = 1, · · · ,N with
fixing other variables, the optimization problem is for-
mulated concretely as follows:

(4.15) min
Mn

wn∥Mn∥∗ +
µk

2
∥Mn −Uk

n +Yk
n/µ

k∥2F .

Following [3], a closed-form solution to the problem
(4.15) can be obtained easily as follows:

(4.16) Mk+1
n = SVTwn/µk(Uk

n −Yk
n/µ

k),

where SVTδ(A) = Udiag({(σ − δ)+})VT is a singular
value thresholding (SVT) operator, the SVD of A is
given by A = Udiag({σi}1≤i≤r)V

T , t+ = max(0, t), and
max(·, ·) should be understood element-wise. The com-
putation complexity of the SVT operator is O(InR

2).
Thus, our NNCP method has a significantly lower com-
plexity than other nuclear norm minimization algo-
rithms for both optimization problems (2.2) and (2.4)
which require to perform SVDs on the unfolded matri-
ces X(n) with the size of In ×

∏
i̸=n Ii, n = 1, · · · ,N at

each iteration, with the time cost O(I2n ×
∏

i ̸=n Ii).
To update the variables (U1, · · · , UN ), the optimiza-

tion problem is given by:

min
U1,··· ,Un

λ

2
|X k −U1 ◦ · · · ◦UN∥2F

+
N∑

n=1

µk

2
∥Un −Mk+1

n −Yk
n/µ

k∥2F .
(4.17)

To solve Un, n = 1, · · · ,N with fixing other vari-
ables, the problem (4.17) becomes a smooth optimiza-
tion problem. Let Bn = (Uk

N◦· · ·Uk
n+1◦U

k+1
n−1◦· · ·U

k+1
1 ),

then the resulting subproblem with respect to Un is for-
mulated as follows:
(4.18)

min
Un

λ

2
∥UnBn −Xk

(n)∥2F +
µk

2
∥Un −Mk+1

n −Yk
n/µ

k∥2F .

Thus the inexact updates of Un are given by solving the
optimization problem (4.18) as follows [18]:
(4.19)

Uk+1
n =

1

λ+ µk
(λXk

(n)B
T
n+µkMk+1

n +Yk
n)(λBnB

T
n+µkI)−1.

To update the variable X , we have the following
subproblem,

min
X

∥X −Uk+1
1 ◦ · · · ◦Uk+1

N ∥2F ,

s.t., XΩ = TΩ.
(4.20)

Furthermore, the optimal solution X satisfies the fol-
lowing equation by deriving simply the KKT conditions
for (4.20):

(4.21) X k+1
Ω = TΩ and X k+1

ΩC = (Uk+1
1 ◦ · · · ◦Uk+1

N )ΩC ,

where ΩC is the complement of Ω, i.e., the set of indexes
of the unobserved entries.

Based on the above analysis, we develop the follow-
ing ADMM iterative scheme for the tensor completion
problem (3.12), as outlined in Algorithm 1. Nonethe-
less, the proposed model (3.12) is non-convex and prov-
ing the convergence properties of ADMM in theory is
still an open issue [12]. The stability and efficiency of
our NNCP algorithm (i.e., Algorithm 1) can be vali-
dated in the experimental section.

4.2 Analysis of NNCP The proposed NNCP model
(3.12) can be reformulated as follows:

(4.22) min
Un

N∑
n=1

wn

λ
∥Un∥∗+

1

2
∥W∗(T −U1 · · ·◦UN )∥2F .

Thus, our proposed model (3.12) is also a nuclear norm
regularized least squares problem. When letting λ →
∞, the model (4.22) degenerates to the ordinary CP
tensor decomposition model (2.5) for tensor completion
problems.

In this sense, our NNCP algorithm is also a fast
higher-order tensor decomposition method in the pres-
ence of missing data and gives a concise representation
of the latent structure of the tensor. And the existing
tensor completion model (2.5) based on the CP decom-
position is a special case of our NNCP method.



Algorithm 1 Solving the model (3.12) via ADMM.

Input: N -order tensor T , index set Ω, rank R, and
parameter λ.

Initialize: Y 0
n = 0, M0

n = 0, U0
n = rand(In, R),

n = 1, · · · , N , µ0 = 10−6, µmax = 1010, ρ = 1.15,
and tol = 10−5.

1: while not converged do
2: for n = 1 : N do
3: Update Mk+1

n by (4.16);
4: Update Uk+1

n by (4.19).
5: end for
6: Update X k+1 by (4.21).
7: Update the multiplier Y k+1

n by
Yk+1

n = Yk
n + µk(Mk+1

n −Uk+1
n ).

8: Update the parameter µk+1 by
µk+1 = min(ρµk, µmax).

9: Check the convergence condition,
max{∥Mk+1

n − Uk+1
n ∥F , n = 1, · · · , N} < tol.

10: end while
Output: Un, n = 1, · · · , N .

Next, we discuss the time complexity of our NNCP
algorithm. For the tensor completion problem (3.12),
the main running time of NNCP is consumed by per-
forming SVD for the SVT operator and some multiplica-
tions. The time complexity of performing SVD is O1 =
O(

∑N
n=1 InR

2). The time complexity of some multipli-

cation operators is O2 = O(R
∑N

n=1(
∑n−1

i=1

∏n−1
j=n−i Ij +∑N−n−1

i=1

∏N
j=n−i Ij)) and O3 = O(NR

∏N
n=1 In).

Thus, the total time complexity of Algorithm 1 is
O(T (O1 + O2 + O3)), where T is the number of iter-
ations.

5 Experiments

In this section, we evaluate the effectiveness and effi-
ciency of our NNCP algorithm for some tensor comple-
tion tasks on both synthetic data and real-world data
including multi-relational prediction.

5.1 Synthetic Data In this part we generated a low-
n-rank tensor T ∈ RI1×I2···IN which is used as ground
truth data. The tensor data follow the Tucker model,
i.e., T = C ×1 U1 ×2 · · · ×N UN, where the core tensor
C ∈ Rr×r···×r and Un ∈ RIn×r are generated with i.i.d.
standard Gaussian entries. With this construction, the
n-rank of T equals (r, r, · · · , r) almost surely. The order
of the tensors varies from three to five, and r is set to
5. Furthermore, we randomly sample a few entries from
T and recover the whole tensor with various sampling
rates (SR) by our NNCP algorithm and three existing
state-of-the-art algorithms including weighted Tucker
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Figure 2: Convergence behaviors of FaLRTC and our
NNCP algorithm on the synthetic tensor data of size
80× 80× 80.

(WTucker)1 [9], weighted CP (WCP)2 [1] and FaLRTC3

[20].
We set tol = 10−5 and maxiter=1000 for all

these algorithms. In the implementation of our NNCP
algorithm, we set the regularization parameter λ = 10.
For our NNCP algorithm and FaLRTC, the weights wn

are set to wn = 1/N,n = 1, · · · ,N, and the smoothing
parameter for FaLRTC is set to µn = 5wn/In. The
other parameters of FaLRTC are set to their default
values. For the three tensor decomposition methods
including NNCP, WTucker, and WCP, the tensor rank
is set to R = 10. The relative square error (RSE)
of the recovered tensor X for all these algorithms is
given by RSE = ∥X − T ∥F /∥T ∥F . The experiments
are performed with Matlab 7.11 on an Intel Core 2 Duo
(3.0 GHz) PC running Windows XP with 2-GB main
memory.

The average results (RSE and time cost) of 10
independent runs are shown in Table 1, where the order
of tensor data varies from four to five. From the results
shown in Table 1, we can see that our NNCP algorithm
usually yields much more accurate solutions using less
time, and often outperforms the other three compared
algorithms including WTucker, WCP and FaLRTC in
terms of RSE and efficiency.

We also study the convergence behaviors of FaL-
RTC and our NNCP algorithm on the synthetic ten-
sor data of size 80 × 80 × 80 with the given ranks of
the tensor r1 = r2 = r3 = 5, as shown in Fig. 2,
where the ordinate is the log-value of the residual of
max{∥Mk+1

n − Uk+1
n ∥F ,n = 1, · · · ,N}, or the relative

change of X k, and the abscissa denotes the number of
iteration. We can observe that the relative change or
the residual of our NNCP algorithm drops much quickly,
and converges much fast within 50 iterations.

To further evaluate the robustness of our NNCP

1http://www.lair.irb.hr/ikopriva/marko-filipovi.html
2http://www.sandia.gov/∼tgkolda/TensorToolbox/
3http://pages.cs.wisc.edu/∼ji-liu/



Table 1: The RSE and time cost (seconds) comparison on the synthetic data:
(a) Tensor size: 20× 20× 20× 20× 20

WTucker WCP FaLRTC NNCP

SR RSE Time RSE Time RSE Time RSE Time

20% 2.26e-01 4071.76 4.48e-01 2634.85 4.65e-01 1198.77 1.58e-01 209.39

50% 6.34e-02 2451.53 1.25e-01 2463.57 1.14e-01 821.46 7.86e-02 224.67

80% 3.17e-02 3034.17 7.26e-02 2396.24 5.77e-02 852.21 2.73e-02 260.25

(b) Tensor size: 30× 30× 30× 30

WTucker WCP FaLRTC NNCP

SR RSE Time RSE Time RSE Time RSE Time

20% 1.85e-01 502.93 9.72e-02 708.04 4.48e-01 359.43 9.48e-02 34.59

50% 6.59e-02 439.52 7.13e-02 645.63 1.16e-01 512.85 5.63e-02 36.35

80% 4.84e-02 490.86 5.40e-02 669.63 6.48e-02 473.20 1.85e-02 39.81
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Figure 3: The RSE results of WTucker, WCP and our
NNCP algorithm versus the given tensor ranks.

algorithm versus the given tensor rank, we conduct
some experiments on the rank-(5, 5, 5) synthetic data
of size 80 × 80 × 80, and illustrate the recovery results
of WTucker, WCP and our NNCP algorithm with 30%
sampling rate where the rank parameter R for these
three algorithms is chosen from {10, · · · , 30}. The
average RSE results of 10 independent runs are shown in
Fig. 3, from which we can see that our NNCP algorithm
performs much more robust than both WTucker and
WCP in terms of the given tensor rank. This also
confirms that our NNCP model with nuclear norm
regularization can provide a good estimation of a low-
rank tensor.

5.2 Large-Scale Link Prediction In this part, we
examine our method on real-world network data sets,
such as the YouTube data set4 [30]. YouTube is cur-

4http://leitang.net/heterogeneous network.html

rently the most popular video sharing web site, which
allows users to interact with each other in various forms
such as contacts, subscriptions, sharing favorite videos,
etc. In total, this data set reaches 848,003 users,
with 15,088 users sharing all of the information types,
and includes 5-dimensions of interactions: contact net-
work, co-contact network, co-subscription network, co-
subscribed network, and favorite network. Additional
information about the data can be found in [30]. We
ran these experiments on a machine with 6-core Intel
Xeon 2.4GHz CPU and 64GB memory.

We address the link prediction problem as a tensor
completion problem. For our NNCP algorithm, we set
the regularization parameter λ = 10. The tolerance
value of our NNCP method, WTucker, WCP, the hard
completion (Hard) method5 [27] and FaLRTC is fixed
at tol= 10−5. For FaLRTC, the weights wn are set to
wn = 1/3,n = 1, 2, 3, and the smoothing parameters
are set to µn = 5wn/In, n = 1, 2, 3. Besides, for the
hard completion method we let τ = 104 and λ1 = λ2 =
λ3 = 1. For the three tensor decomposition methods
including NNCP, WTucker, and WCP, the tensor ranks
are set to R1 = R2 = 40 and R3 = 5.

We compare the link prediction results of NNCP,
WTucker, WCP, Hard and FaLRTC on the YouTube
data set. Note that we chose the users who have
more than 10 interactions as a subset, which consists of
4,117 users and five types of interactions, i.e., 4, 117 ×
4, 117 × 5. We randomly select 10% or 20% entries
as the training set, and the remainder as the testing
data. We present the average prediction accuracy (the

5https://sites.google.com/site/marcosignoretto/codes
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Figure 4: Average ROC curves showing the performance
of link prediction methods with 10% and 20% training
data, respectively.

score Area Under the receiver operating characteristic
Curve, AUC) over 10 independent runs in Fig. 4, and
the average running time (in seconds) of all these five
algorithms over 10 independent runs in Fig. 5, where
the number of users is gradually increased. From the
results shown in Figs. 4 and 5, we can see that two trace
norm regularized tensor completion algorithms, NNCP
and FaLRTC outperform WTucker, WCP and Hard in
terms of prediction accuracy. Our NNCP algorithm can
achieve very similar performance with FaLRTC both in
the Receiver Operating Characteristic (ROC) curve and
in terms of AUC. Moreover, our NNCP algorithm runs
significantly faster than FaLRTC, WTucker, WCP and
Hard. The runtime of NNCP increases slightly when the
number of users increases. This shows that our NNCP
method has very good scalability and can address large-
scale problems. In contrast, the runtime of WTucker,
WCP, FaLRTC and Hard increases dramatically. They
could not complete within 48 hours on the two largest
data sets with 8,000 and 15,088 users.

6 Conclusions and Future Work

We proposed a novel factor matrix n-rank minimization
method based on the CP decomposition for low-rank
tensor completion and decomposition tasks. We first
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Figure 5: Time cost (seconds) comparison on the
YouTube data set. For each dataset, we use 20% for
training. Note that the other four methods including
WTucker, WCP, Hard and FaLRTC could not run sizes
{8, 000, 15, 088} due to runtime exceptions.

used a factor matrix rank minimization instead of the
low-n-rank minimization of involved tensors. Then,
we relaxed the matrix rank into a tractable convex
surrogate, and obtained a much smaller scale factor
matrix nuclear norm minimization problem. Finally, we
developed an efficient ADMM solving scheme to solve
the proposed problem. Our convincing experimental
results on both synthetic and real-world data verified
both the efficiency and effectiveness of our NNCP
algorithm.

Moreover, our NNCP algorithm can handle large-
scale tensor completion and decomposition problems,
and its performance is very robust to the given tensor
rank. For future work, we will theoretically analyze
the relationship of the optimal solutions to our NNCP
model (3.12) and the traditional tensor nuclear norm
minimization model (2.4). We are also interested in
exploring ways to regularize our proposed model with
auxiliary information as in [23], [25].
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