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Abstract This paper studies the problem of process-
ing supergraph queries, that is, given a database con-

taining a set of graphs, find all the graphs in the database

of which the query graph is a supergraph. Existing works

usually construct an index and perform a filtering-and-
verification process, which still requires many subgraph

isomorphism testings. There are also significant over-

heads in both index construction and maintenance. In

this paper, we design a graph querying system that

achieves both fast indexing and efficient query process-
ing. The index is constructed by a simple but fast method

of extracting the commonality among the graphs, which

does not involve any costly operation such as graph

mining. Our query processing has two key techniques,
direct inclusion and filtering. Direct inclusion allows

partial query answers to be included directly without

candidate verification. Our filtering technique further

reduces the candidate set by operating on a much smaller

projected database. Experimental results show that our
method is significantly more efficient than the existing
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works in both indexing and query processing, and our
index has a low maintenance cost.

1 Introduction

Graph query processing [13,20,5,10,16,21,3,23,2,24,12,

22] has attracted much attention in recent years thanks

to the increasing popularity of graph databases in var-
ious application domains. Existing research on graph

query processing is conducted mainly on two types of

graph databases. The first one is large graphs such as

social networks [11,14]. The second one is transaction
graph databases that consist of a set of relatively smaller

graphs. Transaction graph databases are prevalently

used in scientific domains such as chemistry [9], bio-

informatics [6], etc.

We focus on query processing in transaction graph

databases. There are two types of queries commonly
studied in the literature. One is subgraph query [13,

20,5,10,16,21,3,23,24,12], which is to retrieve all the

graphs in the database such that a given query graph is

a subgraph of them. The other one is supergraph query
[2,22], which is to retrieve all the graphs in the database

such that the query graph is a supergraph of them.

This paper focuses on supergraph query, which has

a wide range of applications in chemistry informatics

(super-structure search), computer vision (object recog-

nition and shape matching), social science (insider threat
detection), etc. For example, in chemical super-structure

search, the database contains a set of compound struc-

tures with known chemical/biological properties or func-

tionalities. The queries are compound structures with
larger graph size. For each query, the system returns a

set of compound structures that comprise or make up

the query, which are further used to determine possible
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chemical properties of the compound query. Some other

detailed examples of supergraph query, such as exam-

ples in computer vision applications, are also given in

[2].

The problem has three challenges. First, the database
can be very large. For example, there are currently over

26 million chemical compound structures in PubChem

Compounds Database1, which is maintained by the U.S.

government. Second, the database can be highly dynamic.

In PubChem Compounds Database, over 6 million new
compounds have been added in the previous year and

the database is continuously growing. Third, the query

workload can be bulky and come in a high speed. For

example, PubChem implements a search engine for the
super-structure search2 and queries may come in as a

fast-speed stream.

Since processing supergraph queries involves the NP-

complete subgraph isomorphism test, sequential scan

of the database is prohibited and existing solutions use
indexes. However, to address the three challenges high-

lighted above, we need an index that is: (1) efficient

to construct for a large database, (2) efficient to main-

tain over dynamic updates, and (3) efficient to process
bulky query workloads. The existing indexes are inade-

quate due to the following two deficiencies.

First, the existing works utilize commonality (e.g.,

frequent subgraphs, paths, or trees) among the database

graphs to construct their index. To extract common
substructures from the database graphs, they usually

apply data mining techniques such as frequent sub-

graph mining [8,18] or its variants [19,7,20,3,2]. These

mining operations are expensive and incremental up-

date on the mining results is difficult. Thus, significant
overheads are imposed on both index construction and

maintenance.

Second, the existing works adopt the filtering-and-

verification approach. They use the index to first filter

part of the false answers to produce a candidate set, and
then verify each candidate to see whether it is indeed

a subgraph of the query. However, the optimal filtering

approach suffers from a bottleneck that the size of the

candidate set is at least the size of the final answer set,
which results in a high verification cost because each

verification is a subgraph isomorphism test.

We address the above two deficiencies by designing

an index that is both efficient to construct and update,

and devising an efficient algorithm for query process-
ing using the index. Our index also exploits the benefit

of batch processing to further improve query processing,

which is especially efficient when the query graphs share

1 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=search&db=
pccompound&term=all[filt]

2 http://pubchem.ncbi.nlm.nih.gov/search/search.cgi

much commonality, a likely condition since queries usu-

ally come from the same application domain. Thus,

the index effectively avoids common parts among the

queries being processed duplicately.

Batch processing is also inherent in many applica-
tions especially those in which queries arrive as a high-

speed stream [15,1]. A typical example is the search en-

gine designed for chemical molecules. As early as Dec

2004, a chemical software named JChem Base3 has al-
ready implemented the super-structure search mode for

chemical compounds. Later in 2005, a chemical struc-

ture search engine that supports super-structure search

was launched by PubChem. In these applications, often

the query processing capability is not able to keep up
with the speed of the query stream; in such situations,

batch processing is particularly useful since we can an-

swer a batch of queries coming in about the same time

and give timely answers without sacrificing any accu-
racy of the answers.

The design of our index relies on a fast graph com-

monality extraction method based on simple statistics

of graphs.We integrate all the data graphs in the database

into a single graph, namely the integrated graph (IG),
by simply following the frequency of the edges. The IG

is a compact representation of a set of graphs and has

a number of good properties. First, the IG can be con-

structed in linear time without involving any expen-
sive graph operations such as subgraph isomorphism

testing. Second, it is easy and fast to maintain the IG

when the database is updated. Third, the commonality,

including common subgraphs and supergraphs, of the

data graphs can be extracted efficiently without per-
forming any costly operations such as graph mining [8,

18]. These common subgraphs and supergraphs are em-

ployed to process queries. Fourth, the graph integration

can be applied to both data graphs and query graphs
in a unified way. Thus, we similarly construct an IG on

the set of query graphs for batch query processing.

In the case when little commonality exists among

the data graphs or query graphs, our IG is still effec-

tive, because if a graph does not share commonality
with others, it only has one place to go in the IG and

hence can be located instantly. On the contrary, exist-

ing methods that utilize commonality for indexing do

not have such a property and are likely not efficient for
handling graphs with little commonality.

Based on the concept of IG, we develop a graph

query processing system, called IGquery. We propose

two new techniques, namely direct inclusion of answers

and projected-database filtering.
First, direct inclusion breaks the bottleneck on the

candidate set size of the filtering approach by directly

3 http://www.chemaxon.com/product/jc base.html
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obtaining a large subset of the answer set. Direct inclu-

sion utilizes the subgraph-supergraph relationship to

allow groups of data graphs to be directly included into

the answer sets of groups of query graphs, thereby dra-

matically reducing the verification cost. More impor-
tantly, direct inclusion does not involve any subgraph

isomorphism test. It simply follows the frequency clue in

the IG of the data graphs and that of the query graphs

to check the inclusion condition, which takes only linear
time.

Second, projected-database filtering further produces

a small candidate set for the remaining answers not

found by direct inclusion. Existing work filters false re-

sults from the entire database, which results in a rela-
tively large candidate set. Our projected-database fil-

tering generates the candidate set from a much smaller

projected database instead of from the entire database.

To the best of our knowledge, our work is the first

that is able to process graph queries in a batch manner

and to perform direct inclusion of answers for super-
graph queries. We demonstrate by experiments on both

real and synthetic datasets that our index construction

is up to orders of magnitude more efficient than cIn-

dex [2] and GPTree [22]. The results also show that
our query processing is up to two orders of magnitude

faster than cIndex and GPTree, and is more scalable,

for graphs sharing both much and little commonality.

We also show that the update maintenance of our index

is efficient.

Paper organization. We give preliminaries in Section
2. We define the supergraph query problem in Section

3. We introduce the concept of integrated graph in Sec-

tion 4. We present our index construction and query

processing system, IGquery, in Sections 5 and 6. We

evaluate the performance of IGquery in Section 7. Fi-
nally, we review related work in Section 8 and conclude

the paper in Section 9.

2 Preliminaries

For simplicity of presentation, we restrict our discussion

to undirected, labelled connected graphs. We also assume

that a graph has at least one edge. However, our method
can be applied to directed graphs with minor changes.

A graph g is defined as a triple (V,E, l), where V

is the set of vertices, E is the set of edges and l is

a labeling function that assigns a label to each vertex

and edge. We define the size of a graph g, denoted as
|g|, as the number of edges in g, that is, |g| = |E(g)|.

A distinct edge in a graph g is defined as a triple,

(lu, le, lv), where le is the label of an edge (u, v) in g,

and lu and lv are the labels of vertices u and v in g. A

Table 1 Notations Used Throughout

Symbol Description

|g| the size of a graph g, defined as |g| = |E(g)|

D a graph database

Q a set of query graphs

Aqi the answer set of a query qi
As

qi
a subset of the answer set of a query qi

Cqi the candidate set of a query qi
GD an integrated graph built on D

GQ an integrated graph built on Q

host(e) the set of graphs that currently share e in G

freq(e) the cumulative # of graphs that share e in G

F the set of discriminative subgraphs as features

Fsub/Fsup the set of discriminative subgraphs/supergraphs

Sup(g, S) all supergraphs of g in S

Sub(g, S) all subgraphs of g in S

Sup(g,GS) an approximation of Sup(g, S) computed from GS
Sub(g,GS) an approximation of Sub(g, S) computed from GS

distinct edge, ed, may appear multiple times in a graph
g and we call each occurrence of ed an instance of ed in

g.

Let g and g′ be two graphs. We call that g is a

subgraph of g′ (or g′ is a supergraph of g), denoted as
g ⊆ g′ (or g′ ⊇ g), if there exists an injective function f :

V (g) → V (g′), such that for every edge (u, v) ∈ E(g),

we have (f(u), f(v)) ∈ E(g′), lg(u) = lg′(f(u)), lg(v) =

lg′(f(v)), and lg(u, v) = lg′(f(u), f(v)), where lg and lg′

are the respective labeling functions of g and g′. The
injective function f is called a subgraph isomorphism

from g to g′.

Table 1 lists the notations used throughout the pa-

per.

3 Problem Definition

The supergraph query processing problem we tackle in

this paper is given as follows:

– Input : A graph database D = {g1, . . . , gn} and a set

of queries Q = {q1, . . . , qm}, where m ≥ 1.

– Output : AQ = {Aq1 , . . . ,Aqm}, where Aqi = {gj :
gj ∈ D, gj ⊆ qi}, i.e., each Aqi contains the set of

data graphs in D that are subgraphs of qi.

Different from the existing graph query processing

problems, we define our problem to process a batch of
queries at a time for the following two reasons. First,

there is a need for processing queries that come in as a

high-speed stream, which is useful in many applications

(see Section 1) that require prompt query response. Sec-
ond, batch query processing enables us to eliminate the

repeated processing of common parts among queries so

as to obtain a higher throughput.
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Our goal in this paper is to develop an efficient sys-

tem for processing supergraph queries (possibly with a

bulky and streaming query workload), with a low-cost

index that is easy to construct and maintain.

4 Graph Integration

In this section, we discuss the approach of graph inte-

gration, which will be used for both index construction

and query processing in subsequent sections.

Given a set of graphs G, the concept of graph in-

tegration is to merge all the graphs in G into a single

compact graph G, whereby the repeated common sub-
structures of the graphs are eliminated in G as much as

possible.

A straightforward approach of graph integration is
to first mine frequent subgraphs from G and then merge

the graphs in G by sharing their frequent subgraphs

in the descending order of their frequency. However,

as mentioned earlier, frequent subgraph mining is too
costly to be applied, especially when database update

is frequent or queries come as a stream. Therefore, we

need to find a new way of solving this problem, which

we discuss as follows.

We propose a simple but effective scheme to merge

a set of graphs into a compact graph by utilizing the

statistics of the edge frequency of the graphs. Let G

be a set of graphs and G be the compact graph of G,
or called the integrated graph (IG). We keep the in-

formation of the graphs in G at the edges of G, while
eliminating duplicate edges shared among the graphs

in G. We first define the frequency of an edge e in G,
denoted as freq(e), as the number of graphs in G that
share e in G. For the purpose of query processing, we

also associate with each edge e in G the set of graphs

(IDs) in G that share e, denoted as host(e).

The basic idea of graph integration is to use the

frequency of the edges in the current G to guide the

merging of an incoming graph into G. More specifically,

when merging a graph g into G, we find all the edges
in g that are also in G, and pick the one edge that has

the highest frequency in G (If there are more than one

edge having the highest frequency, we simply break the

tie by the lexicographic order of the edge labels). Then,

using this edge as a starting edge in both g and G, we
perform a simultaneous depth-first traversal of both g

and G to find their common subgraph. Let e0 be the

starting edge and e1 be the next edge to visit in the

depth-first traversal of g. Let E1 be the set of edges
that we can choose to visit next to e0 in the depth-

first traversal of G. We find an edge in E1 that matches

e1 to visit. If there are multiple edges in E1 matching

e1, we choose the one with the highest frequency to

visit. This process continues until we meet an edge in

g that cannot be matched in G. The matched edges in

the simultaneous depth-first traversal form a common

subgraph of g and G. We merge g into G by sharing this
common subgraph, while we create new edges in G for

those edges in g that have not been matched.

Note that we match edges by (lu, le, lv), i.e., the def-

inition of a distinct edge. There may be multiple in-
stances of the distinct edge e0 in g. In this case, we run

the simultaneous depth-first traversal multiple times

starting at each instance of e0 in g. Among the multiple

traversals, we pick up the largest common subgraph of g

and G, and we merge g into G by sharing this subgraph.
To find the edge that has the highest frequency in

G as a starting edge for the simultaneous depth-first

traversal, we construct a header table to keep the set of

distinct edges in G. Each distinct edge ed in the header
table has a pointer to the instance of ed in G that has

the highest frequency.

Algorithm 1 presents our algorithm for fast graph

integration (FGI ). For each incoming graph gi, FGI

first finds the frequency of each distinct edge of gi from
the header table and then picks up the edge e0 that has

the highest frequency (Lines 3-4), where e0 points to its

instance e in G. Then, for each instance e′ of e0 in gi,

FGI finds the largest common subgraph of gi and G that
can be obtained by Lines 6-9. For each run of Lines 6-9,

we obtain a matching subgraph of gi and G. We then

pick the largest matching subgraph, g, and merge gi
into G by sharing g. Then, a corresponding new edge

is created in G for each edge in gi but not in g. During
the merge, for each edge in gi, we also increment the

frequency and update the host of its matching edge in

G to assist future integration. Note that the graph IDs

in each host(e) is automatically sorted since the graphs
are merged into G in the ascending order of their IDs.

Finally, G is outputted when all the graphs in G are

merged.

The merge of each gi into G takes only linear time

in the size of gi, assuming the number of instances of a
distinct edge in gi is a constant, which is true for most

datasets. Thus, the total complexity of Algorithm 1 is

O(s|G|), where s is the average size of the graphs in G.

In the worst case, when every graph in G consists of
only one distinct edge (i.e., all edges are identical), the

complexity is O(s2|G|). However, even s2 is small for

graphs in a transaction graph database.

The following example illustrates how FGI works.

Example 1 Figure 1(a) shows a set of graphs G that
consists of three graphs g1, g2 and g3. For clarity of

presentation, we only show the distinct edges a, b, c,

and d in the graphs and assume that all the nodes are
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Algorithm 1 FastGraphIntegration (FGI)

Input: A set of graphs, G = {g1, g2, . . . , gn}.
Output: The integrated graph G.

1. G ← g1;

2. for each i = 2, . . . , n do

3. Find from the header table the distinct edge in gi
that has the highest frequency in G;

4. Let e0 be this edge and it points to e in G;
5. for each instance e′ of e0 in gi do

6. Match gi with G by a depth first traversal,
starting from e′ in gi and e in G;

7. for each edge e′′ in gi in depth first traversal do
8. if(more than one edge in G match e′′)
9. Choose the edge with the highest frequency;
10. Let g be the largest matching subgraph of gi and G

obtained in Lines 5-9;
11. Merge gi into G by sharing g;
12. for each edge instance e of gi merged into G do

13. Increment freq(e);
14. Add graph ID i to host(e);
15. Return G;

of the same label. Initially, the integrated graph G = g1,

which is given in Figure 1(b). For clarity, we omit the

host of each edge in G and show the edge frequency after
its label. For example, a:1 means that the edge has a

label a and frequency 1. We also omit the pointers in

the header table, but the edge instances in G that are

pointed by the header table are shown in bold.

The FGI algorithm first integrates graph g2 into the

initial G. FGI first checks the frequency of all distinct

edges in g2 in the header table and picks the distinct

edge a as the starting edge for the subgraph matching
with G (Line 3). Note that there are more than one dis-

tinct edge in g2 having the highest frequency (a, b, and

c all have the highest frequency of 1). In this case, we

choose a as the starting edge by the lexicographic order.
Then, FGI matches g2 with G by depth first traversal

(Lines 5-9). There are two instances of edge a in g2.

Starting from the first instance (the one on the left in

g2), the obtained matching subgraph has only one edge

(a itself); while for the second instance (the one on the
top in g2), the matching subgraph has three edges a,

b and c. FGI (Lines 10-14) then merges g2 into G by

sharing the larger matching subgraph. The resultant G
after merging g2 is given in Figure 1(c).

Then, FGI further integrates g3 to the G in Figure

1(c). The chosen starting edge for g3 is b. When per-

forming the depth first matching of g3 and G, there are
two instances of c next to b in G that can be matched
with the edge c in g3. FGI (Lines 8-9) chooses c:2,

which has higher frequency, and obtains the final G as

given in Figure 1(d). 2

This graph integration method is simple but has

several remarkable advantages. First, by following the
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c:3a:2

Header Table

edge freq

a 2

b 3

c 3
c:1

a:1 d:1
d 1

(d) G after merging g3

Fig. 1 An Example of FGI Algorithm

descending order of edge frequency when merging the

graphs, we are able to integrate the graphs to the po-
sition that many other graphs are integrated into. This

approach shares the same principle of using frequent

subgraphs as the integration guidance to extract the

common subgraphs of many graphs. Second, our graph
integration approach is very fast since it does not in-

volve any expensive operation such as frequent sub-

graph mining or subgraph isomorphism test. The most

costly step is to perform the depth first traversal that

is linear in the size of the graph g. The edge frequency
used to guide the integration can be easily collected and

maintained during the integration process. Third, the

integrated graph keeps all neighborhood information of

the graphs. Therefore, by utilizing the integrated graph,
we are able to extract not only common subgraphs but

also common supergraphs for efficient query processing,

which we discuss in Section 6.

5 Integrated Graph as Index

We now discuss how we use integrated graph as an in-

dex and how we maintain the index in case of database
updates.

5.1 Index Construction

Given the graph database D, our index contains two

parts: (1) An integrated graph built on D, denoted as

GD; (2) A set of feature graphs, F , extracted from GD

for the purpose of filtering. We construct GD by Algo-

rithm 1 and discuss how to extract features from GD as

follows.
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Filtering for processing supergraph queries is per-

formed based on the following exclusive logic [2]: let f

be a feature graph and q a query, if f * q, then ∀gi ∈ D
and gi ⊇ f , we have gi /∈ Aq. Let Sup(f,D) = {gi : gi ∈
D, gi ⊇ f}; that is, Sup(f,D) is the set of graphs in D
that are Supergraphs of f . Then, if f is not a subgraph

of q, all data graphs in Sup(f,D) can be filtered from

the answer set of q. Existing work, cIndex [2], selects a

set of features F from frequent subgraphs mined from
D. The features are selected to be distinctive and have

the maximum coverage of the data graphs. However,

their feature selection is costly since it needs to mine

the frequent subgraphs first.

We propose to generate a set of discriminative sub-
graphs from GD and use them as features. The main

idea is to traverse GD by the descending order of the

host size of the edges in a depth-first manner. At each

depth-first step, we grow the current subgraph f to

obtain f ′ by adding one edge (i.e., f ⊆ f ′). We then
define a graph f to be discriminative if |Sup(f,D)| is
significantly larger than |Sup(f ′,D)|. Formally, given a

threshold δ (0 ≤ δ ≤ 1), if |Sup(f ′,D)|
|Sup(f,D)| < δ, then graph f

is defined to be discriminative. This method has been

shown to be very effective in selecting a set of represen-

tative patterns (so that other redundant patterns are

removed) in [17]. We approximate Sup(f,D) by inter-
secting the graph IDs in host(e) of all edges in f . We

denote this approximate Sup(f,D) as Sup(f,GD) since

it is computed from GD. Although Sup(f,GD) is an ap-

proximation, it is sufficient for the purpose of filtering
(as also verified by our experiments). More importantly,

by using the approximation we do not need to perform

any subgraph isomorphism testing.

The size of the IG structure and that of the feature

set do not increase with the size of the database since
common structures are shared. In most cases, the IG

and the feature set are small and can be kept in the

memory. However, the total size of host(e) for all edges

in the IG, as well as that of Sup(f,GD) for the features,

increases linearly in the size of database, but they can
be easily stored on and retrieved from the disk. When

the structure of the IG is also large, we can keep those

edges with a smaller freq(e) on the disk, because these

edges are not frequently accessed.

5.2 Index Maintenance

We consider two types of updates in D: insertion and

deletion.

The maintenance of GD on data graph insertion is

straightforward, as we can simply apply Algorithm 1

to merge the new graph into GD. Insertion takes linear

time in the size of the new graph. Deletion is also simple

and efficient with GD. We keep with each graph g ∈ D
a set of pointers to the set of edges E in GD to which g

is a host, i.e., the ID of g is in host(e) for each e ∈ E.

When we delete a graph g from D, we simply delete
the ID of g from host(e) for each e ∈ E. We store

host(e) as a binary tree and thus the total deletion time

is O(|E| log |host(e)|). When |host(e)| = 0, we consider

the edge e as obsolete and remove it from GD.

Note that when GD is constructed on the initial

database, we have freq(e) = |host(e)|. Later on when

D is dynamically updated, freq(e) keeps on increasing

so as to keep the cumulative number of graphs that ever
share edge e in GD, while host(e) is updated as the set

of graphs that currently share e. Collecting the cumu-

lative statistics in freq(e) helps obtain a more compact

GD, while host(e) should be kept up to date to ensure

the correctness of query processing.

For the maintenance of the feature set F , we keep

the edges in GD that are used to extract each feature.

When the ID of a graph g is added to host(e) for all

edges e in a feature f , we also add g to Sup(f,GD).
When the ID of a graph g is deleted from host(e) of any

edge e in a feature f , we also delete g from Sup(f,GD).

Let α = (|Sup(f,GD)|/|D|), where f ∈ F and |Sup(f,GD)|
≤ |Sup(f ′,GD)| for all f ′ ∈ F , and F is the set of fea-
tures computed from the database D. If |Sup(f,GD)|
becomes smaller than α|D|, we delete f from F be-

cause f is not effective for filtering if |Sup(f,GD)| be-
comes small [2]. Furthermore, if an edge e in GD is not

in any feature and |host(e)| grows as large as α|D|, we
run the depth-first search of GD to extract new features

starting from the edge e. However, since the entire fea-

ture selection process is efficient, periodically we will

discard all features and select them from scratch. Note
that the value of α is determined by the feature selec-

tion process, i.e., the value of (|Sup(f,GD)|/|D|) for the
least effective feature f ∈ F . In this way, when the size

of D changes due to database updates, the value of α

is still relative to the new |D|.

6 Query Processing

We now discuss how we apply the concept of IG for
query processing. We first give the overall framework

and then present the details of each step.

The framework of our query processing system, namely

IGquery, consists of three major steps as follows.

1. Query Integration: Construct an IG GQ for the set of

input queries Q in order to extract the commonality

among the queries and process the common parts
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of the queries once rather than repeatedly for each

single query.

2. Direct inclusion of answers : Use GQ, as well as the

indexed GD, to compute a subset of the answer set

for each query qi ∈ Q.
3. Projected-database filtering: Use GQ, as well as GD,

to compute a small candidate set for the rest of the

answer set for each qi ∈ Q. The candidates are then

verified by subgraph isomorphism to give the final
answer set.

6.1 Query Integration

In addition to indexing, the IG is also designed to ex-

plore the commonality among the queries in order to

eliminate repeated processing of some common part of
the queries as much as possible. Since the IG can col-

lapse the common substructures of the queries into a

single substructure, we can utilize these commonality to

speed up the batch query processing. More specifically,
we can extract common substructures and superstruc-

tures of the queries from the IG. We then process these

common parts only once, whose results can serve as

partial results for many queries (the queries that share

these common structures). Without such a query inte-
gration, the queries can only be processed one by one

and their common parts are processed repeatedly for

each individual query, which is a waste of computation.

Therefore, the usage of the IG enables the elimination
of these repeated (partial) query processing, thereby

significantly improving the query efficiency.

For this purpose, we construct an IG for the set

of queries, Q, and denote it as GQ. We first discuss

how to construct GQ. Then in Sections 6.2 and 6.3, we

discuss how the common portions among the queries
are extracted from GQ and processed together.

GQ is constructed in the same way as GD by applying

Algorithm 1. Since the set of queries Q comes in as

a stream, we process Q in batches and compute GQ

for each batch of queries. The size of a batch can be
either count-based or time-based [4] (similar to the size

of a window unit in a sliding window), depending on

different applications.

In constructing GQ, we also use freq(e) to keep the

cumulative edge frequency so as to guide the graph inte-
gration. Since the nature of supergraph queries implies

that the query graphs should have subgraph-supergraph

relationship with the data graphs (i.e., sharing some

common structures), we use GD as a template for con-
structing GQ. That is, we set GQ initially as GD except

that we initialize host(e) = ∅ for all e in GQ. Then for

each batch of queries in Q, we update GQ by applying

Algorithm 1. In this way, we utilize the statistical infor-

mation already collected in freq(e) of GD to construct a

high-quality GQ, and hence a stable performance even

at the initial stage of a stream.

Deletion in GQ is much simpler than in GD. After
we process a batch of queries, we simply re-initialize

host(e) = ∅ for all e in GQ (Of course we may also

choose to keep part of it for caching but this is a sepa-

rate issue and we do not discuss in this paper). In order
to maintain the size of GQ, we remove the edges in GQ

with the lowest freq(e) when |GQ| is larger than the

available memory.

6.2 Direct Inclusion of Answers

Existing work [2] on supergraph query processing suf-
fers from a bottleneck that the size of the candidate

set is at least that of the answer set. We propose a

new approach that can obtain a subset of the answer

set directly without costly candidate verification. Thus,

together with an effective projected-database filtering
algorithm (see Section 6.3), our method effectively over-

comes this bottleneck.

6.2.1 Direct Inclusion for a Single Query

Let us first consider the simple case with a single query
q. The idea of direct inclusion of answers is based on

the following inclusion lemma.

Lemma 1 (Inclusion Lemma) Let qsub be any subgraph

of q, i.e., qsub ⊆ q, then ∀gi ∈ D and gi ⊆ qsub, we have
gi ∈ Aq (i.e., Aqsub ⊆ Aq).

It is straightforward to prove the correctness of the

inclusion lemma: qsub ⊆ q and gi ⊆ qsub implies that
gi ⊆ q, which means that gi is an answer of the query

q.

According to the inclusion lemma, we can maximize

the effect of direct inclusion by finding a subgraph qsub
of q, such that qsub is a supergraph of as many data
graphs in D as possible, i.e., |Aqsub | is maximized. That

means qsub is a subgraph of a query, while qsub is a

common supergraph of many data graphs. Note that,

all the data graphs are now integrated into a compact

graph GD, thus GD is a common supergraph of all data
graphs. Of course, GD itself may be too big to be a

subgraph of any query, but the subgraphs of GD can

be.

Therefore, we are inspired to find the common sub-
graphs of GD and q. In particular, if we map q into GD

in the same way as we merge a data graph into GD,

then according to the concept of graph integration, the
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largest matching subgraph of q and GD obtained by

Lines 4-10 of Algorithm 1 is a good choice of qsub and

has a strong inclusion power (i.e., qsub is a common

supergraph of many data graphs in D, and these data

graphs can be directly included into Aq).

Algorithm 2 shows how direct inclusion works. We

use the same procedure in Algorithm 1 to find the

matching subgraph of q and GD (Lines 3-4). We repeat

this procedure (Lines 3-9) for each distinct edge ed of
q, so that we can take the full advantage of Algorithm

1 to obtain a larger subset, As
q, of the answer set of

q, without any expensive operations such as subgraph

isomorphism testing.

Algorithm 2 DirectInclusion
Input: GD and a query q.
Output: A subset of the answer set of q, As

q .

1. As
q ← ∅;

2. for each distinct edge ed in q do

3. Process Lines 4-10 of Algorithm 1 by
putting q in place of gi and GD in place of G;

4. Let qsub be the matching subgraph of q and GD obtained;
5. for each edge e in qsub do

6. for each gi in host(e) do

7. ++count(gi); // count(gi) is initially set to 0
8. Sub(qsub ,GD)← {gi : count(gi) = |gi|};
9. As

q ← A
s
q ∪ Sub(qsub ,GD);

10. Return As
q ;

After finding qsub (Line 4), which is the largest match-
ing subgraph of q and GD, we use host(e) to find the

data graphs that are merged into the same place as qsub
(Lines 5-7). For each data graph gi in host(e) of an edge

e in qsub , we use a counter count(gi) to count the num-

ber of edges that gi shares with qsub . If a data graph
gi is indeed a subgraph of qsub , then count(gi) must be

equal to the number of edges in gi (Line 8). This is be-

cause count(gi) is incremented for each edge e in qsub
only if host(e) contains gi (Lines 5-7), which means that
gi shares the edge e with qsub when integrated into GD.

Thus, count(gi) = |gi| only if count(gi) is incremented

once for every edge in gi, which means that all edges in

gi (|gi| number of them) are contained in qsub (ensured

by the host lists) and thus gi is a subgraph of qsub .
Therefore, we can directly include gi in Sub(qsub ,GD).

Similar to the definitions of Sup(f,D) and Sup(f,GD)

in Section 5.1, Sub(qsub ,GD) is an approximation of

Sub(qsub ,D) computed from GD, where Sub(qsub ,D) is
the set of graphs in D that are Subgraphs of qsub . Thus,

by Lemma 1, we directly include Sub(qsub ,GD) into As
q

(Line 9).

6.2.2 Direct Inclusion for a Set of Queries

The efficiency of direct inclusion can be further im-

proved by processing a set of queries simultaneously.

We use the IG for queries, GQ, to explore the common-

ality among a batch of queries Q so that these common
parts can be processed together for direct inclusion.

The idea of direct inclusion for a single query can be

extended for multiple queries by the following lemma.

Lemma 2 (Inclusion for Multiple Queries) Let qsub be
a common subgraph of k queries, q1, . . . , qk, then

∀gi ∈ D and gi ⊆ qsub, we have gi ∈ Aqj , ∀j ∈ {1, . . . , k}
(i.e., Aqsub ⊆ Aqj ).

According to Lemma 2, our task now is to find a

graph qsub which is a common subgraph of as many

queries as possible; that is, we want to find qsub such
that Sup(qsub ,Q) is maximized. Since we capture the

commonality by graph integration, we use GQ to find

qsub .

However, there are many common subgraphs in GQ

for different groups of queries and we cannot exhaus-

tively use all of them to perform the inclusion. In fact,

there is a tradeoff when choosing a good qsub . If qsub
is of small size, then qsub is a common subgraph of a
larger set of queries (i.e., |Sup(qsub ,GQ)| is large). But
on the database side, a small-sized qsub tends to have

only a small number of data graphs as its subgraph,

i.e., |Aqsub | is small. In this case, we are including too

few data graphs into the answer sets of many queries.
On the other hand, if qsub is large, then |Sup(qsub ,GQ)|
is small though |Aqsub | is large. Thus, we are including

many data graphs into the answer sets of just a few

queries. Therefore, it is challenging to choose a good
qsub for more effective direct inclusion.

Inspired by the feature selection in index construc-

tion, we propose to select a set of discriminative sub-

graphs of GQ for performing inclusion in Lemma 2. This
process is similar to the feature selection discussed in

Section 5.1 except that GQ is used in place of GD.

Let Fsub be the set of discriminative subgraphs se-

lected for direction inclusion. For each qsub ∈ Fsub , in
order to apply Lemma 2, we need to find Aqsub and in-

clude it to the answer sets of each query in Sup(qsub ,GQ).

Computing Aqsub may still be expensive; however, we

only obtain a partial Aqsub , i.e., A
s
qsub , by Algorithm 2

and then perform the inclusion of As
qsub

.

Algorithm 3 outlines how we perform direct inclu-

sion for multiple queries. As discussed above, we first

select the set of discriminative subgraphs Fsub from GQ.
We then obtain As

qsub
by Algorithm 2 for each qsub ∈

Fsub , and directly include As
qsub

as a partial answer set

for each qj ∈ Sup(qsub ,GQ). Note that Sup(qsub ,GQ) is



9

obtained together with Fsub (see Section 5.1). Finally

in Lines 6-7, for each query qj that is not a supergraph

of any qsub ∈ Fsub , we simply obtain As
qj by Algorithm

2.

Algorithm 3 MultiDirectInclusion
Input: GD, GQ, and a batch of queries Q = {q1, . . . , qm}.
Output: As

Q = {As
q1
, . . . ,As

qm
}.

1. As
qj
← ∅, ∀qj ∈ Q;

2. Find the set of discriminative subgraphs Fsub from GQ;
3. for each qsub ∈ Fsub do

4. Obtain As
qsub

by Algorithm 2;

5. As
qj
← As

qj
∪ As

qsub
, ∀qj ∈ Sup(qsub ,GQ);

6. for each qj ∈ Q, where As
qj

= ∅, do

7. Obtain As
qj

by Algorithm 2;

8. Return As
Q
;

The following example illustrates how direct inclu-

sion for multiple queries works.
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Fig. 2 Direct Inclusion for Multiple Queries

Example 2 Figures 2(a) and (b) give a graph database
D and a set of queries Q, respectively. By applying Al-

gorithm 1, we obtain two IGs, GD and GQ, as shown in

Figures 2(c) and (d). The header tables are omitted and

Table 2 Hosts for GD and GQ

IG Edge host IG Edge host

GD a1 {g1} GQ a {q1, q2, q3}

a2 {g1, g3, g5} b {q1, q2}

b1 {g1, g2, g3, g4} c1 {q1, q2, q3}

b2 {g2} c2 {q2}

c1 {g1} c3 {q2}

c2 {g1, g2, g4} c4 {q3}

d {g5} d {q1, q3}

the host of each edge is given in Table 2. For the easy

reference of the edges in each IG, we give a subscript
for the distinct edge that has more than one instance

in the IG.

For simplicity, we assume that we find two discrim-

inative subgraphs qsub1 and qsub2 as shown in Figure

2(e). By intersecting host(e) of the edges, we obtain
Sup(qsub1 ,GQ) = {q1, q2} and Sup(qsub2 ,GQ) = {q1, q3}.

Then, Line 4 of Algorithm 3 invokes Algorithm 2 to

compute As
qsub1

. The largest common subgraph of qsub1
and GD (Lines 3-4 of Algorithm 2) is qsub1 itself: the

edges a, b, c1 in qsub1 matches the edges a2, b1 and c2 in
GD, respectively. Then, Lines 5-9 of Algorithm 2 check

the hosts of a2, b1 and c2 in GD (Table 2) to find the

data graphs that are subgraphs of qsub1 and we obtain

As
qsub1 = {g3, g4}. The procedure returns to Algorithm

3 and Line 5 directly includes As
qsub1

to the answer sets

of the queries in Sup(qsub1 ,GQ), i.e., include g3 and g4
to Aq1 and Aq2 .

Similarly, for qsub2 , Lines 4-5 also directly include

As
qsub2 = {g5} to the answer sets of q1 and q3 in

Sup(qsub2 ,GQ). 2

The above example clearly shows the advantages of

direct inclusion of answers. First, we do the inclusion

in a “many-to-many” manner: including many data

graphs into the answer sets of many queries. Second,
each query graph can benefit from different common

subgraphs with different groups of queries (e.g., q1 ben-

efits from both qsub1 and qsub2 by direct inclusion).

6.3 Filtering

With direct inclusion, we overcome the bottleneck on
the size of candidate set in existing work. However, we

still need an effective filtering algorithm in order to pro-

duce a small candidate set for the remaining answers

not found by direct inclusion. In this section, we first
present a filtering algorithm for multiple queries. Then,

we further improve by designing a novel projected-database

filtering algorithm.
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6.3.1 A Multi-Query Filtering Approach

Let Cq be the candidate set of q. Given a set of features

F , the existing filtering approach computes Cq based

on the exclusive logic, that is, to filter the data graphs

in Sup(f,D), ∀f ∈ F and f * q. Therefore, we have

Cq = (D − ∪f∈F,f*qSup(f,D)).
However, this filtering approach only processes a

single query at a time. Similar to what we do for di-

rect inclusion, we also propose to perform the filtering

for a batch of queriesQ together, based on the following
lemma.

Lemma 3 (Filtering for Multiple Queries) Let qsup be

any common supergraph of k queries, q1, . . . , qk, then

Cqj ⊆ Cqsup , ∀j ∈ {1, . . . , k}.

Proof Note that Cq = (D − ∪f∈F, f*qSup(f,D)) for a

query q. Since qsup ⊇ qj , if f * qsup , then f * qj ,

but not vice versa. Therefore, (∪f∈F, f*qj
Sup(f,D)) ⊇

(∪f∈F, f*qsup
Sup(f,D)) and hence Cqj ⊆ Cqsup holds.

Lemma 3 suggests that we should find the common

supergraph of queries, qsup , in order to perform batch
filtering; while on the database side, qsup is compared

with a set of features F which are the common sub-

graphs of data graphs. Note that this is just the reverse

way of extracting commonality as in direct inclusion. In

direct inclusion, the common subgraphs of queries and
the common supergraphs of data graphs are needed.

Let Fsup be a set of common supergraphs of queries.

The extraction of Fsup from GQ for filtering is similar to

the extraction of Fsub for direct inclusion discussed in
Section 6.2.2. The only difference is that we use Lines

5-8 of Algorithm 2 to find Sub(qsup ,GQ) of each qsup ∈
Fsup , instead of intersecting host(e) of the edges.

We apply Lemma 3 in Algorithm 4 to perform filter-

ing for a batch of queries. First, Line 2 generates a set
of discriminative common supergraphs of the queries

from GQ. For each qsup ∈ Fsup , Line 4 obtains the can-

didate set of qsup using the features in F . Then, Line 5

refines the candidate sets of all queries in Sub(qsup ,GQ)
by Lemma 3.

Algorithm 4 MultiFiltering
Input: GQ, a feature set F , and a batch of queries Q =
{q1, . . . , qm}.
Output: CQ = {Cq1 , . . . , Cqm}.

1. Cqj ← D, ∀qj ∈ Q;

2. Find the set of common supergraphs of queries, Fsup ;
3. for each qsup ∈ Fsup do

4. Cqsup ← (D − ∪
f∈F,f*qsup

Sup(f,GD));

5. Cqj ← Cqj ∩ Cqsup , ∀qj ∈ Sub(qsup ,GQ);

6. Return CQ;

6.3.2 A Projected-Database Filtering Approach

The filtering algorithm discussed in Section 6.3.1 re-
lies heavily on the features selected. Ideally, we want a

feature f to have a large Sup(f,D) so that we can ob-

tain a smaller Cq = (D − Sup(f,D)). However, a large

Sup(f,D) means that f is a common subgraph of many
graphs inD, which further implies that f is likely a com-

mon subgraph of even more queries (by the nature of

supergraph queries). But for filtering, we require f * q.

Therefore, we have a dilemma here and (D−Sup(f,D))

may be large in many cases.

In Algorithm 4, we have partially addressed this

problem by refining the candidate sets for a set of queries

through their common supergraphs qsup (Line 5). How-

ever, the problem of a large Cq is because D is large but

Sup(f,D) is relatively much smaller. Thus, we do not
really solve the problem by Algorithm 4.

As we have just discussed, Sup(f,D) cannot be too

large; otherwise, f is only useful for a few queries but

not useful for most of the queries. Thus, it leads us
to seek to reduce “D” in (D − Sup(f,D)). Clearly, we

cannot actually reduce D because D is the database.

However, the concept of processing a set of queries to-

gether enables us to find a projected database. Our idea

is based on the following Lemma.

Lemma 4 (Projected-Database Filtering) Let qsup be

a common supergraph of k queries, q1, . . . , qk, then

Aqj ⊆ Aqsup , ∀j ∈ {1, . . . , k}.

Lemma 4 is correct by the definition of supergraph

query. Based on the lemma, we can obtain Aqj from
Aqsup ; thus, we can use Aqsup as the candidate set of the

whole set of queries qj ∈ Sub(qsup ,GQ). In most cases,

Aqsup is significantly smaller than D and more impor-

tantly, |Aqsup | is close to |Aqj | so that we can obtain
|Cqj | ≃ |Aqj |. We call Aqsup the projected database of

qsup and name the filtering approach that uses Aqsup

for candidate generation as projected-database filtering.

To apply the projected-database filtering, we insert

Line 5 of Algorithm 5 into Algorithm 4 to first obtain
Aqsup . Then, we use Aqsup instead of Cqsup to obtain Cqj
in Line 6 of Algorithm 5.

Algorithm 5 ProjDBfiltering

1-4. Same as Lines 1-4 of Algorithm 4;
5. Aqsup ← {gi : gi ∈ Cqsup , gi ⊆ qsup};
6. Cqj ← Cqj ∩ Aqsup , ∀qj ∈ Sub(qsup ,GQ);

7. Return CQ;

The following example illustrates how filtering works.
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Example 3 Consider the database and the set of queries

in Figures 2(a-b), we select two features f1 and f2 from

GD. As shown in Figure 3(a), the set of graphs in Sup(f,GD)

for each feature f is also given after the colon “:”.

Assume that Fsup = {qsup1 , qsup2}, as given in Fig-
ure 3(b). We compute Sub(qsup1 ,GQ) = {q1, q3} and

Sub(qsup2 ,GQ) = {q3} by Lines 5-8 of Algorithm 2.
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Fig. 3 Filtering for Multiple Queries

Line 4 of Algorithm 4 computes Cqsup1 by filtering

using the features. Since f2 * qsup1 , the data graphs in

Sup(f2,GD) = {g1} can be filtered from Cqsup1 , as well as
from the candidate sets of q1 and q3 in Sub(qsup1 ,GQ).
Therefore, Cq1 = Cq3 = Cqsup1 = {g2, g3, g4, g5}.

We now further apply the projected-database fil-

tering. We first obtain Aqsup1 = {g3, g4, g5} (Line 5 of

Algorithm 5) and then assign Cq1 = Cq3 = Aqsup1 =
{g3, g4, g5}, which thus further filters g2 from the can-

didate sets of both q1 and q3 simultaneously.

We then process qsup2 . Since Sub(qsup2 ,GQ) = {q3}
and f1 * qsup2 , the data graphs in Sup(f1,GD) =

{g1, g2, g4} can be further filtered from Cq3 . Thus, Cq3
is reduced to be {g3, g5}. 2

6.4 The Overall Query Algorithm

We present our overall algorithm, IGquery, for query

processing over a stream of queries in Algorithm 6. Each

time we process a batch of queries, either count-based

or time-based, that arrives in the stream (Line 1). We

first construct GQ in real-time (Line 2). Then, we ob-
tain a subset of the answer sets for the queries by direct

inclusion (Line 3). For the remaining part of the answer

set, we use projected-database filtering to obtain a can-

didate set (Lines 4-6), which is then verified to return
the final answer set (Lines 7-8).

The complexity of Algorithm 6 consists of three

parts. The first part is constructing the IG on Q, which

Algorithm 6 IGquery
Input: D, GD, a feature set F , and a stream of queries Q =
{q1, q2, . . .}.
Output: {Aq1 ,Aq2 , . . .}.

1. for each batch of queries, Q, arrived in Q do

2. Construct GQ as discussed in Section 6.1;
3. Obtain subsets of answers As

qj
, ∀qj ∈ Q, by Algorithm 3;

4. Obtain CQ by Algorithm 5;
5. for each query qj ∈ Q do

6. Cqj ← (Cqj −A
s
qj
); // Direct inclusion of answers

7. Aqj ← (As
qj
∪ {gi : gi ∈ Cqj , gi ⊆ qj}); // Verification

8. Output Aqj ;

is O(s|Q|) as given by the analysis of Algorithm 1,

where s is the average size of the query graphs in Q. The

second part is direct inclusion. In Algorithm 3, comput-

ing Fsub from GQ takes O(s|Q|+ |Q|2) time. The depth-
first traversal of GQ to compute Fsub takes O(s|Q|)
time since the traversal follows the size of host(e) in

descending order. Since Fsub is a set of discriminative

subgraphs, we have |Fsub | = O(|Q|). Since the intersec-
tion of the “host(e)”s for each qsub ∈ Fsub takes O(|Q|),
the total time for all intersections takes O(|Q|2). The
third part is filtering, which also takes O(s|Q| + |Q|2)
time for computing Fsup .

Therefore, the total complexity of Algorithm 6 is
(O(s|Q|+ |Q|2) +X + Y + Z) for processing the set of

queries Q, where X is the cost for the union and in-

tersection operations on the graph IDs to compute the

candidate sets and partial answer sets, Y is the cost

of subgraph isomorphism tests to examine the exclu-
sive logic in Line 4 of Algorithm 4 and to obtain the

projected database for filtering in Line 5 of Algorithm

5, and Z is the cost of subgraph isomorphism tests to

verify the candidates in Line 7 of Algorithm 6. The
complexity of (X + Y +Z) depends on the sizes of the

candidate set and answer set, which vary for different

queries. Alternatively, we can give the query response

time of IGquery as follows.

Tresponse = (Tsearch+
∑

q∈Q

(|Cq|×TI/O+|Cq|×Tverify )) .(1)

In Equation (1), Tsearch = (O(s|Q|+ |Q|2)+X+Y )

is the index search time using the IGs, while TI/O is the
disk I/O time for fetching each candidate graph from

the disk and Tverify is the time for verifying the candi-

dates. In general, Z =
∑

q∈Q(|Cq| × (TI/O + Tverify ))

dominates the cost and hence all existing work seeks
to minimize |Cq|. However, |Cq| ≥ |Aq| for the existing

filtering approaches, while in our work |Cq| can be even

much smaller than |Aq|.
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7 Performance Evaluation

We evaluate the performance of our algorithm by com-
paring with cIndex [2] and GPTree [22]. We run all ex-

periments on a machine with a 3.0GHz Pentium 4 CPU

and 1GB RAM, running Windows XP Professional Ver-

sion 2002 SP 3. We evaluate our algorithm extensively
by a comprehensive set of metrics:

– The effect of the discriminative threshold δ on the
performance of index construction and query pro-

cessing (Section 7.1).

– The efficiency of IG construction and the effective-

ness of IG for query processing (Sections 7.2 and

7.3).
– The effectiveness of direct inclusion and projected-

database filtering (Section 7.3).

– The effect of query batch size (both count-based and

time-based) on the performance of query processing
(Section 7.3).

– The effect of query graph size on the performance

of query processing (Section 7.4).

– The effect of query answer-set size on the perfor-

mance of query processing (Section 7.5).
– The effect of database size on the performance of in-

dex construction and query processing (Section 7.6).

– The effect of commonality on the performance of in-

dex construction and query processing (Section 7.7).
– The performance of index maintenance and query

processing on database updates (Section 7.8).

Query Sets and Graph Databases. We use two real

datasets: AIDS and NCI. AIDS is the AIDS antiviral

screen dataset, which contains 10K graphs. NCI is a

dataset with 250K graphs, which we obtain from the
National Cancer Institute database. Table 3 lists some

characteristics of the datasets, where the density of a

graph g = (V,E) is defined as 2|E|
|V |(|V |−1) . More details

can be found in their webpages4.

Table 3 Characteristics of Datasets (Query Sets)

Range of Average Range of Average
graph size graph size density density

AIDS 1 − 217 27.40 0.009 − 1.0 0.10

NCI 1 − 252 19.95 0.008 − 1.0 0.14

We prepare the query sets and graph databases in

a way similar to [2,22] for fair comparison. We first use

the two real datasets as the query sets. To prepare the

4 AIDS: http://dtp.nci.nih.gov/
NCI: http://cactus.nci.nih. gov/ncidb2/download.html

graph databases, we randomly generate a set of 10K

subgraphs of the graphs in the AIDS dataset at mini-

mum support threshold 0.001. We also select 10K-100K

subgraphs from the NCI dataset for a scalability test.

We list some characteristics of the graph databases in
Table 4.

Table 4 Characteristics of Graph Databases

Range of Average Range of Average
graph size graph size density density

AIDS 1 − 58 15.53 0.04 − 1.0 0.22

NCI 1 − 16 10.25 0.12 − 1.0 0.24

In Section 7.7, we also use synthetic datasets to test

the effect of commonality. We give the details of the

synthetic datasets in Section 7.7.

We also prepare the query log and the feature base
which are required for cIndex as described in [2]. The

settings of GPTree are as its default [22]. We tested

both the exact and approximate indexes of GPTree, for

both indexing and querying; but we found that the dif-
ference between the two is small. Thus, we only report

the results of the exact index.

7.1 Effect of Discriminative Threshold

We first test the effect of the discriminative threshold

δ on feature selection, i.e., the selection of the set of

discriminative subgraphs, and how the performance of

index construction and query processing varies for dif-
ferent δ. We use the graph database prepared from the

AIDS dataset in this experiment.

Table 5 reports the results of index construction and

query processing with different values of δ. For index

construction, the indexing time decreases when δ de-
creases from 1 to 0, which can be explained by the de-

crease in the number of features as δ decreases. Overall,

the index construction is very efficient as it takes only

about 1 second for all values of δ except the very re-
strictive case when δ = 1.

For query processing time, it is affected by two fac-

tors, the index probing time Tsearch and the verification

time, as shown in Equation (1). The number of features

and the number of candidates recorded in Rows 2 and
4 of Table 5 are indicators of these two factors, respec-

tively. In general, more features may generate a smaller

number of candidates (with shorter verification time)

at a cost of longer index probing time.
Therefore, the choice of δ is a tradeoff. Fortunately,

we can easily pick up a sub-optimal δ that achieves a

small overall query processing time. As shown in Table
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Table 5 Results on the Effect of Discriminative Threshold (1 ≥ δ ≥ 0)

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

Indexing time (ms) 13937 1969 1469 1235 1031 844 766 750 734 594 453

Feature # 2988 168 113 91 73 53 50 46 37 27 24

Query processing time (ms) 43.83 19.00 18.65 18.45 19.51 19.56 20.55 20.14 20.13 20.96 21.67

Candidate # 386 478 547 572 707 776 929 884 947 1044 1090

5, the best query processing time is achieved at δ = 0.7,

i.e., 18.45 milliseconds per query on average. However,

for a wider range of δ (0.6 ≤ δ ≤ 0.8), the query pro-

cessing time as well as the index construction time do

not vary too much. This is because the set of features
remains relatively stable within this range of δ. The

same findings are also observed for other datasets and

we omit the details for clarity. This result demonstrates

that our discriminative feature selection is efficient and
effective.

We choose δ = 0.7 as a default value for δ for the
remaining experiments.

7.2 Indexing Performance: IG and Other Indexes

We compare the performance of our index with cIndex

and GPTree. We first report the results of index con-

struction in this subsection. We use the graph database

prepared from the AIDS dataset in this experiment.

Table 6 reports the overall time for index construc-

tion, peak memory consumption, the size of IG and that
of the database, and the number of features obtained

by each index.

Table 6 Performance of Indexing on AIDS

Time Memory IG/GDB size Feature
(sec) (MB) (# of edges) Number

cIndex 3631 531 NA / 186883 34

GPTree 16,549 408 NA / 186883 159

IG 1.24 18 2195 / 186883 91

The results show that our index construction is over

three orders of magnitude faster and consumes at least

20 times less memory than both cIndex and GPTree.
Our indexing time includes the time for constructing

the IG GD and for selecting the discriminative features

from GD. The remarkable indexing time is because our

algorithm runs in linear time.

The results also show that the concept of IG is in-

deed able to extract the commonality among the graphs,
as the number of edges in the IG is only 1.2% of that in

the graph database. This result is also consistent with

the low memory consumption of our index.

In the subsequent three subsections, we show that

our index is not only compact and efficient to construct,

but also very effective for query processing.

7.3 Query Performance: Effects of Individual

Components and Batch Processing

In this experiment, we show the effects of each of the in-
dividual components on query performance. There are

two key components in IGquery, direct inclusion and

projected-database filtering, both of them utilize the

IG. Since both direct inclusion and projected-database
filtering can operate in batch mode, we also assess the

effect of batch processing on query performance. We use

the indexes constructed in Section 7.2 for this experi-

ment and use the AIDS query set.

Direct inclusion and projected-database filtering are

two key components in IGquery. However, they are dif-

ferent that filtering is essential for query processing,

while direct inclusion is dispensable. Filtering is essen-
tial because otherwise the candidate set is too large

even if we can find the majority of the answer set by

direct inclusion, unless the database is small. Although

our projected-database filtering is different from the ex-
isting filtering algorithms, taking out filtering from IG-

query essentially means to match the database graphs

one by one. On the other hand, direct inclusion is dis-

pensable because without direct inclusion our algorithm

is essentially another filtering-based algorithm. How-
ever, direct inclusion is the key to overcome the bottle-

neck (on the candidate set size) of any existing filtering-

based approaches and one of the main contributions of

our paper. For this reason, we always retain projected-
database filtering and discuss “with and without direct

inclusion” in this experiment, while we assess the effect

of projected-database filtering by using different batch

sizes and compare with the existing filtering algorithms.

We test two versions of our algorithms: (1) with di-

rect inclusion, denoted as IGquery-DI; and (2) without

direct inclusion, denoted as IGquery-noDI. Figure 4 re-

ports the average processing time per query and the
average number of candidates obtained by each algo-

rithm. In Figure 4(b), we also show the size of the an-

swer set (in bold line) as a reference point, which is
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the lower bound on the candidate set size of all existing

filtering approaches.

We report the results for both count-based and time-

based batches. For the count-based batches, we test

three fixed sizes: 1, 10, and 100. For the time-based

batch, a variable number of queries may come in for
each batch, for which we randomly select x number of

queries (x ∈ [1, 100]) for each incoming batch.
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Fig. 4 Query Performance on AIDS: Effects of Individual Com-
ponents and Batch Processing

We first discuss the effects of direct inclusion and

projected-database filtering on query processing. As shown
in Figure 4(a), when we take away direct inclusion from

IGquery, with only projected-database filtering our al-

gorithm (IGquery-noDI) is faster than cIndex and GP-

Tree only when the batch size increases to around 10.
This result can be explained by Figure 4(b) which shows

that the number of candidates obtained by IGquery-

noDI decreases when the batch size increases.

If we do not take into account batch processing, i.e.,

when batch size is equal to 1, IGquery-noDI is worse

than cIndex and GPTree, since projected-database fil-
tering favors batch processing than single-query pro-

cessing. However, when direct inclusion is applied, our

algorithm (IGquery-DI) improves significantly and is

considerably faster than both cIndex and GPTree even

when batch size is 1.

We remark that when batch size is 1, our algorithm

(denoted as IGquery-1 in subsequent experiments) do
not utilize the commonality among the query graphs

for query processing; in other words, the queries are

processed one by one as in cIndex and GPTree.

When batch processing is enabled, the advantage of

IGquery over cIndex and GPTree is immediately seen

even for a batch size as small as 10, and the improve-
ment is substantial when the batch size increases to 100.

The reason for the improvement is because for a larger

batch, more commonality among the queries is being

shared. These common structures are processed only
once but their results can serve as partial results for

many queries, thereby significantly improving the query

performance. The performance of the time-based batch

is better than that of the batch size 10 but worse than

that of the batch size 100, because the average number

of queries in a time-based batch is around 50. There-

fore, no matter in which batch mode (count-based or

time-based), the (average) batch size affects the query
performance.

From Figure 4(b), we see that with batch processing,

even IGquery-noDI achieves better filtering than cIndex

and GPTree. This is because with batch processing, we
devise the concept of projected-database filtering. By

using the projected database of the supergraphs of the

queries, we can generate less candidates than filtering

by the query graph alone as in cIndex and GPTree,

which is evidenced by IGquery-noDI when the batch
size is 10, 100, or time-based in Figure 4(b).

More importantly, the size of candidate set obtained

by IGquery-DI is even much smaller than the size of the

answer set, which is a bottleneck of all existing filtering
approaches. This is because without direct inclusion,

the candidate set must include at least all the answer

graphs and therefore cannot be smaller than the an-

swer set (as is the case in cIndex and GPTree). By di-

rect inclusion, part of the answer set is directly included
and needs not be recorded in the candidate set for fur-

ther verification; hence we can generate a candidate set

that is smaller than the answer set. Note that the dif-

ference between the number of candidates obtained by
IGquery-noDI and that by IGquery-DI is the number

of answer graphs obtained by direct inclusion, which is

close to the number of total answer graphs

Finally, the peak memory consumption of IGquery-

noDI and IGquery-DI is approximately 21 MB in all
cases, which is essentially the size of the IG in memory.

The peak memory consumption of cIndex and GPTree

is 30 MB and 114 MB, respectively. Thus, our algo-

rithm also consumes less memory than the existing ap-
proaches, which demonstrates the compactness of the

IG.

7.4 Query Performance: Effect of Query Graph Size

In this experiment, we assess the effect of query graph

size on the performance of IGquery. We use five query

sets, with the following graph size ranges: [1, 15], [16, 30],

[31, 45], [46, 60], and [61, 217], where the largest query

graph has 217 edges.
Figure 5 reports the average processing time per

query, the peak memory consumption, and the average

number of candidates obtained by each algorithm. We

report the results for two batch sizes, 1 and 100, repre-
sented by IGquery-1 and IGquery-100 in the figures.

Note that IGquery-1 means that the algorithm pro-

cesses the queries one by one as in cIndex and GPTree
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and the commonality among the queries is not utilized

for query processing. Therefore, IGquery-1 is essentially

a special case of batch processing when the batch size

is equal to 1; that is, IGquery-1 still performs direct

inclusion and project-database filtering. In this special
case, the common subgraph used in direct inclusion and

the common supergraph used in filtering are essentially

the query graph itself.
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Fig. 5 Query Performance on AIDS: Effect of Query Graph Size

Figure 5(a) shows that the query processing time of

all algorithms increases when the query size increases,

which is also consistent with the number of candidates
as shown in Figure 5(c). For all query sizes, both IGquery-

1 and IGquery-100 are over an order of magnitude faster

than cIndex. Compared with GPTree, IGquery-1 is con-

siderably faster and IGquery-100 is up to an order of

magnitude faster. The results also show that our al-
gorithm can handle large query graphs very efficiently.

The average processing time for queries with size [61,

217] is only 15ms. IGquery-1 and IGquery-100 also use

substantially less memory than GPTree and are stable
in memory consumption. The memory consumption of

IGquery-1 and IGquery-100 are almost the same since

the majority of the memory is used to keep the IG.

Our projected-database filtering employs common

supergraphs of the queries to perform filtering; how-
ever, filtering by supergraph in general generates more

candidates than filtering by the query graph itself. But

in IGquery-1 this supergraph is essentially the query

graph itself (i.e., the same as cIndex and GPTree), and
thus the filtering effect of IGquery-1 mainly comes from

the features being selected, as in cIndex and GPTree.

The filtering effect of IGquery-1 (without direct inclu-

sion) is comparable to that of the pure-filtering ap-

proaches, cIndex and GPTree (see Figure 4(b)). But

IGquery-1 also uses direct inclusion that enables part

of the answers to be directly included without being

recorded in the candidate set, which makes a major
difference from the filtering approaches. As a result,

with effective filtering and the help of direct inclusion,

IGquery-1 is able to obtain fewer candidates than both

cIndex and GPTree as shown in Figure 5(c).
Finally, we note that for supergraph query process-

ing with an index, the processing time depends largely

on the candidate set size. As the query graph size in-

creases, the answer set size and so the candidate set

size would likely increase too. Both cIndex and GPTree
need to verify the entire candidate set which is at least

as large as the answer set, while our method has direct

inclusion to overcome this bottleneck. Therefore, we ex-

pect that our algorithm is able to handle larger query
graphs than cIndex and GPTree.

7.5 Query Performance: Effect of Query Answer-Set
Size

In this experiment, we assess the effect of query answer-

set size on the performance of IGquery. We divide the

queries into four bins: [0, 10), [10, 100), [100, 1000), and

[1000,∞), according to the size of the query answer

sets.
Figure 6 reports the average processing time per

query and the average number of candidates obtained

by each algorithm. We do not show the peak memory

consumption in the figures, which is 21 MB for both
IGquery-1 and IGquery-100, approximately 25 MB for

cIndex, and 111 MB for GPTree.
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Fig. 6 Query Performance on AIDS: Effect of Query Answer-set
Size

Figure 6(a) shows that for all sizes of query answer

set, IGquery-1 is almost an order of magnitude faster

than cIndex and about five times faster than GPTree.
When the batch size increases, the improvement further

enlarges. The speed-up of IGquery-100 over IGquery-

1 is an order of magnitude for queries with a smaller
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answer set size, and more than twice for queries with

other answer set sizes. We emphasize that the speed-up

is very significant considering that IGquery-1 is already

very fast.

The query performance can be explained by the can-

didate set size shown in Figure 6(b). The results show
that our direct inclusion and projected-database filter-

ing techniques are more effective than cIndex and GP-

Tree. In Table 7 we also report the number of answers

obtained by direct inclusion (DI), which is very close to

the number of all query answers.

Table 7 Average Number of Answers by DI

[0, 10) [10, 100) [100, 1000) [1000,∞)

# of ans by DI 2 60 342 909

# of exact ans 3 64 469 1383

7.6 Effect of Database Size

We also evaluate whether the performance of IGquery is

affected by the database size. We use the six databases

prepared from the NCI dataset for this experiment.

Indexing Performance. Figure 7 reports the time

and peak memory consumption of index construction

for each index. We are not able to obtain cIndex for
databases with 40K graphs or more due to its higher

memory consumption.
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Fig. 7 Indexing Performance on NCI: Effect of Database Size

Similar to the previous experiment, our index con-

struction is several orders of magnitude faster than cIn-

dex and over an order of magnitude faster than GPTree,
using significantly less memory. Both indexing time and

memory usage of all the three indexes increase with

database size.

An important observation of this experiment is that

when the database size increases, the size of the IG (in

terms of # of edges) does not increase, as shown in

Table 8. This result reflects that real datasets from the

same source/application share much commonality, and

the IG can indeed effectively capture the commonality

in the data.

Table 8 IG/GDB size (# of edges) for NCI

10K 20K 40K 60K 80K 100K
568

100634

552

187097

557

401917

553

608984

564

819324

568

1025636

Query Performance. Figure 8 reports the average

processing time per query, the peak memory consump-

tion, and the average number of candidates obtained by

each algorithm.
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Fig. 8 Query Performance on NCI: Effect of Database Size

Figure 8(a) shows that the processing time grows
steadily when the database becomes larger, which is un-

avoidable since the answer set size also increases accord-

ingly. However, compared with cIndex, IGquery is more

scalable. We note that cIndex is not scalable mainly be-

cause its feature selection is too expensive. Compared
with GPTree, IGquery is from several times to over an

order of magnitude more efficient, depending on the

batch size. Figure 8(b) shows that the memory con-

sumption of cIndex and IGquery is comparable, and is
much less than that of GPTree. For both IGquery and

GPTree, the querying time and memory usage increase

only linearly with the database size.



17

The processing time in Figure 8(a) can be clearly

explained by the size of the candidate set reported in

Figure 8(c). Due to the application of direct inclusion,

IGquery is able to obtain a candidate set much smaller

than cIndex and GPTree. When a larger batch size is
used, the candidate set obtained by IGquery can be

even significantly smaller than the answer set.

7.7 Effect of Commonality

In this subsection, we assess the effect of different degree

of commonality on the performance of our index. We
find that all the real datasets used in the literature for

testing subgraph/supergraph queries share much com-

monality among the data graphs; thus, we use synthetic

datasets to tune the degree of commonality. Most exist-
ing work uses frequent subgraphs as commonality; thus,

we also use frequent subgraphs to indicate the degree

of commonality existing in a dataset.

We generate four datasets with four different de-

grees of commonality as follows: C1:(0, -); C2:(718,

101); C3:(959391, 286); C4:(> 1 billion, 1363). Take

C2:(718, 101) as an example, it means that at a mini-
mum support threshold of 0.01, the dataset C2 has 718

frequent subgraphs and the average frequency of these

frequent subgraphs is 101. Thus, the graphs in C1 share

the least commonality (in fact, a large number of the

graphs do no share any commonality at all), while those
in C4 share the most commonality.

We prepare the query sets and the graph databases

from each synthetic dataset in a similar way as we do
for the real datasets. Each query set has 10K graphs

and an average size of 20 edges. The average density of

the graphs in the query sets varies from 0.05 to 0.5 for

C1 to C4. Each graph database has 10K graphs and
an average size of 10 edges. The average density of the

graphs in the graph databases varies from 0.06 to 0.67

for C1 to C4.

Indexing Performance. Table 9 shows that our in-

dex construction is up to many orders of magnitude

more efficient than cIndex. We are only able to obtain

the result of GPTree for C3 (perhaps some special cases
are not handled in GPTree). For C3, our performance

is about twice better than GPTree.

The results also indicate that it takes longer time to
construct our index on datasets with little commonal-

ity. This is because more new edges need to be created

for the IG when the data graphs share little common-

ality, which is also reflected by the number of edges in
the IG. The ratio of the IG size to the database size

also correctly reveals the degree of commonality of the

datasets.

Table 9 Performance of Indexing on Synthetic Data: Effect of
Commonality

C1 C2 C3 C4

cIndex (time: sec) 61 6429 482 376

GPTree (time: sec) - - 1 -

IG (time: sec) 3 0.3 0.5 0.8

cIndex (memory: MB) 425 420 382 427

GPTree (memory: MB) - - 47 -

IG (memory: MB) 24 24 23 22

cIndex (feature #) 11 94 583 2

GPTree (feature #) - - 4 -

IG (feature #) 328 131 870 581
IG size (# of edges)

GDB size (# of edges)
58686

81384

21862

163021

4183

165326

578

170639

On the contrary, the performance of cIndex is rather
unstable. This is perhaps due to the large variation in

the set of frequent subgraphs used for their feature se-

lection. For example, there are too few frequent sub-

graphs for C1, while there are too many frequent sub-
graphs for C4 even at a high frequency threshold but

they are not discriminative enough to be used as good

features. This also explains why so few features are se-

lected by cIndex for C1 and C4. Our feature selection,

however, does not require to first mine the frequent sub-
graphs.

Query Performance. Figure 9 reports the average
processing time per query and the number of candi-

dates (averaged over all queries). The peak memory

consumption is 21-24 MB for IGquery, 16-24 MB for

cIndex, and 61MB for GPTree (for C3 only).

Figure 9(a) shows that compared with GPTree for

C3, IGquery is over an order of magnitude faster. Com-

pared with cIndex, IGquery is up to two orders of mag-
nitude faster. The results are also reflected by the size

of candidate set shown in Figure 9(b). The fact that

the candidate set size of IGquery is significantly smaller

than the answer set size also reveals that direct inclu-

sion is effective. The performance of cIndex is the best
for C2; however, indexing C2 is also substantially more

costly with cIndex as shown in Table 9.

Another interesting observation from Figure 9(a)
is that IGquery-1 is the first time more efficient than

IGquery-100 for C1. The reason for this uncommon re-

sult is that the graphs in the dataset C1 share very little

commonality such that batch processing no longer has
the advantage, but rather has the disadvantage as it

needs to process more for the batching.

We also notice that the efficiency improvement of
IGquery-100 over IGquery-1 is not large for this ex-

periment. This is mainly because the sizes of the an-

swer sets on the synthetic data are only a few dozens.
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Fig. 9 Query Performance on Synthetic Data: Effect of Com-
monality

Given the small number of candidates in both IGquery-

1 and IGquery-100, the index probing time Tsearch dom-

inates the overall query processing time, while Tsearch

is roughly the same for IGquery-1 and IGquery-100.

Finally, Figure 9(a) also shows that the performance

of IGquery is quite stable over the different degrees

of commonality. We explain this result by considering
the index probing time. The number of matches for a

query in a lower-commonality dataset is smaller; thus,

although the corresponding IG is larger, index prob-

ing only searches a few places in the IG for matching
the query. On the other hand, the number of matches

for a query in a higher-commonality dataset is larger,

but the corresponding IG is smaller and hence index

probing also only searches a few places in the IG for

matching the query. Therefore, the index probing time
is roughly the same for datasets of different commonal-

ity. Since the index probing time dominates the overall

query time for processing the synthetic datasets, the

query time is stable with different degrees of common-
ality.

7.8 Evaluation on Database Updates

In this experiment, we show that in addition to efficient
index construction and fast query processing, our index

also has a very low maintenance cost.

We consider three different scenarios of updates: in-
sertion only, deletion only, and a random mix of both,

which are denoted as insert, delete, and mix in the dis-

cussion. We use the database graphs prepared from the

NCI dataset and perform updates of 10K graphs as fol-

lows. For insertion only, we start with a database of
10K graphs and insert another 10K graphs. For dele-

tion only, we start from a database with 30K graphs

and randomly delete 10K graphs from it. For a mix of

both, we start with a database of 20K graphs and ran-
domly choose to insert graphs into it from another 10K

graphs or delete graphs from it. The final database size

we obtain at the end of all updates in each case is 20K.

Table 10 reports the total time and peak memory

taken to update the 10K graphs, including graph inser-

tion/deletion and updates of features. Clearly, the index

update is very efficient as it takes only about 0.1 second

to update 10K graphs (on average it takes about 0.01
millisecond to insert/delete a graph). The mix update

scenario takes longer time due to the more frequent in-

crease and decrease in the size of host(e) for an edge

e that causes more frequent re-ordering of the host(e).
As for the memory consumption, the delete takes more

memory only because we start with a larger database

(30K graphs initially) and we record the peak memory

consumption.

Table 10 Performance on Index Maintenance

insert delete mix

Total update time (msec) 99.12 76.90 117.95

Memory consumption (MB) 21 30 22

Table 11 shows the size of the IG (in terms of num-

ber of edges) of the 20K database at the end of each

update scenario. We also compare it with the size of

the IG constructed from-scratch for the 20K database,
denoted as rebuild in the table. It is shown that the size

of the IG obtained by incremental update is almost the

same as that obtained by rebuilding from-scratch.

Table 11 Size Ratio of IGs and Query Processing Time

insert/rebuild delete/rebuild mix/rebuild

IG size ratio 554 / 552 557 / 552 554 / 553

Query time (ms) 4.03 / 3.99 3.14 / 3.01 3.69 / 3.58

Finally, we also show in Table 11 that the query per-
formance on the incrementally updated database does

not degrade (or only very slightly) when compared with

the query performance on the database rebuilt from-

scratch. The memory consumption for query processing
on the incrementally updated database is the same as

that on the database rebuilt from-scratch, because their

IGs have essentially the same size as shown in Table 11.

8 Related Work

Chen et al. propose cIndex [2] for processing supergraph

queries. They model the feature selection as the prob-
lem of maximum coverage with cost. Therefore, filter-

ing with their features is effective. Zhang et al. pro-

pose GPTree [22]. They organize the database graphs
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with a tree structure to allow testing subgraph isomor-

phism from multiple graphs to one graph. A set of sig-

nificant frequent subgraphs with high filtering power

is selected as features. However, the effectiveness of the

features in both cIndex and GPTree comes with a trade-
off: the feature generation and selection process involves

frequent subgraph mining, which is slow and hard to

maintain for database updates. On the contrary, our

feature selection process is very efficient and we are
able to achieve higher filtering power by our projected-

database filtering approach. More importantly, we pro-

pose a new technique of direct inclusion, which enables

us to outperform cIndex and GPTree. We also further

improve our work by exploring the commonality among
the queries.

A number of indexes have been proposed for pro-
cessing subgraph queries [13,20,5,10,16,21,3,23,24,12].

Most of these methods are filtering-and-verification ap-

proaches. The exceptions [16,3] cannot be adopted to

process supergraph queries because the number of su-

pergraphs of the database graphs is infinite and thus
cannot be indexed. A number of these indexes are also

extended to handle similarity matching. Similarity search

has not been studied for supergraph queries and may

be considered as a future work.

9 Conclusions

We propose a query system, IGquery, for processing su-

pergraph queries on transaction graph databases. IG-
query constructs an index by extracting commonality

among the graphs. When little commonality exists, IG-

query can also efficiently locate the matching graphs

in the index. IGquery has the following distinguished

features: (1) low index construction cost and low index
maintenance cost (suitable for dynamic databases); (2)

fast query processing by the dual operations of direct

inclusion and filtering; (3) capable of batch processing

and handling high-speed query streams.

Experimental results verify that: (1) On index con-

struction, IGquery is orders of magnitude more efficient

than cIndex [2] and GPTree [22]. The index mainte-
nance cost is also shown to be indeed very small. (2)

On query processing, IGquery is up to two orders of

magnitude faster and is also more stable, even when the

queries are processed one by one (i.e., IGquery-1). The
query performance improves further by at least several

times when queries are processed as batches. (3) Exper-

iments also show that IGquery is efficient on datasets

with both low or high degree of commonality.
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