Querying Streaming XML Data Using Hash-Lookup Query Trees

James Cheng Wilfred Ng
Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong
{csjames, wilfredi@cs.ust.hk

Abstract In querying streaming XML data, in general we cannot
determine whether or not an element is in the query result
The rapid growth in the amount of XML data and the with the data received so far. Due to the read-once-only na-
development of publish-subscribe systems have led to greature of streaming data, we must buffer the element until its
interest in processing streaming XML data. While a number inclusion in or exclusion from the query result is verified
of efficient systems have been developed to process XPatfwith some element that comes later in the stream). How-
filters on XML streams, the performance of existing systemsever, buffer handling in querying streaming XML data is
that query streaming XML data is inadequate. We propose non-trivial, as illustrated by the following example.
the QstreamX system for querying streaming XML data us-
ing a novel structure, called Hash-Lookup Query Trees,
which consists of a Hashtable, a Static Query Tree (SQT)
and a Dynamic Query Tree (DQT). The Hashtable is used
to filter out irrelevant elements and provide direct access t
relevant nodes in the SQT. Based on the SQT, the DQT is
built dynamically at runtime to evaluate queries. QstreamX
supports all XPath axes (except the sideways axes), naultipl
and nested predicatesnd/or expressions, a common set of €2 DI E1 €3 D2 xmkdb C4 C5 71
aggregations, and multiple queries/outputs. We show, with
experimental evidence, that QstreamX achieves throughput
five times higher than the two most recently proposed strea
querying systems, XSQ and XAOS, at much lower mem
consumption.

Figure 1. Sample XML Document Tree

Or:;Example 1. Consider evaluating the query) =
‘//al.//£]//b/c” on the XML document tree in Figure 1,
assuming its elements come as a stream in ascending order
of their (numericaljds marked near the circle.

) When the element; (i.e. the node with label andid =

1. Introduction 5) arrives, we have two node sequenags= (a;,bs, cs)

andgs = (ag, ba,cs), matching the main path ap, i.e.
With the rapid growth in the amount of XML data and “//a//b/c”. However, we cannot outputs at this stage,

the development of publish-subscribe systems, processingince the predicate,[.//£]", of both a; anda, have not

streaming XML data has gained increasing attention in re- been satisfied. Since this predicate may be satisfied with an
cent years. Two main and also closely related stream pro-f element that comes later, we mumtffer c5 for both ¢,
cessing problems in XML ardtering[1, 9, 7, 2, 10, 18,11] andg,; butonly one copyof cs should be kept in memory
andquerying[14, 13, 3, 19, 16, 12]. The problem of filter- as to avoidduplicate buffering

ing is to match a set of boolean path expressions (usually When the end-tag of the elemesyt arrives,a, expires

in XPath [8] syntax) with a stream of XML documents and and so does the node sequegge Sincea,’s predicate is

return the identifiers of the matching documents or queries.not satisfied, we need temovethe cs buffered forg,. But

Querying streaming XML data, however, outputs all the el- cs should not be deleted, since it is still being buffered for

ements in the stream that match the input query. In this ¢;, which may satisfy) if there is anf element, descendant

paper, we focus on the problem of querying. Our goal is to of a;, coming in the stream.

efficientlyevaluate XPath queries amboundedstreaming Similarly, we bufferc,, for the node sequenceg; =

data atsmall memory consumption (a1, bg, c10) @ndgy = (a7, bg, c10). Then when the start-tag

of the element,, arrives,q;, q3 andq, satisfy@. Hence, rules, while the DQT is constructed with correspondence to
we need to immediatelffushthe cs buffered forg, and the the structure of the SQT.

c1o buffered forgs andg,. However, we shouldlush cso e We evaluate QstreamX on several real datasets and
only once though itis buffered for boths andqs. a large set of queries. Our results show that QstreamX

When cy5 arrives, we should not buffer bututput achjeves throughput at least five times higher than the two
cis immediately, since this time the node sequences, most recently proposed stream querying systems, XSQ [19]

(a1,bs, c13) and (a7, bg, c13), instantly satisfyQ. Again, and XAOS [3], but at significantly lower memory consump-
we should output,3 only oncefor the two sequences. tion. We also extensively study the factors that affect the
O . . . i i
Example 1 suggests some important issues in the quer>performance of Qs'treamx using a set of complex synthetic
processing: (1)buffering potential query result oput- datasets and queries. The results prove the robustness of

putting determined query result; (Fushingor removing ~ QStreamXin querying streaming XML data.
buffered data as soon as their inclusion in or exclusion from N the rest of the section, we discuss related work on

the query result can be decided: and @plicate avoid- streqm processing. In Section 2, we present the XPath
ancein buffering, outputting, flushing and removing. Let dueries supported by QstreamX. We define Hash-Lookup

us call all these issues collectively lasffer handlingn our Query Trees and present query evaluation in Sections 3 and
subsequent discussion. 4, respectively. We analyze the complexity of QstreamX
Buffering comes only with the presence of predicates. qUery processing in Section 5 and evaluate QstreamX in
The query in Example 1 contains only a single atomic pred- S€ction 6. We conclude the paper in Section 7.
icate but the problem is already very complex. In the pres-
ence of multiple and nested predicates withhe/or op- 1.1. Related Work
erators, buffer handling, in conjunction with predicatalev
uation, poses significantly greater challenges. Anotherim A number offiltering systems [1, 9, 7, 2, 10, 18, 11]
portant issue is that a substantial amount of elements in ahave been proposed to process XPath filters on streaming
stream are usually irrelevant, however, no existing quegryi XML documents. XFilter [1] converts queries into sepa-
systems have considered filtering out these elements. rate Deterministic Finite Automata (DFAs), while YFilter
We propose the QstreamX system, which addresses al[9] eliminates redundant processing on common prefixes in
the above-mentioned challenges with the use of a novelthe queries by a single Non-Deterministic Finite Automaton
data structure, calleblash-Lookup Query Treg#iL-QT). (NFA). XTries [7] also supports shared processing of com-
HL-QT consists of three componentsHashtable a Static mon subexpressions of the queries by a trie. The through-
Query Treg(SQT) and aDynamic Query Tre€DQT). The put of these systems decreases linearly with the number of
Hashtable filters out irrelevant streaming elements and pro queries. LazyDFA [2, 10] ensures a constant high through-
vides direct access to nodes in the SQT that are relevanput by lazily constructing a DFA for the entire workload of
for the processing of relevant elements. The SQT is a treequeries. However, LazyDFA may require excessive mem-
model of the input query, based on which the DQT is con- ory for XML data with complex structures. This problem is
structed dynamically at runtime to evaluate queries. addressed in [18], which clusters the queries intbFAs
This paper makes the following contributions: to reduce the number of DFA states and introduces a shared

e QstreamX supports all XPath axes except the sidewaysNFA state table to reduce the size of the NFA state table
axes preceding(-sibling) andfollowing(-sibling)). stored in each DFA state. The XPush machine [11] elimi-

It also supports multiple and nested predicates witfyor nates commoln'pr.edicates by translating the query workload
operators, a common set of aggregations, and multipleint© & deterministic pushdown automaton.

queries/outputs. To the best of our knowledge, our set of Among these systems, only [18] and [11] support almost
queries is the most expressive among those supported b€ Same set of queries (except aggregations) as QstreamX.

other existing stream filtering and querying systems. Although we consider the same query language, filtering
only outputs the identifier of matching documents or queries

and does not require buffering of potential query result.
Many queryingsystems are transducer-based. The XSM
system [14] translates an XQuery [6] into a network of
XML stream transducers that can be reduced to a single
e HL-QT is a very elegant design, which makes the im- transducer. However, XSM supports only a small, non-
plementation of QstreamX straightforward. The Hashtable recursive subset of XQuery, while other features such as
is realized as a simple array that stores distinct query ele-closures and aggregations are not supported. A similar
ments and pointers to the SQT nodes. The SQT is translatedransducer-based system, SPEX [16], supports regular path
directly from the input query by four simple transformation expressions with qualifiers on well-formed XML streams.

e Our algorithm is the first stream-querying algorithm
that achievesO(|DJ) time complexity andO(|Q|) space
complexity, wherg D| is the size of the streaming data and
|Q| is the size of the input query.

The XSQ system [19] translates an XPath query into a hi- @ = /LP (/OE)?

erarchy of pushdown transducers augmented with buffers.iz “i ki' I{S/LP p? | (@attribute @) CP?
However, XSQ supports only five primitive forms of pred- 1= AX:(tag | f) ?| (@attribute @+) CP*
X ::= self | child | descendant | descendant-or-self |

icates, since buffer handling significantly complicates th parent | ancestor | ancestor-or-self

encoding of the logic of the predicates into the automata. .._ [P (and | or) P] | [LP CP?]
Two tree-based approaches are XAOS [3] and TurboX- ¢p ..— gp Jiteral | [[. OP literal] (and | or) [. OP literal]]
Path [12]. Both methods translate an input query into @ gp ::= > | < | >=| <= | = | I= | contains| starts-with

parse tree anc_j suppgrarent and_ancestor axes by con- 0E ::= text() | count() | sum() | avg() | max() | min()

verting them into forward axes in a graph. The tree and

graph are used to construct structures that keep matched Figure 2. Grammar of QstreamX Queries

data. XAOS outputs query result only at the end of a stream,

while TurboXPath processes predicates and query result at An XPath queryq, is alocation path LP, followed by an

the end of each closure fragment, which can be the entireOPtionaloutput expressigroE. TheLP selects nodes in the

stream. During the process, all matching structures need"Put XML document by a sequence of one or mioation

to be kept in memory. This may incur prohibitively huge StePpsLS. EachLs consists of araxis, AX, anode testnd

memory consumption for unbounded streaming data and is2n Optionapredicate P. We support all XPath 2.0 [5] axes

therefore not practical. Conversely, QstreamX does not de-€XCeptpreceding(-sibling) andfollowing(-sibling).

lay processing predicates and query result, nor does it kee;irhe node test refers to the matching of the element/at&ibut

any extra data in memory. label. The predicate of eatls can in turn be ab.P contain-
TurboXPath supports a subset of the for-let-where con- ing more predicates and so on recursively, to refine the set

structs of XQuery and produces query result as tuples, withOf nodes selected by tHes. To write more expressive and

the use of multiple output nodes. This subset of XQuery canUseful queries, thend andor operators are used to join the

be easily supported by QstreamX with only a slight modi- predicates. TheE specifies the format of the query result.

fication. However, XAOS and TurboXPath do not support QstreamX supports the followir@gs: (1)not specifiedthe

aggregationsyr-expression and multiple queries. query returns the set of nodes selectet_:l by#tq2) text():
Multiple queries are discussed in [13], which processes only the text contents Qf the elemen_ts inthe re_sult setarere

several regular path expressions by a global templateghat i turned; (3) one of the five aggregation operations.

based on a finite state machine model. However, the regular

expressions are evaluated in turn and their commonalities3- Hash-Lookup Query Trees

are not exploited. In QstreamX, redundancies in common

. : : - ; : In this section, we define the three componentdash-
prefixes is easily eliminated by transforming the multiple ' i .
queries into a single SQT. Lookup Query Tree@1L-QT): the Static Query Tre€¢SQT),

The filtering systems [2, 10, 18, 11] guarantee a constantthe Dynamic Query Tre¢DQT) and theHashtable

high throughput using a hash algorithm to access directly3 1 The Static Query Tree

relevant states for processing each element. Howevectdire

access to relevant states/nodes using hash-lookup isleonsi The Static Query Tre¢SQT) is a tree model of the input
erably complicated by buffer handling in the querying prob- query constructed by four transformation rules, as degicte
lem. Infact, all existing querying systems need to search fo in Figure 3, where elements in dotted line are optional com-
matching transitions or relevant nodes for each (including ponents. The transformation rules are derived directlyfro
irrelevant) streaming element. Our proposed HL-QT adoptsthe EBNF of the query language presented in Figure 2.

a hash-lookup strategy, which is natural to filter out irrel- a) LocationStep Transformation. A location step is
evant elements and provide direct access to nodes relevanfansformed into aQT nodeor asnodefor short, which

for processing relevant elements. is a triplet, @xis predicate dlist), whereaxisis the axis of

The studies [4] on lower bounds on the memory require- ye |ocation steppredicate if any, is handled by Predicate
ments of XPath evaluation on XML streams show that most 1yansformation: andlistis a list of DQT node pointers that

current stream processing algorithms require memory farprovide direct access to the DQT nodesdWst is initially

greater than the lower bound. However, the memory re- gty since node pointers are added todiist at runtime
guirement of our algorithm lies closely to the lower bound. during query evaluation.

) (b) LocationPath Transformation. A location path is a
2. Queries Supported by QstreamX sequence of one or more location steps. Therefore, Loca-
tionPath Transformation is just a sequence of one or more
We support a practical subset of XPath [8] queries with LocationStep Transformations, whersreodeis connected
extended aggregations, whose EBNF is shown in Figure 2. to its parent by itaxis

. LS
axis ;
-------- LS paxds LS,
-a\'f’redicate:) LS Predicaté) :
i LS,
LS“.axii — T
LS,: Or<Bredicatd) i
(a) LocationStep (b) LocationPath (d) ROOT/OE

Transformation

Transformation

iLSo.axis

LS,

Transformation

LS, }-<AT0

Some”
LocationPath Op-~ QP
-

Predicate) (Predicate

em—ma
(Jlteral)

.....

S
[N

Pa'rt ~

Seam=" \Jlt.e.’.‘a.lr)

(cT)

(c3)

(c) Predicate Transformation

Figure 3. SQT Transformation Rules

(c) Predicate Transformation. To facilitate efficient pred-

Static Query Tree

//a[[[.//c] or [b[e]/c]] and [./A[[[. starts-with "xml"]
and [. contains "db"]] or [. = "cs"]]]1//b[d])/c/ text()

Query:

Figure 4. The SQT of an Example Query

Notations. We define a few notations used throughout the
paper. These notations also apply to the corresponding com-
ponents in the DQT.

Let s be asnode If s has an ancestor that issanode
then we say is undera PBT. Note that is not part of the
PBT, since a PBT consists of orgpnods.

If the root of a PBT is connected tg then the PBT is

icate processing, we require predicates be fully parenthe-”)e_PBT Ofé’/- We say that is thepar'entof/anot.hers'node
sized when they are joined by the logical operators. We s’ if s ands’ are connected by thexisof s'; while s is the

then model the predicates as a binary tree, call&udeal-
icate Binary Tree(PBT). A node in the PBT is called an
SQT predicate noder aspnode which is one of the three
types:0 (for or-expression)A (for and-expression) op (an
encapsulation of other predicate). Value comparison,yif an
is also modelled either byrspnode or by anA-spnodeor
an0-spnodefor multiple value matches.

We classify predicate transformation into three cate-

indirect-parentof s, if s ands’ are connected by a path of
spnods in the PBT ofs.

The primary pathof the SQT is the path that remains
when all PBTs and anoda under the PBTs are removed.
Note that there may be more than one primary path in the
DQT, if the streaming data is recursive with respect to an
axison the primary path of the SQT, as we will show later.

For example, in Figure 4, the nodes, s3, sg and sy

gories: (1) an atomic predicate is transformed by apply- have a PBT, while the nodes, s, s4, s5, s andsg are
ing LocationPath Transformation on the location path in the under a PBTs;, is the parent of but the indirect-parent of
predicate, as shown in Figure 3(c1) and 3(c2); (2) a nesteds2: 53 @ndsg; (so, s1, 57, 59) is the primary path. Moreover,

predicate is transformed by applying Predicate Transferma
tion recursively; or (3) amnd/or expression is transformed

if a snodes not on the primary path, then it is under a PBT.
The dot notatioru.b means thab is the component af.

by applying Predicate Transformation on both sides of the For examples.dlist refers to thedlist of s.

logical operator, as shown in Figure 3(c3).

(d) ROOT/OE Transformation. This transformation is car-
ried out in two steps. At the beginning of the SQT construc-
tion, we create the root of the SQT. At the completion of the
SQT construction, we create a node, calleddhput node

to model the output expression of the query.

We remark that in case that any reverse axespagent
and ancestor(-or-self), are present in the input query,
they are converted into equivalent forward axes (c.f. [17])
For example, /descendant:b/ancestor:a” is con-
verted into /descendant-or-self::a[descendant::b]”.

3.2. The Dynamic Query Tree

The Dynamic Query Tre€DQT) is constructed dynami-
cally at runtime to simulate the execution of query evalua-
tion. We use the SQT to guide the construction of the DQT
and to provide direct access (using tists) to nodes in the
DQT that are relevant for the processing of a streaming el-
ement. The construction of the DQT is central to the query
evaluation mechanism of QstreamX and will be discussed
in Section 4. We now detail the structure of the DQT, with
reference to the SQT.

Like the SQT, there are two types of nodes in the DQT:

Figure 4 shows the SQT of an XPath query. Note that the DQT nodg(dnodg andDQT predicate nhodédpnod¢. Each

dlists of all snode are initially empty. The node identifier,
s;, to the side of eachnodeand the element labels are only
included for referencing thenode in later discussion.

dnode(dpnod@ corresponds to a unigemode(spnodg¢and
the relationship between tltmodes (dpnods) is the same
as that between the correspondsmpde (spnods).

A dnoded, is atriplet, fepth blist, flag), wheredepthis Figure 5 shows thslist of the six elementsz, b, c,d, e
the depth of the corresponding XML element in the stream- and £, of the query in Figure 4. For example's slist has
ing document, and thelist and theflag are used to aid two elements since there are tws in the query. In both
buffer handling and predicate evaluation. The content of slistelements, theschilds, s; and s3, modelb; while the
d.blistis described as follows: sparent sy, is the parent of; but the indirect-parent ofs.
The firstdp is () since we can reach; from s; directly,
while the secondlp, LR, shows that from the root of;’s
PBT, we reaclss’s parent by going left and then right.

e If d is on the primary path, thedblist is either() or a
list of pointers to where query results are buffered.

e If d is under a PBT, thed is used to evaluate a pred-
icate and hence no data need be bufferedifadow- ai{(so.s1.0)}; di{(s7.ss.0)}; e{(ss,sa0)} £:{(s1.56R)};
ever, we assign a special valye to d.blist so that we bi{(s1,57,0), (51,53 LR)}; ci{(s7,59,0),(53,55,0),(s1,52,LL) }.
can immediately identify whether @nodeis under a
PBT or on the primary path during query processing.

Theflagis eitherT or F, which has different meanings: 4. Query Processing in QstreamX
e If dis on the primary path (i.ei.blist £ p):

Figure 5. The slistof the Query in Figure 4

In this section, we first discuss the mechanism of query-
— d.flag=T: The predicates of atl's ancestors and ing streaming XML data by the dynamic construction of

d are satisfied. the DQT. We then discuss the processing of aggregations,
— d.flag = F: The predicate of some afs ances- wildcards and multiple queries/outputs. Due to space con-
tors has not been satisfied. straints, we limit our discussion to the processing of the
o If dis under a PBT (i.ed.blist = p): child anddescendant axes only, since the reverse axes
o can be converted into the forward ones and axes containing
— dflag=T: All d's descendants are satisfied. theself component can be handled by a test on the context

— d.flag=F: d has some descendant not satisfied. ngode.

When we say that dnode d, is satisfied, we mean that .
the predicates of alli's descendants and are satisfied. 4.1. DQT Construction

When we say that’s predicate is satisfied, we mean that The execution of query evaluation in QstreamX is sim-

d's PBT is evaluated to be true (and deleted), but it does notyated by the dynamic construction of the DQT. We now

imply that the predicates afs descendants are all satisfied. djscuss how the DQT is constructed at runtime with corre-
A dpnodeis one of the following typesP, A (and), 0 spondence to the SQT and the use of hash-lookup.

(o.r)' L (I-eft) andR (right), vyhereL (®) indicate; that the left Hash-Lookup. The streaming XML data is parsed as a se-

(right) side of theand-predicate has been satisfied and only quence SAX-events, which are classified into four tygs:

the right (left) side needs to be processed. (start-tag), E (end-tag, A (attribute) andT (text()). The
events,S, A and E, carry the label of an element/attribute.
We also use a stack to keep the labels so that @aetent

]) is given the stack-top label. Thus, we can apply hashing on
The Hashtable filters out all streaming elements that do e |abel of each SAX-event, to perform hash-lookup:
not match any element in the query. A hash value is gen-

erated for each distinct element/attribute label in thegue
The labels are then stored in the corresponding hash slot.

3.3. The Hashtable

e If z is hashed into an empty slot in the Hashtable, it is
filtered out immediately.

Collision is handled by chaining. In practice, collisions a e If zis hashed into an non-empty slot, we then process
very rare in QstreamX, since we use a hashtable of default ~ * if its label matches with the label stored in the hash
size 1024 (only a few KB memory size), while most XML slot, or else we filter out if 2's label does not match.
datasets have less than 200 distinct elements. Whenzx passes the hash-lookup filtering, we access the

To provide direct access tmode that match a streaming relevantsnode via their pointers in eacklistelement,
element, a list, called thdist, is kept in each hash slot. An (sparent schild, dp), of theslistkept in the hash slot.

element of theslistis a triplet, §parent schild dp), where Let s, and s. be thesnodepointed at bysparentand
sparentandschildare twosnodepointers, andgparents ei- schildrespectively. Ifx is S/A (T'/E) ands),.dlist (s..dlist)
ther the parent or indirect-parent s¢hild anddp is a list is empty, i.e. nalnodehas been created to evaluajg(s..),

of L or R symbols to represent the left or right direction, then the root-tos, (-s.) path has not been matched. In this
respectively, fromsparentto schild if sparentis the indi- case, we do not process the currsligt-element but con-

rect parent okchild andsparents PBT has more than one tinue processing with nextslistelement, if any. Thus, we
spnods; dp is denoted by) otherwise. only procesg if the dlist of the relevansnodes not empty.

If sp.dlist (s..dlist) is not empty, letd be thednode
pointed at by a pointer in thdlist. If s..axisis child and
d.depthis not one less than (not equal to) the depth drf
the streaming document, we do not procedsr d. If the
depths match, we then procesdor d as follows. (In the
following discussion, when we say thae quit we mean
that we do not process for d, but process: for the next
dnodepointer, if any, in thadllist.)

Processing of Start-Tag.If « is an.S or A event, thenl is
pointed at by a pointer ig,.dlist. We process;, depending
on the position ok, as follows:

(Case 1:)s,, is the parent 0. andd.blistis notp. Thens,
is on the primary path, sinaeéblist # p implies thatd is on
the primary path and so i8s correspondingnode s,,, and
so iss,'s child, s.. We create a newnodeto process query
result or handle buffering. The creation of a ndnodeis
discussed later in this subsection.

(Case 2a:}, is s.’s parent andl.blistis p. Thens, is under
a PBT, sincei.blist = p implies thatd is under a PBT and
S0 is s,, and so iss,’s child, s.. If d.flagis T, then we

quit, sinced’s descendants have been satisfied and need not

be reprocessed. Otherwisegsif has no PBT and no child,
thenz immediately satisfies. and we updaté.flagto T to
indicate that all's descendants have been satisfied.

If d's predicate has been satisfied, we also invoke Bub-
bleUp (,), which will be discussed in Section 4.3, to bub-
ble upd’s satisfaction to its ancestors. df has a PBT or a
child, then we create a netinodefor the (future) process-
ing of the PBT or the child.

(Case 2b:)k, is the indirect-parent of.. Then by definition
scisunder a PBT. Ifl has no PBT, i.e. the PBT is deleted at
its satisfaction, we quit, since a satisfied PBT (i.e. praigit

We then assign the depth ofto d’.depth If s. has a PBT,
we also construct a PBT fal' with correspondence to the
PBT of s.. Finally, we connect’ to its parent and insert it
as the head of...dlist to provide direct access tb.

Processing of text().If z is aT event, thenl is pointed at
by a pointer ins...dlist. We have the following two cases:

(Case 1:)d is on the primary path. Then if the child ef
is the output node andhas no PBT, we buffer or output
otherwisey is not a query result and hence we quit.

(Case 2:)d is under a PBT. Then ifl has a PBT and the
PBT is evaluated to be true with we deleted’s PBT and

invoke BubbleUp ¢, 0) to bubble upd’s satisfaction to its
ancestors; otherwise, we quit.

Processing of End-Tag.If z is E, thend is pointed at by
a pointer ins..dlist. We deleted and remove its pointer
from s..dlist. If d is on the primary path, we also upload or
removed.blist.

4.2. Buffer Handling

Buffer handling in QstreamX includes: (a) buffering or
utputting; (b) flushing; and (c) uploading or removing.
Since streaming XML data can be recursive with respect
to a query, we must avoid a query result being duplicately
processed. We define our buffer data structureBbjfer
= (storg counte). The use of Buffer to handle duplicate
avoidance is discussed as follows.

(a) Buffering or Outputting. Given a potential query re-
sult, r, with the contextdnode d, we bufferr if d.flagis F
or outputr if d.flagis T.

To bufferr, we assign a Buffel, and store- in b.store
We keepb’s pointer in aRegisteruntil » expires, i.e. be-
fore the next SAX-event is parsed. In this way, even if

(o]

need not be reprocessed. Otherwise, we start from the rooheeds to be buffered for mamnodes, we can simply in-

of d's PBT and follow the path indicated hip to the leaf
dpnode p, which corresponds to the parentspf While we
are following dp, if we find that adp componentX or R)
matches the type ofdpnodeon the path, we quit, since the
left or the right side of theand-predicate must be satisfied.
But if we can reactp and if s. has no PBT and no child,
thenz immediately satisfies. and we invoke BubbleUp
(d, p) to bubble up the satisfaction fromto its ancestors.
If s. has a PBT or a child, then we create a rdivodefor
the (future) processing of the PBT or the child.

Creation of dnode Let d’ be the newdnodeto be created.

(Case 1:)s. is on the primary path. Then, ifflagis T and
s. has no PBT{' .flagis set toT; otherwised’ .flagis set to
F. However,d’ blistis always initialized to bé.

(Case 2:)s. is under a PBT. Then, if, has no childd’.flag
is set toT; otherwised’.flagis set toF. However,d'.blist is
always set tg.

sertb’s pointer into theblist of thesednodes, and increment
b.counterfor each suchinode

If we outputr, we set a flag, which is unset wherex-
pires, to prevent being buffered or outputted subsequently.
If » has already been buffered (i.e. the Register ké&ps
pointer), we deleté.storeand set it to be f1lushed”.

(b) Flushing. Given adnode d, and a list of Buffers,
{b1,...,b;,...,b,}, whose pointers are kept ihblist. As
soon asd.flag is set toT, we flush allb;, i.e. b;.store
is outputted and deleted. The flushing also decrements
b;.counter To avoid duplicate flushing, we s&j.storeto
be “f1lushed”, so that subsequent flushing will only decre-
mentbd;.counter We deleted; if b;.counterbecomes zero.
We also remové;’s pointer fromd.blistand when all Buffer
pointers are removed, we séblist to (.

Due to the presence of multiple predicates, we need to
maintain the consistency on tfflag of dnode on the pri-
mary path to ensure immediate flushing: on the satisfaction

of the predicate of @node d, on the primary path, if the
flag of d's parent isT, wetrickle downfrom d to its descen-
dants on the primary path, and for eafodevisited, we
update itsflag to T and perform flushing, until we stop at

4.4. A Detailed Example of Query Processing

Consider evaluating the query shown in Figure 4 on the
XML document presented in Figure 1. For brevity, we use

the first descendant whose predicate has not been satisfiedli_s to denote theS event (same ford, T' and E) of the

(c) Uploading or Removing.Upon the deletion of dnode

d, if d.blist is a list of Buffer pointers and has no PBT,
we uploadd.blistto d's parent, that is, concatenatidglist
to the blist of its parent; but ifd has a PBT, we access
the Buffers via their pointers id.blist to decrement their
counter A Buffer is deleted if itscounterbecomes zero.

4.3. Predicate Evaluation

element, whose label isand id isi, in Figure 1. For ex-
ample,a;.S refers to thes event ofa;. Throughout, we use
s; to denote anodein the SQT (Figure 4) and; to denote
adnodein the DQTSs (Figures 6(a)-6(f)).

Basic DQT ConstructionWe first create the root of the
DQT, dy = (0,4,T), and adddy’s pointer to thedlist of the
correspondingsnode sg. On the arrival ofa;.S, we ap-
ply hashing on the labes, and access’s slist (c.f. Figure
5), {(s0,s1,0)}, that is stored ira's hash slot. We usey’s

We now discuss the actions performed upon the satisfac-pointer ina’s slist to accesss, and then usely’s pointer

tion of adnode d, under a PBT. Whet’'s PBT is evaluated
to be true, we first deletd’s PBT, as to prevent the PBT

in sg.dlist to accessly. Fromd, we create its childg; =
(1,0,F), to correspond teq’s child, s;. We setd; .blistto),

being reprocessed and to release the memory. Then we ingjnces, is on the primary path, andi .flagtoF, sinces; has

voke theBubbleUp(d, () procedure to “bubble up” from,
as described in Procedure 4.1.

The basic idea of thBubbleUpprocedure is as follows:
on the satisfaction of dnode we bubble up its satisfac-

a PBT. We then construct the PBT fér according to the
PBT of s; and insert the pointer td, into s;.dlist. In the
same way, for the next (recursive) eventS, we create an-
other child,ds, for dy. In the following discussion, when we

tion to its parent; if the parent is thus satisfied, the bubble ¢reate adnode we also construct its PBT, if any; and after
up continues and may trigger the satisfaction of the whole the dnodeis created, its pointer is inserted into thist of
PBT, and then in turn trigger the satisfaction of the PBT in jts correspondingnodeto provide direct access. We show
the outer nest and so on recursively. If the satisfaction is the DQT constructed so far in Figure 6(a), in which we also
bubbled up to the primary path, we apply trickle-down as show all the non-emptsilists of thesnode.

discussed in Section 4.2(b).

Procedure 4.1 BubbleUp(dnoded, dpnodep)
begin
1. if (p=0)
if (d.flag=T)
if (d's parentd’, is adnodg

Delete alld"’s descendants;

d flag:=T;

if (d’ has no PBT)

BubbleUp @', 0); /x To bubble up fromi’ «/
else /x d’ has not been satisfied
Terminate BubbleUp;
10. else(d's parent is alpnode p’)
11. Delete all descendantsf /« Sincep’ is satisfied/
12. BubbleUp{’s indirect-parenfy’); /+ To bubble up fronp’«/
13. else /x Notall d's descendants are satisfietl
14. Terminate BubbleUp;
15. else /x p # 0, the bubble-up is from thépnodep, in d's PBT */
16. if (pisthe root ofd’'s PBT)
17. Deletep; I+ Sincep is satisfieds/
18. BubbleUp ¢, 0); /« To bubble up fromi «/
19. elseif(p's parentis of typel)
20. Setp.typeto L (orR), if p is the left (or right) child;
21. else /* The type ofp's parent must b or L orR
Hence p's parent is also satisfied

22. Deletep;
23. BubbleUp ¢, p’s parent);* To bubble up fronp's parents/
end

/x The bubble-up is from thénode d */

n

©CoNDOMW

Predicate Processing (Bubble-Up)The next streaming
event iscs;.S and we have three elements i's slist
{(57,59,0),(s3,55,0),(s1,52,LL) }. However, thallists of the
parentsnode, s; andss, are empty, which implies that,
and s;3 have not been matched. Hence, we only process
(s1,82,LL) and access,; andd; via their pointers irs; .dlist.
We then uselp, i.e. LL, to start from the root ofi;’s PBT,
pr, to reach the leftmost leafpnode p;. Sinces; has no
PBT and child,cs.S satisfiessy. Thus, nodnodeis cre-
ated but we bubble the satisfaction frggup the PBT. The
bubble-up immediately satisfieg's parent since it models
an or-predicate. Hence, we continue bubbling uppto
which is anand-predicate. We change..typeto L to indi-
cate that the left child op, is evaluated to be true. In the
same way, we evaluatg's PBT with c3.S. We update the
DQT in Figure 6(b) (ignorels-ds for the time being.).
Elimination of Redundant Processing/e do not process
c3. T andcs.F, since thadlists of sy, s5 ands, are empty,
implying that nodnodeexists to processs.T and csz.E.
Note thatc;.T" andcs.F are indeed redundant for process-
ing the query .

Then it comes,.S. Using (s1,s7,0) in b's slist we ac-
cesss; and thend, andd,. Fromd, andd; we create
their respective childjs anddy, corresponding te;’s child
s7. However, for the other elemeng;(s3,LR), in b’s slist,
when we uselp to processss, we find thatss belongs to

(d) After bs.S

(e) After fi2.S

dlists dlists
dists sld 001 sid)
(b} sickd | (G0 (D) Sk
: s7:{dh, O
o0 g (R e ST D N S
Buffers g};fégfz)
bi:('C2'2) L2
dlist. dlists)
So:{go}s So:{ ab} .a'lzsts
si:{dh,di} si:{d,0h} SOZ{d”}
Ss:{ Gho} Ss:{he, i1} S1:{d7,d1}
S73{d9,da} S7Z{d9,ds} Z:%g?;(:ﬁ?s}
Buffers e
Buffers br('C2' 1)
be:("C3".2)

(f) After C13.8

Figure 6. The DQTs for Processing the Query in Figure 4 on the XML Document in Figure 1

the satisfied part of a PBT, since the first componenipof
i.e. L, matches the type of the root of both’s PBT and
di's PBT. This is also a part of QstreamX’s mechanism to

via b1's pointer inds.blist to decremenb;.counter Then
we deleted, and its PBT. We do not process, since
d,.depthdoes not match the depth af.F.

eliminate redundant processing. In the same way, we also e then create another child;, for do with a,.S. Then

skip the processing of last tvslist-elements irc’s slistfor
the next streaming elemerg;.

Buffering. We only need to process thslistelement,
(s7,89,0), for cs. Forcs.S, we accesd, andds via sy.dlist,
and create their respective child, anddg, corresponding
to sg. Forcs. T, we apply hashing on the label, obtained
from the stack top. We then accegsandd; via sq.dlist.
Sincesy’s child is the output node and botly andds; have
no PBT,cs.T is a potential query result. We create Buffer
b1 to buffercs.T', i.e. “C2". Then we insert the pointer to
by into bothdg.blist andds.blist, and incremenk; .counter
twice. We show the updated DQT and the Buffer in Figure
6(b).

Uploading.To processs.E, we use £7,s9,0) to accessy
and then accesg andds, via sq.dlist. We uploadd.blist
andds.blistto their parentgl; andd, respectively. Then we
deleteds andds;, and remove their pointers frogg.dlist.

Then withde.S andd’s slist, {(s7,ss,0)}, we delete the
PBT ofd, andds, sinceds.S satisfiesss. Again, ss’s empty
dlist avoids the redundant processingdefl” andds.E.

To proces,.F, we uploadd,.blist andds.blist to their
parentsd; andd, respectively. We then delety andds,
and remove their pointers frog.dlist. We update the DQT
and thedlists in Figure 6(c). Note that bot, .blist and
ds.blist now contain the pointer to Bufféy .

Buffer RemovingThen fora,.F, we accessl, andd; via
s1.dlist. We do not uploadi,.blist sinced, has a PBT, i.e.

corresponding ta;, bg.S createsis anddg as child ofd;
andd; respectively. Althoughs.S is not processed fat;’s
PBT, we createl(to evaluatess, as shown in Figure 6(d).

Theneg.S satisfiess, and we deletel;’'s PBT, while
s4's emptydlist avoidsey.T" and eg. 2 being redundantly
processed. Next;,.S creates a child fotly anddg respec-
tively, corresponding tey. Thisc,,.S also satisfiess, and
the satisfaction triggerg,o's satisfaction, which is bubbled
up until it updates the type of the root df’'s PBT toL.
The last element ir’s slistis thus not processed, singg
belongs to a satisfied part of the PBT.

Forcq,.T, i.e. “C3", we buffer “C3"” in Buffer b5. On the
arrival of c,4.F, theblists are uploaded tdy andds. Then
d,;.S satisfiessg and we delete the PBT of botly andds.
Next, £15.5 createsl;; andd;, to evaluatesg, as shown in
the updated DQT in Figure 6(e).

Predicate Processing (Trickle-Down) and Flushingrhen
f1,. T, i.e. “xml-db”, matches theand-predicate ind;»’s
and di;;’s PBT. We bubble up the satisfaction to the-
predicate, i.e. the root af;3’s andd;;’'s PBT. Thus, both
di12 anddy; are satisfied; and the satisfaction is bubbled
up and triggers the satisfaction of batlh's PBT andd;’s
PBT. Sinced; andd; are on the primary path, we trickle
down the satisfaction of their PBT to their descendants.

The trickle-down starts at;, sinced;2, which is under
dy’s PBT, is processed beforg,. We first updatel; .flag
to T and access; via d;.blist to flushb,. We then decre-

the predicate is not satisfied, and hence the data buffered isnentb; .counterto zero and hence we deléie We also set

not a query result with respect th. We access Buffeb,

dy .blistto #. Then we trickle down tel;’s child dg, we set

dg.flagto T and accesk, via dg.blist to flushb,. We then set
by.storeto “flushed” and decremend,.counter Then we
setdy.blist to). When the trickle-down reaches, we ac-
cessh, again viadg.blist. Sincebs.storeis “flushed”, we
only decremenbs.counter We deleteb, sinceb,.counter
now becomes zero.
Outputting.Then forc,3.S we created,;3 anddy4 as child
of dg anddg respectively, as updated in Figure 6(f). Since
dg.flag anddg.flag areT, dy3.flag andd,4.flag are also set
to T. Therefore, when we procesgs.T' for dy4, we imme-
diately outputc,3.7" as a query result. We also set a flag to
indicate thatc,3.7" is outputted, so that we do not output it
again when we procesks next. The flag is then unset.
Then forcy3.E, we deleted;, andd;s; for bg.E, we
deletedg anddg; for a;.E, we deletal;.
Depth Mismatch and Hash-Lookup Filteringlthough s
is satisfied again witlb,, andd;s, ci;¢ does not match the
depthof the child ofs; and is hence filtered out. The ele-
ments,x,7, y1s andz;q, have no corresponding hash slots
and are hence filtered out. Finally, we delétevhena,.F
comes, while we deleté, i.e. the root of the DQT, to ter-
minate the query processing at the end of the stream.

4.5. Processing of Aggregations and Wildcards

In the previous discussion, we only present the handling

of text() operation. If the output expression is an aggrega-
tion, we use astatistics-accumulatoto evaluatecount ()
and avalue-accumulatorto evaluatesum(), max() and
min(), while avg() is simply the quotient of the contents of
the value-accumulator and the statistics-accumulatote No
thatcount() is processed with th& or A events only, while
the other aggregations also require Thevent.

If the output expression is not specified, we useild-

Qu: "//al/b[./le)/cltext()"
Qx: "flalclid/ext()"
Q3: "//a//b[./e]/d/text()"

Figure 7. The SQT of Three Queries

Multiple queries are processed in a similar way as a sin-
gle query, except that an extra query identifier is used to
distinguish the query results for buffer handling. However
unlike the processing of a single query, we may output/flush
a query result more than once, since the result may also
match other queries.

The processing of multiple outputs is simply handled
by multiple output nodes, which are processed in the same
way as a single output node. To write a query to express
multiple outputs, we use the XPath 2.0 union expression
[5]. For example, for the SQT in Figure 7, the query is

“//a(//ol.//e]/(c/text() | d/text()) | /c//d/text())".
5. Complexity Analysis

In this section, we analyze the complexity of QstreamX’s
guery evaluation mechanism.

SQT Construction. Both the time and space complexity

of the construction of the SQT, including the Hashtable, is
linear in the size of the input query, since we need only one
scan of the query to build both the SQT and the Hashtable.

DQT Construction. The complexity of the query process-
ing is essentially that of the DQT construction, since the

card output node that outputs/buffers all elements when a gyery processing is simulated by the dynamic construction

dnode that corresponds to the lashodeon the primary
path, is created. However, if there is a wildcard in the query
a snode that models the wildcard, is used to process ev-
ery element when the parent of tkaodeis matched. A
wildcard-flagis also used to activate the processing of the
wildcard snode since no element will be hashed into the
slot where the wildcard'slistis stored.

4.6. Multiple Queries and Multiple Outputs
The SQT allows easy elimination of the redundancies in-

troduced by the common prefixes in multiple queries. The
basic idea is to first construct the SQT for the first query.

of the DQT.

Let D be the tree model of the streaming XML docu-
ment,|Q| be the set of alknods and@’ be the set of non-
leaf snodes (note that a leanodedoes not create a corre-
spondingdnodg. For simplicity, we ignorespnods (and
hencedpnods) in the analysis, but the total numberspin-
odes are always less than twice the numbesodde.

A matching sequence € D, of asnodes, is a sequence
of nodes on the same pathiin such that; matches the path
from the root of the SQT te.

We define theAverage Degree of RecursivenessD
with respect to ssnodes, denoted byADR(s), as the to-
tal number of matching sequencessah D divided by the

This SQT is regarded as the base SQT, which is then ex-total number of paths that contain the matching sequences

tended to transform the second query and so on.

Anyof s. For example, consideg in Figure 4 and the document

common prefix that has already been built for the previous in Figure 1, there are six matching sequences, b4, cs),
queries is skipped in the extended SQT. An example of the(ay,bg, c5), (ai,bs, c10), (az,bs,c10), {(ai,bs,ciz) and

SQT for multiple queries is shown in Figure 7.

(a7, bg, c13), On three paths, hen@®R(sy) is 6/3 = 2.

The average size of the DQT, i.e. the average of GHz processor and 1 GB main memory.
the size of the DQTs throughout query processing, is
%ZSGQ/ (ADR(S)-| in the worst-case, sinq'e{\DR(sﬂ indi- XML [Text |Max/Avg| No. of |No. of [Parse Time| Parse Time

. _ Dataset| Size | Size | Depth |Elems. | Attrs. (C++) [(Xerces 1.0)
cates the maximum number dhodes created correspond- == m = o e

ing to s. Intuitively, 5 >, [ADR(s)] = «|Q’|, wherea NASA |23.8MB| 12MB| 8/ 5.58| 477K| 56K| 0.92 sec| 1.64 sec
is a small constant in practice. However, if data is not recur [DBLP | 127MB| 68MB| 6 /2.90 | 3332K] 404K| 5.96sec| 11.73 sec

SiVG,OL _ (% ZsEQ/ (ADR(S)])/‘Q" — 1. In the average- PSD 683MB|278MB| 7 / 5.15 |21306K|1291K| 38.27 sec| 72.10 sec
case, not alk € Q' create correspondingnodes. For ex-

ample, nodnodeis created forsnodes under a PBT if the Figure 8. Characteristics and DTD of datasets
PBT is satisfied. It can also be observed from the example

in Section 4.4, that the DQT is as small|g8|. We ignore 6.1. Throughput

the space used for buffering potential query results, dince

depends on the query selectivity and is inevitable for any Throughput measures the amount of data processed per

stream querying algorithm. second when running a query on a dataset. For each of the
It takesO(1) time to filter out the irrelevant elements. four real datasets, we use 10 queries, which have a roughly

The worst-case time complexity for processing a relevant equal distribution of the four types); consists of only

SAX-event,r, is given by A = ESGQADR(S)a where s child axis, Q> consists of onlydescendant-or-self; Q3

matchesr, sinceADR(s) represents the number dhode and@Q, mix the two axes, buf); consists of a single atomic

to be created/processed. If data is not recursive and all ele predicate, whil&), allows multiple (atomic) predicates. An

ments in a query are distincy is 1. In practice, since both example of each type is shown below:

the number of matchingz (i.e. the number of duplicate el- Q. * /PLAY/ACT/SCENE,/SPEECH /SPEAKER,/text ()"

ements in a query) antiDR(s) are small,4 is a small con- »:“//dataset/ /author//lastname /text()"

stant and the total query time varies.4§D|, and thus the (.. “//inproceedings[year > 2000]/title/text()"

complexity isO(|D|). In the average-case, the time is fur- (,: “//ProteinEntry|summary]/reference[accinfo]

ther reduced, since a large portion of the matctingde /refinfo[@refid =“A70500"]//author/text()”

are skipped due to satisfied predicates or depth mismatch. ¢ throughpt of each system on processing a single

Finally, we note that the complexity of most operations in query is measured as the average of the throughput of pro-

query processing are negligible, while that of the relajive cesging each of the 10 queries for each dataset. We also

more expensive operations, such as bubble-up and tricklesaasure the throughput of processing multiple queries (5

down, are also constant due to the extremely small size of;,4 10 queries) by QstreamX, where the input queries are

the DQT. simply each half of the 10 queries and the 10 queries as a
whole respectively. However, the Xerces 1.0 Java parser

6. Experimental Evaluation [20] used in XSQ is on average two times slower than the
C++ parser used in QstreamX and XAQOS, as shown in the

We evaluate QstreamX on two main metrics for XML last two columns in Figure 8. Therefore, we use tée
stream processing: thiaroughputand thememory con- ative throughput{19], which is calculated as the ratio of
sumption We compare its performance with two most re- the throughput of each system to that of the corresponding
cently proposed querying systems, the XSQ system (Ver_SAX parser, to give a comparison only on the efficiency of
sion 1.0) [19] and the XAOS systénf8]. We do not com- the underlying querying algorithm.
pare with the filtering systems [1, 9, 7, 2, 10, 18, 11] due As shown in Figure 9, QstreamX achieves very impres-
to different inputs (a large number of filtevs a small set ~ Sive throughput, which is about 80% of that of the SAX
of queries), outputs (identifiekss textual results) and eval- Parser (the throughput for Shake is 78% when the dataset
uation methodsr(o bufferingrequired for filtering). We is scaled up by three time); in another word, 80% of the
use four real datasets [15]: the Shakespeare play coltectio UPPer bound. The remarkably high throughput verifies the
(Shake), NASA ADC XML repository (NASA), DBLP, and O(|D|) total query time obtained in the complexity analysis
the Protein Sequence Database (PSD), whose characterid? Section 5. Compared with XSQ and XAQS, QstreamX
tics are shown in Figure 8. We also extensively study the ONn average achieves relative throughput of 2.7 and 4.5 times
factors that affect the performance of QstreamX using large higher, respectively. The tremendous improvement made
sets of synthetic datasets and queries. We ran all the exper@y our algorithm over the XSQ and XAOS algorithms is

iments on a Windows XP machine with a Pentium 4, 2.53 mainly due to the effective filtering of irrelevant elemebys
hash-lookup and the direct access to relevant nodes through

1A released version of most published querying systems, exce@t,
is not available for comparison. We implement the XAOS systeseth@n 2Since outputting the query results to the screen dominaggsrtitess-
the algorithm presented in [3] except that we ignore thersavaxes. ing time, we write the results to a disk file for all systems.

slistanddlist. Finally, we remark that the raw throughput which determine the throughput and the memory consump-
of QstreamX is on average 5.4 and 9 times higher than thattion respectively, mainly depend on the Average Degree of
of XSQ and XAQS, respectively. Recursiveness (ADR) of the streaming XML data with re-
spect to the elements of the input query. We now study the
effect of the ADR on QstreamX’s performance.

We generate three groups of synthetic queries consisting
of the elementsy, b andc, and their respectivid attribute,
061 and the wildcard«). For each group, 20% of the queries do
041 not specify an output expression, while 40% &set() and
40% aggregations. Each group of queries contain an aver-
age of 0, 5and 10 closure axes (descendant(-or-self)
04 andancestor(-or-self)) respectively. Each group is fur-
Shake NASA Datasets BT Feb ther divided into five sets), to Qs, of ten queries; and each
@, have an average of 0, 3.11, 8.2, 14.34 and 19.67 atomic
Figure 9. Relative Throughput predicates per query respectively. The atomic predicates
may be nested in (up to 10 nests) or connected/or
The average relative throughputs of QstreamX on pro- operators with other predicates. Moreover, the atomic-pred
cessing 5 queries and 10 queries are 43% and 19%, as degeates in eacld); have a roughly equal number of structural
noted by QstreamxKand Qstreamy, respectively in Fig- matches, exact-matches, range-matches and string-raatche
ure 9. The great drop in the throughput is mainly because 5 e then generate five synthetic datasets containing the
and 10 times more (potential) query results need to be pro-elementsa, b, c, x andy, and their optionalid attribute.
cessed and duplicate avoidance has to be performed for Since it is hard to generate some specific ADR of the
and 10 more times. However, this overhead is inevitable datasets with respect to a large group of queries, we sim-
for processing multiple queries on XML streams, since we ply repeat each distinct element at random positions on the
must buffer the potential query results at any given time. same path many times. The average number, calledthe
Despite of this, we remark that the throughput of QstreamX erage Repetition FactdiARF), of each of the five elements
on 5 queries is still 1.5 times higher than that of XSQ (i.e. a on each path is set to 10, 20, 30, 40 and 50 for each of the
raw throughput of 3 times higher), while that on 10 queries five datasets respectively. Since the datasets contain only
is only slightly lower (but a slightly higher raw throughput five distinct elements, the ARF roughly reflects the ADR.
) Note that the maximum and average depth of the dataset
6.2. Memory Consumption are 10 and 5 times of the ARF respectively.

Figures 10(a)-(c) show the average relative throughput
of QstreamX on evaluating the five sets of queri@s,to
Qs, of the three query groups, on the five datasets. In all the
cases, the throughput decreases when the number of pred-
icates in the queries increase&g;(has no predicate while
Q5 has the greatest number of predicates per query). In Fig-
ure 10(a), the throughput increases with an increase in the
ARF of the dataset. This is because this group of queries
has no closure axis and thus the streaming data of depth
greater than the depth of the queries are filtered out, since
a greater ARF implies a greater depth. For the other two
groups, as shown in Figures 10(b) and 10(c), the through-
put drops steadily with the increase in the ARF. On aver-
age, the throughput for an ARF of 50 is 59% lower than
that for an ARF of 10, while the overall throughput of eval-
uating queries of 5 closure axes is 23% lower than that of
ELO closure axes. However, the drop rates are acceptable,
since increasing the ARF from 10 to 50 means increasing
the maximum depth from 100 to 500 and the average depth
from 50 to 250, and doubling the number of the closure axes

In Section 5, we show that both the average processingcan double the operations performed for query processing.
time for each SAX-event and the average size of the DQT, The memory consumption of QstreamX is roughly con-

‘DQstreamX BXSQ OXAOS OQstreamX ;m QstreamX o

0.8 — |

Relative Throughput

0.2 1

We measured roughly constant memory consumption of
no more than 1 MB for QstreamX on all datasets and queries
(including the two cases of multiple query processing). In
fact, a large portion of the memory is used in buffering and
in the input buffer of the parser, while the memory used for
building the trees is almost negligible. The constant mem-
ory consumption proves the effectiveness of buffer han-
dling, while the lower memory consumption verifies the re-
sult of the space complexity analysis in Section 5 that the
size of the DQT is extremely small (i.,eO(|Q’|)). The
memory consumption of XSQ is also constant (as a result
of its effective buffering) but several times higher thaatth
of QstreamX (as a result of a less efficient data structure).
The memory consumption of the XAOS system increases
linearly, since the algorithm stores both the data and the
structure of all matched elements and outputs the results a
the end of a stream.

6.3. Factors Degrading QstreamX’s Performance

L |—a =0 -0 Q ——Q& |=a —=0o —a Q —e—oﬂ ~a =o +a Q —o—Q

08 2

N e

0.4

o
©

o
®

I
~

:ﬁ;

o
~

0.2

Relative Throughput

u‘
Relative Throughput

o

o
Relative Throughput

o

o

7

o
o

10 20 30 40 50 10 20 30 40 50 10 20 30 40 50
Average Repetition Factor (ARF) Average Repetition Factor (ARF) Average Repetition Factor (ARF)

o
o
o

(a) Queries with 0 Closure Axes (b) Queries with 5 Closure Axes (c) Queries with 10 Closure Axes

Figure 10. Relative Throughput of QstreamX on Synthetic Datasets and Queries

stant even with the complex datasets and queries. In gen- ceedings of VLDB200O.

eral, higher throughput consumes less memory and vice[2] I. Avila-Campillo and et al. XMLTK: An XML Toolkit for

versa (details thus omitted due to the similar trend). How- _ Scalable XML Stream Processing.moc. of PLANX2002.

ever, for all the datasets and queries, the maximum memoryl3! Céza;(])g ;::k e;:’(‘j‘-ASt;esalr;:’;geﬁ';’?:hsz;ol‘é:e;g‘go‘év'th For-

. : W W Xes. | .

consumption is less than 3 MB' . . [4] Z. Bar-Yossef, M. F. Fontoura, andgV. Josifovski. On the
To ConCIUQe, althou_gh an increase in the ADR, as esti- Memory Requirements of XPath Evaluation over XML

mated by an increase in the number of closure axes and the gtreams. IProceedings of PODR004.

ARF of a dataset, degrades the performance of QstreamX|5] A. Berglund and et al. XML Path Language (XPath) 2.0,

the degradation is gradual and acceptable considering that 2003. http : //www.w3.0rg/TR/xpath20.

both the datasets and the queries are extremely complex[6] S. Boag and et al. XQuery 1.0: An XML Query Language.

The experimental results, however, prove that QstreamX’s ~ http : //www.w3.0rg/TR/xquery, Nov. 2002.

performance is extremely competitive in practice. [7] C. Chan, P. Felber, M. Garofalakis, and R. Rastogi. Effi-
cient Filtering of XML Documents with XPath Expressions.
7. Conclusions In Proceedings of ICDE2002.

[8] J. Clark and S. DeRose. XML Path Language (XPath) 1.0,

. 1999. http: //www.w3.org/TR/xpath.
We have presented QstreamX, an efficient system for[9] Y. Diao, P. Fischer, M. Franklin, and R. To. YFilter: Efficient

processing XPath queries of streaming XML data, by uti- = 5,4 cajable Filtering of XML Documents. IGDE, 2002.
lizing a novel data structure, Hash-Lookup Query Trees, [10] T. Green, G. Miklau, M. Onizuka, and D. Suciu. Processing
which consists of a simple hash table (the Hashtable) and XML Streams with Deterministic Automata. Rroceedings
two elegant tree structures of the SQT and the DQT. We of ICDT, 2003.

have devised a set of well-defined transformation rules[11] A. Gupta and D. Suciu. Stream Processing of XPath Queries
to transform a query into its SQT and discussed in de- with Predicates. liProceedings of SIGMO[2003.

tail how the dynamic construction of the DQT evaluates [12] V. Josifovski, M. F. Fontoura, and A. Barta. Querying XML
queries. A unique feature of QstreamX is that it pro- 13 S,\t/leaLmsL.eT: %ppgarc‘?thd\?”;’;il Zfr?;k L Tan. Efficient
cesses only relevant XM_L elements in the stream by hash- Evaluation ,of Multiple Q,ueries on, Streaming XML Data. In
lookup and accesses directly nodes that are relevant for Proceedings of CIKM2002.

their processing. We have demonstrated, with experimen-(14] . Ludascher, P. Mukhopadhayn, and Y. Papakonstantinou.

tal evidence, that QstreamX achieves significantly higher A Transducer-Based XML Query Processor.Aroceedings
throughput and consumes substantially lower memory than of VLDB, 2002.

XSQ and XAOS. We have also presented a detailed em-[15] G. Miklau and D. Suciu. XML Data Repositorhttp :
pirical study of the factors that affect the performance of //wwu.cs.washington.edu/research/xmldatasets.
QstreamX. Our result indicates that even in the extreme[16] D. Olteanu, T. Kiesling, and F. Bry. An Evaluation of Reg-
cases, the system is able to maintain an acceptable perfor- ular Path Expressmns with Qualifiers against XML Streams.
mance. For future work we are going to explore more the , _ ' Proceedings of ICDE2003.

. . h . I[17] D. Olteanu, H. Meuss, T. Furche, and F. Bry. XPath: Looking
common subexpressions in multiple queries and extend ou Forward. InWorkshop on XMLDM at EDBT002

algorithms to evaluate the sideways axes. [18] M. Onizuka. Light-weight XPath Processing of XML Stream
with Deterministic Automata. IProceedings of CIKM2003.
References [19] F. Peng and S. Chawathe. XPath Queries on Streaming Data.

In Proceedings of SIGMO[2003.
[1] M. Altinel and M. Franklin. Efficient Filtering of XML Doc- [20] Xerces Java Parsérttp://xml.apache.org/xerces-j/.
uments for Selective Dissemination of Information.Rro-

