
Querying Streaming XML Data Using Hash-Lookup Query Trees

James Cheng Wilfred Ng
Hong Kong University of Science and Technology

Clear Water Bay, Hong Kong
{csjames, wilfred}@cs.ust.hk

Abstract

The rapid growth in the amount of XML data and the
development of publish-subscribe systems have led to great
interest in processing streaming XML data. While a number
of efficient systems have been developed to process XPath
filters on XML streams, the performance of existing systems
that query streaming XML data is inadequate. We propose
the QstreamX system for querying streaming XML data us-
ing a novel structure, called Hash-Lookup Query Trees,
which consists of a Hashtable, a Static Query Tree (SQT)
and a Dynamic Query Tree (DQT). The Hashtable is used
to filter out irrelevant elements and provide direct access to
relevant nodes in the SQT. Based on the SQT, the DQT is
built dynamically at runtime to evaluate queries. QstreamX
supports all XPath axes (except the sideways axes), multiple
and nested predicates,and/or expressions, a common set of
aggregations, and multiple queries/outputs. We show, with
experimental evidence, that QstreamX achieves throughput
five times higher than the two most recently proposed stream
querying systems, XSQ and XAOS, at much lower memory
consumption.

1. Introduction

With the rapid growth in the amount of XML data and
the development of publish-subscribe systems, processing
streaming XML data has gained increasing attention in re-
cent years. Two main and also closely related stream pro-
cessing problems in XML arefiltering [1, 9, 7, 2, 10, 18, 11]
andquerying[14, 13, 3, 19, 16, 12]. The problem of filter-
ing is to match a set of boolean path expressions (usually
in XPath [8] syntax) with a stream of XML documents and
return the identifiers of the matching documents or queries.
Querying streaming XML data, however, outputs all the el-
ements in the stream that match the input query. In this
paper, we focus on the problem of querying. Our goal is to
efficientlyevaluate XPath queries onunboundedstreaming
data atsmall memory consumption.

In querying streaming XML data, in general we cannot
determine whether or not an element is in the query result
with the data received so far. Due to the read-once-only na-
ture of streaming data, we must buffer the element until its
inclusion in or exclusion from the query result is verified
(with some element that comes later in the stream). How-
ever, buffer handling in querying streaming XML data is
non-trivial, as illustrated by the following example.

c5 d
6

e
9 c10 d

11
f

12 c13 c
16

z
19

b
4

c
3

b
8

y
18d15

a
7

x17b14a
2

a
1 20

~
...

/
0

C1

C2 D1 E1 C3 D2 xml-db C4 C5 Z1

Figure 1. Sample XML Document Tree

Example 1. Consider evaluating the queryQ =
“//a[.//f]//b/c” on the XML document tree in Figure 1,
assuming its elements come as a stream in ascending order
of their (numerical)ids marked near the circle.

When the elementc5 (i.e. the node with labelc andid =
5) arrives, we have two node sequences,q1 = 〈a1, b4, c5〉
and q2 = 〈a2, b4, c5〉, matching the main path ofQ, i.e.
“//a//b/c”. However, we cannot outputc5 at this stage,
since the predicate, “[.//f]”, of both a1 and a2 have not
been satisfied. Since this predicate may be satisfied with an
f element that comes later, we mustbuffer c5 for both q1

andq2; but only one copyof c5 should be kept in memory
as to avoidduplicate buffering.

When the end-tag of the elementa2 arrives,a2 expires
and so does the node sequenceq2. Sincea2’s predicate is
not satisfied, we need toremovethec5 buffered forq2. But
c5 should not be deleted, since it is still being buffered for
q1, which may satisfyQ if there is anf element, descendant
of a1, coming in the stream.

Similarly, we bufferc10 for the node sequences,q3 =
〈a1, b8, c10〉 andq4 = 〈a7, b8, c10〉. Then when the start-tag

of the elementf12 arrives,q1, q3 andq4 satisfyQ. Hence,
we need to immediatelyflushthec5 buffered forq1 and the
c10 buffered forq3 andq4. However, we shouldflushc10
only once, though it is buffered for bothq3 andq4.

When c13 arrives, we should not buffer butoutput
c13 immediately, since this time the node sequences,
〈a1, b8, c13〉 and 〈a7, b8, c13〉, instantly satisfyQ. Again,
we should outputc13 only oncefor the two sequences.
2

Example 1 suggests some important issues in the query
processing: (1)buffering potential query result orout-
putting determined query result; (2)flushingor removing
buffered data as soon as their inclusion in or exclusion from
the query result can be decided; and (3)duplicate avoid-
ancein buffering, outputting, flushing and removing. Let
us call all these issues collectively asbuffer handlingin our
subsequent discussion.

Buffering comes only with the presence of predicates.
The query in Example 1 contains only a single atomic pred-
icate but the problem is already very complex. In the pres-
ence of multiple and nested predicates with theand/or op-
erators, buffer handling, in conjunction with predicate eval-
uation, poses significantly greater challenges. Another im-
portant issue is that a substantial amount of elements in a
stream are usually irrelevant, however, no existing querying
systems have considered filtering out these elements.

We propose the QstreamX system, which addresses all
the above-mentioned challenges with the use of a novel
data structure, calledHash-Lookup Query Trees(HL-QT).
HL-QT consists of three components: aHashtable, aStatic
Query Tree(SQT) and aDynamic Query Tree(DQT). The
Hashtable filters out irrelevant streaming elements and pro-
vides direct access to nodes in the SQT that are relevant
for the processing of relevant elements. The SQT is a tree
model of the input query, based on which the DQT is con-
structed dynamically at runtime to evaluate queries.

This paper makes the following contributions:

• QstreamX supports all XPath axes except the sideways
axes (preceding(-sibling) andfollowing(-sibling)).
It also supports multiple and nested predicates withand/or
operators, a common set of aggregations, and multiple
queries/outputs. To the best of our knowledge, our set of
queries is the most expressive among those supported by
other existing stream filtering and querying systems.

• Our algorithm is the first stream-querying algorithm
that achievesO(|D|) time complexity andO(|Q|) space
complexity, where|D| is the size of the streaming data and
|Q| is the size of the input query.

• HL-QT is a very elegant design, which makes the im-
plementation of QstreamX straightforward. The Hashtable
is realized as a simple array that stores distinct query ele-
ments and pointers to the SQT nodes. The SQT is translated
directly from the input query by four simple transformation

rules, while the DQT is constructed with correspondence to
the structure of the SQT.

• We evaluate QstreamX on several real datasets and
a large set of queries. Our results show that QstreamX
achieves throughput at least five times higher than the two
most recently proposed stream querying systems, XSQ [19]
and XAOS [3], but at significantly lower memory consump-
tion. We also extensively study the factors that affect the
performance of QstreamX using a set of complex synthetic
datasets and queries. The results prove the robustness of
QstreamX in querying streaming XML data.

In the rest of the section, we discuss related work on
stream processing. In Section 2, we present the XPath
queries supported by QstreamX. We define Hash-Lookup
Query Trees and present query evaluation in Sections 3 and
4, respectively. We analyze the complexity of QstreamX
query processing in Section 5 and evaluate QstreamX in
Section 6. We conclude the paper in Section 7.

1.1. Related Work

A number offiltering systems [1, 9, 7, 2, 10, 18, 11]
have been proposed to process XPath filters on streaming
XML documents. XFilter [1] converts queries into sepa-
rate Deterministic Finite Automata (DFAs), while YFilter
[9] eliminates redundant processing on common prefixes in
the queries by a single Non-Deterministic Finite Automaton
(NFA). XTries [7] also supports shared processing of com-
mon subexpressions of the queries by a trie. The through-
put of these systems decreases linearly with the number of
queries. LazyDFA [2, 10] ensures a constant high through-
put by lazily constructing a DFA for the entire workload of
queries. However, LazyDFA may require excessive mem-
ory for XML data with complex structures. This problem is
addressed in [18], which clusters the queries inton DFAs
to reduce the number of DFA states and introduces a shared
NFA state table to reduce the size of the NFA state table
stored in each DFA state. The XPush machine [11] elimi-
nates common predicates by translating the query workload
into a deterministic pushdown automaton.

Among these systems, only [18] and [11] support almost
the same set of queries (except aggregations) as QstreamX.
Although we consider the same query language, filtering
only outputs the identifier of matching documents or queries
and does not require buffering of potential query result.

Manyqueryingsystems are transducer-based. The XSM
system [14] translates an XQuery [6] into a network of
XML stream transducers that can be reduced to a single
transducer. However, XSM supports only a small, non-
recursive subset of XQuery, while other features such as
closures and aggregations are not supported. A similar
transducer-based system, SPEX [16], supports regular path
expressions with qualifiers on well-formed XML streams.

The XSQ system [19] translates an XPath query into a hi-
erarchy of pushdown transducers augmented with buffers.
However, XSQ supports only five primitive forms of pred-
icates, since buffer handling significantly complicates the
encoding of the logic of the predicates into the automata.

Two tree-based approaches are XAOS [3] and TurboX-
Path [12]. Both methods translate an input query into a
parse tree and supportparent andancestor axes by con-
verting them into forward axes in a graph. The tree and
graph are used to construct structures that keep matched
data. XAOS outputs query result only at the end of a stream,
while TurboXPath processes predicates and query result at
the end of each closure fragment, which can be the entire
stream. During the process, all matching structures need
to be kept in memory. This may incur prohibitively huge
memory consumption for unbounded streaming data and is
therefore not practical. Conversely, QstreamX does not de-
lay processing predicates and query result, nor does it keep
any extra data in memory.

TurboXPath supports a subset of the for-let-where con-
structs of XQuery and produces query result as tuples, with
the use of multiple output nodes. This subset of XQuery can
be easily supported by QstreamX with only a slight modi-
fication. However, XAOS and TurboXPath do not support
aggregations,or-expression and multiple queries.

Multiple queries are discussed in [13], which processes
several regular path expressions by a global template that is
based on a finite state machine model. However, the regular
expressions are evaluated in turn and their commonalities
are not exploited. In QstreamX, redundancies in common
prefixes is easily eliminated by transforming the multiple
queries into a single SQT.

The filtering systems [2, 10, 18, 11] guarantee a constant
high throughput using a hash algorithm to access directly
relevant states for processing each element. However, direct
access to relevant states/nodes using hash-lookup is consid-
erably complicated by buffer handling in the querying prob-
lem. In fact, all existing querying systems need to search for
matching transitions or relevant nodes for each (including
irrelevant) streaming element. Our proposed HL-QT adopts
a hash-lookup strategy, which is natural to filter out irrel-
evant elements and provide direct access to nodes relevant
for processing relevant elements.

The studies [4] on lower bounds on the memory require-
ments of XPath evaluation on XML streams show that most
current stream processing algorithms require memory far
greater than the lower bound. However, the memory re-
quirement of our algorithm lies closely to the lower bound.

2. Queries Supported by QstreamX

We support a practical subset of XPath [8] queries with
extended aggregations, whose EBNF is shown in Figure 2.

Q ::= /LP (/OE)?
LP ::= LS | LS/LP
LS ::= AX::(tag| ∗) P? | (@attribute| @∗) CP?
AX ::= self | child | descendant | descendant-or-self |

parent | ancestor | ancestor-or-self
P ::= [P (and | or) P] | [LP CP?]
CP ::= OP literal | [[. OP literal] (and | or) [. OP literal]]
OP ::= > | < | >= | <= | = | != | contains| starts-with
OE ::= text() | count() | sum() | avg() | max() | min()

Figure 2. Grammar of QstreamX Queries

An XPath query, Q, is alocation path, LP, followed by an
optionaloutput expression, OE. TheLP selects nodes in the
input XML document by a sequence of one or morelocation
steps, LS. EachLS consists of anaxis, AX, a node testand
an optionalpredicate, P. We support all XPath 2.0 [5] axes
exceptpreceding(-sibling) andfollowing(-sibling).
The node test refers to the matching of the element/attribute
label. The predicate of eachLS can in turn be anLP contain-
ing more predicates and so on recursively, to refine the set
of nodes selected by theLS. To write more expressive and
useful queries, theand andor operators are used to join the
predicates. TheOE specifies the format of the query result.
QstreamX supports the followingOEs: (1)not specified: the
query returns the set of nodes selected by itsLP; (2)text():
only the text contents of the elements in the result set are re-
turned; (3) one of the five aggregation operations.

3. Hash-Lookup Query Trees

In this section, we define the three components ofHash-
Lookup Query Trees(HL-QT): theStatic Query Tree(SQT),
theDynamic Query Tree(DQT) and theHashtable.

3.1. The Static Query Tree

TheStatic Query Tree(SQT) is a tree model of the input
query constructed by four transformation rules, as depicted
in Figure 3, where elements in dotted line are optional com-
ponents. The transformation rules are derived directly from
the EBNF of the query language presented in Figure 2.

(a) LocationStep Transformation. A location step is
transformed into anSQT node, or asnodefor short, which
is a triplet, (axis, predicate, dlist), whereaxis is the axis of
the location step;predicate, if any, is handled by Predicate
Transformation; anddlist is a list of DQT node pointers that
provide direct access to the DQT nodes. Adlist is initially
empty, since node pointers are added to thedlist at runtime
during query evaluation.

(b) LocationPath Transformation. A location path is a
sequence of one or more location steps. Therefore, Loca-
tionPath Transformation is just a sequence of one or more
LocationStep Transformations, where asnodeis connected
to its parent by itsaxis.

/

LS
0
:

.

.

.

OutputExpr

Predicate

(a) LocationStep

Transformation

A | O

literal

Predicate

P

LS
0

LS
n

.

.

.

LS
0
.axis

P

OP

A | O
OP OP

LS
0

LS
n

.

.

.

LS
0
.axis

ROOT Predicate

(b) LocationPath

Transformation

(d) ROOT/OE

Transformation

(c) Predicate Transformation

Predicate

(c1) (c2) (c3)

Predicate

LS
1
:

LS
n
:

.

.

.

LocationPath

axis

LS
n
.axis

literal literal

P

LS
0

LS
n

.

.

.

LS
0
.axis

LocationPath

LS
1
.axis

LS
0
.axis

Predicate

Predicate

Figure 3. SQT Transformation Rules

(c) Predicate Transformation. To facilitate efficient pred-
icate processing, we require predicates be fully parenthe-
sized when they are joined by the logical operators. We
then model the predicates as a binary tree, called aPred-
icate Binary Tree(PBT). A node in the PBT is called an
SQT predicate node, or aspnode, which is one of the three
types:O (for or-expression),A (for and-expression) orP (an
encapsulation of other predicate). Value comparison, if any,
is also modelled either by aP-spnode, or by anA-spnodeor
anO-spnodefor multiple value matches.

We classify predicate transformation into three cate-
gories: (1) an atomic predicate is transformed by apply-
ing LocationPath Transformation on the location path in the
predicate, as shown in Figure 3(c1) and 3(c2); (2) a nested
predicate is transformed by applying Predicate Transforma-
tion recursively; or (3) anand/or expression is transformed
by applying Predicate Transformation on both sides of the
logical operator, as shown in Figure 3(c3).

(d) ROOT/OE Transformation. This transformation is car-
ried out in two steps. At the beginning of the SQT construc-
tion, we create the root of the SQT. At the completion of the
SQT construction, we create a node, called theoutput node,
to model the output expression of the query.

We remark that in case that any reverse axes, i.e.parent

and ancestor(-or-self), are present in the input query,
they are converted into equivalent forward axes (c.f. [17]).
For example, “/descendant::b/ancestor::a” is con-
verted into “/descendant-or-self::a[descendant::b]”.

Figure 4 shows the SQT of an XPath query. Note that the
dlists of all snodes are initially empty. The node identifier,
si, to the side of eachsnodeand the element labels are only
included for referencing thesnodes in later discussion.

c

PP

O

b

// /

c

/

P

//

A

O

A

P

d

/

xml

starts

-with
contains

c

/s
0

a

//

b

//

/

/

text()

 Query: //a[[[.//c] or [b[e]/c]] and [.//f[[[. starts-with "xml"]

 and [. contains "db"]] or [. = "cs"]]]]//b[d]/c/text()

Static Query Tree

f

PP

e

/

s
1

=

db cs

s
7

s
9

s
8 s

2
s

3

s
5

s
4

s
6

Figure 4. The SQT of an Example Query

Notations. We define a few notations used throughout the
paper. These notations also apply to the corresponding com-
ponents in the DQT.

Let s be asnode. If s has an ancestor that is aspnode,
then we says is undera PBT. Note thats is not part of the
PBT, since a PBT consists of onlyspnodes.

If the root of a PBT is connected tos, then the PBT is
the PBT ofs. We say thats is theparentof anothersnode,
s′, if s ands′ are connected by theaxisof s′; while s is the
indirect-parentof s′, if s ands′ are connected by a path of
spnodes in the PBT ofs.

The primary pathof the SQT is the path that remains
when all PBTs and allsnodes under the PBTs are removed.
Note that there may be more than one primary path in the
DQT, if the streaming data is recursive with respect to an
axison the primary path of the SQT, as we will show later.

For example, in Figure 4, the nodess1, s3, s6 and s7

have a PBT, while the nodess2, s3, s4, s5, s6 ands8 are
under a PBT;s1 is the parent ofs7 but the indirect-parent of
s2, s3 ands6; 〈s0, s1, s7, s9〉 is the primary path. Moreover,
if a snodeis not on the primary path, then it is under a PBT.

The dot notationa.b means thatb is the component ofa.
For example,s.dlist refers to thedlist of s.

3.2. The Dynamic Query Tree

TheDynamic Query Tree(DQT) is constructed dynami-
cally at runtime to simulate the execution of query evalua-
tion. We use the SQT to guide the construction of the DQT
and to provide direct access (using thedlists) to nodes in the
DQT that are relevant for the processing of a streaming el-
ement. The construction of the DQT is central to the query
evaluation mechanism of QstreamX and will be discussed
in Section 4. We now detail the structure of the DQT, with
reference to the SQT.

Like the SQT, there are two types of nodes in the DQT:
DQT node(dnode) andDQT predicate node(dpnode). Each
dnode(dpnode) corresponds to a uniquesnode(spnode) and
the relationship between thednodes (dpnodes) is the same
as that between the correspondingsnodes (spnodes).

A dnode, d, is a triplet, (depth, blist, flag), wheredepthis
the depth of the corresponding XML element in the stream-
ing document, and theblist and theflag are used to aid
buffer handling and predicate evaluation. The content of
d.blist is described as follows:

• If d is on the primary path, thend.blist is either∅ or a
list of pointers to where query results are buffered.

• If d is under a PBT, thend is used to evaluate a pred-
icate and hence no data need be buffered ford. How-
ever, we assign a special value,ρ, to d.blist so that we
can immediately identify whether adnodeis under a
PBT or on the primary path during query processing.

Theflag is eitherT or F, which has different meanings:

• If d is on the primary path (i.e.d.blist 6= ρ):

– d.flag= T: The predicates of alld’s ancestors and
d are satisfied.

– d.flag = F: The predicate of some ofd’s ances-
tors has not been satisfied.

• If d is under a PBT (i.e.d.blist = ρ):

– d.flag= T: All d’s descendants are satisfied.
– d.flag= F: d has some descendant not satisfied.

When we say that adnode, d, is satisfied, we mean that
the predicates of alld’s descendants andd are satisfied.
When we say thatd’s predicate is satisfied, we mean that
d’s PBT is evaluated to be true (and deleted), but it does not
imply that the predicates ofd’s descendants are all satisfied.

A dpnodeis one of the following types:P, A (and), O
(or), L (left) andR (right), whereL (R) indicates that the left
(right) side of theand-predicate has been satisfied and only
the right (left) side needs to be processed.

3.3. The Hashtable

The Hashtable filters out all streaming elements that do
not match any element in the query. A hash value is gen-
erated for each distinct element/attribute label in the query.
The labels are then stored in the corresponding hash slot.
Collision is handled by chaining. In practice, collisions are
very rare in QstreamX, since we use a hashtable of default
size 1024 (only a few KB memory size), while most XML
datasets have less than 200 distinct elements.

To provide direct access tosnodes that match a streaming
element, a list, called theslist, is kept in each hash slot. An
element of theslist is a triplet, (sparent, schild, dp), where
sparentandschildare twosnodepointers, andsparentis ei-
ther the parent or indirect-parent ofschild; anddp is a list
of L or R symbols to represent the left or right direction,
respectively, fromsparentto schild, if sparentis the indi-
rect parent ofschildandsparent’s PBT has more than one
spnodes;dp is denoted by∅ otherwise.

Figure 5 shows theslist of the six elements,a, b, c, d, e
andf, of the query in Figure 4. For example,b’s slist has
two elements since there are twobs in the query. In both
slist-elements, theschilds, s7 and s3, modelb; while the
sparent, s1, is the parent ofs7 but the indirect-parent ofs3.
The first dp is ∅ since we can reachs7 from s1 directly,
while the seconddp, LR, shows that from the root ofs1’s
PBT, we reachs3’s parent by going left and then right.

a:{(s0,s1,∅)}; d:{(s7,s8,∅)}; e:{(s3,s4,∅)}; f:{(s1,s6,R)};
b:{(s1,s7,∅),(s1,s3,LR)}; c:{(s7,s9,∅),(s3,s5,∅),(s1,s2,LL)}.

Figure 5. The slist of the Query in Figure 4

4. Query Processing in QstreamX

In this section, we first discuss the mechanism of query-
ing streaming XML data by the dynamic construction of
the DQT. We then discuss the processing of aggregations,
wildcards and multiple queries/outputs. Due to space con-
straints, we limit our discussion to the processing of the
child anddescendant axes only, since the reverse axes
can be converted into the forward ones and axes containing
theself component can be handled by a test on the context
node.

4.1. DQT Construction

The execution of query evaluation in QstreamX is sim-
ulated by the dynamic construction of the DQT. We now
discuss how the DQT is constructed at runtime with corre-
spondence to the SQT and the use of hash-lookup.

Hash-Lookup. The streaming XML data is parsed as a se-
quence SAX-events, which are classified into four types:S
(start-tag), E (end-tag), A (attribute) andT (text()). The
events,S, A andE, carry the label of an element/attribute.
We also use a stack to keep the labels so that eachT event
is given the stack-top label. Thus, we can apply hashing on
the label of each SAX-event,x, to perform hash-lookup:

• If x is hashed into an empty slot in the Hashtable, it is
filtered out immediately.

• If x is hashed into an non-empty slot, we then process
x if its label matches with the label stored in the hash
slot, or else we filter outx if x’s label does not match.

Whenx passes the hash-lookup filtering, we access the
relevant snodes via their pointers in eachslist-element,
(sparent, schild, dp), of theslistkept in the hash slot.

Let sp and sc be thesnodepointed at bysparentand
schildrespectively. Ifx is S/A (T /E) andsp.dlist (sc.dlist)
is empty, i.e. nodnodehas been created to evaluatesp (sc),
then the root-to-sp (-sc) path has not been matched. In this
case, we do not process the currentslist-element but con-
tinue processingx with nextslist-element, if any. Thus, we
only processx if the dlist of the relevantsnodeis not empty.

If sp.dlist (sc.dlist) is not empty, letd be thednode
pointed at by a pointer in thedlist. If sc.axis is child and
d.depthis not one less than (not equal to) the depth ofx in
the streaming document, we do not processx for d. If the
depths match, we then processx for d as follows. (In the
following discussion, when we say thatwe quit, we mean
that we do not processx for d, but processx for the next
dnodepointer, if any, in thedlist.)

Processing of Start-Tag.If x is anS or A event, thend is
pointed at by a pointer insp.dlist. We processx, depending
on the position ofsc, as follows:

(Case 1:)sp is the parent ofsc andd.blist is notρ. Thensc

is on the primary path, sinced.blist 6= ρ implies thatd is on
the primary path and so isd’s correspondingsnode, sp, and
so issp’s child, sc. We create a newdnodeto process query
result or handle buffering. The creation of a newdnodeis
discussed later in this subsection.

(Case 2a:)sp is sc’s parent andd.blist is ρ. Thensc is under
a PBT, sinced.blist = ρ implies thatd is under a PBT and
so is sp, and so issp’s child, sc. If d.flag is T, then we
quit, sinced’s descendants have been satisfied and need not
be reprocessed. Otherwise, ifsc has no PBT and no child,
thenx immediately satisfiessc and we updated.flag to T to
indicate that alld’s descendants have been satisfied.

If d’s predicate has been satisfied, we also invoke Bub-
bleUp (d, ∅), which will be discussed in Section 4.3, to bub-
ble upd’s satisfaction to its ancestors. Ifsc has a PBT or a
child, then we create a newdnodefor the (future) process-
ing of the PBT or the child.

(Case 2b:)sp is the indirect-parent ofsc. Then by definition
sc is under a PBT. Ifd has no PBT, i.e. the PBT is deleted at
its satisfaction, we quit, since a satisfied PBT (i.e. predicate)
need not be reprocessed. Otherwise, we start from the root
of d’s PBT and follow the path indicated bydp to the leaf
dpnode, p, which corresponds to the parent ofsc. While we
are followingdp, if we find that adp component (L or R)
matches the type of adpnodeon the path, we quit, since the
left or the right side of theand-predicate must be satisfied.
But if we can reachp and if sc has no PBT and no child,
thenx immediately satisfiessc and we invoke BubbleUp
(d, p) to bubble up the satisfaction fromp to its ancestors.
If sc has a PBT or a child, then we create a newdnodefor
the (future) processing of the PBT or the child.

Creation of dnode. Let d′ be the newdnodeto be created.

(Case 1:)sc is on the primary path. Then, ifd.flag is T and
sc has no PBT,d′.flag is set toT; otherwise,d′.flag is set to
F. However,d′.blist is always initialized to be∅.

(Case 2:)sc is under a PBT. Then, ifsc has no child,d′.flag
is set toT; otherwise,d′.flag is set toF. However,d′.blist is
always set toρ.

We then assign the depth ofx to d′.depth. If sc has a PBT,
we also construct a PBT ford′ with correspondence to the
PBT of sc. Finally, we connectd′ to its parent and insert it
as the head ofsc.dlist to provide direct access tod′.

Processing of text().If x is aT event, thend is pointed at
by a pointer insc.dlist. We have the following two cases:

(Case 1:)d is on the primary path. Then if the child ofsc

is the output node andd has no PBT, we buffer or outputx;
otherwise,x is not a query result and hence we quit.

(Case 2:)d is under a PBT. Then ifd has a PBT and the
PBT is evaluated to be true withx, we deleted’s PBT and
invoke BubbleUp (d, ∅) to bubble upd’s satisfaction to its
ancestors; otherwise, we quit.

Processing of End-Tag.If x is E, thend is pointed at by
a pointer insc.dlist. We deleted and remove its pointer
from sc.dlist. If d is on the primary path, we also upload or
removed.blist.

4.2. Buffer Handling

Buffer handling in QstreamX includes: (a) buffering or
outputting; (b) flushing; and (c) uploading or removing.

Since streaming XML data can be recursive with respect
to a query, we must avoid a query result being duplicately
processed. We define our buffer data structure byBuffer
= (store, counter). The use of Buffer to handle duplicate
avoidance is discussed as follows.

(a) Buffering or Outputting. Given a potential query re-
sult, r, with the contextdnode, d, we bufferr if d.flag is F

or outputr if d.flag is T.
To bufferr, we assign a Buffer,b, and storer in b.store.

We keepb’s pointer in aRegisteruntil r expires, i.e. be-
fore the next SAX-event is parsed. In this way, even ifr
needs to be buffered for manydnodes, we can simply in-
sertb’s pointer into theblist of thesednodes, and increment
b.counterfor each suchdnode.

If we outputr, we set a flag, which is unset whenr ex-
pires, to preventr being buffered or outputted subsequently.
If r has already been buffered (i.e. the Register keepsb’s
pointer), we deleteb.storeand set it to be “flushed”.

(b) Flushing. Given a dnode, d, and a list of Buffers,
{b1, . . . , bi, . . . , bn}, whose pointers are kept ind.blist. As
soon asd.flag is set toT, we flush all bi, i.e. bi.store
is outputted and deleted. The flushing also decrements
bi.counter. To avoid duplicate flushing, we setbi.store to
be “flushed”, so that subsequent flushing will only decre-
mentbi.counter. We deletebi if bi.counterbecomes zero.
We also removebi’s pointer fromd.blistand when all Buffer
pointers are removed, we setd.blist to ∅.

Due to the presence of multiple predicates, we need to
maintain the consistency on theflag of dnodes on the pri-
mary path to ensure immediate flushing: on the satisfaction

of the predicate of adnode, d, on the primary path, if the
flagof d’s parent isT, we trickle downfrom d to its descen-
dants on the primary path, and for eachdnodevisited, we
update itsflag to T and perform flushing, until we stop at
the first descendant whose predicate has not been satisfied.

(c) Uploading or Removing.Upon the deletion of adnode,
d, if d.blist is a list of Buffer pointers andd has no PBT,
we uploadd.blist to d’s parent, that is, concatenatingd.blist
to the blist of its parent; but ifd has a PBT, we access
the Buffers via their pointers ind.blist to decrement their
counter. A Buffer is deleted if itscounterbecomes zero.

4.3. Predicate Evaluation

We now discuss the actions performed upon the satisfac-
tion of adnode, d, under a PBT. Whend’s PBT is evaluated
to be true, we first deleted’s PBT, as to prevent the PBT
being reprocessed and to release the memory. Then we in-
voke theBubbleUp(d, ∅) procedure to “bubble up” fromd,
as described in Procedure 4.1.

The basic idea of theBubbleUpprocedure is as follows:
on the satisfaction of adnode, we bubble up its satisfac-
tion to its parent; if the parent is thus satisfied, the bubble-
up continues and may trigger the satisfaction of the whole
PBT, and then in turn trigger the satisfaction of the PBT in
the outer nest and so on recursively. If the satisfaction is
bubbled up to the primary path, we apply trickle-down as
discussed in Section 4.2(b).

Procedure 4.1 BubbleUp(dnoded, dpnodep)
begin
1. if (p = ∅) /∗ The bubble-up is from thednode, d ∗/
2. if (d.flag= T)
3. if (d’s parent,d′, is adnode)
4. Delete alld′’s descendants;
5. d′.flag := T;
6. if (d′ has no PBT)
7. BubbleUp (d′, ∅); /∗ To bubble up fromd′ ∗/
8. else /∗ d′ has not been satisfied∗/
9. Terminate BubbleUp;
10. else(d’s parent is adpnode, p′)
11. Delete all descendants ofp′; /∗ Sincep′ is satisfied∗/
12. BubbleUp(d’s indirect-parent,p′); /∗ To bubble up fromp′∗/
13. else /∗ Not all d’s descendants are satisfied∗/
14. Terminate BubbleUp;
15. else /∗ p 6= ∅, the bubble-up is from thedpnode, p, in d’s PBT∗/
16. if (p is the root ofd’s PBT)
17. Deletep; /∗ Sincep is satisfied∗/
18. BubbleUp (d, ∅); /∗ To bubble up fromd ∗/
19. else if(p’s parent is of typeA)
20. Setp.typeto L (or R), if p is the left (or right) child;
21. else /∗ The type ofp’s parent must beO or L or R

Hence,p’s parent is also satisfied∗/
22. Deletep;
23. BubbleUp (d, p’s parent);/∗ To bubble up fromp’s parent∗/
end

4.4. A Detailed Example of Query Processing

Consider evaluating the query shown in Figure 4 on the
XML document presented in Figure 1. For brevity, we use
li.S to denote theS event (same forA, T andE) of the
element, whose label isl and id isi, in Figure 1. For ex-
ample,a1.S refers to theS event ofa1. Throughout, we use
si to denote asnodein the SQT (Figure 4) anddi to denote
adnodein the DQTs (Figures 6(a)-6(f)).
Basic DQT Construction.We first create the root of the
DQT, d0 = (0,∅,T), and addd0’s pointer to thedlist of the
correspondingsnode, s0. On the arrival ofa1.S, we ap-
ply hashing on the label,a, and accessa’s slist (c.f. Figure
5), {(s0,s1,∅)}, that is stored ina’s hash slot. We uses0’s
pointer ina’s slist to accesss0 and then used0’s pointer
in s0.dlist to accessd0. Fromd0 we create its child,d1 =
(1,∅,F), to correspond tos0’s child, s1. We setd1.blist to ∅,
sinces1 is on the primary path, andd1.flag toF, sinces1 has
a PBT. We then construct the PBT ford1 according to the
PBT of s1 and insert the pointer tod1 into s1.dlist. In the
same way, for the next (recursive) eventa2.S, we create an-
other child,d2, for d0. In the following discussion, when we
create adnode, we also construct its PBT, if any; and after
thednodeis created, its pointer is inserted into thedlist of
its correspondingsnodeto provide direct access. We show
the DQT constructed so far in Figure 6(a), in which we also
show all the non-emptydlists of thesnodes.
Predicate Processing (Bubble-Up).The next streaming
event is c3.S and we have three elements inc’s slist:
{(s7,s9,∅),(s3,s5,∅),(s1,s2,LL)}. However, thedlists of the
parentsnodes, s7 ands3, are empty, which implies thats7

and s3 have not been matched. Hence, we only process
(s1,s2,LL) and accessd2 andd1 via their pointers ins1.dlist.
We then usedp, i.e. LL, to start from the root ofd2’s PBT,
pr, to reach the leftmost leafdpnode, pl. Sinces2 has no
PBT and child,c3.S satisfiess2. Thus, nodnodeis cre-
ated but we bubble the satisfaction frompl up the PBT. The
bubble-up immediately satisfiespl’s parent since it models
an or-predicate. Hence, we continue bubbling up topr,
which is anand-predicate. We changepr.typeto L to indi-
cate that the left child ofpr is evaluated to be true. In the
same way, we evaluated1’s PBT with c3.S. We update the
DQT in Figure 6(b) (ignored3-d6 for the time being.).
Elimination of Redundant Processing.We do not process
c3.T andc3.E, since thedlists of s9, s5 ands2 are empty,
implying that nodnodeexists to processc3.T and c3.E.
Note thatc3.T andc3.E are indeed redundant for process-
ing the query .

Then it comesb4.S. Using (s1,s7,∅) in b’s slist we ac-
cesss1 and thend2 and d1. From d2 and d1 we create
their respective child,d3 andd4, corresponding tos1’s child
s7. However, for the other element, (s1,s3,LR), in b’s slist,
when we usedp to processs3, we find thats3 belongs to

(a) After a2.S

d2 A

O P

P P

d1 A

O P

P P

d0

dlists

(0, ,T)

(b) After c5.T

d2 L

P

d0

d3

d6

P

d1 L

Pd4

d5

P

s0:{d0}
s1:{d2,d1}
s7:{d4,d3}
s9:{d6,d5}

dlists

b1:(''C2'',2)

Buffers

s0:{d0}
s1:{d2,d1}

(c) After b4.E

d2 L

P

d1 L

P

d0 dlists

s0:{d0}
s1:{d2,d1}

(4,{b1},F)

s0:{d0}
s1:{d7,d1}
s6:{d12,d11}
s7:{d9,d8}

dlists

(2, ,F) (1, ,F)
(2, ,F)

(3, ,F)

(4,{b1},F)

(3, ,F)

(1, ,F)
(2,{b1},F) (1,{b1},F)

(0, ,T)

b1:(''C2'',2)

Buffers

(e) After f12.S (f) After c13.S

(2, ,F)

d8

s0:{d0}
s1:{d7,d1}
s3:{d10}
s7:{d9,d8}

dlists

(d) After b8.S

d7 A

O P

P P

d0(0, ,T)

(2, ,F)

d8 P
(3, ,F)

d10 P(3,P,F)

d1 L

P

(1,{b1},F)

d9 P
(3, ,F)

d7 L

P

d1

d0

(1,{b1},F)
(0, ,T)

(3,{b2},F)
d11 O

A P

d9

(3,{b2},F)

L

P

d12 O

A P
(4,P,T) (4,P,T)b1:(''C2'',1)

Buffers b1:(''C2'',1)

b2:(''C3'',2)

Buffers

d7

d0

d8

d14

d1

d9

d13

s0:{d0}
s1:{d7,d1}
s7:{d9,d8}
s9:{d14,d13}

dlists

(2, ,T)

(3, ,T)

(0, ,T)

(0, ,T)

(4, ,T)

(1, ,T)

(3, ,T)

(4, ,T)

Figure 6. The DQTs for Processing the Query in Figure 4 on the XML Document in Figure 1

the satisfied part of a PBT, since the first component ofdp,
i.e. L, matches the type of the root of bothd2’s PBT and
d1’s PBT. This is also a part of QstreamX’s mechanism to
eliminate redundant processing. In the same way, we also
skip the processing of last twoslist-elements inc’s slist for
the next streaming element,c5.
Buffering. We only need to process theslist-element,
(s7,s9,∅), for c5. Forc5.S, we accessd4 andd3 via s7.dlist,
and create their respective child,d5 andd6, corresponding
to s9. Forc5.T , we apply hashing on the label,c, obtained
from the stack top. We then accessd6 andd5 via s9.dlist.
Sinces9’s child is the output node and bothd6 andd5 have
no PBT,c5.T is a potential query result. We create Buffer
b1 to bufferc5.T , i.e. “C2”. Then we insert the pointer to
b1 into bothd6.blist andd5.blist, and incrementb1.counter
twice. We show the updated DQT and the Buffer in Figure
6(b).
Uploading.To processc5.E, we use (s7,s9,∅) to accesss9

and then accessd6 andd5, via s9.dlist. We uploadd6.blist
andd5.blist to their parentsd3 andd4 respectively. Then we
deleted6 andd5, and remove their pointers froms9.dlist.

Then withd6.S andd’s slist, {(s7,s8,∅)}, we delete the
PBT ofd4 andd3, sinced6.S satisfiess8. Again,s8’s empty
dlist avoids the redundant processing ofd6.T andd6.E.

To processb4.E, we uploadd4.blist andd3.blist to their
parentsd1 andd2 respectively. We then deleted4 andd3,
and remove their pointers froms7.dlist. We update the DQT
and thedlists in Figure 6(c). Note that bothd1.blist and
d2.blist now contain the pointer to Bufferb1.
Buffer Removing.Then fora2.E, we accessd2 andd1 via
s1.dlist. We do not uploadd2.blist sinced2 has a PBT, i.e.
the predicate is not satisfied, and hence the data buffered is
not a query result with respect tod2. We access Bufferb1

via b1’s pointer ind2.blist to decrementb1.counter. Then
we deleted2 and its PBT. We do not processd1, since
d1.depthdoes not match the depth ofa2.E.

We then create another child,d7, for d0 with a7.S. Then
corresponding tos7, b8.S createsd8 andd9 as child ofd7

andd1 respectively. Althoughb8.S is not processed ford1’s
PBT, we created10 to evaluates3, as shown in Figure 6(d).

Thene9.S satisfiess4 and we deleted10’s PBT, while
s4’s empty dlist avoidse9.T ande9.E being redundantly
processed. Nextc10.S creates a child ford9 andd8 respec-
tively, corresponding tos9. Thisc10.S also satisfiess5, and
the satisfaction triggersd10’s satisfaction, which is bubbled
up until it updates the type of the root ofd7’s PBT to L.
The last element inc’s slist is thus not processed, sinces2

belongs to a satisfied part of the PBT.
Forc10.T , i.e. “C3”, we buffer “C3” in Buffer b2. On the

arrival ofc10.E, theblists are uploaded tod9 andd8. Then
d11.S satisfiess8 and we delete the PBT of bothd9 andd8.
Next,f12.S createsd11 andd12 to evaluates6, as shown in
the updated DQT in Figure 6(e).
Predicate Processing (Trickle-Down) and Flushing.Then
f12.T , i.e. “xml-db”, matches theand-predicate ind12’s
and d11’s PBT. We bubble up the satisfaction to theor-
predicate, i.e. the root ofd12’s andd11’s PBT. Thus, both
d12 and d11 are satisfied; and the satisfaction is bubbled
up and triggers the satisfaction of bothd1’s PBT andd7’s
PBT. Sinced1 andd7 are on the primary path, we trickle
down the satisfaction of their PBT to their descendants.

The trickle-down starts atd1, sinced12, which is under
d1’s PBT, is processed befored11. We first updated1.flag
to T and accessb1 via d1.blist to flushb1. We then decre-
mentb1.counterto zero and hence we deleteb1. We also set
d1.blist to ∅. Then we trickle down tod1’s child d9, we set

d9.flag toT and accessb2 viad9.blist to flushb2. We then set
b2.storeto “flushed” and decrementb2.counter. Then we
setd9.blist to ∅. When the trickle-down reachesd8, we ac-
cessb2 again viad8.blist. Sinceb2.storeis “flushed”, we
only decrementb2.counter. We deleteb2 sinceb2.counter
now becomes zero.
Outputting.Then forc13.S we created13 andd14 as child
of d9 andd8 respectively, as updated in Figure 6(f). Since
d9.flag andd8.flag areT, d13.flag andd14.flag are also set
to T. Therefore, when we processc13.T for d14, we imme-
diately outputc13.T as a query result. We also set a flag to
indicate thatc13.T is outputted, so that we do not output it
again when we processd13 next. The flag is then unset.

Then for c13.E, we deleted14 and d13; for b8.E, we
deleted9 andd8; for a7.E, we deleted7.
Depth Mismatch and Hash-Lookup Filtering.Although s7

is satisfied again withb14 andd15, c16 does not match the
depthof the child ofs7 and is hence filtered out. The ele-
ments,x17, y18 andz19, have no corresponding hash slots
and are hence filtered out. Finally, we deleted1 whena1.E
comes, while we deleted0, i.e. the root of the DQT, to ter-
minate the query processing at the end of the stream.

4.5. Processing of Aggregations and Wildcards

In the previous discussion, we only present the handling
of text() operation. If the output expression is an aggrega-
tion, we use astatistics-accumulatorto evaluatecount()
and a value-accumulatorto evaluatesum(), max() and
min(), while avg() is simply the quotient of the contents of
the value-accumulator and the statistics-accumulator. Note
thatcount() is processed with theS orA events only, while
the other aggregations also require theT event.

If the output expression is not specified, we use awild-
card output node that outputs/buffers all elements when a
dnode, that corresponds to the lastsnodeon the primary
path, is created. However, if there is a wildcard in the query,
a snode, that models the wildcard, is used to process ev-
ery element when the parent of thesnodeis matched. A
wildcard-flag is also used to activate the processing of the
wildcard snode, since no element will be hashed into the
slot where the wildcard’sslist is stored.

4.6. Multiple Queries and Multiple Outputs

The SQT allows easy elimination of the redundancies in-
troduced by the common prefixes in multiple queries. The
basic idea is to first construct the SQT for the first query.
This SQT is regarded as the base SQT, which is then ex-
tended to transform the second query and so on. Any
common prefix that has already been built for the previous
queries is skipped in the extended SQT. An example of the
SQT for multiple queries is shown in Figure 7.

dc

b
/

/

P

e
//

//

/

a
//

/

Q1: "//a//b[.//e]/c/text()"

Q2: "//a/c//d/text()"

Q3: "//a//b[.//e]/d/text()"

c

d
//

/
text()

/
text()

/
text()

Figure 7. The SQT of Three Queries

Multiple queries are processed in a similar way as a sin-
gle query, except that an extra query identifier is used to
distinguish the query results for buffer handling. However,
unlike the processing of a single query, we may output/flush
a query result more than once, since the result may also
match other queries.

The processing of multiple outputs is simply handled
by multiple output nodes, which are processed in the same
way as a single output node. To write a query to express
multiple outputs, we use the XPath 2.0 union expression
[5]. For example, for the SQT in Figure 7, the query is
“//a(//b[.//e]/(c/text() | d/text()) | /c//d/text())”.

5. Complexity Analysis

In this section, we analyze the complexity of QstreamX’s
query evaluation mechanism.

SQT Construction. Both the time and space complexity
of the construction of the SQT, including the Hashtable, is
linear in the size of the input query, since we need only one
scan of the query to build both the SQT and the Hashtable.

DQT Construction. The complexity of the query process-
ing is essentially that of the DQT construction, since the
query processing is simulated by the dynamic construction
of the DQT.

Let D be the tree model of the streaming XML docu-
ment,|Q| be the set of allsnodes andQ′ be the set of non-
leaf snodes (note that a leafsnodedoes not create a corre-
spondingdnode). For simplicity, we ignorespnodes (and
hencedpnodes) in the analysis, but the total number ofspn-
odes are always less than twice the number ofsnodes.

A matching sequence, q ∈ D, of asnode, s, is a sequence
of nodes on the same path inD, such thatq matches the path
from the root of the SQT tos.

We define theAverage Degree of Recursivenessof D
with respect to asnodes, denoted byADR(s), as the to-
tal number of matching sequences ofs in D divided by the
total number of paths that contain the matching sequences
of s. For example, considers9 in Figure 4 and the document
in Figure 1, there are six matching sequences,〈a1, b4, c5〉,
〈a2, b4, c5〉, 〈a1, b8, c10〉, 〈a7, b8, c10〉, 〈a1, b8, c13〉 and
〈a7, b8, c13〉, on three paths, henceADR(s9) is 6/3 = 2.

The average size of the DQT, i.e. the average of
the size of the DQTs throughout query processing, is
1

2

∑
s∈Q′dADR(s)e in the worst-case, sincedADR(s)e indi-

cates the maximum number ofdnodes created correspond-
ing to s. Intuitively, 1

2

∑
s∈Q′dADR(s)e = α|Q′|, whereα

is a small constant in practice. However, if data is not recur-
sive, α = (1

2

∑
s∈Q′dADR(s)e)/|Q′| = 1. In the average-

case, not alls ∈ Q′ create correspondingdnodes. For ex-
ample, nodnodeis created forsnodes under a PBT if the
PBT is satisfied. It can also be observed from the example
in Section 4.4, that the DQT is as small as|Q′|. We ignore
the space used for buffering potential query results, sinceit
depends on the query selectivity and is inevitable for any
stream querying algorithm.

It takesO(1) time to filter out the irrelevant elements.
The worst-case time complexity for processing a relevant
SAX-event,x, is given byA =

∑
s∈QADR(s), wheres

matchesx, sinceADR(s) represents the number ofdnodes
to be created/processed. If data is not recursive and all ele-
ments in a query are distinct,A is 1. In practice, since both
the number ofs matchingx (i.e. the number of duplicate el-
ements in a query) andADR(s) are small,A is a small con-
stant and the total query time varies asA|D|, and thus the
complexity isO(|D|). In the average-case, the time is fur-
ther reduced, since a large portion of the matchingsnodes
are skipped due to satisfied predicates or depth mismatch.
Finally, we note that the complexity of most operations in
query processing are negligible, while that of the relatively
more expensive operations, such as bubble-up and trickle-
down, are also constant due to the extremely small size of
the DQT.

6. Experimental Evaluation

We evaluate QstreamX on two main metrics for XML
stream processing: thethroughputand thememory con-
sumption. We compare its performance with two most re-
cently proposed querying systems, the XSQ system (ver-
sion 1.0) [19] and the XAOS system1 [3]. We do not com-
pare with the filtering systems [1, 9, 7, 2, 10, 18, 11] due
to different inputs (a large number of filtersvs a small set
of queries), outputs (identifiersvs textual results) and eval-
uation methods (no bufferingrequired for filtering). We
use four real datasets [15]: the Shakespeare play collection
(Shake), NASA ADC XML repository (NASA), DBLP, and
the Protein Sequence Database (PSD), whose characteris-
tics are shown in Figure 8. We also extensively study the
factors that affect the performance of QstreamX using large
sets of synthetic datasets and queries. We ran all the exper-
iments on a Windows XP machine with a Pentium 4, 2.53

1A released version of most published querying systems, exceptXSQ,
is not available for comparison. We implement the XAOS system based on
the algorithm presented in [3] except that we ignore the reverse axes.

GHz processor and 1 GB main memory.

Dataset

XML

Size

Text

Size

Max/Avg

Depth

No. of

Elems.

No. of

Attrs.

Parse Time

(C++)

Parse Time

(Xerces 1.0)

Shake 7.3MB 4.5MB 7 / 5.71 179K 0K 0.23 sec 0.54 sec

NASA 23.8MB 12MB 8 / 5.58 477K 56K 0.92 sec 1.64 sec

DBLP 127MB 68MB 6 / 2.90 3332K 404K 5.96 sec 11.73 sec

PSD 683MB 278MB 7 / 5.15 21306K 1291K 38.27 sec 72.10 sec

Figure 8. Characteristics and DTD of datasets

6.1. Throughput

Throughput measures the amount of data processed per
second when running a query on a dataset. For each of the
four real datasets, we use 10 queries, which have a roughly
equal distribution of the four types:Q1 consists of only
child axis,Q2 consists of onlydescendant-or-self; Q3

andQ4 mix the two axes, butQ3 consists of a single atomic
predicate, whileQ4 allows multiple (atomic) predicates. An
example of each type is shown below:
Q1: “/PLAY/ACT/SCENE/SPEECH/SPEAKER/text()”
Q2: “//dataset//author//lastname/text()”
Q3: “//inproceedings[year > 2000]/title/text()”
Q4: “//ProteinEntry[summary]/reference[accinfo]

/refinfo[@refid =“A70500”]//author/text()”

The throughput2 of each system on processing a single
query is measured as the average of the throughput of pro-
cessing each of the 10 queries for each dataset. We also
measure the throughput of processing multiple queries (5
and 10 queries) by QstreamX, where the input queries are
simply each half of the 10 queries and the 10 queries as a
whole respectively. However, the Xerces 1.0 Java parser
[20] used in XSQ is on average two times slower than the
C++ parser used in QstreamX and XAOS, as shown in the
last two columns in Figure 8. Therefore, we use therel-
ative throughput[19], which is calculated as the ratio of
the throughput of each system to that of the corresponding
SAX parser, to give a comparison only on the efficiency of
the underlying querying algorithm.

As shown in Figure 9, QstreamX achieves very impres-
sive throughput, which is about 80% of that of the SAX
parser (the throughput for Shake is 78% when the dataset
is scaled up by three time); in another word, 80% of the
upper bound. The remarkably high throughput verifies the
O(|D|) total query time obtained in the complexity analysis
in Section 5. Compared with XSQ and XAOS, QstreamX
on average achieves relative throughput of 2.7 and 4.5 times
higher, respectively. The tremendous improvement made
by our algorithm over the XSQ and XAOS algorithms is
mainly due to the effective filtering of irrelevant elementsby
hash-lookup and the direct access to relevant nodes through

2Since outputting the query results to the screen dominates the process-
ing time, we write the results to a disk file for all systems.

slist anddlist. Finally, we remark that the raw throughput
of QstreamX is on average 5.4 and 9 times higher than that
of XSQ and XAOS, respectively.

0

0.2

0.4

0.6

0.8

1

Shake NASA DBLP PSD
Datasets

R
e

la
ti

v
e

 T
h

ro
u

g
h

p
u

t

QstreamX XSQ XAOS QstreamX QstreamX
5 10

Figure 9. Relative Throughput

The average relative throughputs of QstreamX on pro-
cessing 5 queries and 10 queries are 43% and 19%, as de-
noted by QstreamX5 and QstreamX10 respectively in Fig-
ure 9. The great drop in the throughput is mainly because 5
and 10 times more (potential) query results need to be pro-
cessed and duplicate avoidance has to be performed for 5
and 10 more times. However, this overhead is inevitable
for processing multiple queries on XML streams, since we
must buffer the potential query results at any given time.
Despite of this, we remark that the throughput of QstreamX
on 5 queries is still 1.5 times higher than that of XSQ (i.e. a
raw throughput of 3 times higher), while that on 10 queries
is only slightly lower (but a slightly higher raw throughput).

6.2. Memory Consumption

We measured roughly constant memory consumption of
no more than 1 MB for QstreamX on all datasets and queries
(including the two cases of multiple query processing). In
fact, a large portion of the memory is used in buffering and
in the input buffer of the parser, while the memory used for
building the trees is almost negligible. The constant mem-
ory consumption proves the effectiveness of buffer han-
dling, while the lower memory consumption verifies the re-
sult of the space complexity analysis in Section 5 that the
size of the DQT is extremely small (i.e.O(|Q′|)). The
memory consumption of XSQ is also constant (as a result
of its effective buffering) but several times higher than that
of QstreamX (as a result of a less efficient data structure).
The memory consumption of the XAOS system increases
linearly, since the algorithm stores both the data and the
structure of all matched elements and outputs the results at
the end of a stream.

6.3. Factors Degrading QstreamX’s Performance

In Section 5, we show that both the average processing
time for each SAX-event and the average size of the DQT,

which determine the throughput and the memory consump-
tion respectively, mainly depend on the Average Degree of
Recursiveness (ADR) of the streaming XML data with re-
spect to the elements of the input query. We now study the
effect of the ADR on QstreamX’s performance.

We generate three groups of synthetic queries consisting
of the elements,a, b andc, and their respectiveid attribute,
and the wildcard (∗). For each group, 20% of the queries do
not specify an output expression, while 40% aretext() and
40% aggregations. Each group of queries contain an aver-
age of 0, 5 and 10 closure axes (i.e.descendant(-or-self)
andancestor(-or-self)) respectively. Each group is fur-
ther divided into five sets,Q1 toQ5, of ten queries; and each
Qi have an average of 0, 3.11, 8.2, 14.34 and 19.67 atomic
predicates per query respectively. The atomic predicates
may be nested in (up to 10 nests) or connected byand/or
operators with other predicates. Moreover, the atomic pred-
icates in eachQi have a roughly equal number of structural
matches, exact-matches, range-matches and string-matches.

We then generate five synthetic datasets containing the
elements,a, b, c, x andy, and their optionalid attribute.
Since it is hard to generate some specific ADR of the
datasets with respect to a large group of queries, we sim-
ply repeat each distinct element at random positions on the
same path many times. The average number, called theAv-
erage Repetition Factor(ARF), of each of the five elements
on each path is set to 10, 20, 30, 40 and 50 for each of the
five datasets respectively. Since the datasets contain only
five distinct elements, the ARF roughly reflects the ADR.
Note that the maximum and average depth of the dataset
are 10 and 5 times of the ARF respectively.

Figures 10(a)-(c) show the average relative throughput
of QstreamX on evaluating the five sets of queries,Q1 to
Q5, of the three query groups, on the five datasets. In all the
cases, the throughput decreases when the number of pred-
icates in the queries increases (Q1 has no predicate while
Q5 has the greatest number of predicates per query). In Fig-
ure 10(a), the throughput increases with an increase in the
ARF of the dataset. This is because this group of queries
has no closure axis and thus the streaming data of depth
greater than the depth of the queries are filtered out, since
a greater ARF implies a greater depth. For the other two
groups, as shown in Figures 10(b) and 10(c), the through-
put drops steadily with the increase in the ARF. On aver-
age, the throughput for an ARF of 50 is 59% lower than
that for an ARF of 10, while the overall throughput of eval-
uating queries of 5 closure axes is 23% lower than that of
10 closure axes. However, the drop rates are acceptable,
since increasing the ARF from 10 to 50 means increasing
the maximum depth from 100 to 500 and the average depth
from 50 to 250, and doubling the number of the closure axes
can double the operations performed for query processing.

The memory consumption of QstreamX is roughly con-

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50

R
e
la

ti
v
e
 T

h
ro

u
g

h
p

u
t

Q1 Q2 Q3 Q4 Q5

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50

R
e
la

ti
v
e
 T

h
ro

u
g

h
p

u
t

Q1 Q2 Q3 Q4 Q5

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50

R
e
la

ti
v
e
 T

h
ro

u
g

h
p

u
t

Q1 Q2 Q3 Q4 Q5

Average Repetition Factor (ARF) Average Repetition Factor (ARF) Average Repetition Factor (ARF)

(a) Queries with 0 Closure Axes (c) Queries with 10 Closure Axes(b) Queries with 5 Closure Axes

Q1 Q2 Q3 Q4 Q5Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5

Figure 10. Relative Throughput of QstreamX on Synthetic Datasets and Queries

stant even with the complex datasets and queries. In gen-
eral, higher throughput consumes less memory and vice
versa (details thus omitted due to the similar trend). How-
ever, for all the datasets and queries, the maximum memory
consumption is less than 3 MB.

To conclude, although an increase in the ADR, as esti-
mated by an increase in the number of closure axes and the
ARF of a dataset, degrades the performance of QstreamX,
the degradation is gradual and acceptable considering that
both the datasets and the queries are extremely complex.
The experimental results, however, prove that QstreamX’s
performance is extremely competitive in practice.

7. Conclusions

We have presented QstreamX, an efficient system for
processing XPath queries of streaming XML data, by uti-
lizing a novel data structure, Hash-Lookup Query Trees,
which consists of a simple hash table (the Hashtable) and
two elegant tree structures of the SQT and the DQT. We
have devised a set of well-defined transformation rules
to transform a query into its SQT and discussed in de-
tail how the dynamic construction of the DQT evaluates
queries. A unique feature of QstreamX is that it pro-
cesses only relevant XML elements in the stream by hash-
lookup and accesses directly nodes that are relevant for
their processing. We have demonstrated, with experimen-
tal evidence, that QstreamX achieves significantly higher
throughput and consumes substantially lower memory than
XSQ and XAOS. We have also presented a detailed em-
pirical study of the factors that affect the performance of
QstreamX. Our result indicates that even in the extreme
cases, the system is able to maintain an acceptable perfor-
mance. For future work we are going to explore more the
common subexpressions in multiple queries and extend our
algorithms to evaluate the sideways axes.

References

[1] M. Altinel and M. Franklin. Efficient Filtering of XML Doc-
uments for Selective Dissemination of Information. InPro-

ceedings of VLDB, 2000.
[2] I. Avila-Campillo and et al. XMLTK: An XML Toolkit for

Scalable XML Stream Processing. InProc. of PLANX, 2002.
[3] C. Barton and et al. Streaming XPath Processing with For-

ward and Backward Axes. InProceedings of ICDE, 2003.
[4] Z. Bar-Yossef, M. F. Fontoura, and V. Josifovski. On the

Memory Requirements of XPath Evaluation over XML
Streams. InProceedings of PODS, 2004.

[5] A. Berglund and et al. XML Path Language (XPath) 2.0,
2003. http : //www.w3.org/TR/xpath20.

[6] S. Boag and et al. XQuery 1.0: An XML Query Language.
http : //www.w3.org/TR/xquery, Nov. 2002.

[7] C. Chan, P. Felber, M. Garofalakis, and R. Rastogi. Effi-
cient Filtering of XML Documents with XPath Expressions.
In Proceedings of ICDE, 2002.

[8] J. Clark and S. DeRose. XML Path Language (XPath) 1.0,
1999. http : //www.w3.org/TR/xpath.

[9] Y. Diao, P. Fischer, M. Franklin, and R. To. YFilter: Efficient
and Scalable Filtering of XML Documents. InICDE, 2002.

[10] T. Green, G. Miklau, M. Onizuka, and D. Suciu. Processing
XML Streams with Deterministic Automata. InProceedings
of ICDT, 2003.

[11] A. Gupta and D. Suciu. Stream Processing of XPath Queries
with Predicates. InProceedings of SIGMOD, 2003.

[12] V. Josifovski, M. F. Fontoura, and A. Barta. Querying XML
Steams. To appear inVLDB Journal, 2004.

[13] M. L. Lee, B. C. Chua, W. Hsu, and K. L. Tan. Efficient
Evaluation of Multiple Queries on Streaming XML Data. In
Proceedings of CIKM, 2002.

[14] B. Ludascher, P. Mukhopadhayn, and Y. Papakonstantinou.
A Transducer-Based XML Query Processor. InProceedings
of VLDB, 2002.

[15] G. Miklau and D. Suciu. XML Data Repository.http :
//www.cs.washington.edu/research/xmldatasets.

[16] D. Olteanu, T. Kiesling, and F. Bry. An Evaluation of Reg-
ular Path Expressions with Qualifiers against XML Streams.
In Proceedings of ICDE, 2003.

[17] D. Olteanu, H. Meuss, T. Furche, and F. Bry. XPath: Looking
Forward. InWorkshop on XMLDM at EDBT, 2002.

[18] M. Onizuka. Light-weight XPath Processing of XML Stream
with Deterministic Automata. InProceedings of CIKM, 2003.

[19] F. Peng and S. Chawathe. XPath Queries on Streaming Data.
In Proceedings of SIGMOD, 2003.

[20] Xerces Java Parser.http://xml.apache.org/xerces-j/.

