Rectangle Counting in Large Bipartite Graphs

Jia Wang, Ada Wai-Chee Fu, James Cheng
Department of Computer Science and Engineering, The Chibesversity of Hong Kong
{jwang,adafu,jcheng@cse.cuhk.edu.hk

Abstract—Rectangles are the smallest cycles (i.e., cycles of bipartite graphs [12], [13], [14], [15] such as (global and
length 4) and most elementary sub-structures in a bipartite |gcal) clustering coefficients, rectangle-based conwiggti
graph. Similar to triangle counting in uni-partite graphs, 4.4 the estimation of larger cycles by counting 4-cycles.

rectangle counting has many important applications where dta T .
is modeled as bipartite graphs. However, efficient algoritms Although there are many applications and important

for rectangle counting are lacking. We propose three diffeent ~ rectangle-based measures/concpets have been propoked [12
types of algorithms to cope with different data volumes andhe [13], [14], [15], we are not aware of any efficient algorithms

availability of computing resources. We verified the efficiecy for rectangle counting. Since rectangles are different in
of our algorithms with experiments on both large real-world gir;ctyre from triangles and bipartite graphs have feature
and synthetic bipartite graphs. . . - . .
different from uni-partite graphs, algorithms for triaagl
Keywordsbipartite graphs; rectangle counting; counting in uni-partite graphs cannot be applied for reglean
counting in bipartite graphs.
In this paper, we propose three efficient algorithms for
A bipartite graph models the relationship between tworectangle counting. The first algorithm is an in-memory
sets of entities in many applications. Examples of suchalgorithm. The algorithm is especially fast for computatio
bipartite relationship include authors and papers in $ifien in bipartite graphs of small to moderate size.
collaboration, movies and reviews in recommender sites, The second algorithm addresses a limitation of the first
queries and URLs in query logs in Web search applicationsalgorithm, that is, the in-memory algorithm is inefficient t
customers and purchased items in market baskets, etc. handle graphs that are too large to fit in main memory. Many
In this paper, we propose to study the fundamentateal-world bipartite networks have grown very large and are
substructures in a bipartite graph. In uni-partite graphsstill growing at a steady rate. When the input graph cannot
triangles (i.e., cycles of length 3) are considered as thefit in main memory, the pattern of edge accesses of the in-
building blocks of a graph [1], [2], [3], which play a central memory algorithm incurs high 1/0 cost due to random disk
role in graph and network analysis. In a bipartite graphaccess. Thus, we develop an I/O-efficient algorithm to reduc
triangles do not exist and the corresponding patterns a&re thtthe 1/0 cost for rectangle counting in large graphs.
rectangles i.e., the smallest cycles or cycles of length 4 Our third algorithm considers parallel rectangle counting
Intuitively, a rectangle can be interpreted as: the refatio For processing massive volume of data, MapReduce has
ship between two objects at one side of the bipartite graph isecome a standard platform for providing large-scale dis-
reinforced by a double connection to two objects at the othetributed computation. We adopt the MapReduce framework
side of the bipartite graph. From another angle, a rectanglfor rectangle counting, and prove that the total amount of
implies that two objects having the same connecting pointvork done by all machines to run the algorithm is the same
are likely to have another common connecting point. Foras that by the in-memory algorithm. In addition, we also
example, in an author-paper network, a rectangle indicategropose a partition-based parallel algorithm and found tha
that two authors collaborate at least twice in publishingl a the partition-based algorithm is significantly more effitie
they are more likely to collaborate again with each othentha and scalable than the MapReduce algorithm. Our result

I. INTRODUCTION

with those whom they have never collaborated. shows that MapReduce may not be most suitable for tasks
We study the problem ofectangle counting that is, such as rectangle counting.
counting the number of rectangles in a bipartite grapior The three algorithms cope with graphs of different sizes,

uni-partite graphs, triangle counting is an extensivalyligd and also consider the availability of computing resources
problem [4], [5], [6], [7], [8], [1], [2]. [9], [10] and appkd in (both memory and CPU resource). Our algorithms are simple
the analysis of various networks and graphs [11], [3]. Sincen design and shown to be very efficient. In particular,
rectangles are the counterpart of triangles in bipartiéggs, our algorithms have)(>"(deg(v))?) CPU time complexity,
rectangle counting can also be applied to study bipartitevhich even in the worst case is much lower than ¢he:*)
graphs in similar ways as triangle counting for uni-partitebound on the number of rectangles in a bipartite graph,
graphs. In particular, rectangle counting lies at the hefirt wheredeg(v) is the degree of a vertaxandn is the number
the computation of important network analysis metrics forof vertices at one side of the bipartite graph. Note that

the lowest known time complexity for triangle counting is
O(n?376) [16], while the bound on the number of triangles
is O(n3) for a graph withn vertices. The fastest practical
algorithm takesO(m!-%) [2], [9] for a graph withm edges,
which is essentially an enumeration of all triangles andthu
is the same as the bound on the number of triangles in the
worst case. Our algorithms do not enumerate rectangles and ., .,
hence have a much lower complexity than hé:*) bound ~ the rectangle byl, r, £',']. The rectanglel(, 7, ', '] can
on the number of rectangles. also be seen asllang:[h—/4 cy(/:lecon5|st|ng of the following
We evaluated our algorithms on both large real-world®d9esi(t, 7), (r,), (', "), (1",).
and synthetic bipartite graphs. Our results show that our in We denote byy(v) and~(¢,r) the number of rectangles
memory algorithm is at least an order of magnitude fastefONt@ining the vertex and the edgél. r) in G, respectively.
than the existing small-cycle counting algorithm with theWe also use) ~(¢) to denote) ., 7(¢), and 27.(7")
best known time complexity [16], with a significantly less ©© d€not€>_, ¢, 7(r). The number of rectangles i,
memory consumption. The lack of efficient algorithms in denoted byy(G), is given as follows
practice shows the need for more efficient algorithms for 1 1
rectangle counting, without which the existing proposdls o v(G) =) ZW(@ — 3 ZV(T)'
bipartite graph analysis using clustering coefficients],[12 Equation 1 holds as every rectangle is counted twice by

[13], [14], [15] cannot be made possible. the two vertices at each side of the bipartite graph.

For larger graphs, the experimental results show that tpe following example illustrates the concepts.
our |/O-efficient algorithm can process rectangle counting i o _
efficiently with limited main memory. The MapReduce Example 1:Figure 1 shows a bipartite grapfy with
algorithm also shows reasonable speedup with growing comba={l1,12,13, s, lfg} andRg={r1,72,73,74,75,76}. There
puting capacity, although we show that our partition-based® 5 rectangles i, namely([ly,r1,ly, 7o), [l1, 71,12, 73],
parallel algorithm is dramatically more efficient than the [l1,72, 12, 73], [l2, 73, I3, 74], @nd(l3, 73, L4, 75]. Thus y(G) =
MapReduce algorithm. Finally, we present some interesting- We can also count the number of rectangles containing
findings on the networks by studying clustering coefficients2ny vertex or edge. For example, we hayd:) = 3,
defined based on rectangles. v(l2)=4, v(r1)=2, andvy(e)=3 wheree=(l2,73). O

Outline. Section Il gives the notations and problem defi- Problem Definition. Given a bipartite grapltr = (Vo =
nition. Sections 11, IV, and V present the in-memory, /0- (Lc U Rc), Eg), the problem ofrectangle countingis to
efficient, and parallel algorithms, respectively. Sectioh ~ Computey(v) for each vertexs € Lg (or v € Rg), 7(e)
discusses clustering coefficient for bipartite graphstisec for €ach edge € Eg, and~(G).

VII reports the experimental results. Section VIl disass m
related work and Section IX concludes the paper.

Figure 1. Rectangle counting

(1)

. IN-MEMORY RECTANGLE COUNTING

We first present an in-memory algorithm for rectangle
Il. PROBLEM DEFINITION counting in a bipartite graph, as shown in Algorithm 1.
Given a bipartite graplty = (Lg U Rg, E¢), the algo-
rithm sequentially processes each vertex L to compute
~(¢), along with~(e) for eache = (¢,7) € Eq, as follows.
Let 2hop(¢) be the set of vertices that aexactly two

Let G = (Vo = (Lg¢ U Rg), E¢) be an undirected, un-
weighted bipartite graph, wheie; and R are two disjoint
sets of vertices off andE¢ C {{u,v}:u € Lg,v € Rg}

is the set of edges off. An edge between: and v are hops (i.e., two edges) away frofNote thahop(¢) C Le,

denoted by eithefu, v) or (v, u). L , _sincel € L¢ and every path of length 2 from must end
We assume that the graph is stored in its adjacency |ISét some vertex’ € (Lg\0).

representation (whether in main memory or on disk), where The algorithm first computeshop(¢) and adj(¢, ¢') for

vertices are assigned W'th unique ID_S' each?” € (Lg\¢) in Lines 5-10, which is by doing a two-hop
We define the set oddjacent verticesof a vertexv € gyepth first traversal frond. Then,(¢) and~(e), for each
Ve as adj(v) = {u : (u,v) € Eg}, and thedegreeof . _ .y ¢ g, are computed frorhop(¢) andad;(¢, ¢') in
vin G as deg(v) = |adj(v)|. Given two distinct vertices | jheg 11.14. Finally, the algorithm also obtaings) from
v,v" € Lg (orv, 0" € Rg), we define the set of common .y for all ¢ € L. The correctness and complexity of the

adjacent vertices ob and v’ as adj(v,v') = {u: (v,u) € gigorithms are established by the following theorems.
EGv (Ulvu) € EG}

We define arectangle in G as follows. A rectangle is ~ Theorem 1:Given a bipartite graply = (LqU R, Ec),
a complete bipartite subgraphonsisting of the vertex set Algorithm 1 correctly computes(¢) for each vertex € L,
{¢,¢',r,7'} such that’, ¢’ € Ls andr,r’ € Rg. We denote 7(e) for each edge € E¢, andv(G).

Algorithm 1: In-Memory Rectangle Counting Algorithm 2: 1/0-Efficient Rectangle Counting

Input : A bipartite graphG = (Vg = (Lc U Ra), Ec) Input : A bipartite graphG = (Vg = (Lc U Re), Ec)
Output : ~(¢) for each? € Lg, ~y(e) for eache € E¢, and Output : (¢) for each? € Le and~(e) for eache € Eg
v(G) 1 begin

1 begin 2 partition Lg into Par = {Py, P, ..., P},

2 ~v(¢) + 0 for each? € Lg; 3 foreach P € Par do

3 ~(e) + 0 for eache € FEg; 4 constructd = NG(P);

4 foreach ¢ € L do 5 call Algorithm 1 with H as input to compute

5 2hop(£) + 0; 6 ~(¢, H) for each¢ € Ly, and

6 adj(£,0") + 0 for each?’ € (La\£); 7 v(e, H) for eache € En;

7 foreach r € adj(¢) do 8 for each ¢ € Ly: v1(¢) < v(¢, H);

8 foreach ¢’ € adj(r)\¢ do 9 for eache € En: yi(e) < (e, H);

o adj (£, £') « adj(¢, ') U,{T}; 10 foreach pair P;, P; € Par, wherei < j do

10 L 2hop(€) < 2hop(£) U {¢'}; 1 P+ P UP;

. y 12 constructld = NG(P);

H foreach ¢" € 2h0p(()‘ ag% o) 13 call Algorithm 1 wgth)H as input to compute

12 Y(0) = y(0) + (Ty): 14 v(¢, H) for each? € Ly, and

13 foreach r € adj(¢,¢") do o 15 ~(e, H) for eache € Ey;

14 |_7(62(477’))4_7(6)+|‘1dj(£:£)|_1; Il ~2()isinitialized as 0 for first-time use

__— 16 for each £ € Ly: v2() < v2(£) +v(¢, H) — 1 (£);

15 | (G) + 52 7(0); 17 | foreache € Ex: va(e) < v2(e) + (e, H) —ni(e);
18 for each ¢ € La: v(£) <= y1(£) + v2(£);
19 for each e € Eq: vy(e) « v1(e) + v2(e);

Theorem 2:Algorithm 1 usesO(3>"(deg(r))?) time and

O(|Ve| + |Ec|) memory space. (@) & T » ®
Proof: The proofs can be found in [17].] ‘\'4 i ’\\
We illustrate how Algorithm 1 works as follows. ONONONOHONONON®
Example 2:Given the graph in Figure 1, consider the Figure 2. Two types of rectangles

processing of¢ = Iy in Lines 4-14. Sinceadj(ly) =
r1,72,73,74}, We accessadj(ry), adj(rs), adj(rs) and i .
2d}(rj) io 4(:}ompute the 2_hgpl neigh(bz)rs of (aild ob- thatNG(Pl) fills up half of the avallabl_e memo%_yWe can
tain 2hop(la) = {l1,13,14}. We also obtainadj(lz,l;) = S|mply cpnstructNG(Pl) from the adjacency lists of the
(r1, 72,73}, adj(la,l3) = {rs, 74}, and adj(la, ls) = {rs}. vertices inP,. After we processVG(P;), we move on to
In Line 12, we add(|adj(l22,l1)|) — 3 and (Iadj(l22,l3)|):1 to Obtain P, and constructVG(F%) in the same way, and so

v(l2), but 0 from adj(l2,14) since|adj(l2,14)|=1. For the on u_ntll we process all vert!c_es B)
edges, .g¢ = (Is,3), sincers is in adj(l2, 1), adj (I, I3), With resp_ect tp the partitiorPar, we can cla_ssﬁy the
and adj (i, 1s), Line 14 sums up each of their sizes minus 'ectangles inG into tvv_o types as follows. Since each
1, thus we havey(e) = (3— 1)+ (2— 1)+ (1 —1)=3. O rectgngle has two vertices i (let us cgll themleft-
vertices), we have: (1)Type-1 rectangleswith both left-
vertices in the samé, for someP € Par; or (2) Type-2
rectangleswith the two left-vertices in two differenP; and
P;, for someP;, P; € Par. We usey;(.) and~(.) as the

We now discuss our second algorithm, an I/O'eﬁ'men.tcount of the two types of rectangles, respectively.

algorithm, which handles the case when the input graph is Consider the graph in Figure 1, we show how it is

oo large to fit in main memory. artitioned into two parts in Figure 2. Note that andry

To_av0|d_ random_access_to the graph st_or_eq on disk, thgre repeated in the two parts since they are in the adjacency
algorithm first partitionsL¢ into a set ofp disjoint vertex lists of l, and alsols. Rectangles falling into any single

sets,Par = {P1, Ps,..., P,}. Then, for each vertex set . :

’ ’ ’ . part, |nCIud|ng [11,7‘1712,7‘2], [11,7”1712,7”3], [ll,T‘Q,ZQ,T3],
P € Par, we construct theeighborhood subgraphof P, 1, ©\ 5 . 1 "are Type-1 rectangles. There is only one Type-
denoted byNG(P), which is simply the subgraph consisting 2 rectangle in this case, namely, rs, I, 4].

of al! edges incident to verpces IR. o With the above set-up, Algorithm 2 mainly consists of

With the above formulation ofVG(P), the partitioning 14 for.joops. The first for-loop (Lines 3-9) counts Type-
can be easily done by sequentially scannifig (in its
adjacency-list representation) as follows. We first obfain 1We use only half of the memory faNG(P1) because in Algorithm 2
which is the first|P;| vertices of Lg read fromG such we mergeNG(P;) and NG(P;) for P;, P; € Par.

IV. I/O-EFFICIENT RECTANGLE COUNTING

1 rectangles, which calls Algorithm 1 withh = NG(P) Algorithm 3: Execution ofPAR-rect at Machinei

as input for each” € Par. Let v(¢,H) and (e, H) be Input : L; and NG (R;)
the number of rectangles i containing? € Ly ande € Output : y(¢) for each? € L;, v(¢,r) for each? € L; and
Ey, respectively. Then, we simply hava (¢) = ~(¢, H) reR;

for each? € Ly and~i(e) = ~(e, H) for eache € Ey. * Pegin _ _ . .

The second for-loop (Lines 10-17) counts Type-2 rectar,lgles2 ;lir;(ggg;nthhr;t %nwﬂgzév fgﬁé)staltigg uLth_ \:(Vc')trhgtgeLG’
which calls Algorithm 1 withNG (P, U P;) as input for each and ignore Line 15;

pair P;, P; € Par, wherei < j, since now the two left-

vertices of each rectangle are in two differdit and P;.

Then, we computeyr(.) correspondingly. Finally in Lines

18-19, we computey(¢) for each’ € L¢ and ~(e) for Having the same total workload as the in-memory algo-
eache € E¢ from ~;(.) and~2(.). The following theorem rithm does not imply good parallelization, since the perfor
establishes the correctness of the counting. mance also depends on the even distribution of workload,

as a bottleneck in one machine can seriously affect the
Theorem 3:Given a bipartite grapty = (L¢URc, Ec), overall runtime. We now analyze the workload balancing
Algorithm 2 correctly computes(¢) for each verteX € Le performance achieved by PAR-rect. From Algorithm 3, the
and~(e) for each edge € Eq. total CPU workload is made up of the workload of each
Proof: The proof can be found in [17]. B vertex in L. The CPU workload from each vertéxe L¢

We now analyze the complexity of Algorithm 2. We 1S 9Ven byW(€) =3_, c ;) deg(r).
use the following standard /0 complexity notations in the || Li is assigned to machine, then the total CPU
analysis:M is the main memory sizel3 is the disk block Workload for machinei is given by Wi = 3_,c, W (0).
size, scan(N) = ©(N/B) 1/0s, wherel < B < M/2and L€t L = {l1,...Ln}. Note that each machine gets

N is the amount of data being read/written from/to disk. Vertices, i-.e|Li[= .. As the assignment of vertices ity
is random, we consider the selectioniof for1 <i<p, a

Theorem 4:Algorithm 2 usesO (29 scan(|Ve|+|Ec|)) random sampling fromLe. Thus, Le; is our sample space

I/0s andO(3(deg(r))?) CPU time. of size n, and each samplé has a weight ofi¥/(¢). Let
Proof: The proof can be found in [17]. By = 1%, W() be the mean workload per vertex
(sample), and? = L 37, (W (£) — p)? be the variance.
V. PARALLEL RECTANGLE COUNTING We achieve a minimum CPU runtime (or the longest running
We discuss two parallel algorithms, a partition-basedime Of any machine)Co,; for PAR-rect if workload is
algorithm and a MapReduce algorithm. evenly distributed for they machines, and thus the optimal
time is given byC,,; = %.
A. Partition-Based Algorithm The sample average at machinis given bypTWi. When

the sample size is large enough, the central-limit theorem

Assume that there arg available machines. A master oW .
machine takes the input graph and distributes data and tasl%?ys that the value gf/n(Z,* — 1) can be approximated by

. . . the normal distribution with mean 0 and variance From
to other machines. We describe the algorithm as follows. , . . . e
. . L this we can derive the following probabilistic guarantee of
We randomly partitionL¢ into a set ofp disjoint vertex

sets, {Ly,...,L,}. Let R, — Uée& adj(0). Then, we small deviation of the actual machine workload from the

construct the neighborhood subgraph®f, NG(R;), i.e., ideal workload.
the subgraph consisting of all edges incident to vertices in Theorem 6:Given p machines running PAR-rect on a
R;. We distributeNG(R;) to machinei, for 1 <i < p, and bipartite graphz = ((L¢, Re), Ec), where|Lg| = n, then
machine: applies Algorithm 1 (WithNG(R;) as input) to for 1 <i<pand0 <e <1,
count rectangles that involve vertices In. We name this 1 eur/n
parallel algorithm a$AR-rect. The execution at machine Prob(Wi < (14 €)Copt) = 5 <1 +erf <ﬂ07\/§/p>>
is shown in Algorithm 3. _ .
The following theorem (proof is given in [17]) shows that Where erf is the error function.

the total amount of work done by PAR-rect is the same as The value of the error function in the above is high (close
that by the in-memory algorithm, i.e., Algorithm 1. to 1 for the datasets we tested with p<16 and small values
of €), which implies that the actual workload at each machine

Theorem 5:Given a bipartite grapty = (LgURc, Ec), ;s close to the ideal workload with high probability.
Algorithm PAR-rect correctly computeg?) for each vertex

¢ € L and~(e) for each edge € Eg. The total amount B- MapReduce Rectangle Counting
of work performed by all machines to run parallel rectangle MapReduce is popularly used to process large datasets.
counting isO(>_(deg(r))?). We present a MapReduce algorithm, calleidR-rect, for

rectangle counting. MR-rect consists of two rounds of Map
and Reduce, denoted by Map 1, Reduce 1, and Map 2, and
Reduce 2, as follows. First, for eache R, Map 1 outputs
@ (b)

((¢,¢);r) for all pairs¢,¢' € adj(r), where? < ¢'. In
this way, Reduce 1 collectsd; (¢, ¢) for each unique pair
0,0 € Lg, where? and ¢ are exactly 2 hops away and
¢ < '. Then, Reduce 1 simply outpufs"¥("*)1) for each
¢ € Lg and (Jadj(£,¢')| — 1) for each edg€?,r) € Eg,
which are then collected and summed up by Reduce 2 to oS , : ® @
obtain~(¢) and~(e) for each? € Ls ande € Eq. Note
that Map 2 is an identity mapper which does nothing. Figure 4. Two versions of local clustering coefficient

The following theorems (proofs are given in [17]) show
the correctness and that the total amount of work done by We give a different definition of the denominator of
MR-rect is the same as that by Algorithm 1. Equation (2) as follows.

Figure 3. Loosely and tightly connected networks

®

Theorem 7:Given a bipartite graply = (L URg, Eg), C(v) = v(v) (5)
Algorithm MR-rect correctly computeg(¢) for each vertex N (d€92<v>)|2h0p(v)|'

¢ € Lg andy(e) for each edge € Fc. Intuitively, Equation (4) defines the number of potential
Theorem 8:The total amount of work performed by all rectangles containing as the number of potential rectangles
machines to run Algorithm MR-rect i©(>"(deg(r))?). that can be formed witlhr by adding an extra edge to some
length-3 path containing, while Equation (5) considers the
number of potential rectangles that can be formed out of
Clustering coefficient is an important measure for networky's neighbors (i.e.,adj(v)) and those who share common
analysis. It measures how likely vertices in a graph tend tmeighbors withv (i.e., 2hop(v)).
cluster together. For example, Figure 3(a) shows a loosely- The main difference between the two equations is that
connected bipartite network, while Figure 3(b) shows aEquation (5) gives a higher weight to a unified neighbor-
tightly-knit network. Thus, we expect that Figure 3(b) hashood structure centered at that is, Equation (5) tends
much higher clustering coefficient, both globally as a grapho give a lowerC(v) than Equation 4 if the neighborhood
and locally at individual vertices, than Figure 3(a). of v is divided into many small groups that are relatively
Both global and local clustering coefficients are well- isolated with each other. This is because foto gain a
known measures for analyzing uni-partite graphs (basedigh clustering coefficient by Equation (5), we require the
on triangles) [11], [3]. A corresponding (local) clustegin subgraph induced by its neighbors and 2-hop neighbors
coefficient for bipartite graphs that was proposed in [15] isare well connectedverall, whereas Equation 4 is mainly
given by Equation 2 below. determined by the number of shared neighbors of each
pair of v’s neighbors, putting little emphasis on the overall
connection or community structures among these neighbors
of v. We further illustrate using the following example.

V1. CLUSTERING COEFFICIENTS INBIPARTITE GRAPHS

Definition 1 (Clustering Coefficients)Given a bipartite
graphG = (V, E¢), the (local) clustering coefficienbof a
vertexv € Vg, denoted byC(v), is defined as follows.

Example 3:Consider the vertek; in Figure 4, where its
Clv) = _V(U) —. (2) neighbors can be seen as divided into small grofips -},
number of potential rectangles containing {r3,74}, {rs, 76}, and{rs} (the grouping becomes clearer if
The (global) clustering coefficienbf G, denoted byC(G), we remove all edges incident tg). We haveC(l3) = 1/11

is defined as by Equation (4), while Equation (5) gives a much lower
C(G) = ﬁ Z C(v). (3) C(l3) =1/21 due to the separated neighborhood:pf [
Glyeve The above example suggests that Equation (4) and Equa-

tion (5) may be used together to analyze a bipartite network.
. ;) . :) For example, if the clustering coefficients of the vertices
tightly-knit community structures iz, while C(G) gives computed by both equations are similar, it implies that the

an overall indication of_the clustering _i@' . neighborhood structures of the vertices within the graph
Zhang et al. [15] define the denominator of Equation (2)5r¢™ \ell connected overall. On the contrary, it implies

Intuitively, C(v) measures the degree to whichforms

as follows. some scattered small structures within the neighborhood
Cv) = 7(v) of the vertices, where the degree of scattered-ness may
~ ((deg(v) — 1) > ucadi(v)(deg(u) — 1)) — v(v) be quantified by the difference between the two clustering

(4) coefficients obtained by Equations 4 and 5. At the same,

we can still analyze from the results of both equations howOur experiments on MM-rect ran out of memory for all the
likely the graph and its vertices tend to cluster. datasets we used due to th€|V|?) space requirement for
Finally, C(v) defined by both Equations (4) and (5) can bematrix multiplication. Thus, we extract a smaller subgraph
obtained (with negligible overhead) by our algorithms vhic from each of the datasets. We select vertices from both sides
computey(v) and also|2hop(v)| during the process. of the bipartite graphs so that the ratio of the number of
vertices on the two sides roughly follows that in the origina

VIl. EXPERIMENTAL RESULTS)
) graphs. The number of vertices and edges of each subgraph,
We evaluate the performance of our algorithms, de-

bg, are given in Table .
noted bylM-rect, 10-rect, PAR-rect and MR-rect, which S d

representIn-Memory algorithm, 1/0-efficient algorithm, S Tab&ell}l(109, 1M=10%)

P : IZE OF SUBGRAPH = , =
PARtition-based parallel algorithm, andMapReduce al- [ovie | netflix [fTickr | derl]
gorithm for rect-angle counting, respectively. The fastest Tonre TOK 100 13K 550
algorithm to the best of our knowledge that counts rectangle Roupg| | 7.0M 7.9K 6.7K 7.8K

Baugl | 2.5M 238K 23K 48K

is for counting small cycles in general graphs by fesitrix
Multiplication [16], denoted byMM-rect . Table Il
We ran all the sequential algorithms on a machine with ryxninG TIME (IN SEC) AND PEAK MEMORY CONSUMPTION(IN MB)

an Intel(R) Core i3-2100 3.10GHz CPU, 3GB RAM, and | Orln“ﬂ\'/iReEc|TﬁeN3M'\>{l'|RE|CiTckr e
Ubun_tu 11.10 OS. Algorithm MR-rect was ran using Hadoop Ciesamg [62 [5t [7 | 5 |
(version 0.20.205) on an Amazon Elastic MapReduce cluster [Wrect@me) | 2 | <1 | <1 | <1 |
with up to 20 nodes, each of which has the computing [MM-rect(mem) | 512 | 512 | 612 [512 |

[M-rect (mem) | 37 | 4 | 20 | 14]

capacity of a 1.0 GHz 2007 Xeon processor, 1.7GB RAM,
and 160GB instance storage. Algorithm PAR-rect was im-
plemented using Message Passing Interface (MPI) and PAR- Table Il shows that IM-rect is more than an order of

rect was tested on a cluster with up to 16 nodes each havingagnitude faster than MM-rect for all datasets, and uses

an Intel Core 2 Duo 2.80GHz CPU and 4GB RAM. significantly less memory. The result thus verifies that our
Table | algorithm very efficient, in terms of both running time and
DATASET STATISTICS(1K=103, 1M=106) memory consumption, in processing small graphs.

| [[Lcl [[Rel [[Eql [disksize] ~(G)] Although it may not be fair to compare with MM-rect

mvie [10K [72K | 1M | 103MB [1.2x 107 since it is not specifically designed for rectangle counting
netflix 5K 479K 75M 625MB 8.4 x 10 . . .

TTickr T 320k | 16m T 1@M T 957MB T 9.7 x 10 the lack of efficient algorithms does demonstrate the need fo

del i 533K | 17M | 140M | 2.2GB | 1.8 x 107 such algorithms, as otherwise existing studies on the aisaly

trans 1M | 80M [80OM | 135GB [5.3 x 1077 of bipartite graphs using clustering coefficients [12],][13

[14], [15] will not be able to be carried out in practice.
Datasets. We use the following five datasets. Thevi e .
B. Performance with Limited Memory

dataset is from the movie recommender service movielens.) .
umn.edu, consisting of users and movies as vertices while In this experiment, we ev_alu_at_e the performance Qf our
each edge representing a rating. Tieg f | i x (netflix.com) method when main memory is limited. We vary the avallab!e
is a dataset with users and actors as vertices and edgB¥mory size from 0.5GB to 3.0GB. We report the results in
indicate the user has rent a movie in which the actor has aable IV. Whenever the entire graph can fit in the available
leading role. The Deliciougle! i) dataset is from the social memory, IO-rectis essentially the same as IM-rect. Forethes
bookmarking web service delicious.com, where vertices ar€2S€s, we show the running time in bold numbers.

users and resources, and each edge is a tag assignment. Th¥Ve report the results for the three larger datasets only.
f1ickr dataset is from the online photo service flickr.com, FOr the other two smaller datasefmvi e andnet fli x,
where vertices are users and tags, and an edge is formd€Y can fit in just 0.5GB of memory and the running time
when a user assigns a tag to an image. The transactid M-rectis 11 seconds and 64 seconds, respectively.
(trans) dataset is a synthetic dataset generated by the 1he result shows that the in-memory algorithm, IM-rect,
IBM Quest Market-Basket synthetic data generator, wher&@n out of memory fof | i ckr when memory is limited to
vertices are items and transactions, and an edge shows thaPGB or smaller, and fodel i when memory is 2.5GB or

a transaction contains an item. Some statistics, includinbess' For the r ans dataset, IM-rect ran out of memory for
the total number of rectangles, of the above networks aré!l @vailable memory sizes. On the contrary, the I/O-efficie

summarized in Table 1. algorithm, 10-rect, is able to process all datasets evemwhe
] memory is limited to only 0.5GB.
A. Performance of In-Memory Computation For the dataset§!| i ckr anddel i , the running time

We first compare our in-memory algorithm, IM-rect, with of 10-rect is comparable to that of IM-rect even though 10-
the existing algorithm for counting 4-cycles, MM-rect [16] rect uses much less memory. The main reason for this result,

Table IV 4 movie (movie) 4 netflix (actor)
RUNNING TIME (IN SEC) AND NUMBER OF GRAPH SCANS BYIO-RECT
\ [30 [25 [20 [15 [1.0 [05 |

@Q —e—Eq. (4) —o—Eq. (4)
/ N —+—Eq. (5)

—+—Eq. (5
[Time f 11 ckr) [372 | 372 | 372 | 368 | 368 | 373 | 10° e &)
[#ofscansflickry | T | 1 | 1T | 2 | 2 | & | #°
[Time @el 1) [594 | 444 | 444 | 444 | 452 | 417 | 10° |
[#ofscansqeli) [1 | 2 | 2 [2 [3 | 6 | - S
[Time { rans) [4251 5715 | 6490 | 8583 | 12570 | 23544 | 10!
[#ofscansf(rans) | 8 | 10 | 13 | 18 | 28 | 58 |
®
10 L T 10° *—k
0.2 0.4 0.6 0.8 0 0.1 0.2 0.3
. . . 5 flickr (user) 6 deli (user)

as well as the stable running time of 10-rect over different 1° o0
available memory sizes, is because the I/O time of IO-rec! —o—Eq. (4) 10° ~o Ea(®

—+—Eq. (5)

is only about 1% of the total running time. In other words,
the CPU time dominates the total running time of 10-rect,
which thus matches the running time of IM-rect.

The performance of 10-rect for processihgans does
not follow the trend of that for processinfgl i ckr and \
del i, as the running time increases roughly linearly with %057 0355 07 &5 06 o 02 o2 05 08 1
.the decr?ase in the available memory size, or with th%igure 5. Distribution of clustering coefficient<{axis: distribution interval,
increase in the number of scans taken by 10-rect. However, ayis: frequency)
the significantly larger number of scans requiredtfoans
than the other two datasets actually reveals that much more
processing involving disk 1/O is required for ans. between machines, as well as the large sorting cost in the

Overall, the result of this experiment shows that our I/O-shuffle phase. Due to such limitations, we were not even
efficient algorithm can effectively eliminate the prohibily ~ able to obtain the results for the other larger datasets due
high 1/0O cost due to random disk access. The result als@o prolonged running time. On the contrary, PAR-rect can
demonstrates the efficiency of our algorithms in processingandle all datasets efficiently. The almost linear trenchin t
both large and small bipartite graphs for rectangle cogntin decrease of wall-clock time of PAR-rect with the increase
even when main memory resource is limited. in the number of workers also demonstrates the efficacy of
our load-balancing mechanism.

The results also suggest that MapReduce may not be the

We now evaluate the performance of the parallel algo{irst choice for solving graph problems of a similar nature as
rithms. For MR-rect, we measure the efficiency gain byrectangle counting, when other alternative approaches suc
examining the increase in the number of workers rangings 1/O-efficient algorithms are possible. A recent work on
from 5 to 20, and observe the trend using the datasmi$ e 1/O-efficient triangle counting [8] also reports much sraall
andnet f | i x. For PAR-rect, we record the time by varying running time in a single machine than the state-of-the-art
the number of workers from 1 to 16. We report the resultsMapReduce algorithm in 1636 machines [9].
in Table V and Table VI.

C. Performances of Parallel Algorithms

D. Clustering Coefficient Distribution
Table V
RUNNING TIME (IN MIN) BY MR-RECT We plot the distribution of local clustering coefficients,

[5 [TI0] 15 [20] given by Equation 4 and Equation 5, for all the four real-
movie | 208 | 108 | 88 | 85 | e P
RetfTTx | 851 [375 | 358 | 165 world bipartite graphs, as shown in Figure 5. Note that a
bipartite graph has vertices on two sides, the side we choose
is given in parentheses next to the dataset name.

Table VI . . R
RUNNING TIME (IN SEC) BY PAR-RECT From Figure 5, the two different distributions of cluster-
| [1t [2 [4] 8] 16] ing coefficient show distinct patterns of the networks and
movie | 127 74 | 47 | 34 | 2.8 Lot ; ;
et s T 7ia s 1205 363 rev_eal nontrivial !nfc_)rmgtlon of the graph_s. Fdel i and_
Tlickr | 496 | 265 | 139 | 80 | 49 flickr, both distributions share a similar trend, which
deli 892 | 469 | 261 | 158 | 110 implies that the neighbors of most vertices are likely to

intersect with each other on a significant portion of their
It is clearly shown that PAR-rect outperforms MR-rect neighborhood, i.e., vertices tend to form a tightly-knitrco
dramatically (note that the time shown in Table V is in munity structure with their neighbors. On the contrary, for
minutes while the time shown in Table Vlis in seconds). Thethe net f I i x and novi e networks, the two versions of
inferior efficiency of MR-rect could be most likely explaohe distributions obviously deviate from each other. In partic
by the quadratic amount of data generated and transmitteaar, Equation 4 tends to give more vertices with a high

clustering coefficient than Equation 5 which only gives a [3] D. J. Watts and S. H. Strogatz, “Collective dynamics of

high clustering coefficient to a smaller set of vertices with ‘small-world’ networks,”Naturg vol. 393, no. 6684, pp. 440—
neighborhood being clustered as a whole. 4 ‘21428' 1938' f R K 4 D. Sivak “Reduct
In terms of highest value of clustering coefficient, we find [Z: Bar-Yossef, R. Kumar, and D. Sivakumar, “Reductions

o . ; . in streaming algorithms, with an application to countin
that while it is only 0.3 fornet f | i x, there exist vertices triangles in grap%&n IBODA 2002, pp?p623_632_ g

in del i that have clustering coefficient of nearly 1.0. [5] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis, “Effent
Such information serves as an indicator of the global level semi-streaming algorithms for local triangle counting iasn

of clustering in a bipartite graph. Furthermore, the small sive graphs,” irKDD, 2008, pp. 16-24.

portion of vertices that have highest clustering coefficien [6] L. S. Buriol, G. Frahling, S. Leonardi, A. Marchetti-
in each network can be extracted for further analysis; for ~ SPaccamela, and C. Sohler, "Counting triangles in data

| hether thev f f th K streams,” inPODS 2006, pp. 253-262.
example, whether they form a core of the network. [7] S. Chu and J. Cheng, “Triangle listing in massive netwgork

Finally, one important finding of this experiment is that and its applications,” irKDD, 2011, pp. 672-680.
the use of Equation 4 and Equation 5 together can certainlyjg] ——, “Triangle listing in massive networksTKDD, vol. 6,
reveal much more information than using either of them no. 4, p. 17, 2012.
alone. And we remark that our algorithms can be applied to[9] S. Suri and S. Vassilvitskii, “Counting triangles ane téurse

compute both distributions with negligible extra cost. of the last reducer,” iWWW 2011, pp. 607-614.
[10] C. E. Tsourakakis, U. Kang, G. L. Miller, and C. Falowgso
VIIl. RELATED WORK “Doulion: counting triangles in massive graphs with a cbin,

. T in KDD, 2009, pp. 837-846.
Triangle counting in uni-partite graphs has been exteni;;) s wasserman and K. Faust, “Social network analysighMe

sively studied [4], [5], [6], [7], [8], [1], [2], [9], [10]. ods and applicationsCambridge University Pres4.994.
However, due to the difference in structure (both in graph12] M. Latapy, C. Magnien, and N. Vecchio, “Basic notions fo
structure and in pattern structure), algorithms for trlang the analysis of large two-mode network§bcial Networks
counting cannot be applied for rectangle counting. In uni- Vol 30, no. 1, pp. 31-48, 2008.

: : et : [13] P. G. Lind, M. C. Gonzalez, and H. J. Herrmann, “Cycled an
partite graphs, scalable algorithms for listing other imiaiot clustering in bipartite networksPhysical Review Evol. 72,

substructures such as maximal cliques and core subgraphs .7 5 500s5.

were studied in [18], [19], [20], [21], [22], [23]. [14] G. Robins and M. Alexander, “Small worlds among inter-

For uni-partite graphs, counting lengtheycles, for any locking directors: Network structure and distance in kipar
k < 7, takesO(|Vg|¥) time [16], wherew < 2.37 is graphs,” Computational & Mathematical Organization The-
the exponent of matrix multiplication. For bipartite graph ory, vol. 10, no. 1, pp. 69-94, 2004.

counting cycles of lengthy, g + 2, and g + 4 with girth ~ [15] P-Zhang, J. Wang, X. Li, M. Li, Z. Di, and Y. Fan, “Clusieg

EN . coefficient and community structure of bipartite netwdrks,
g > 6 takesO(g|Vo|®) time also by method of matrix Physica A: Statistical Mechanics and its Application®l.

multiplication [24]. These algorithms, however, cannailec 387, no. 27, pp. 6869-6875, 2008.
to process even graphs of medium-size. [16] N. Alon, R. Yuster, and U. Zwick, “Finding and counting
given length cycles,Algorithmicg vol. 17, no. 3, pp. 209—
IX. CONCLUSIONS 223, 1997.

We proposed the problem of rectangle counting in largdl?] J- Wang, J. Cheng, and A. W.-C. Fu, "Rectangle counting

bipartite graphs, and devised three types of algorithms to in large plpartlte graphs (long versionhttp://www.cse.cuhk.
’ . . edu.hk/~jcheng/rect.pdf 2013.

solve th_e problem to cope with different d_ata volumes[lg] J. Cheng, Y. Ke, S. Chu, and M. Dzsu, “Efficient core
and available computing resources. Our experimentaltesul decomposition in massive networks,” [@DE, 2011, pp. 51—
showed that our in-memory algorithm is very efficient for 62.
processing small to medium size datasets, while our 1/0f19] J. Cheng, Y. Ke, A. W.-C. Fu, J. X. Yu, and L. Zhu,
efficient algorithm can process both small and large graphs ~ Finding maximal cliques in massive networks by h*-graph,”
efficiently with limited memory. Our partition-based pdeél in SIGMOD Conference2010, pp. 447-458.

. . . . [20] ——, “Finding maximal cliques in massive network®\CM
algorithm is shown be dramatically more efficient than Transactions on Database Systems

the MapReduce algorithm. Finally, we demonstrated th§p1) 5. cheng, L. zhu, Y. Ke, and S. Chu, “Fast algorithms for
usefulness of rectangle counting through an analysis &f rea maximal clique enumeration with limited memory,” KDD,

world networks by rectangle-based clustering coefficient. 2012, pp. 1240-1248.
[22] J. Wang and J. Cheng, “Truss decomposition in massive
REFERENCES networks,”PVLDB, vol. 5, no. 9, pp. 812-823, 2012.

[1] M. Latapy, “Main-memory triangle computations for very [23] J. Wang, J. Cheng, and A. W.-C. Fu, “Redundancy-aware
large (sparse (power-law)) graph3heor. Comput. Sgivol. maximal cliques,” inKDD, 2013, pp. 122-130.
407, no. 1-3, pp. 458-473, 2008. [24] T. R. Halford and K. M. Chugg, “An algorithm for count-

[2] T. Schank and D. Wagner, “Finding, counting and listinlg a ing short cycles in bipartite graphslEEE Transactions on
triangles in large graphs, an experimental study,WEA Information Theoryvol. 52, no. 1, pp. 287-292, 2006.

2005, pp. 606—-609.

