
Rectangle Counting in Large Bipartite Graphs

Jia Wang, Ada Wai-Chee Fu, James Cheng
Department of Computer Science and Engineering, The Chinese University of Hong Kong

{jwang,adafu,jcheng}@cse.cuhk.edu.hk

Abstract—Rectangles are the smallest cycles (i.e., cycles of
length 4) and most elementary sub-structures in a bipartite
graph. Similar to triangle counting in uni-partite graphs,
rectangle counting has many important applications where data
is modeled as bipartite graphs. However, efficient algorithms
for rectangle counting are lacking. We propose three different
types of algorithms to cope with different data volumes and the
availability of computing resources. We verified the efficiency
of our algorithms with experiments on both large real-world
and synthetic bipartite graphs.

Keywords-bipartite graphs; rectangle counting;

I. I NTRODUCTION

A bipartite graph models the relationship between two
sets of entities in many applications. Examples of such
bipartite relationship include authors and papers in scientific
collaboration, movies and reviews in recommender sites,
queries and URLs in query logs in Web search applications,
customers and purchased items in market baskets, etc.

In this paper, we propose to study the fundamental
substructures in a bipartite graph. In uni-partite graphs,
triangles (i.e., cycles of length 3) are considered as the
building blocks of a graph [1], [2], [3], which play a central
role in graph and network analysis. In a bipartite graph,
triangles do not exist and the corresponding patterns are the
rectangles, i.e., the smallest cycles or cycles of length 4.

Intuitively, a rectangle can be interpreted as: the relation-
ship between two objects at one side of the bipartite graph is
reinforced by a double connection to two objects at the other
side of the bipartite graph. From another angle, a rectangle
implies that two objects having the same connecting point
are likely to have another common connecting point. For
example, in an author-paper network, a rectangle indicates
that two authors collaborate at least twice in publishing, and
they are more likely to collaborate again with each other than
with those whom they have never collaborated.

We study the problem ofrectangle counting, that is,
counting the number of rectangles in a bipartite graph. For
uni-partite graphs, triangle counting is an extensively studied
problem [4], [5], [6], [7], [8], [1], [2], [9], [10] and applied in
the analysis of various networks and graphs [11], [3]. Since
rectangles are the counterpart of triangles in bipartite graphs,
rectangle counting can also be applied to study bipartite
graphs in similar ways as triangle counting for uni-partite
graphs. In particular, rectangle counting lies at the heartof
the computation of important network analysis metrics for

bipartite graphs [12], [13], [14], [15] such as (global and
local) clustering coefficients, rectangle-based connectivity,
and the estimation of larger cycles by counting 4-cycles.

Although there are many applications and important
rectangle-based measures/concpets have been proposed [12],
[13], [14], [15], we are not aware of any efficient algorithms
for rectangle counting. Since rectangles are different in
structure from triangles and bipartite graphs have features
different from uni-partite graphs, algorithms for triangle
counting in uni-partite graphs cannot be applied for rectangle
counting in bipartite graphs.

In this paper, we propose three efficient algorithms for
rectangle counting. The first algorithm is an in-memory
algorithm. The algorithm is especially fast for computation
in bipartite graphs of small to moderate size.

The second algorithm addresses a limitation of the first
algorithm, that is, the in-memory algorithm is inefficient to
handle graphs that are too large to fit in main memory. Many
real-world bipartite networks have grown very large and are
still growing at a steady rate. When the input graph cannot
fit in main memory, the pattern of edge accesses of the in-
memory algorithm incurs high I/O cost due to random disk
access. Thus, we develop an I/O-efficient algorithm to reduce
the I/O cost for rectangle counting in large graphs.

Our third algorithm considers parallel rectangle counting.
For processing massive volume of data, MapReduce has
become a standard platform for providing large-scale dis-
tributed computation. We adopt the MapReduce framework
for rectangle counting, and prove that the total amount of
work done by all machines to run the algorithm is the same
as that by the in-memory algorithm. In addition, we also
propose a partition-based parallel algorithm and found that
the partition-based algorithm is significantly more efficient
and scalable than the MapReduce algorithm. Our result
shows that MapReduce may not be most suitable for tasks
such as rectangle counting.

The three algorithms cope with graphs of different sizes,
and also consider the availability of computing resources
(both memory and CPU resource). Our algorithms are simple
in design and shown to be very efficient. In particular,
our algorithms haveO(

∑

(deg(v))2) CPU time complexity,
which even in the worst case is much lower than theO(n4)
bound on the number of rectangles in a bipartite graph,
wheredeg(v) is the degree of a vertexv andn is the number
of vertices at one side of the bipartite graph. Note that

the lowest known time complexity for triangle counting is
O(n2.376) [16], while the bound on the number of triangles
is O(n3) for a graph withn vertices. The fastest practical
algorithm takesO(m1.5) [2], [9] for a graph withm edges,
which is essentially an enumeration of all triangles and thus
is the same as the bound on the number of triangles in the
worst case. Our algorithms do not enumerate rectangles and
hence have a much lower complexity than theO(n4) bound
on the number of rectangles.

We evaluated our algorithms on both large real-world
and synthetic bipartite graphs. Our results show that our in-
memory algorithm is at least an order of magnitude faster
than the existing small-cycle counting algorithm with the
best known time complexity [16], with a significantly less
memory consumption. The lack of efficient algorithms in
practice shows the need for more efficient algorithms for
rectangle counting, without which the existing proposals of
bipartite graph analysis using clustering coefficients [12],
[13], [14], [15] cannot be made possible.

For larger graphs, the experimental results show that
our I/O-efficient algorithm can process rectangle counting
efficiently with limited main memory. The MapReduce
algorithm also shows reasonable speedup with growing com-
puting capacity, although we show that our partition-based
parallel algorithm is dramatically more efficient than the
MapReduce algorithm. Finally, we present some interesting
findings on the networks by studying clustering coefficients
defined based on rectangles.

Outline. Section II gives the notations and problem defi-
nition. Sections III, IV, and V present the in-memory, I/O-
efficient, and parallel algorithms, respectively. SectionVI
discusses clustering coefficient for bipartite graphs. Section
VII reports the experimental results. Section VIII discusses
related work and Section IX concludes the paper.

II. PROBLEM DEFINITION

Let G = (VG = (LG ∪ RG), EG) be an undirected, un-
weighted bipartite graph, whereLG andRG are two disjoint
sets of vertices ofG andEG ⊆ {{u, v} : u ∈ LG, v ∈ RG}
is the set of edges ofG. An edge betweenu and v are
denoted by either(u, v) or (v, u).

We assume that the graph is stored in its adjacency list
representation (whether in main memory or on disk), where
vertices are assigned with unique IDs.

We define the set ofadjacent verticesof a vertexv ∈
VG as adj (v) = {u : (u, v) ∈ EG}, and thedegreeof
v in G as deg(v) = |adj (v)|. Given two distinct vertices
v, v′ ∈ LG (or v, v′ ∈ RG), we define the set of common
adjacent vertices ofv and v′ as adj (v, v′) = {u : (v, u) ∈
EG, (v

′, u) ∈ EG}.
We define arectangle in G as follows. A rectangle is

a complete bipartite subgraphconsisting of the vertex set
{ℓ, ℓ′, r, r′} such thatℓ, ℓ′ ∈ LG andr, r′ ∈ RG. We denote

l1 l2 l3 l4 l5

r1 r2 r3 r4 r5 r6

e

Figure 1. Rectangle counting

the rectangle by[ℓ, r, ℓ′, r′]. The rectangle[ℓ, r, ℓ′, r′] can
also be seen as alength-4 cycleconsisting of the following
edges:(ℓ, r), (r, ℓ′), (ℓ′, r′), (r′, ℓ).

We denote byγ(v) andγ(ℓ, r) the number of rectangles
containing the vertexv and the edge(ℓ, r) in G, respectively.
We also use

∑

γ(ℓ) to denote
∑

ℓ∈LG
γ(ℓ), and

∑

γ(r)
to denote

∑

r∈RG
γ(r). The number of rectangles inG,

denoted byγ(G), is given as follows

γ(G) =
1

2

∑

γ(ℓ) =
1

2

∑

γ(r). (1)

Equation 1 holds as every rectangle is counted twice by
the two vertices at each side of the bipartite graph.

The following example illustrates the concepts.

Example 1:Figure 1 shows a bipartite graphG with
LG={l1, l2, l3, l4, l5} andRG={r1, r2, r3, r4, r5, r6}. There
are 5 rectangles inG, namely [l1, r1, l2, r2], [l1, r1, l2, r3],
[l1, r2, l2, r3], [l2, r3, l3, r4], and[l3, r3, l4, r5]. Thus,γ(G) =
5. We can also count the number of rectangles containing
any vertex or edge. For example, we haveγ(l1) = 3,
γ(l2)=4, γ(r1)=2, andγ(e)=3 wheree=(l2, r3). �

Problem Definition. Given a bipartite graphG = (VG =
(LG ∪ RG), EG), the problem ofrectangle counting is to
computeγ(v) for each vertexv ∈ LG (or v ∈ RG), γ(e)
for each edgee ∈ EG, andγ(G).

III. I N-MEMORY RECTANGLE COUNTING

We first present an in-memory algorithm for rectangle
counting in a bipartite graph, as shown in Algorithm 1.

Given a bipartite graphG = (LG ∪ RG, EG), the algo-
rithm sequentially processes each vertexℓ ∈ LG to compute
γ(ℓ), along withγ(e) for eache = (ℓ, r) ∈ EG, as follows.

Let 2hop(ℓ) be the set of vertices that areexactly two
hops (i.e., two edges) away fromℓ. Note that2hop(ℓ) ⊆ LG,
sinceℓ ∈ LG and every path of length 2 fromℓ must end
at some vertexℓ′ ∈ (LG\ℓ).

The algorithm first computes2hop(ℓ) and adj (ℓ, ℓ′) for
eachℓ′ ∈ (LG\ℓ) in Lines 5-10, which is by doing a two-hop
depth-first traversal fromℓ. Then,γ(ℓ) and γ(e), for each
e=(ℓ, r) ∈ EG, are computed from2hop(ℓ) andadj (ℓ, ℓ′) in
Lines 11-14. Finally, the algorithm also obtainsγ(G) from
γ(ℓ) for all ℓ ∈ LG. The correctness and complexity of the
algorithms are established by the following theorems.

Theorem 1:Given a bipartite graphG = (LG∪RG, EG),
Algorithm 1 correctly computesγ(ℓ) for each vertexℓ ∈ LG,
γ(e) for each edgee ∈ EG, andγ(G).

Algorithm 1: In-Memory Rectangle Counting
Input : A bipartite graphG = (VG = (LG ∪RG), EG)
Output : γ(ℓ) for eachℓ ∈ LG, γ(e) for eache ∈ EG, and

γ(G)
1 begin
2 γ(ℓ)← 0 for eachℓ ∈ LG;
3 γ(e)← 0 for eache ∈ EG;
4 foreach ℓ ∈ LG do
5 2hop(ℓ)← ∅;
6 adj (ℓ, ℓ′)← ∅ for eachℓ′ ∈ (LG\ℓ);
7 foreach r ∈ adj (ℓ) do
8 foreach ℓ′ ∈ adj (r)\ℓ do
9 adj (ℓ, ℓ′)← adj (ℓ, ℓ′) ∪ {r};

10 2hop(ℓ)← 2hop(ℓ) ∪ {ℓ′};

11 foreach ℓ′ ∈ 2hop(ℓ) do
12 γ(ℓ)← γ(ℓ) +

(

|adj(ℓ,ℓ′)|
2

)

;
13 foreach r ∈ adj (ℓ, ℓ′) do
14 γ(e=(ℓ, r))← γ(e) + |adj (ℓ, ℓ′)| − 1;

15 γ(G)← 1
2

∑

γ(ℓ);

Theorem 2:Algorithm 1 usesO(
∑

(deg(r))2) time and
O(|VG|+ |EG|) memory space.

Proof: The proofs can be found in [17].

We illustrate how Algorithm 1 works as follows.

Example 2:Given the graph in Figure 1, consider the
processing ofℓ = l2 in Lines 4-14. Sinceadj (l2) =
{r1, r2, r3, r4}, we accessadj (r1), adj (r2), adj (r3) and
adj (r4) to compute the 2-hop neighbors ofl2 and ob-
tain 2hop(l2) = {l1, l3, l4}. We also obtainadj (l2, l1) =
{r1, r2, r3}, adj (l2, l3) = {r3, r4}, andadj (l2, l4) = {r3}.
In Line 12, we add

(

|adj(l2,l1)|
2

)

= 3 and
(

|adj(l2,l3)|
2

)

=1 to
γ(l2), but 0 fromadj (l2, l4) since |adj (l2, l4)|=1. For the
edges, e.g.,e = (l2, r3), sincer3 is in adj (l2, l1), adj (l2, l3),
andadj (l2, l4), Line 14 sums up each of their sizes minus
1, thus we haveγ(e) = (3− 1)+ (2− 1)+ (1− 1) = 3. �

IV. I/O-EFFICIENT RECTANGLE COUNTING

We now discuss our second algorithm, an I/O-efficient
algorithm, which handles the case when the input graph is
too large to fit in main memory.

To avoid random access to the graph stored on disk, the
algorithm first partitionsLG into a set ofp disjoint vertex
sets,Par = {P1, P2, . . . , Pp}. Then, for each vertex set
P ∈ Par, we construct theneighborhood subgraphof P ,
denoted byNG(P), which is simply the subgraph consisting
of all edges incident to vertices inP .

With the above formulation ofNG(P), the partitioning
can be easily done by sequentially scanningG (in its
adjacency-list representation) as follows. We first obtainP1,
which is the first |P1| vertices ofLG read fromG such

Algorithm 2: I/O-Efficient Rectangle Counting
Input : A bipartite graphG = (VG = (LG ∪RG), EG)
Output : γ(ℓ) for eachℓ ∈ LG andγ(e) for eache ∈ EG

1 begin
2 partitionLG into Par = {P1, P2, . . . , Pp};
3 foreach P ∈ Par do
4 constructH = NG(P);
5 call Algorithm 1 withH as input to compute
6 γ(ℓ,H) for eachℓ ∈ LH , and
7 γ(e,H) for eache ∈ EH ;
8 for each ℓ ∈ LH : γ1(ℓ)← γ(ℓ,H);
9 for each e ∈ EH : γ1(e)← γ(e,H);

10 foreach pair Pi, Pj ∈ Par, wherei < j do
11 P ← Pi ∪ Pj ;
12 constructH = NG(P);
13 call Algorithm 1 withH as input to compute
14 γ(ℓ,H) for eachℓ ∈ LH , and
15 γ(e,H) for eache ∈ EH ;

// γ2(.) is initialized as 0 for first-time use

16 for each ℓ ∈ LH : γ2(ℓ)← γ2(ℓ) + γ(ℓ,H)− γ1(ℓ);
17 for each e ∈ EH : γ2(e)← γ2(e)+ γ(e,H)− γ1(e);

18 for each ℓ ∈ LG: γ(ℓ)← γ1(ℓ) + γ2(ℓ);
19 for each e ∈ EG: γ(e)← γ1(e) + γ2(e);

l1 l2 l4 l5

r1 r2 r3 r4 r5 r6

l3

r3 r4

Figure 2. Two types of rectangles

thatNG(P1) fills up half of the available memory1. We can
simply constructNG(P1) from the adjacency lists of the
vertices inP1. After we processNG(P1), we move on to
obtainP2 and constructNG(P2) in the same way, and so
on until we process all vertices inLG.

With respect to the partitionPar, we can classify the
rectangles inG into two types as follows. Since each
rectangle has two vertices inLG (let us call themleft-
vertices), we have: (1)Type-1 rectangleswith both left-
vertices in the sameP , for someP ∈ Par; or (2) Type-2
rectangleswith the two left-vertices in two differentPi and
Pj , for somePi, Pj ∈ Par. We useγ1(.) andγ2(.) as the
count of the two types of rectangles, respectively.

Consider the graph in Figure 1, we show how it is
partitioned into two parts in Figure 2. Note thatr3 and r4
are repeated in the two parts since they are in the adjacency
lists of l2 and alsol3. Rectangles falling into any single
part, including [l1, r1, l2, r2], [l1, r1, l2, r3], [l1, r2, l2, r3],
[l3, r3, l4, r5], are Type-1 rectangles. There is only one Type-
2 rectangle in this case, namely[l2, r3, l3, r4].

With the above set-up, Algorithm 2 mainly consists of
two for-loops. The first for-loop (Lines 3-9) counts Type-

1We use only half of the memory forNG(P1) because in Algorithm 2
we mergeNG(Pi) andNG(Pj) for Pi, Pj ∈ Par.

1 rectangles, which calls Algorithm 1 withH = NG(P)
as input for eachP ∈ Par. Let γ(ℓ,H) and γ(e,H) be
the number of rectangles inH containingℓ ∈ LH ande ∈
EH , respectively. Then, we simply haveγ1(ℓ) = γ(ℓ,H)
for eachℓ ∈ LH and γ1(e) = γ(e,H) for eache ∈ EH .
The second for-loop (Lines 10-17) counts Type-2 rectangles,
which calls Algorithm 1 withNG(Pi∪Pj) as input for each
pair Pi, Pj ∈ Par, where i < j, since now the two left-
vertices of each rectangle are in two differentPi and Pj .
Then, we computeγ2(.) correspondingly. Finally in Lines
18-19, we computeγ(ℓ) for each ℓ ∈ LG and γ(e) for
eache ∈ EG from γ1(.) andγ2(.). The following theorem
establishes the correctness of the counting.

Theorem 3:Given a bipartite graphG = (LG∪RG, EG),
Algorithm 2 correctly computesγ(ℓ) for each vertexℓ ∈ LG

andγ(e) for each edgee ∈ EG.
Proof: The proof can be found in [17].

We now analyze the complexity of Algorithm 2. We
use the following standard I/O complexity notations in the
analysis:M is the main memory size,B is the disk block
size,scan(N) = Θ(N/B) I/Os, where1 ≪ B ≤ M/2 and
N is the amount of data being read/written from/to disk.

Theorem 4:Algorithm 2 usesO(|EG|
M

scan(|VG|+ |EG|))
I/Os andO(

∑

(deg(r))2) CPU time.
Proof: The proof can be found in [17].

V. PARALLEL RECTANGLE COUNTING

We discuss two parallel algorithms, a partition-based
algorithm and a MapReduce algorithm.

A. Partition-Based Algorithm

Assume that there arep available machines. A master
machine takes the input graph and distributes data and tasks
to other machines. We describe the algorithm as follows.

We randomly partitionLG into a set ofp disjoint vertex
sets, {L1, . . . , Lp}. Let Ri =

⋃

ℓ∈Li
adj (ℓ). Then, we

construct the neighborhood subgraph ofRi, NG(Ri), i.e.,
the subgraph consisting of all edges incident to vertices in
Ri. We distributeNG(Ri) to machinei, for 1 ≤ i ≤ p, and
machinei applies Algorithm 1 (withNG(Ri) as input) to
count rectangles that involve vertices inLi. We name this
parallel algorithm asPAR-rect. The execution at machinei
is shown in Algorithm 3.

The following theorem (proof is given in [17]) shows that
the total amount of work done by PAR-rect is the same as
that by the in-memory algorithm, i.e., Algorithm 1.

Theorem 5:Given a bipartite graphG = (LG∪RG, EG),
Algorithm PAR-rect correctly computesγ(ℓ) for each vertex
ℓ ∈ LG andγ(e) for each edgee ∈ EG. The total amount
of work performed by all machines to run parallel rectangle
counting isO(

∑

(deg(r))2).

Algorithm 3: Execution ofPAR-rect at Machinei
Input : Li andNG(Ri)
Output : γ(ℓ) for eachℓ ∈ Li, γ(ℓ, r) for eachℓ ∈ Li and

r ∈ Ri

1 begin
2 run Algorithm 1 withNG(Ri) as input, with the

exception that in Line 4 substituteℓ ∈ Li for ℓ ∈ LG,
and ignore Line 15;

Having the same total workload as the in-memory algo-
rithm does not imply good parallelization, since the perfor-
mance also depends on the even distribution of workload,
as a bottleneck in one machine can seriously affect the
overall runtime. We now analyze the workload balancing
performance achieved by PAR-rect. From Algorithm 3, the
total CPU workload is made up of the workload of each
vertex inLG. The CPU workload from each vertexℓ ∈ LG

is given byW (ℓ) =
∑

r∈adj(ℓ) deg(r).
If Li is assigned to machinei, then the total CPU

workload for machinei is given byWi =
∑

ℓ∈Li
W (ℓ).

Let LG = {ℓ1, ..., ℓn}. Note that each machine getsn
p

vertices, i.e.|Li| = n
p

. As the assignment of vertices inLi

is random, we consider the selection ofLi, for 1 ≤ i ≤ p, a
random sampling fromLG. Thus,LG is our sample space
of size n, and each sampleℓ has a weight ofW (ℓ). Let
µ = 1

n

∑

ℓ∈LG
W (ℓ) be the mean workload per vertex

(sample), andσ2 = 1
n

∑

ℓ∈LG
(W (ℓ)− µ)2 be the variance.

We achieve a minimum CPU runtime (or the longest running
time of any machine)Copt for PAR-rect if workload is
evenly distributed for thep machines, and thus the optimal
time is given byCopt =

nµ
p

.
The sample average at machinei is given by pWi

n
. When

the sample size is large enough, the central-limit theorem
says that the value of

√
n(pWi

n
−µ) can be approximated by

the normal distribution with mean 0 and varianceσ2. From
this we can derive the following probabilistic guarantee of
small deviation of the actual machine workload from the
ideal workload.

Theorem 6:Given p machines running PAR-rect on a
bipartite graphG = ((LG, RG), EG), where|LG| = n, then
for 1 ≤ i ≤ p and0 < ǫ < 1,

Prob(Wi ≤ (1 + ǫ)Copt) ≈
1

2

(

1 + erf

(

ǫµ
√

n/p

σ
√
2

))

,

where erf is the error function.
The value of the error function in the above is high (close

to 1 for the datasets we tested with4≤p≤16 and small values
of ǫ), which implies that the actual workload at each machine
i is close to the ideal workload with high probability.

B. MapReduce Rectangle Counting

MapReduce is popularly used to process large datasets.
We present a MapReduce algorithm, calledMR-rect , for

rectangle counting. MR-rect consists of two rounds of Map
and Reduce, denoted by Map 1, Reduce 1, and Map 2, and
Reduce 2, as follows. First, for eachr ∈ RG, Map 1 outputs
〈(ℓ, ℓ′); r〉 for all pairs ℓ, ℓ′ ∈ adj (r), where ℓ < ℓ′. In
this way, Reduce 1 collectsadj (ℓ, ℓ′) for each unique pair
ℓ, ℓ′ ∈ LG, where ℓ and ℓ′ are exactly 2 hops away and
ℓ < ℓ′. Then, Reduce 1 simply outputs

(

|adj(ℓ,ℓ′)|
2

)

for each
ℓ ∈ LG and (|adj (ℓ, ℓ′)| − 1) for each edge(ℓ, r) ∈ EG,
which are then collected and summed up by Reduce 2 to
obtain γ(ℓ) and γ(e) for eachℓ ∈ LG and e ∈ EG. Note
that Map 2 is an identity mapper which does nothing.

The following theorems (proofs are given in [17]) show
the correctness and that the total amount of work done by
MR-rect is the same as that by Algorithm 1.

Theorem 7:Given a bipartite graphG = (LG∪RG, EG),
Algorithm MR-rect correctly computesγ(ℓ) for each vertex
ℓ ∈ LG andγ(e) for each edgee ∈ EG.

Theorem 8:The total amount of work performed by all
machines to run Algorithm MR-rect isO(

∑

(deg(r))2).

VI. CLUSTERING COEFFICIENTS INBIPARTITE GRAPHS

Clustering coefficient is an important measure for network
analysis. It measures how likely vertices in a graph tend to
cluster together. For example, Figure 3(a) shows a loosely-
connected bipartite network, while Figure 3(b) shows a
tightly-knit network. Thus, we expect that Figure 3(b) has
much higher clustering coefficient, both globally as a graph
and locally at individual vertices, than Figure 3(a).

Both global and local clustering coefficients are well-
known measures for analyzing uni-partite graphs (based
on triangles) [11], [3]. A corresponding (local) clustering
coefficient for bipartite graphs that was proposed in [15] is
given by Equation 2 below.

Definition 1 (Clustering Coefficients):Given a bipartite
graphG = (VG, EG), the (local) clustering coefficientof a
vertexv ∈ VG, denoted byC(v), is defined as follows.

C(v) = γ(v)

number of potential rectangles containingv
. (2)

The (global) clustering coefficientof G, denoted byC(G),
is defined as

C(G) =
1

|VG|
∑

v∈VG

C(v). (3)

Intuitively, C(v) measures the degree to whichv forms
tightly-knit community structures inG, while C(G) gives
an overall indication of the clustering inG.

Zhang et al. [15] define the denominator of Equation (2)
as follows.

C(v) = γ(v)

((deg(v)− 1)
∑

u∈adj (v)(deg(u)− 1))− γ(v)
.

(4)

Figure 3. Loosely and tightly connected networks

1 2 3 4 5

1 2 3 4 5 6 7

Figure 4. Two versions of local clustering coefficient

We give a different definition of the denominator of
Equation (2) as follows.

C(v) = γ(v)
(

deg(v)
2

)

|2hop(v)|
. (5)

Intuitively, Equation (4) defines the number of potential
rectangles containingv as the number of potential rectangles
that can be formed withv by adding an extra edge to some
length-3 path containingv, while Equation (5) considers the
number of potential rectangles that can be formed out of
v’s neighbors (i.e.,adj (v)) and those who share common
neighbors withv (i.e., 2hop(v)).

The main difference between the two equations is that
Equation (5) gives a higher weight to a unified neighbor-
hood structure centered atv; that is, Equation (5) tends
to give a lowerC(v) than Equation 4 if the neighborhood
of v is divided into many small groups that are relatively
isolated with each other. This is because forv to gain a
high clustering coefficient by Equation (5), we require the
subgraph induced by its neighbors and 2-hop neighbors
are well connectedoverall, whereas Equation 4 is mainly
determined by the number of shared neighbors of each
pair of v’s neighbors, putting little emphasis on the overall
connection or community structures among these neighbors
of v. We further illustrate using the following example.

Example 3:Consider the vertexl3 in Figure 4, where its
neighbors can be seen as divided into small groups,{r1, r2},
{r3, r4}, {r5, r6}, and{r7} (the grouping becomes clearer if
we remove all edges incident tol3). We haveC(l3) = 1/11
by Equation (4), while Equation (5) gives a much lower
C(l3) = 1/21 due to the separated neighborhood ofl3. �

The above example suggests that Equation (4) and Equa-
tion (5) may be used together to analyze a bipartite network.
For example, if the clustering coefficients of the vertices
computed by both equations are similar, it implies that the
neighborhood structures of the vertices within the graph
are well connected overall. On the contrary, it implies
some scattered small structures within the neighborhood
of the vertices, where the degree of scattered-ness may
be quantified by the difference between the two clustering
coefficients obtained by Equations 4 and 5. At the same,

we can still analyze from the results of both equations how
likely the graph and its vertices tend to cluster.

Finally, C(v) defined by both Equations (4) and (5) can be
obtained (with negligible overhead) by our algorithms which
computeγ(v) and also|2hop(v)| during the process.

VII. E XPERIMENTAL RESULTS

We evaluate the performance of our algorithms, de-
noted byIM-rect , IO-rect , PAR-rect andMR-rect , which
represent In-Memory algorithm, I/O-efficient algorithm,
PARtition-based parallel algorithm, andMapReduce al-
gorithm for rect-angle counting, respectively. The fastest
algorithm to the best of our knowledge that counts rectangles
is for counting small cycles in general graphs by fastMatrix
Multiplication [16], denoted byMM-rect .

We ran all the sequential algorithms on a machine with
an Intel(R) Core i3-2100 3.10GHz CPU, 3GB RAM, and
Ubuntu 11.10 OS. Algorithm MR-rect was ran using Hadoop
(version 0.20.205) on an Amazon Elastic MapReduce cluster
with up to 20 nodes, each of which has the computing
capacity of a 1.0 GHz 2007 Xeon processor, 1.7GB RAM,
and 160GB instance storage. Algorithm PAR-rect was im-
plemented using Message Passing Interface (MPI) and PAR-
rect was tested on a cluster with up to 16 nodes each having
an Intel Core 2 Duo 2.80GHz CPU and 4GB RAM.

Table I
DATASET STATISTICS(1K=103 , 1M=106)

|LG| |RG| |EG| disk size γ(G)

movie 10K 72K 10M 103MB 1.2 × 1012

netflix 5K 479K 75M 625MB 8.4 × 1013

flickr 320K 1.6M 113M 957MB 9.7 × 108

deli 533K 17M 140M 2.2GB 1.8 × 1010

trans 1M 80M 800M 13.5GB 5.3 × 1011

Datasets. We use the following five datasets. Themovie
dataset is from the movie recommender service movielens.
umn.edu, consisting of users and movies as vertices while
each edge representing a rating. Thenetflix (netflix.com)
is a dataset with users and actors as vertices and edges
indicate the user has rent a movie in which the actor has a
leading role. The Delicious (deli) dataset is from the social
bookmarking web service delicious.com, where vertices are
users and resources, and each edge is a tag assignment. The
flickr dataset is from the online photo service flickr.com,
where vertices are users and tags, and an edge is formed
when a user assigns a tag to an image. The transaction
(trans) dataset is a synthetic dataset generated by the
IBM Quest Market-Basket synthetic data generator, where
vertices are items and transactions, and an edge shows that
a transaction contains an item. Some statistics, including
the total number of rectangles, of the above networks are
summarized in Table I.

A. Performance of In-Memory Computation

We first compare our in-memory algorithm, IM-rect, with
the existing algorithm for counting 4-cycles, MM-rect [16].

Our experiments on MM-rect ran out of memory for all the
datasets we used due to theO(|VG|2) space requirement for
matrix multiplication. Thus, we extract a smaller subgraph
from each of the datasets. We select vertices from both sides
of the bipartite graphs so that the ratio of the number of
vertices on the two sides roughly follows that in the original
graphs. The number of vertices and edges of each subgraph,
subg, are given in Table II.

Table II
SIZE OF SUBGRAPHS(1K=103, 1M=106)

movie netflix flickr deli

|Lsubg | 1.0K 100 1.3K 250
|Rsubg | 7.0M 7.9K 6.7K 7.8K
|Esubg | 2.5M 238K 23K 48K

Table III
RUNNING TIME (IN SEC) AND PEAK MEMORY CONSUMPTION(IN MB)

OF IM- RECT AND MM- RECT
movie netflix flickr deli

MM-rect (time) 62 51 12 50
IM-rect (time) 2 <1 <1 <1

MM-rect (mem) 512 512 512 512
IM-rect (mem) 37 4 20 14

Table III shows that IM-rect is more than an order of
magnitude faster than MM-rect for all datasets, and uses
significantly less memory. The result thus verifies that our
algorithm very efficient, in terms of both running time and
memory consumption, in processing small graphs.

Although it may not be fair to compare with MM-rect
since it is not specifically designed for rectangle counting,
the lack of efficient algorithms does demonstrate the need for
such algorithms, as otherwise existing studies on the analysis
of bipartite graphs using clustering coefficients [12], [13],
[14], [15] will not be able to be carried out in practice.

B. Performance with Limited Memory

In this experiment, we evaluate the performance of our
method when main memory is limited. We vary the available
memory size from 0.5GB to 3.0GB. We report the results in
Table IV. Whenever the entire graph can fit in the available
memory, IO-rect is essentially the same as IM-rect. For these
cases, we show the running time in bold numbers.

We report the results for the three larger datasets only.
For the other two smaller datasets,movie andnetflix,
they can fit in just 0.5GB of memory and the running time
of IM-rect is 11 seconds and 64 seconds, respectively.

The result shows that the in-memory algorithm, IM-rect,
ran out of memory forflickr when memory is limited to
1.5GB or smaller, and fordeli when memory is 2.5GB or
less. For thetrans dataset, IM-rect ran out of memory for
all available memory sizes. On the contrary, the I/O-efficient
algorithm, IO-rect, is able to process all datasets even when
memory is limited to only 0.5GB.

For the datasetsflickr and deli, the running time
of IO-rect is comparable to that of IM-rect even though IO-
rect uses much less memory. The main reason for this result,

Table IV
RUNNING TIME (IN SEC) AND NUMBER OF GRAPH SCANS BYIO-RECT

3.0 2.5 2.0 1.5 1.0 0.5

Time (flickr) 372 372 372 368 368 373
of scans (flickr) 1 1 1 2 2 4

Time (deli) 594 444 444 444 452 417
of scans (deli) 1 2 2 2 3 6

Time (trans) 4251 5715 6490 8583 12570 23544
of scans (trans) 8 10 13 18 28 58

as well as the stable running time of IO-rect over different
available memory sizes, is because the I/O time of IO-rect
is only about 1% of the total running time. In other words,
the CPU time dominates the total running time of IO-rect,
which thus matches the running time of IM-rect.

The performance of IO-rect for processingtrans does
not follow the trend of that for processingflickr and
deli, as the running time increases roughly linearly with
the decrease in the available memory size, or with the
increase in the number of scans taken by IO-rect. However,
the significantly larger number of scans required fortrans
than the other two datasets actually reveals that much more
processing involving disk I/O is required fortrans.

Overall, the result of this experiment shows that our I/O-
efficient algorithm can effectively eliminate the prohibitively
high I/O cost due to random disk access. The result also
demonstrates the efficiency of our algorithms in processing
both large and small bipartite graphs for rectangle counting,
even when main memory resource is limited.

C. Performances of Parallel Algorithms

We now evaluate the performance of the parallel algo-
rithms. For MR-rect, we measure the efficiency gain by
examining the increase in the number of workers ranging
from 5 to 20, and observe the trend using the datasetsmovie
andnetflix. For PAR-rect, we record the time by varying
the number of workers from 1 to 16. We report the results
in Table V and Table VI.

Table V
RUNNING TIME (IN MIN) BY MR-RECT

5 10 15 20

movie 208 108 88 85
netflix 951 379 358 188

Table VI
RUNNING TIME (IN SEC) BY PAR-RECT

1 2 4 8 16

movie 12.7 7.4 4.7 3.4 2.8
netflix 68.2 41.4 28.1 20.8 20.2
flickr 496 265 139 80 49
deli 892 469 261 158 110

It is clearly shown that PAR-rect outperforms MR-rect
dramatically (note that the time shown in Table V is in
minutes while the time shown in Table VI is in seconds). The
inferior efficiency of MR-rect could be most likely explained
by the quadratic amount of data generated and transmitted

0 0.2 0.4 0.6 0.8
10

0

10
1

10
2

10
3

10
4 movie (movie)

Eq. (4)
Eq. (5)

0 0.1 0.2 0.3
10

0

10
1

10
2

10
3

10
4 netflix (actor)

Eq. (4)
Eq. (5)

0 0.1 0.2 0.3 0.4 0.5 0.6
10

0

10
1

10
2

10
3

10
4

10
5 flickr (user)

Eq. (4)
Eq. (5)

0 0.2 0.4 0.6 0.8 1
10

0

10
2

10
4

10
6

10
5

10
3

10
1

deli (user)

Eq. (4)
Eq. (5)

Figure 5. Distribution of clustering coefficient (x-axis: distribution interval,
y-axis: frequency)

between machines, as well as the large sorting cost in the
shuffle phase. Due to such limitations, we were not even
able to obtain the results for the other larger datasets due
to prolonged running time. On the contrary, PAR-rect can
handle all datasets efficiently. The almost linear trend in the
decrease of wall-clock time of PAR-rect with the increase
in the number of workers also demonstrates the efficacy of
our load-balancing mechanism.

The results also suggest that MapReduce may not be the
first choice for solving graph problems of a similar nature as
rectangle counting, when other alternative approaches such
as I/O-efficient algorithms are possible. A recent work on
I/O-efficient triangle counting [8] also reports much smaller
running time in a single machine than the state-of-the-art
MapReduce algorithm in 1636 machines [9].

D. Clustering Coefficient Distribution

We plot the distribution of local clustering coefficients,
given by Equation 4 and Equation 5, for all the four real-
world bipartite graphs, as shown in Figure 5. Note that a
bipartite graph has vertices on two sides, the side we choose
is given in parentheses next to the dataset name.

From Figure 5, the two different distributions of cluster-
ing coefficient show distinct patterns of the networks and
reveal nontrivial information of the graphs. Fordeli and
flickr, both distributions share a similar trend, which
implies that the neighbors of most vertices are likely to
intersect with each other on a significant portion of their
neighborhood, i.e., vertices tend to form a tightly-knit com-
munity structure with their neighbors. On the contrary, for
the netflix and movie networks, the two versions of
distributions obviously deviate from each other. In partic-
ular, Equation 4 tends to give more vertices with a high

clustering coefficient than Equation 5 which only gives a
high clustering coefficient to a smaller set of vertices with
neighborhood being clustered as a whole.

In terms of highest value of clustering coefficient, we find
that while it is only 0.3 fornetflix, there exist vertices
in deli that have clustering coefficient of nearly 1.0.
Such information serves as an indicator of the global level
of clustering in a bipartite graph. Furthermore, the small
portion of vertices that have highest clustering coefficient
in each network can be extracted for further analysis; for
example, whether they form a core of the network.

Finally, one important finding of this experiment is that
the use of Equation 4 and Equation 5 together can certainly
reveal much more information than using either of them
alone. And we remark that our algorithms can be applied to
compute both distributions with negligible extra cost.

VIII. R ELATED WORK

Triangle counting in uni-partite graphs has been exten-
sively studied [4], [5], [6], [7], [8], [1], [2], [9], [10].
However, due to the difference in structure (both in graph
structure and in pattern structure), algorithms for triangle
counting cannot be applied for rectangle counting. In uni-
partite graphs, scalable algorithms for listing other important
substructures such as maximal cliques and core subgraphs
were studied in [18], [19], [20], [21], [22], [23].

For uni-partite graphs, counting length-k cycles, for any
k ≤ 7, takesO(|VG|ω) time [16], whereω < 2.37 is
the exponent of matrix multiplication. For bipartite graphs,
counting cycles of lengthg, g + 2, and g + 4 with girth
g > 6 takesO(g|VG|3) time also by method of matrix
multiplication [24]. These algorithms, however, cannot scale
to process even graphs of medium-size.

IX. CONCLUSIONS

We proposed the problem of rectangle counting in large
bipartite graphs, and devised three types of algorithms to
solve the problem to cope with different data volumes
and available computing resources. Our experimental results
showed that our in-memory algorithm is very efficient for
processing small to medium size datasets, while our I/O-
efficient algorithm can process both small and large graphs
efficiently with limited memory. Our partition-based parallel
algorithm is shown be dramatically more efficient than
the MapReduce algorithm. Finally, we demonstrated the
usefulness of rectangle counting through an analysis of real-
world networks by rectangle-based clustering coefficient.

REFERENCES

[1] M. Latapy, “Main-memory triangle computations for very
large (sparse (power-law)) graphs,”Theor. Comput. Sci., vol.
407, no. 1-3, pp. 458–473, 2008.

[2] T. Schank and D. Wagner, “Finding, counting and listing all
triangles in large graphs, an experimental study,” inWEA,
2005, pp. 606–609.

[3] D. J. Watts and S. H. Strogatz, “Collective dynamics of
‘small-world’ networks,”Nature, vol. 393, no. 6684, pp. 440–
442, 1998.

[4] Z. Bar-Yossef, R. Kumar, and D. Sivakumar, “Reductions
in streaming algorithms, with an application to counting
triangles in graphs,” inSODA, 2002, pp. 623–632.

[5] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis, “Efficient
semi-streaming algorithms for local triangle counting in mas-
sive graphs,” inKDD, 2008, pp. 16–24.

[6] L. S. Buriol, G. Frahling, S. Leonardi, A. Marchetti-
Spaccamela, and C. Sohler, “Counting triangles in data
streams,” inPODS, 2006, pp. 253–262.

[7] S. Chu and J. Cheng, “Triangle listing in massive networks
and its applications,” inKDD, 2011, pp. 672–680.

[8] ——, “Triangle listing in massive networks,”TKDD, vol. 6,
no. 4, p. 17, 2012.

[9] S. Suri and S. Vassilvitskii, “Counting triangles and the curse
of the last reducer,” inWWW, 2011, pp. 607–614.

[10] C. E. Tsourakakis, U. Kang, G. L. Miller, and C. Faloutsos,
“Doulion: counting triangles in massive graphs with a coin,”
in KDD, 2009, pp. 837–846.

[11] S. Wasserman and K. Faust, “Social network analysis: Meth-
ods and applications,”Cambridge University Press, 1994.

[12] M. Latapy, C. Magnien, and N. Vecchio, “Basic notions for
the analysis of large two-mode networks,”Social Networks,
vol. 30, no. 1, pp. 31–48, 2008.

[13] P. G. Lind, M. C. Gonzalez, and H. J. Herrmann, “Cycles and
clustering in bipartite networks,”Physical Review E, vol. 72,
no. 5, 2005.

[14] G. Robins and M. Alexander, “Small worlds among inter-
locking directors: Network structure and distance in bipartite
graphs,”Computational & Mathematical Organization The-
ory, vol. 10, no. 1, pp. 69–94, 2004.

[15] P. Zhang, J. Wang, X. Li, M. Li, Z. Di, and Y. Fan, “Clustering
coefficient and community structure of bipartite networks,”
Physica A: Statistical Mechanics and its Applications, vol.
387, no. 27, pp. 6869–6875, 2008.

[16] N. Alon, R. Yuster, and U. Zwick, “Finding and counting
given length cycles,”Algorithmica, vol. 17, no. 3, pp. 209–
223, 1997.

[17] J. Wang, J. Cheng, and A. W.-C. Fu, “Rectangle counting
in large bipartite graphs (long version),”http://www.cse.cuhk.
edu.hk/∼jcheng/rect.pdf, 2013.

[18] J. Cheng, Y. Ke, S. Chu, and M. T.̈Ozsu, “Efficient core
decomposition in massive networks,” inICDE, 2011, pp. 51–
62.

[19] J. Cheng, Y. Ke, A. W.-C. Fu, J. X. Yu, and L. Zhu,
“Finding maximal cliques in massive networks by h*-graph,”
in SIGMOD Conference, 2010, pp. 447–458.

[20] ——, “Finding maximal cliques in massive networks,”ACM
Transactions on Database Systems.

[21] J. Cheng, L. Zhu, Y. Ke, and S. Chu, “Fast algorithms for
maximal clique enumeration with limited memory,” inKDD,
2012, pp. 1240–1248.

[22] J. Wang and J. Cheng, “Truss decomposition in massive
networks,”PVLDB, vol. 5, no. 9, pp. 812–823, 2012.

[23] J. Wang, J. Cheng, and A. W.-C. Fu, “Redundancy-aware
maximal cliques,” inKDD, 2013, pp. 122–130.

[24] T. R. Halford and K. M. Chugg, “An algorithm for count-
ing short cycles in bipartite graphs,”IEEE Transactions on
Information Theory, vol. 52, no. 1, pp. 287–292, 2006.

