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a b s t r a c t

Recovering low-rank and sparse matrices from incomplete or corrupted observations is an
important problem in statistics, machine learning, computer vision, as well as signal and
image processing. In theory, this problem can be solved by the natural convex joint/mixed
relaxations (i.e., l1-norm and trace norm) under certain conditions. However, all current
provable algorithms suffer from superlinear per-iteration cost, which severely limits their
applicability to large-scale problems. In this paper, we propose a scalable, provable and
structured robust bilinear factorization (RBF) method to recover low-rank and sparse
matrices from missing and grossly corrupted data, i.e., robust matrix completion (RMC),
or incomplete and grossly corrupted measurements, i.e., compressive principal component
pursuit (CPCP). Specifically, we first present two small-scale matrix trace norm regularized
bilinear factorization models for RMC and CPCP problems, in which repetitively calculating
SVD of a large-scale matrix is replaced by updating two much smaller factor matrices.
Then, we apply the alternating direction method of multipliers (ADMM) to efficiently solve
the RMC problems. Finally, we provide the convergence analysis of our algorithm, and
extend it to address general CPCP problems. Experimental results verified both the efficien-
cy and effectiveness of our method compared with the state-of-the-art methods.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

In recent years, recovering low-rank and sparse matrices from severely incomplete or even corrupted observations has
received broad attention in many different fields, such as statistics [50,1,10], bioinformatics [35], machine learning
[51,48,43,27], computer vision [8,58,57,6,41,39], signal and image processing [28,36,20,26,14]. In those areas, the data to
be analyzed often have high dimensionality, which brings great challenges to data analysis, such as digital photographs,
surveillance videos, text and web documents. Fortunately, the high-dimensional data are observed to have low intrinsic
dimension, which is often much smaller than the dimension of the ambient space [24].

For the high-dimensional data, principal component analysis (PCA) is one of the most popular analysis tools to recover a
low-rank structure of the data mainly because it is simple to implement, can be solved efficiently, and is effective in many
real-world applications such as face recognition and text clustering. However, one of the main challenges faced by PCA is that
the observed data is often contaminated by outliers or missing values [12], or is a small set of linear measurements [50]. To
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address these issues, many compressive sensing or rank minimization based techniques and methods have been proposed,
such as robust PCA [51,52,41] (RPCA, also called PCP in [8] and low-rank and sparse matrix decomposition in [43,56], LRSD)
and low-rank matrix completion [9,10].

In many applications, we have to recover a matrix from only a small number of observed entries, for example collabora-
tive filtering for recommender systems. This problem is often called matrix completion, where missing entries or outliers are
presented at arbitrary location in the measurement matrix. Matrix completion has been used in a wide range of problems
such as collaborative filtering [9,10], structure-from-motion [11,57], click prediction [54], tag recommendation [47], and face
reconstruction [31]. In some other applications, we would like to recover low-rank and sparse matrices from corrupted data.
For example, the face images of a person may be corrupted by glasses or shadows [17]. The classical PCA cannot address the
issue as its least-squares fitting is sensitive to these gross outliers. Recovering a low-rank matrix in the presence of outliers
has been extensively studied, which is often called RPCA, PCP or LRSD. The RPCA problem has been successfully applied in
many important applications, such as latten semantic indexing [32], video surveillance [51,8], and image alignment [36]. In
some more general applications, we also have to simultaneously recover both low-rank and sparse matrices from small sets
of linear measurements, which is called compressive principal component pursuit (CPCP) in [50].

In principle, those problems mentioned above can be exactly solved with high probability under mild assumptions via a
hybrid convex program involving both the l1-norm and the trace norm (also called the nuclear norm [13]) minimization. In
recent years, many new techniques and algorithms [9,10,8,51,52,50] for low-rank matrix recovery and completion have been
proposed, and the theoretical guarantees have been derived in [9,8,50]. However, those provable algorithms all exploit a
closed-form expression for the proximal operator of the trace norm, which involves the singular value decomposition
(SVD). Hence, they all have high computational cost and are even not applicable for solving large-scale problems.

To address this issue, we propose a scalable, structured and robust bilinear factorization (RBF) method to recover low-
rank and sparse matrices from incomplete, corrupted data or a small set of linear measurements, which is formulated as
follows:
Fig. 1.
color in
min
L;S

f ðL; SÞ þ kkLk�; s:t:; AðLþ SÞ ¼ y; ð1Þ
where k P 0 is a regularization parameter, kLk� is the trace norm of a low-rank matrix L 2 Rm�n, i.e., the sum of its singular
values, S 2 Rm�n is a sparse matrix, y 2 Rp is the linear measurements, Að�Þ is an underdetermined linear operator such as the
linear projection operator PX, and f ð�Þ denotes the loss function associated with the l2-norm or the l1-norm.

Unlike existing robust matrix factorization approaches, our method not only takes into account the fact that the obser-
vations are contaminated by additive outliers (Fig. 1 shows an example) or missing data, i.e., robust matrix completion
[10,19] (RMC, also called RPCA plus matrix completion) problems, but can also identify both low-rank and sparse noisy com-
ponents from incomplete and grossly corrupted measurements, i.e., CPCP problems. We also present a robust bilinear fac-
torization framework for both RMC and CPCP problems, in which repetitively calculating SVD of a large matrix in [9,8,50]
is replaced by updating two much smaller factor matrices. We verify with convincing experimental results both the efficien-
cy and effectiveness of our RBF method.

The main contributions of this paper are summarized as follows:

1. We propose a scalable RBF framework to simultaneously recover both low-rank and sparse matrices for both RMC and
CPCP problems. By imposing the orthogonality constraint, we convert the original RMC and CPCP models into two small-
er-scale matrix trace norm regularized problems, respectively.

2. By the fact that the optimal solution SXC ¼ 0, i.e., the values of S at unobserved locations are zero, we reformulate the pro-
posed RMC problem by replacing the linear projection operator constraint with a simple equality one.
RBF
PCA

Principal directions learned by PCA and RBF on the toy data set with outliers, which are in a blue rectangle. (For interpretation of the references to
this figure legend, the reader is referred to the web version of this article.)
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3. Moreover, we propose an efficient alternating direction method of multipliers (ADMM) to solve our RMC problems, and
then extend it to address CPCP problems with a linearization technique.

4. Finally, we theoretically analyze the equivalent relationship between our QR scheme and the SVD scheme, and the sub-
optimality of the solution produced by our algorithm.

The remainder of this paper is organized as follows. We review background and related work in Section 2. In Section 3, we
propose two scalable trace norm regularized RBF models for RMC and CPCP problems. We develop an efficient ADMM algo-
rithm for solving RMC problems and then extend it to solve CPCP problems in Section 4. We provide the theoretical analysis
of our algorithm in Section 5. We report empirical results in Section 6, and conclude this paper in Section 7.

2. Background

A low-rank structured matrix L 2 Rm�n and a sparse one S 2 Rm�n can be recovered from highly corrupted measurements
y ¼ PQ ðDÞ 2 Rp via the following CPCP model,
min
L;S
kSk1 þ kkLk�; s:t:; PQ ðD ¼ L0 þ S0Þ ¼ PQ ðLþ SÞ; ð2Þ
where kSk1 denotes the l1-norm of S, i.e., kSk1 ¼ Rijjsijj;Q # Rm�n is a linear subspace, and PQ is the projection operator onto
that subspace. When PQ ¼ PX, the model (2) is the RMC problem, where X is the index set of observed entries. Wright et al.
[50] proved the following result.

Theorem 1. Let L0; S0 2 Rm�n, with m P n, and suppose that L0 – 0 is a l-incoherent matrix of rank r,
r 6
c1n

llog2m
;

and sign(S0) is i.i.d. Bernoulli–Rademacher with non-zero probability q < c2. Let Q � Rm�n be a random subspace of dimension
dimðQÞP C1ðqmnþmrÞlog2m;
distributed according to the Haar measure, probabilistically independent of sign(S0). Then the minimizer to the problem (2) with
k ¼

ffiffiffiffiffi
m
p

is unique and equal to ðL0; S0Þwith probability at least 1� C2m�9, where c1; c2;C1 and C2 are positive numerical constants.
This theorem states that a commensurately small number of measurements are sufficient to accurately recover the low-

rank and sparse matrices with high probability. Indeed, if Q is the entire space, the model (2) degenerates to the following
RPCA problem [51,8]
min
L;S
kSk1 þ kkLk�; s:t:; D ¼ Lþ S; ð3Þ
where D denotes the given observations. Several algorithms have been developed to solve the convex optimization problem
(3), such as PCP [8], IALM [22] and LRSD [56]. Although both models (2) and (3) are convex optimization problems, and their
algorithms converge to the globally optimal solution, they involve SVD at each iteration and suffer from a high computation-
al cost of Oðmn2Þ. While there have been many efforts towards fast SVD computation such as partial SVD [22] and approx-
imate SVD [29], the performance of those methods is still unsatisfactory for many real applications. To address this problem,
we propose a scalable, provable robust bilinear factorization method with missing and grossly corrupted observations.

3. Our RBF framework

Matrix factorization is one of the most useful tools in scientific computing and high dimensional data analysis, such as the
QR decomposition, the LU decomposition, SVD, and NMF. In this paper, robust bilinear factorization (RBF) aims to find two
smaller low-rank matrices U 2 Rm�d ðUT U ¼ IÞ and V 2 Rn�d whose product is equal to the desired matrix of low-rank,
L 2 Rm�n,
L ¼ UVT ;
where d is an upper bound on the rank of L, i.e., d P r ¼ rankðLÞ.

3.1. RMC model

Suppose that the observed matrix D is corrupted by outliers and missing data, the RMC problem is given by
min
L;S
kSk1 þ kkLk�; s:t:; PXðDÞ ¼ PXðLþ SÞ: ð4Þ
From the optimization problem (4), we easily find the optimal solution SXC ¼ 0 [41,39], where XC is the complement of X, i.e.,
the index set of unobserved entries. Consequently, we have the following lemma.
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Lemma 2. The RMC model (4) with the operator PX is equivalent to the following problem
min
L;S
kPXðSÞk1 þ kkLk�; s:t:; PXðDÞ ¼ PXðLþ SÞ; PXC ðSÞ ¼ 0: ð5Þ
The proof of this lemma can be found in Appendix A. From the incomplete and corrupted matrix D, our RBF model is to
find two smaller matrices, whose product approximates L, can be formulated as follows:
min
U;V ;S

kPXðSÞk1 þ kkUVTk�; s:t:; PXðDÞ ¼ PXðUVT þ SÞ: ð6Þ
Lemma 3. Let U and V be two matrices of compatible dimensions, where U has orthogonal columns, i.e., UT U ¼ I, then we have

kUVTk� ¼ kVk�.

The proof of this lemma can be found in Appendix B. By imposing UT U ¼ I and substituting kUVTk� ¼ kVk� into (6), we
arrive at a much smaller-scale matrix trace norm minimization problem
min
U;V ;S

kPXðSÞk1 þ kkVk�; s:t:; PXðDÞ ¼ PXðUVT þ SÞ; UT U ¼ I: ð7Þ
Theorem 4. Suppose ðL�; S�Þ is a solution of the problem (5) with rankðL�Þ ¼ r, then there exists the solution Uk 2 Rm�d;Vk 2 Rn�d

and Sk 2 Rm�n to the problem (7) with d P r and ðSkÞXC ¼ 0, such that ðUkVT
k ; SkÞ is also a solution to the problem (5).

The proof of this theorem can be found in Appendix C.

3.2. CPCP model

From a small set of linear measurements y 2 Rp, the CPCP problem is to recover low-rank and sparse matrices as follows,
min
U;V ;S

kSk1 þ kkVk�; s:t:; PQ ðDÞ ¼ PQ ðUVT þ SÞ; UT U ¼ I: ð8Þ
Theorem 5. Suppose ðL�; S�Þ is a solution of the problem (2) with rankðL�Þ ¼ r, then there exists the solution Uk 2 Rm�d;Vk 2 Rn�d

and Sk 2 Rm�n to the problem (8) with d P r, such that ðUkVT
k ; SkÞ is also a solution to the problem (2).

We omit the proof of this theorem since it is very similar to that of Theorem 4. In the following, we will discuss how to
solve the models (7) and (8). It is worth noting that the RPCA problem can be viewed as a special case of the RMC problem (7)
when all entries of the corrupted matrix are directly observed. In the next section, we will mainly develop an efficient alter-
nating direction method of multipliers (ADMM) for solving the non-convex problem (7). Although our algorithm will pro-
duce different estimations of U and V, the estimation of UVT is stable as guaranteed by Theorems 4 and 5, and the
convexity of the problems (2) and (4).

3.3. Connections to existing approaches

According to the discussion above, it is clear that our RBF method is a scalable method for both RMC and CPCP problems.
Compared with existing convex algorithms such as common RPCA [8] and CPCP [50] methods, which have a computational
complexity of Oðmn2Þ and are impractical for solving relatively large-scale problems, our RBF method has a linear complexity
and scales well to handle large-scale problems.

To understand better the superiority of our RBF method, we compare and relate RBF with several popular robust low-rank
matrix factorization methods. It is clear that the model in [42,58,31] is a special case of our trace norm regularized model (7)
when k ¼ 0. Moreover, the models used in [57,6] focus only on the desired low-rank matrix. In this sense, they can be viewed
as the special cases of our model (7). The other major difference is that SVD is used in [57], while QR factorizations are used
in this paper. The use of QR factorizations also makes the update operation highly scalable on modern parallel architectures
[2]. Regarding the complexity, it is clear that both schemes have the similar theory computational complexity. However,
from the experimental results in Section 6, we can see that our algorithm usually runs much faster, but more accurate than
the methods in [57,6]. The following bilinear spectral regularized matrix factorization formulation in [6] is one of the most
similar models to our model (7),
min
L;U;V

kW � ðD� LÞk1 þ
k
2
ðkUk2

F þ kVk
2
F Þ; s:t:; L ¼ UVT ;
where � denotes the Hadamard product and W 2 Rm�n is a weight matrix that can be used to denote missing data (i.e.,
wij ¼ 0).
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4. Optimization algorithm

In this section, we propose an efficient alternating direction method of multipliers (ADMM) for solving the RMC problem
(7), and then extend it to solve the CPCP problem (8). We provide the convergence analysis of our algorithm in Section 5.

4.1. Formulation

Recently, it has been shown in the literature [4,49] that ADMM is very efficient for some convex or non-convex program-
ming problems from various applications. We also refer to a recent survey [4] for some recently exploited applications of
ADMM. For efficiently solving the RMC problem (7), we can assume without loss of generality that the unknown entries
of D are simply set as zeros, i.e., DXC ¼ 0, and SXC may be any values such that PXC ðDÞ ¼ PXC ðUVTÞ þ PXC ðSÞ. Therefore, the

constraint with the operator PX in (7) is simplified into D ¼ UVT þ S. Hence, we introduce the constraint D ¼ UVT þ S into
(7), and obtain the following equivalent form:
min
U;V ;S

kPXðSÞk1 þ kkVk�; s:t:; D ¼ UVT þ S;UT U ¼ I: ð9Þ
The partial augmented Lagrangian function of (9) is
LaðU;V ; S;YÞ ¼ kkVk� þ kPXðSÞk1 þ hY;D� S� UVTi þ a
2
kD� S� UVTk2

F ; ð10Þ
where Y 2 Rm�n is a matrix of Lagrange multipliers, a > 0 is a penalty parameter, and hM;Ni denotes the inner product
between matrices M and N of equal sizes, i.e., hM;Ni ¼ Ri;jMijNij.

4.2. Robust bilinear factorization scheme

We will derive our scheme for solving the following subproblems with respect to U;V and S, respectively,
Ukþ1 ¼ arg min
U2Rm�d

Lak
ðU;Vk; Sk; YkÞ; s:t:; UT U ¼ I; ð11Þ

Vkþ1 ¼ arg min
V2Rn�d

Lak
ðUkþ1;V ; Sk;YkÞ; ð12Þ

Skþ1 ¼ arg min
S2Rm�n

Lak
ðUkþ1;Vkþ1; S;YkÞ: ð13Þ
4.2.1. Updating U
Fixing V and S at their latest values, and by removing the terms that do not depend on U and adding some proper terms

that do not depend on U, the problem (11) with respect to U is reformulated as follows:
min
U
kUVT

k � Pkk2
F ; s:t:; UT U ¼ I; ð14Þ
where Pk ¼ D� Sk þ Yk=ak. In fact, the optimal solution can be given by the SVD of PkVk as in [34]. To further speed-up the
calculation, we introduce the idea in [49] that uses a QR decomposition instead of SVD. The resulting iteration step is for-
mulated as follows:
Ukþ1 ¼ Q ; QRðPkVkÞ ¼ QR; ð15Þ
where Ukþ1 is an orthogonal basis for the range spaceRðPkVkÞ, i.e.,RðUkþ1Þ ¼ RðPkVkÞ. Although Ukþ1 in (15) is not an optimal
solution to (14), our iterative scheme based on QR factorizations and the SVD scheme similar to [25] are equivalent to solve
(14) and (16), and their equivalent analysis is provided in Section 5. Moreover, the use of QR factorizations also makes our
iterative scheme highly scalable on modern parallel architectures [2].

4.2.2. Updating V
Fixing U and S, the optimization problem (12) with respect to V can be rewritten as:
min
V

ak

2
kUkþ1VT � Pkk2

F þ kkVk�: ð16Þ
To solve the convex problem (16), we first introduce the following definition [7].

Definition 1. For any given matrix M 2 Rn�d whose rank is r, and l P 0, the singular value thresholding (SVT) operator is
defined as follows:
SVTlðMÞ ¼ Udiagðmaxfr� l;0gÞVT ;
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where maxf�; �g should be understood element-wise, U 2 Rn�r ; V 2 Rd�r and r ¼ ðr1; . . . ;rrÞT 2 Rr�1 are obtained by the SVD
of M, i.e., M ¼ UdiagðrÞVT .
Theorem 6. The trace norm minimization problem (16) has a closed-form solution given by
Vkþ1 ¼ SVTk=ak
ðPT

k Ukþ1Þ: ð17Þ
Proof. The first-order optimality condition for (16) is given by
0 2 k@kVk� þ akðVUT
kþ1 � PT

kÞUkþ1;
where @k � k� is the set of subgradients of the trace norm. Since UT
kþ1Ukþ1 ¼ I, the optimality condition for (16) is rewritten as

follows:
0 2 k@kVk� þ akðV � PT
k Ukþ1Þ: ð18Þ
(18) is also the optimality condition for the following convex problem,
min
V

ak

2
kV � PT

k Ukþ1k2
F þ kkVk�: ð19Þ
By Theorem 2.1 in [7], then the optimal solution of (19) is given by (17). h
4.2.3. Updating S
Fixing U and V, we can update S by solving
min
S
kPXðSÞk1 þ

ak

2
kSþ Ukþ1VT

kþ1 � D� Yk=akk2
F : ð20Þ
For solving the problem (20), we introduce the following soft-thresholding operator Ss:
SsðAijÞ :¼
Aij � s; Aij > s;
Aij þ s; Aij < �s;
0; otherwise:

8><
>:
Then the optimal solution Skþ1 can be obtained by solving the following two subproblems with respect to SX and SXC ,
respectively. The optimization problem with respect to SX is first formulated as follows:
min
SX

ak

2
kPXðSþ Ukþ1VT

kþ1 � D� Yk=akÞk2
F þ kPXðSÞk1: ð21Þ
By the operator Ss and letting s ¼ 1=ak, the closed-form solution to the problem (21) is given by
ðSkþ1ÞX ¼ SsððD� Ukþ1VT
kþ1 þ Yk=akÞXÞ: ð22Þ
Moreover, the subproblem with respect to SXC is formulated as follows:
min
S
XC

kPXC ðSþ Ukþ1VT
kþ1 � D� Yk=akÞk2

F : ð23Þ
We can easily obtain the closed-form solution by zeroing the gradient of the cost function (23) with respect to SXC , i.e.,
ðSkþ1ÞXC ¼ ðD� Ukþ1VT
kþ1 þ Yk=akÞXC : ð24Þ
Summarizing the analysis above, we obtain an ADMM algorithm to solve the RMC problem (7), as outlined in Algorithm 1.
Our algorithm is essentially a Gauss–Seidel-type scheme of ADMM, and the update strategy of the Jacobi version of ADMM is
easily implemented, well suited for parallel and distributed computing and hence is particularly attractive for solving large-
scale problems [40]. In addition, SXC should be set to 0 for the expected output S. This algorithm can also be accelerated by
adaptively changing a. An efficient strategy [22,39] is to let a ¼ a0 (the initialization in Algorithm 1) and increase ak

iteratively by akþ1 ¼ qak, where q 2 ð1:0;1:1� in general and a0 is a small constant. Furthermore, U0 is initialized with

eyeðm; dÞ :¼ Id�d

0ðm�dÞ�d

� �
. Algorithm 1 is easily used to solve the RPCA problem (3), where all entries of the corrupted matrix

are directly observed. Moreover, we introduce an adaptive rank adjusting strategy for our algorithm in Section 4.4.
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Algorithm 1. Solving RMC problem (7) via ADMM.

Input: PXðDÞ; k and e.
Output: U;V and S, where SXC is set to 0.

Initialize: U0 ¼ eyeðm; dÞ;V0 ¼0, Y0 ¼ 0, a0 ¼ 1
kPXðDÞkF

; amax ¼ 1010, and q ¼ 1:1.

1: while not converged do
2: Update Ukþ1;Vkþ1 and Skþ1 by (15), (17), (22) and (24), respectively
3: Update the multiplier Ykþ1 by Ykþ1 ¼ Yk þ akðD� Ukþ1VT

kþ1 � Skþ1Þ.
4: Update akþ1 by akþ1 ¼minðqak;amaxÞ.
5: Check the convergence condition, kD� Ukþ1VT

kþ1 � Skþ1kF < e.
6: end while
4.3. Extension to CPCP

Algorithm 1 can be extended to solve the CPCP problem (8) with the complex operator PQ , as outlined in Algorithm 2,
which is to optimize the following augmented Lagrange function
F aðU;V ; S;YÞ ¼ kkVk� þ kSk1 þ hY; y� PQ ðSþ UVTÞi þ a
2
ky� PQ ðSþ UVTÞk2

2: ð25Þ
We minimize F a with respect to ðU;V ; SÞ by using a recently proposed linearization technique [53], which can address such
problems with some non-identity operators such as PQ . Specifically, for updating U and V, let T ¼ UVT and gðTÞ ¼ ak

2 ky
�PQ ðSk þ TÞ þ Yk=akk2

2, then gðTÞ is approximated by
gðTÞ 	 gðTkÞ þ hrgðTkÞ; T � Tki þ skT � Tkk2
F ; ð26Þ
wherergðTkÞ ¼ akPH

Q ðPQ ðTk þ SkÞ � y� Yk=akÞ;PH

Q is the adjoint operator of PQ , and s is chosen as s ¼ 1=kPH

QPQk2 as in [53],
and k � k2 the spectral norm of a matrix, i.e., the largest singular value of a matrix.

Similarly, for updating S, let Tkþ1 ¼ Ukþ1VT
kþ1 and hðSÞ ¼ ak

2 ky� PQ ðSþ Tkþ1Þ þ Yk=akk2
2, then hðSÞ is approximated by
hðSÞ 	 hðSkÞ þ hrhðSkÞ; S� Ski þ skS� Skk2
F ; ð27Þ
where rhðSkÞ ¼ akPH

Q ðPQ ðSk þ Tkþ1Þ � y� Yk=akÞ.

Algorithm 2. Solving CPCP problem (8) via ADMM.

Input: y 2 Rp;PQ , and parameters k and e.
Output: U;V and S.

Initialize: U0 ¼ eyeðm; dÞ; V0 ¼ 0, Y0 ¼ 0, a0 ¼ 1
kyk2

; amax ¼ 1010, and q ¼ 1:1.

1: while not converged do
2: Update Ukþ1 by Ukþ1 ¼ Q ; QRððUkVT

k �rgðUkVT
kÞ=sÞVkÞ ¼ QR.

3: Update Vkþ1 by VT
kþ1 ¼ SVTk=ak

ðUT
kþ1ðUkVT

k �rgðUkVT
kÞ=sÞÞ.

4: Update Skþ1 by Skþ1 ¼ S1=ak
ðSk �rhðSkÞ=sÞ.

5: Update the multiplier Ykþ1 by Ykþ1 ¼ Yk þ akðy� PQ ðUkþ1VT
kþ1 þ Skþ1ÞÞ.

6: Update the parameter akþ1 by akþ1 ¼minðqak;amaxÞ.
7: Check the convergence condition, ðkTkþ1 � Tkk2

F þ kSkþ1 � Skk2
F Þ=ðkTkk2

F þ kSkk2
F Þ < e.

8: end while
4.4. Stopping criteria and rank adjusting strategy

As the stopping criteria for terminating our RBF algorithms, we employ some gap criteria; that is, we stop Algorithm 1
when the current gap is satisfied as a given tolerance e, i.e., kD� UkVT

k � SkkF < e, and run Algorithm 2 when

ðkUkVT
k � Uk�1VT

k�1k
2
F þ kSk � Sk�1k2

F Þ=ðkUk�1VT
k�1k

2
F þ kSk�1k2

F ÞP e.
In Algorithms 1 and 2, d is one of the most important parameters. If d is too small, it can cause underfitting and a large

estimation error; but if d is too large, it can cause overfitting and large deviation to the underlying low-rank matrix L.
Fortunately, several works [16,49] have provided some matrix rank estimation strategies to compute a good value r for
the rank of the involved matrices. Thus, we only set a relatively large integer d such that d P r. In addition, we provide a
scheme to dynamically adjust the rank parameter d. Our scheme starts from an overestimated input, i.e., d ¼ b1:2rc.
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Following [16,42], we decease it aggressively once a dramatic change in the estimated rank of the product UkVT
k , which usu-

ally occurs after a few iterations. Specifically, we calculate the eigenvalues of ðUkVT
kÞ

T
UkVT

k ¼ VkUT
k UkVT

k ¼ VkVT
k , which are

assumed to be ordered as k1 P k2 P � � �P kd. Since the product VkVT
k and VT

k Vk have the same nonzero eigenvalues, it is

much more efficient to compute the eigenvalues of the product VT
k Vk. Then we compute the quotient sequence

�ki ¼ ki=kiþ1; i ¼ 1; . . . ; d� 1. Suppose r̂ ¼ arg max
16i6d�1

�ki. If the condition
gap ¼ ðd� 1Þ�kr̂P
i–r̂

�ki
P 10
is satisfied, which means a ‘‘big’’ jump between kr̂ and kr̂þ1, then we reduce d to r̂, and this adjustment is performed only
once.

5. Theoretical analysis and applications

In this section, we will present several theoretical properties of Algorithm 1. First, we provide the equivalent relationship
analysis for our iterative scheme and the SVD scheme similar to [25], as shown by the following theorem.

Theorem 7. Let ðU�k;V
�
k; S
�
kÞ be the solution of the subproblems (11)–(13) at the k-th iteration, respectively, Y�k ¼ Y�k�1

þak�1ðD� U�kðV
�
kÞ

T � S�kÞ, and ðUk;Vk; Sk;YkÞ be generated by Algorithm 1 at the k-th iteration. Then

(I) 9Ok 2 O ¼ fM 2 Rd�djMT M ¼ Ig such that U�k ¼ UkOk and V�k ¼ VkOk.

(II) U�kðV
�
kÞ

T ¼ UkVT
k ; kV

�
kk� ¼ kVkk�, S�k ¼ Sk, and Y�k ¼ Yk.
Remark. The proof of this theorem can be found in Appendix D. Since the Lagrange function (10) is determined by the pro-
duct UVT ;V ; S and Y, the different values of U and V are essentially equivalent as long as the same product UVT and
kVk� ¼ kV

�k�. Meanwhile, our scheme replaces SVD by the QR decomposition, and can avoid the SVD computation for solving
the optimization problem with a orthogonal constraint.

5.1. Convergence analysis

The global convergence of our derived algorithm is guaranteed, as shown in the following lemmas and theorems.

Lemma 8. Let ðUk;Vk; SkÞ be a sequence generated by Algorithm 1, then we have the following conclusions:

(I) ðUk;Vk; SkÞ approaches to a feasible solution, i.e., limk!1kD� UkVT
k � SkkF ¼ 0.

(II) Both sequences UkVT
k and Sk are Cauchy sequences.

The detailed proofs of this lemma, the following lemma and theorems can be found in Appendix E. Lemma 8 ensures only
that the feasibility of each solution has been assessed. In this paper, we want to show that it is possible to prove the local
optimality of the solution produced by Algorithm 1. Let k� be the number of iterations needed by Algorithm 1 to stop, and
ðU�;V�; S�Þ be defined by
U� ¼ Uk�þ1; V� ¼ Vk�þ1; S� ¼ Sk�þ1:
In addition, let Y� (resp. Ŷ�) denote the Lagrange multiplier Yk�þ1 (resp. Ŷk�þ1) associated with ðU�;V�; S�Þ, i.e.,

Y� ¼ Yk�þ1; Ŷ� ¼ Ŷk�þ1, where Ŷk�þ1 ¼ Yk� þ ak� ðD� Uk�þ1VT
k�þ1 � Sk� Þ.

Lemma 9. For the solution ðU�;V�; S�Þ generated by Algorithm 1, then the following conclusion
kPXðSÞk1 þ kkVk� P kPXðS�Þk1 þ kkV�k� þ hŶ� � Y�;UVT � U�ðV�ÞTi �mne
holds for any feasible solution ðU;V ; SÞ to (9).
To reach the global optimality of (9) based on the above lemma, it is required to show that the term

hŶ� � Y�;UVT � U�ðV�ÞTi diminishes. Since
kY� � Ŷ�k2 6
ffiffiffiffiffiffiffi
mn
p

kY� � Ŷ�k1;
and by Lemma 13 (Please see Appendix E), we have
kY� � Ŷ�k1 ¼ kPXðY�Þ � Ŷ�k1 6 kPXðY�Þk1 þ kŶ�k1 6 1þ k;
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which means that kY� � Ŷ�k1 is bounded. By setting the parameter q to be relatively small as in [25], kY� � Ŷ�k1 is small,

which means that kY� � Ŷ�k2 is also small. Let e1 ¼ kY� � Ŷ�k2, then we have the following theorems.

Theorem 10. Let f g be the globally optimal objective function value of (9), and f � ¼ kPXðS�Þk1 þ kkV�k� be the objective function
value generated by Algorithm 1. We have that
f � 6 f g þ c1e1 þmne;
where c1 is a constant defined by
c1 ¼
mn
k
kPXðDÞkF

qð1þ qÞ
q� 1

þ 1
2qk�

� �
þ kPXðDÞk1

k
:

Theorem 11. Suppose ðL0; S0Þ is an optimal solution to the RMC problem (5), rankðL0Þ ¼ r and f 0 ¼ kPXðS0Þk1 þ kkL0k�. Let

f � ¼ kPXðS�Þk1 þ kkU�ðV�ÞTk� be the objective function value generated by Algorithm 1 with d > 0. We have that
f 0
6 f � 6 f 0 þ c1e1 þmneþ ð

ffiffiffiffiffiffiffi
mn
p

� kÞrdþ1 maxðr � d;0Þ;
where r1 P r2 P � � � are the singular values of L0.
Since the rank parameter d is set to be higher than the rank of the optimal solution to the RMC problem (5), i.e., d P r,

Theorem 11 directly concludes that
f 0
6 f � 6 f 0 þ c1e1 þmne:
Moreover, the value of e can be set to be arbitrarily small, and the second term involving e1 diminishes. Hence, for the solu-

tion ðU�;V�; S�Þ generated by Algorithm 1, a solution to the RMC problem (5) can be achieved by computing L� ¼ U�ðV�ÞT .

5.2. Complexity analysis

We also discuss the time complexity of our RBF algorithm. For the RMC problem (7), the main running time of our RBF
algorithm is consumed by performing SVD on the small matrix of size n� d, the QR decomposition of the matrix PkVk, and

some matrix multiplications. In (17), the time complexity of performing SVD is Oðd2nÞ. The time complexity of QR decom-

position and matrix multiplications is Oðd2mþmndÞ. The total time complexity of our RBF algorithm for solving both prob-

lems (3) and (7) is Oðtðd2nþ d2mþmndÞÞ (usually d
 n 6 m), where t is the number of iterations.

5.3. Applications of matrix completion

As our RBF framework introduced for robust matrix factorization is general, there are many possible extensions of our
methodology. In this part, we outline a novel result and methodology for one extension we consider most important:
low-rank matrix completion. The space limit refrains us from fully describing each development, but we try to give readers
enough details to understand and use each of these applications.

By introducing an auxiliary variable L, the low-rank matrix completion problem can be written into the following form,
min
U;V ;L

1
2
kPXðDÞ � PXðLÞk2

F þ kkVk�; s:t:; L ¼ UVT ; UT U ¼ I: ð28Þ
Similar to Algorithm 1, we can present an efficient ADMM scheme to solve the matrix completion problem (28). This algo-
rithm can also be easily used to solve the low-rank matrix factorization problem, where all entries of the given matrix are
observed.

6. Experimental evaluation

We now evaluate the effectiveness and efficiency of our RBF method for RMC and CPCP problems such as text removal,
background modeling, face reconstruction, and collaborative filtering. We ran experiments on an Intel(R) Core (TM) i5-4570
(3.20 GHz) PC running Windows 7 with 8 GB main memory.

6.1. Text removal

We first conduct an experiment by considering a simulated task on artificially generated data, whose goal is to remove
some generated text from an image. The ground-truth image is of size 256� 222 with rank equal to 10 for the data matrix.
We then add to the image a short phase in text form which plays the role of outliers. Fig. 2 shows the image together with the



Fig. 2. Images used in text removal experiment: (a) input image; (b) original image; and (c) outlier mask.
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clean image and outliers mask. For fairness, we set the rank of all the algorithms to 20, which is two times the true rank of
the underlying matrix. The input data are generated by setting 30% of the randomly selected pixels of the image as missing
entries. We compare our RBF method with the state-of-the-art methods, including PCP [8], SpaRCS1 [48], RegL12 [57] and BF-
ALM [6]. We set the regularization parameter k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðm;nÞ

p
for RegL1 and RBF, and the stopping tolerance e ¼ 10�4 for all

algorithms in this section.
The results obtained by different methods are visually shown in Fig. 3, where the outlier detection accuracy (the score

Area Under the receiver operating characteristic Curve, AUC) and the error of low-rank component recovery (i.e.,
kD� LkF=kDkF , where D and L denote the ground-truth image matrix and the recovered image matrix, respectively) are also
presented. As far as low-rank matrix recovery is concerned, these RMC methods including SpaRCS, RegL1, BF-ALM and RBF,
outperform PCP, not only visually but also quantitatively. For outlier detection, it can be seen that our RBF method
significantly performs better than the other methods. In short, RBF significantly outperforms PCP, RegL1, BF-ALM and
SpaRCS in terms of both low-rank matrix recovery and spare outlier identification. Moreover, the running time of PCP,
SpaRCS, RegL1, BF-ALM and RBF is 36.25 s, 15.68 s, 26.85 s, 6.36 s and 0.87 s, respectively.

We further evaluate the robustness of our RBF method with respect to the regularization parameter k and the given rank
variations. We conduct some experiments on the artificially generated data, and illustrate the outlier detection accuracy
(AUC) and the error (Error) of low-rank component recovery of PCP, SpaRCS, RegL1 and our RBF method, where the given
rank of SpaRCS, RegL1 and our RBF method is chosen from f20;25; . . . ;60g, and the regularization parameter k of PCP,
RegL1 and RBF is chosen from the grid f1;2:5;5;7:5;10;25;50;75;100g. Notice that because BF-ALM and RegL1 achieve very
similar results, we do not provide the results of the former in the following. The average AUC and Error results of 10 inde-
pendent runs are shown in Figs. 4 and 5, from which we can see that our RBF method performs much more robust than
SpaRCS and RegL1 with respect to the given rank. Moreover, our RBF method is much more robust than PCP and RegL1 again-
st the regularization parameter k.

6.2. Background modeling

In this experiment we test our RBF method on real surveillance videos for object detection and background subtraction as
a RPCA plus matrix completion problem. Background modeling is a crucial task for motion segmentation in surveillance
videos. A video sequence satisfies the low-rank and sparse structures, because the background of all the frames is controlled
by few factors and hence exhibits low-rank property, and the foreground is detected by identifying spatially localized sparse
residuals [51,8,46]. We test our RBF method on four color surveillance videos: Bootstrap, Lobby, Hall and Mall databases.3

The data matrix D consists of the first 400 frames of size 144� 176. Since all the original videos have colors, we first reshape
every frame of the video into a long column vector and then collect all the columns into a data matrix D with size of
76,032 � 400. Moreover, the input data is generated by setting 10% of the randomly selected pixels of each frame as missing
entries.

Fig. 6 illustrates the background extraction results on the Bootstrap data set, where the first and fourth columns represent
the input images with missing data, the second and fifth columns show the low-rank recoveries, and the third and sixth col-
umns show the sparse components. It is clear that the background can be effectively extracted by our RBF method, RegL1 and
GRASTA4 [15]. Notice that SpaRCS could not yield experimental results on these databases because it ran out of memory.
Moreover, we can see that the decomposition results of our RBF method, especially the recovered low-rank components, are
slightly better than that of RegL1 and GRASTA. We also report the running time in Table 1, from which we can see that RBF
is more than 3 times faster than GRASTA and more than 2 times faster than RegL1. This further shows that our RBF method
has very good scalability and can address large-scale problems.
1 http://www.ece.rice.edu/�aew2/sparcs.html.
2 https://sites.google.com/site/yinqiangzheng/.
3 http://perception.i2r.a-star.edu.sg/bkmodel/bkindex.
4 https://sites.google.com/site/hejunzz/grasta.

http://www.ece.rice.edu/aew2/sparcs.html
http://www.ece.rice.edu/aew2/sparcs.html
http://https://sites.google.com/site/yinqiangzheng/
http://perception.i2r.a-star.edu.sg/bkmodel/bkindex
http://https://sites.google.com/site/hejunzz/grasta


Fig. 3. Text removal results. The first row shows the foreground masks and the second row shows the recovered background images: (a) PCP (AUC: 0.8558;
Error: 0.2516); (b) SpaRCS (AUC: 0.8665; Error: 0.2416); (c) RegL1 (AUC: 0.8792; Error: 0.2291); (d) BF-ALM (AUC: 0.8568; Error: 0.2435); and (e) RBF (AUC:
0.9227; Error: 0.1844).

20 30 40 50 60
0.5

0.6

0.7

0.8

0.9

1

Given rank

A
U

C

PCP
SpaRCS
RegL1
RBF

20 30 40 50 60

0.2

0.3

0.4

0.5

0.6

Given rank

E
rr

or
PCP
SpaRCS
RegL1
RBF

Fig. 4. Comparison of PCP, SpaRCS, RegL1 and our RBF method in terms of AUC (Left) and Error (Right) on the artificially generated data with varying ranks.
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Fig. 5. Comparison of PCP, SpaRCS, RegL1 and our RBF method in terms of AUC (Left) and Error (Right) on the artificially generated data with varying
regularization parameters.
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6.3. Face reconstruction

We also test our RBF method for the face reconstruction problems with the incomplete and corrupted face data or a small
set of linear measurements y as in [50], respectively. The face database used here is a part of Extended Yale Face Database B
[17] with the large corruptions. The face images can often be decomposed as a low-rank part, capturing the face appearances
under different illuminations, and a sparse component, representing varying illumination conditions and heavily ‘‘shadows’’.
The resolution of all images is 192� 168 and the pixel values are normalized to [0,1], then the pixel values are used to form
data vectors of dimension 32,256. The input data are generated by setting 40% of the randomly selected pixels of each image
as missing entries.



Fig. 6. Background extraction results of different algorithms on the Bootstrap data set, where the first, second and last rows show the recovered low-rank
and sparse images by GRASTA, RegL1 and RBF, respectively.

Table 1
Comparison of time costs in CPU seconds of GRASTA, RegL1 and RBF on background modeling data sets.

Datasets Sizes GRASTA RegL1 RBF

Bootstrap 57,600 � 400 153.65 93.17 38.32
Lobby 61,440 � 400 187.43 139.83 50.08
Hall 76,032 � 400 315.11 153.45 67.73
Mall 245,760 � 200 493.92 – 94.59
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Fig. 7 shows some original and reconstructed images by RBF, PCP, RegL1 and CWM5 [31], where the average computational
time of all these algorithms on each people’s faces is presented. It can be observed that RBF performs better than the other
methods not only visually but also efficiently, and effectively eliminates the heavy noise and ‘‘shadows’’ and simultaneously
completes the missing entries. In other words, RBF can achieve the latent features underlying the original images regardless
of the observed data corrupted by outliers or missing values.

Moreover, we implement a challenging problem to recover face images from incomplete linear measurements.
Considering the computational burden of the projection operator PQ , we resize the original images into 42� 48 and
normalize the raw pixel values to form data vectors of dimension 2016. Following [50], the input data is PQ ðDÞ, where Q
is a subspace generated randomly with the dimension 0:75mn.

Fig. 8 illustrates some reconstructed images by CPCP [50] and RBF, respectively. It is clear that both CPCP and RBF
effectively remove ‘‘shadows’’ from faces images and simultaneously successfully recover both low-rank and sparse
components from the reduced measurements.

6.4. Collaborative filtering

Collaborative filtering is a technique used by some recommender systems [23,18]. One of the main purposes is to predict
the unknown preference of a user on a set of unrated items, according to other similar users or similar items. In order to
evaluate our RBF method, some matrix completion experiments are conducted on three widely used recommendation sys-
tem data sets: MovieLens100K with 100K ratings, MovieLens1M with 1M ratings and MovieLens10M with 10M ratings. We
randomly split these data sets to training and testing sets such that the ratio of the training set to testing set is 9:1, and the
experimental results are reported over 10 independent runs. We also compare our RBF method with APG6 [44], Soft-Impute7

[30], OptSpace8 [16] and LMaFit9 [49], and two state-of-the-art manifold optimization methods: ScGrass10 [33] and RTRMC11

[3]. All other parameters are set to their default values for all compared algorithms. We use the Root Mean Squared Error
(RMSE) as the evaluation measure, which is defined as
5 http
6 http
7 http
8 http
9 http

10 http
11 http
://www4.comp.polyu.edu.hk/cslzhang/papers.htm.
://www.math.nus.edu.sg/mattohkc/NNLS.html.
://www.stat.columbia.edu/rahulm/software.html.
://web.engr.illinois.edu/swoh/software/optspace/.
://lmafit.blogs.rice.edu/.
://www-users.cs.umn.edu/thango/.
://perso.uclouvain.be/nicolas.boumal/RTRMC/.

http://www4.comp.polyu.edu.hk/cslzhang/papers.htm
http://www.math.nus.edu.sg/mattohkc/NNLS.html
http://www.stat.columbia.edu/rahulm/software.html
http://web.engr.illinois.edu/swoh/software/optspace/
http://lmafit.blogs.rice.edu/
http://www-users.cs.umn.edu/thango/
http://perso.uclouvain.be/nicolas.boumal/RTRMC/


Fig. 7. Face recovery results by these algorithms. From left column to right column: Input corrupted images (black pixels denote missing entries), original
images, reconstruction results by PCP (1020.69 s), CWM (1830.18 s), RegL1 (2416.85 s) and RBF (52.73 s).

Fig. 8. Face reconstruction results by CPCP and RBF, where the first column show the original images, the second and third columns show the low-rank and
sparse components obtained by CPCP, while the last two columns show the low-rank and sparse components obtained by RBF.
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RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
jXjRði;jÞ2XðDij � LijÞ2

s
;

where jXj is the total number of ratings in the testing set, Dij denotes the ground-truth rating of user i for item j, and Lij

denotes the corresponding predicted rating.
The average RMSE on these three data sets is reported over 10 independent runs and is shown in Table 2 (The best results

are highlighted in bold). From the results shown in Table 2, we can see that, for some fixed ranks, most matrix factorization
methods including ScGrass, RTRMC, LMaFit and our RBF method, except OptSpace, usually perform better than the two con-
vex trace norm minimization methods, APG and Soft-Impute. Moreover, our bilinear factorization method with trace norm
regularization consistently outperforms the other matrix factorization methods including OptSpace, ScGrass, RTRMC and
LMaFit, and the two trace norm minimization methods, APG and Soft-Impute. This confirms that our robust bilinear factor-
ization model with trace norm regularization is reasonable.



Table 2
RMSE of different methods on three data sets: MovieLens100K, MovieLens1M and MovieLens10M.

Methods MovieLens100K MovieLens1M MovieLens10M

APG 1.2142 1.1528 0.8583
Soft-Impute 1.0489 0.9058 0.8615
OptSpace 0.9411 0.9071 1.1357

Ranks 5 6 7 5 6 7 5 6 7

ScGrass 0.9647 0.9809 0.9945 0.8847 0.8852 0.8936 0.8359 0.8290 0.8247
RTRMC 0.9837 1.0617 1.1642 0.8875 0.8893 0.8960 0.8463 0.8442 0.8386
LMaFit 0.9468 0.9540 0.9568 0.8918 0.8920 0.8853 0.8576 0.8530 0.8423
RBF 0.9393 0.9513 0.9485 0.8672 0.8624 0.8591 0.8193 0.8159 0.8110
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Fig. 9. Results of our RBF method, ScGrass, LMaFit, and OptSpace against their parameters: (a) rank and (b) regularization parameter k.

66 F. Shang et al. / Information Sciences 307 (2015) 53–72
Furthermore, we also analyze the robustness of our RBF method with respect to its parameter changes: the given rank and
the regularization parameter k on the MovieLens1M data set, as shown in Fig. 9, from which we can see that our RBF method
is very robust against its parameter variations. For comparison, we also show the results of some related methods: ScGrass
and LMaFit, OptSpace and RTRMC with varying ranks or different regularization parameters in Fig. 9. It is clear that, by
increasing the number of the given ranks, the RMSE of ScGrass and LMaFit, RTRMC becomes dramatically increases, while
that of our RBF method increase slightly. This further confirms that our bilinear matrix factorization model with trace norm
regularization can significantly reduce the over-fitting problems of matrix factorization. ScGrass, RTRMC and OptSpace all
have their spectral regularization models, respectively (for example, the formulation for OptSpace is minU;S;V

ð1=2ÞkPXðUSVT � DÞk2
F þ kkSk2

F .) We can see that our RBF method performs more robust than OptSpace, ScGrass and
RTRMC in terms of the regularization parameter k. Moreover, our RBF method is easily used to incorporate side-information
as in [38,37,27,21,55].
7. Conclusion and future work

In this paper, we proposed a scalable, structured robust bilinear factorization (RBF) framework for RMC and CPCP
problems. Unlike existing robust low-rank matrix factorization methods, the proposed RBF method can not only address
large-scale RMC problems, but can also solve low-rank and sparse matrix decomposition problems with incomplete or cor-
rupted observations. To this end, we first presented two smaller-scale matrix trace norm regularized models for RMC and
CPCP problems, respectively. Then we developed an efficient ADMM algorithm to solve both RMC and RPCA problems,
and analyzed the suboptimality of the solution produced by our algorithm. Finally, we extended our algorithm to solve
CPCP problems. Experimental results on real-world data sets demonstrated the superior performance of our RBF method
in comparison with the state-of-the-art methods in terms of both efficiency and effectiveness.

Our RBF method can address various large-scale robust low-rank matrix recovery problems. In the future, we are inter-
ested in exploring ways to regularize our model with auxiliary information as in [38,37,27], such as graph Laplacian, as well
as with general penalties such as the non-negative constraint. Moreover, our RBF method can also be extended to various
low-rank high-order tensor recovery problems, such as low-rank tensor completion.
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Appendix A. Proof of Lemma 2

Proof. Let ðL�; S�Þ be the optimal solution of (4), gðL; SÞ ¼ kSk1 þ kkLk� and C ¼ fðL; SÞjPXðDÞ ¼ PXðLþ SÞg, then we will prove
the following statement by contradiction:
PXC ðS�Þ ¼ 0:
Let us assume that PXC ðS�Þ– 0. Let ~S� be ð~S�ÞX ¼ ðS
�ÞX and ð~S�ÞXC ¼ 0, then we have ðL�; ~S�Þ 2 C and gðL�; ~S�Þ 6 gðL�; S�Þ, which

leads to a contradiction. Therefore, PXC ðS�Þ ¼ 0. In other words, ðL�; S�Þ is also the optimal solution of (5). h
Appendix B. Proof of Lemma 3

Proof. Let the SVD of VT be VT ¼ ÛR̂V̂T , then UVT ¼ ðUÛÞR̂V̂T . Since ðUÛÞTðUÛÞ ¼ I; ðUÛÞR̂V̂T is actually an SVD of UVT .

According to the definition of the trace norm, we have kVk� ¼ kV
Tk� ¼ trðR̂Þ ¼ kUVTk�. h
Appendix C. Proof of Theorem 4

Proof. If we know that ðL�; S�Þ is a solution to the optimization problem (5), it is also a solution to
min
L;S;rankðLÞ¼r

kPXðSÞk1 þ kkLk�;

s:t:; PXðDÞ ¼ PXðLþ SÞ;PXC ðSÞ ¼ 0:
Since for any ðL; SÞ with rankðLÞ ¼ r, we can find U 2 Rm�d and V 2 Rn�d satisfying UVT ¼ L and PXðD� UVTÞ ¼ PXðSÞ, where
d P r. Moreover, according to Lemma 3, we have
min
U;V ;S

kPXðSÞk1 þ kkVk�

s:t:; PXðDÞ ¼ PXðUVT þ SÞ; UT U ¼ I;

¼min
U;V ;S

kPXðSÞk1 þ kkUVTk�

s:t:; PXðDÞ ¼ PXðUVT þ SÞ;
¼ min

L;S;rankðLÞ¼r
kPXðSÞk1 þ kkLk�

s:t:; PXðDÞ ¼ PXðLþ SÞ;
where PXC ðSÞ ¼ 0. This completes the proof. h
Appendix D. Proof of Theorem 7

Proof. We will prove the statement in Theorem 7 using mathematical induction.

(I) When k ¼ 1, and following [34], then the optimal solution to the problem (14) is given by
U�1 ¼ ~U1
~VT

1;

where the skinny SVD of P�0V�0 is P�0V�0 ¼ ~U1
~R1

~VT
1.

Setting the same initial values for our iterative scheme and the SVD scheme, i.e., U�0 ¼ U0; V�0 ¼ V0; S�0 ¼ S0 and
Y�0 ¼ Y0 such that P�0 ¼ P0, and by Algorithm 1, then we have

U1 ¼ Q ; QRðP0V0Þ ¼ QRðP�0V�0Þ ¼ QR:
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Hence, it can be easily verified that 9O1 2 N satisfies U�1 ¼ U1O1 [5], where N ¼ fA 2 Rd�d;AT A ¼ I;AAT ¼ Ig.
By the iteration step (19), we have

V�1 ¼ SVTk=a0ððP
�
0Þ

T U�1Þ ¼ SVTk=a0ððP
�
0Þ

T U1O1Þ ¼ SVTk=a0 ððP
�
0Þ

T U1ÞO1 ¼ V1O1:

Thus, U�1ðV
�
1Þ

T ¼ U1VT
1. Furthermore, we have

S�1 ¼ S1; P
�
1 ¼ P1; and Y�1 ¼ Y1:

(II) When k > 1, we suppose that the result of Theorem 7 holds at the (k � 1)-th iteration. Then, following [34], U�k is
updated by

U�k ¼ ~Uk
~VT

k ;

where the skinny SVD of P�k�1V�k�1 is P�k�1V�k�1 ¼ ~Uk
~Rk

~VT
k .
By P�k�1V�k�1 ¼ P�k�1Vk�1Ok�1, and according to (15), then 9Ok 2 N satisfies U�k ¼ UkOk [5]. Furthermore, we have
U�kðV
�
kÞ

T ¼ U�kSVTk=ak�1
ððU�kÞ

T P�k�1Þ ¼ SVTk=ak�1
ðU�kðU

�
kÞ

T P�k�1Þ ¼ SVTk=ak�1
ðUkðUkÞT Pk�1Þ ¼ UkVT

k ;
V�k ¼ VkOk; S�k ¼ Sk; P�k ¼ Pk, and Y�k ¼ Yk.
Since V�k ¼ VkOk, we also have kV�kk� ¼ kVkk�.
This completes the proof of Theorem 7. h
Appendix E

The proof sketch of Lemma 8 is similar to those in [22,25,41]. We first prove that the boundedness of multipliers and
some variables of Algorithm 1, and then analyze the convergence of Algorithm 1. To prove the boundedness, we first give
the following lemmas.

Lemma 12 ([13,22]). Let H be a real Hilbert space endowed with an inner product h�; �i and a corresponding norm k � k (e.g., the
nuclear norm or the l1 norm), and y 2 @kxk, where @k � k denotes the subgradient. Then kyk� ¼ 1 if x – 0, and kyk� 6 1 if x ¼ 0,
where k � k� is the dual norm of the norm k � k.
Lemma 13. Let Ykþ1 ¼ Yk þ akðD� Ukþ1VT
kþ1 � Skþ1Þ; Ŷkþ1 ¼ Yk þ akðD� Ukþ1VT

kþ1 � SkÞ and ~Ykþ1 ¼ Yk þ akðD� U�kþ1VT
k � SkÞ,

where U�kþ1 is the solution of the problem (14). Then the sequences fYkg; fŶkg; f~Ykg; fVkg and fSkg produced by Algorithm 1 are
all bounded.
Proof. By the optimality condition for the problem (20) with respect to S, we have that
0 2 @ðSkþ1ÞXLak
ðUkþ1;Vkþ1; Skþ1; YkÞ;
and
PXðYk þ akðD� Ukþ1VT
kþ1 � Skþ1ÞÞ 2 @kPXðSkþ1Þk1;
i.e.,
PXðYkþ1Þ 2 @kPXðSkþ1Þk1: ð29Þ
Substituting Ykþ1 ¼ Yk þ akðD� Ukþ1VT
kþ1 � Skþ1Þ into (23), we have
PXC ðYkþ1Þ ¼ 0: ð30Þ
Using (29), (30) and by Lemma 12, we have
kYkþ1k1 ¼ kPXðYkþ1Þk1 6 1:
Thus, the sequence fYkg is bounded.
From the iteration procedure of Algorithm 1, we have that
Lak
ðUkþ1;Vkþ1; Skþ1; YkÞ 6 Lak

ðUkþ1;Vkþ1; Sk; YkÞ 6 Lak
ðUk;Vk; Sk;YkÞ ¼ Lak�1

ðUk;Vk; Sk;Yk�1Þ þ bkkYk � Yk�1k2
F ;
where bk ¼ 1
2 a�2

k�1ðak�1 þ akÞ and ak ¼ qak�1.
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Since
X1
k¼1

a�2
k�1

ak�1 þ ak

2
¼ qðqþ 1Þ

2a0ðq� 1Þ <1; ð31Þ
we can conclude that fLak�1
ðUk;Vk; Sk;Yk�1Þg is upper bounded due to the boundedness of fYkg. Then
kkVkk� þ kPXðSkÞk1 ¼ Lak�1
ðUk;Vk; Sk; Yk�1Þ �

1
2
a�1

k�1ðkYkk2
F � kYk�1k2

F Þ;
is upper bounded, i.e., fVkg and fSkg are bounded, and fUkVT
kg is also bounded.

We next prove that f~Ykg is bounded. Let U�kþ1 denote the solution of the subproblem (14). By the optimality of U�kþ1, then
we have
kYk þ akðD� U�kþ1VT
k � SkÞk2

F 6 kYk þ akðD� UkVT
k � SkÞk2

F :
By the definition of ~Yk, and akþ1 ¼ qak, thus we obtain that
k~Ykk2
F 6 kð1þ qÞYk � qYk�1k2

F :
By the boundedness of fVkg and fYkg, then the sequence f~Ykg is bounded.
The optimality condition for the problem (16) with respect to V is written as follows:
UT
kþ1Ŷkþ1 2 k@kVT

kþ1k�: ð32Þ
Using (32) and by Lemma 12, we know that
kUT
kþ1Ŷkþ1k2 6 k:
Hence, fUT
k Ŷkg is bounded. Let U?kþ1 denote the orthogonal complement of Ukþ1, i.e., U?kþ1Ukþ1 ¼ 0, according to Theorem 7,

then 9Okþ1 satisfies U�kþ1 ¼ Ukþ1Okþ1. Using this fact, we have
ðU?kþ1Þ
T
Ŷkþ1 ¼ ðU?kþ1Þ

TðYk þ akðD� Ukþ1VT
kþ1 � SkÞÞ ¼ ðU?kþ1Þ

TðYk þ akðD� Ukþ1Okþ1VT
k � SkÞÞ

¼ ðU?kþ1Þ
TðYk þ akðD� U�kþ1VT

k � SkÞÞ ¼ ðU?kþ1Þ
T ~Ykþ1:
Thus, fðU?k Þ
T
Ŷkg is bounded due to the boundedness of f~Ykg. Moreover, we can show that for all k,
kŶkþ1k2 ¼ kU
T
kþ1Ŷkþ1 þ ðU?kþ1Þ

T
Ŷkþ1k2 6 kU

T
kþ1Ŷkþ1k2 þ kðU

?
kþ1Þ

T
Ŷkþ1k2:
Since both fUT
k Ŷkg and fðU?k Þ

T
Ŷkg are bounded, the sequence fŶkg is bounded. This completes the proof of Lemma 13. h
Proof of Lemma 8.

(I) By D� Ukþ1VT
kþ1 � Skþ1 ¼ a�1

k ðYkþ1 � YkÞ, the boundedness of fYkg, and limk!1 ak ¼ 1, we have that
lim
k!1

D� Ukþ1VT
kþ1 � Skþ1 ¼ 0:

Thus, fðUk;Vk; SkÞg approaches to a feasible solution.

(II) We prove that the sequences fSkg and fUkVT

kg are Cauchy sequences.

By kSkþ1 � Skk ¼ a�1
k kYkþ1 � Ŷkk ¼ oða�1

k Þ and
X1
k¼1

a�1
k�1 ¼

q
a0ðq� 1Þ <1;

thus, fSkg is a Cauchy sequence, and has a limit, S1.
Similarly, fUkVT
kg is also a Cauchy sequence, therefore it has a limit, U1ðV1ÞT .

This completes the proof of Lemma 8. h

To prove Lemma 9, we first give the following lemma in [25].

Lemma 14. Let X;Y and Q be matrices of compatible dimensions. If Q obeys Q T Q ¼ I and Y 2 @kXk�, then
QY 2 @kQXk�:
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Proof of Lemma 9. Let the skinny SVD of Pk ¼ D� Sk þ Yk=ak be Pk ¼ ÛkR̂kV̂T
k , then it can be calculated that
QRðPkVkÞ ¼ QRðÛkR̂kV̂T
k VkÞ:
Let the full SVD of R̂kV̂T
k Vk be R̂kV̂T

k Vk ¼ ~U ~R~VT (note that ~U and ~V are orthogonal matrices), then it can be calculated that
QRðÛkR̂kV̂T
k VkÞ ¼ QRðÛk

~U ~R~VTÞ ¼ QR; Ukþ1 ¼ Q :
Then 9O and OT O ¼ OOT ¼ I such that Ukþ1 ¼ Ûk
~UO, which simply leads to
Ukþ1UT
kþ1 ¼ Ûk

~UOOT ~UT ÛT
k ¼ ÛkÛT

k :
Hence,
Ŷkþ1 � Ukþ1UT
kþ1Ŷkþ1 ¼ lk½ðD� Sk þ Yk=lkÞ � Ukþ1UT

kþ1ðD� Sk þ Yk=lkÞ� ¼ lkðÛkR̂kV̂T
k � Ukþ1UT

kþ1ÛkR̂kV̂T
kÞ

¼ lkðÛkR̂kV̂T
k � ÛkÛT

k ÛkR̂kV̂T
kÞ ¼ 0;
i.e.,
Ŷkþ1 ¼ Ukþ1UT
kþ1Ŷkþ1:
Using (32) and Lemma 14, we have
Ukþ1UT
kþ1Ŷkþ1 2 k@kUkþ1VT

kþ1k�:
Thus, we obtain that
Ŷkþ1 2 k@kUkþ1VT
kþ1k� and PXðYkþ1Þ 2 @kPXðSkþ1Þk1; 8k:
Since the above conclusion holds for any k, it naturally holds at ðU�;V�; S�Þ:
Ŷ� ¼ Ŷk�þ1 2 k@kU�ðV�ÞTk� and PXðY�Þ ¼ PXðYk�þ1Þ 2 @kPXðS�Þk1: ð33Þ
Given any feasible solution ðU;V ; SÞ to the problem (9), by the convexity of matrix norms and (33), and PXC ðY�Þ ¼ 0, we
obtain that
kPXðSÞk1 þ kkVk� ¼ kPXðSÞk1 þ kkUVTk� P kPXðS�Þk1 þ hPXðY�Þ;PXðS� S�Þi þ kkU�ðV�ÞTk� þ hŶ�;UVT � U�ðV�ÞTi

¼ kPXðS�Þk1 þ hPXðY�Þ; S� S�i þ kkU�ðV�ÞTk� þ hŶ�;UVT � U�ðV�ÞTi

¼ kPXðS�Þk1 þ kkU�ðV�ÞTk� þ hPXðY�Þ;UVT þ S� U�ðV�ÞT � S�i þ hŶ� � PXðY�Þ;UVT � U�ðV�ÞTi

¼ kPXðS�Þk1 þ kkU�ðV�ÞTk� þ hPXðY�Þ;UVT þ S� U�ðV�ÞT � S�i þ hŶ� � Y�;UVT � U�ðV�ÞTi:
By Lemma 8 and kPXðY�Þk1 6 1, we have that kUVT þ S� U�ðV�ÞT � S�k1 ¼ kD� U�ðV�ÞT � S�k1 6 e, which leads to
hPXðY�Þ;UVT þ S� U�ðV�ÞT � S�i
��� ��� 6 kPXðY�Þk1kUVT þ S� U�ðV�ÞT � S�k1 ¼ kPXðY�Þk1kD� U�ðV�ÞT � S�k1

6 mnkD� U�ðV�ÞT � S�k1 6 mne:
Hence,
kPXðSÞk1 þ kkVk� P kPXðS�Þk1 þ kkV�k� þ hŶ� � Y�;UVT � U�ðV�ÞTi �mne:
This completes the proof of Lemma 9. h
Proof of Theorem 10. It is worth nothing that ðU;V ¼ 0; S ¼ DÞ is a feasible solution to the problem (9). Let ðU g ;V g ; S gÞ be a
globally optimal solution to (9), then we have
kkV gk� 6 kPXðS gÞk1 þ kkV gk� 6 kDk1 ¼ kPXðDÞk1:
By the proof procedure of Lemma 13 and a0 ¼ 1
kPXðDÞkF

, we have that V� is bounded by
kkV�k� 6 kPXðS�Þk1 þ kkV�k� 6 Lak� ðUk�þ1;Vk�þ1; Sk�þ1;Yk� Þ þ
kYk� k2

F

2lk�
6

mn
a0

qð1þ qÞ
q� 1

þ 1
2qk�

� �

¼ mnkPXðDÞkF
qð1þ qÞ
q� 1

þ 1
2qk�

� �
:
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Thus,
kU gðV gÞT � U�ðV�ÞTk� 6 kV
gk� þ kV

�k� 6 c1: ð34Þ
Note that jhM;Nij 6 kMk2kNk� (please see [45]) holds for any same-sized matrices M and N. By Lemma 9 and (34), we have
f g ¼ kPXðS gÞk1 þ kkV gk� P kPXðS�Þk1 þ kkV�k� þ hŶ� � Y�;U gðV gÞT � U�ðV�ÞTi �mne

P f � � kŶ� � Y�k2kU
gðV gÞT � U�ðV�ÞTk� �mne ¼ f � � e1kU gðV gÞT � U�ðV�ÞTk� �mne P f � � c1e1 �mne:
This completes the proof of Theorem 10. h
Proof of Theorem 11. Let L ¼ U�ðV�ÞT and S ¼ S�, then ðL; SÞ is a feasible solution to the RMC problem (5). By the convexity of
the problem (5) and the optimality of ðL0; S0Þ, it naturally follows that
f 0
6 f �:
Let L0 ¼ U0R0ðV0ÞT be the skinny SVD of L0. We set U0 ¼ U0; ðV 0ÞT ¼ R0ðV0ÞT and S0 ¼ S0. When d P r, we have
D ¼ L0 þ S0 ¼ U0R0ðV0ÞT þ S0 ¼ U0ðV 0ÞT þ S0;
i.e., ðU0;V 0; S0Þ is a feasible solution to (9). By Theorem 10, it can be concluded that
f � � c1e1 �mne 6 kkV 0k� þ kPXðS0Þk1 ¼ kkR0k� þ kPXðS0Þk1 ¼ f 0
:

For d 6 r, the skinny SVD of L0 is given by
L0 ¼ U0R0VT
0 þ U1R1VT

1;
where U0 and V0 (resp. U1 and V1) are the singular vectors associated with the d largest singular values (resp. the rest sin-
gular values smaller than or equal to rd). Then we have a feasible solution to (9) as follows:
U00 ¼ U0; ðV 00Þ
T ¼ R0VT

0 and S00 ¼ D� U0R0VT
0 ¼ S0 þ U1R1VT

1:
By Theorem 10, we obtain that
f � � c1e1 �mne 6 f g
6 kkV 00k� þ kPXðS00Þk1 6 kkR0k� þ kPXðSo þ U1R1VT

1Þk1

6 kkL0k� � kkR1k� þ kPXðS0Þk1 þ kPXðU1R1VT
1Þk1 6 f 0 � kkR1k� þ kU1R1VT

1k1

6 f 0 � kkR1k� þ
ffiffiffiffiffiffiffi
mn
p

kU1R1VT
1kF 6 f 0 � kkR1k� þ

ffiffiffiffiffiffiffi
mn
p

kU1R1VT
1k� 6 f 0 þ ð

ffiffiffiffiffiffiffi
mn
p

� kÞkR1k�
6 f 0 þ ð

ffiffiffiffiffiffiffi
mn
p

� kÞrdþ1ðr � dÞ:
This completes the proof of Theorem 11. h
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