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Abstract—Recovering low-rank and sparse matrices from
partial, incomplete or corrupted observations is an important
problem in many areas of science and engineering. In this paper,
we propose a scalable robust bilateral factorization (RBF) method
to recover both structured matrices from missing and grossly
corrupted data such as robust matrix completion (RMC), or
incomplete and grossly corrupted measurements such as com-
pressive principal component pursuit (CPCP). With the unified
framework, we first present two robust trace norm regularized
bilateral factorization models for RMC and CPCP problems,
which can achieve an orthogonal dictionary and a robust data
representation, simultaneously. Then, we apply the alternating
direction method of multipliers to efficiently solve the RMC
problems. Finally, we provide the convergence analysis of our
algorithm, and extend it to address general CPCP problems.
Experimental results verified both the efficiency and effectiveness
of our RBF method compared with the state-of-the-art methods.

Index Terms—compressive principal component pursuit; ro-
bust matrix completion; RPCA; low-rank

I. INTRODUCTION

In recent years, robust low-rank matrix factorization (RL-

RMF) problems have drawn a lot of attention from researchers

in various research communities such as machine learning [1],

[2], data mining [3], [4], signal/image processing [5], [6],

and computer vision [7], [8]. In these areas, the dimension

of the input data, such as digital photographs, surveillance

videos, text and web documents, etc., is very high. This makes

inference, learning, and recognition impractical due to the

“curse of dimensionality”. Even though the input data lies in

a high dimensional space, in practice it is observed that the

data has low intrinsic dimension which is often much smaller

than the dimension of the ambient space, and the data points

lie in or are close to low-dimensional structures [9].

For the high-dimensional data analysis, traditional matrix

factorization (MF) methods, such as principal component anal-

ysis (PCA) and non-negative matrix factorization (NMF) are

commonly used, mainly because they are simple to implement,

can be solved efficiently, and are often effective in real-world

applications such as latent semantic indexing, face recognition

and text clustering. However, one of the main challenges

faced by traditional MF methods is that the observed data

is often contaminated by outliers and missing values [10], or

is a small set of linear measurements [11]. To address these

issues, many methods based on compressive sensing and rank

minimization have been proposed. In principle, those methods

aim to minimize a hybrid optimization problem involving both

the l1-norm and the trace norm (also called the nuclear norm)

minimization. Moreover, it is shown that the l1-norm and the

trace norm as the convex surrogates for the l0-norm and rank

function are powerfully capable of inducing sparse and low-

rank, respectively [12], [13].

In this paper, we are particularly interested in the trace norm

regularized problem for RLRMF:

min
U,V

f(U, V ) + λ‖Z‖∗, s.t., Z = UV T , (1)

where λ ≥ 0 is a regularization parameter, ‖Z‖∗ is the trace

norm of the matrix Z, i.e., the sum of its singular values,

and f(·) denotes the loss function such as the l2-norm or the

l1-norm loss functions. In the following, we will give a few

examples of applications where the RLRMF is useful.

RMC: When the real measurements contain both outliers

and missing data, the model (1) is a robust matrix completion

(RMC) problem [14], where missing data and outliers are

presented at arbitrary location in the measurement matrix.

RMC has been used in a wide range of problems such as

collaborative filtering [15], structure-from-motion [7], [16] and

face reconstruction [8].

RPCA: When f(·) is the l1-norm loss function, the model

(1) is a low-rank and sparse matrix recovery problem from

grossly corrupted data matrices, also called robust principal

component analysis (RPCA) [17] or low-rank and sparse

decomposition (LRSD) [18]. RPCA problem has been suc-

cessfully applied in many important applications such as latent

semantic indexing [19], video surveillance [12], [17], and

image alignment [20].

In this paper, we aim to learn robust low-rank bilateral

factorization to recover low-rank and sparse matrices from

corrupted data or a small set of linear measurements. Unlike

existing RLRMF methods, our approach not only takes into

account the fact that the observation is contaminated by both

additive outliers and missing values, but also can identify

both low-rank and sparse noisy components from missing

and grossly corrupted measurements, i.e., CPCP problems

[11]. We present a unified robust bilateral factorization (RBF)

framework for RMC and CPCP problems. We verify with

convincing experimental results both the efficiency and effec-

tiveness of our RBF method.
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The main contributions of this paper include:

1. We propose a unified RBF framework to learn both an

orthogonality dictionary and a low-dimensional data represen-

tation with missing and grossly corrupted observations, which

can simultaneously recover both low-rank and sparse matrices.

2. We present two trace norm regularized RBF models for

RMC and CPCP problems. With the orthogonality constraint

applied to the dictionary component, we convert the proposed

models into two smaller-scale matrix trace norm regularized

problems.

3. Finally, we propose an efficient alternating direction

method of multipliers (ADMM) to solve RMC problems with

guaranteed local convergence and extend it to address CPCP

problems with the linearization technique.

II. BACKGROUND

A low-rank structured matrix Z ∈ R
m×n (m ≥ n) and

a sparse one E ∈ R
m×n could be recovered from highly

corrupted measurements D = PQ(X) ∈ R
N via the following

CPCP problem [11],

min
Z,E

‖E‖1 + λ‖Z‖∗, s.t., PQ(X) = PQ(Z + E), (2)

where ‖ · ‖1 denotes the l1-norm, i.e., ‖E‖1 = Σij |eij |,
Q ⊆ R

m×n is a linear subspace, and PQ is the projection

operator onto that subspace. The theoretical result in [11]

states that a commensurately small number of measurements

are sufficient to accurately recover the low-rank and sparse

matrices with high probability. If Q is the entire space, the

model (2) degenerates to the RPCA problem [12], [17].

When PQ = PΩ, the model (2) is the following robust

matrix completion (RMC) problem

min
Z,E

‖E‖1 + λ‖Z‖∗, s.t., PΩ(X) = PΩ(Z + E), (3)

where Ω is the index set of observed entries and PΩ keeps the

entries in Ω and zeros out others. Although both models (2)

and (3) are convex optimization problems, and their algorithms

converge to the globally optimal solution, they involve singular

value decomposition (SVD) in each iteration and suffer from a

high computational cost of O(mn2). To address this problem,

we will propose a robust bilateral factorization method with

missing and grossly corrupted observations.

III. OUR RBF FRAMEWORK

The high computational complexity of existing CPCP and

RMC algorithms is caused by the singular value shrinkage

operator, which involves the SVD of a matrix. Motivated by

this, robust bilateral factorization (RBF) aims to find two

smaller matrices U ∈ R
m×d (UTU = I) and V ∈ R

n×d

whose product is equal to the matrix of low-rank Z ∈ R
m×n,

i.e., Z = UV T , where d is an upper bound for the rank of Z,

i.e., d ≥ r = rank(Z).

A. RMC Model

From the optimization problem (3), we easily find the

optimal solution EΩC = 0, where ΩC is the complement of

Ω, i.e., the index set of unobserved entries. Consequently, we

have the following lemma.

Lemma 1 ( [21]). The RMC model (3) with the operator PΩ

is equivalent to the following problem
min
Z,E

‖PΩ(E)‖1 + λ‖Z‖∗,
s.t., PΩ(X) = PΩ(Z + E), PΩC (E) = 0.

(4)

For the incomplete and corrupted matrix X , our RBF model

is to find two smaller matrices of low-rank, whose product

approximates X , formulated as follows:

min
U,V,E

‖PΩ(E)‖1 + λ‖UV T ‖∗,
s.t., PΩ(X) = PΩ(UV T + E).

(5)

Lemma 2. Let U and V be two matrices of compatible
dimensions, where U has orthogonal columns, i.e., UTU = I ,
then we have ‖UV T ‖∗ = ‖V ‖∗.

By substituting ‖UV T ‖∗ = ‖V ‖∗ into (5), we obtain a

much smaller-scale matrix trace norm minimization problem,

min
U,V,E

‖PΩ(E)‖1 + λ‖V ‖∗,
s.t., PΩ(X) = PΩ(UV T + E), UTU = I.

(6)

Theorem 1. Suppose (Z∗, E∗) is a solution of the problem (4)
with rank(Z∗) = r, then there exists the solution Uk ∈ R

m×d,
Vk ∈ R

n×d and Ek ∈ R
m×n to the problem (6) with d ≥ r

and (Ek)ΩC = 0, and (UkV
T
k , Ek) is also a solution to the

problem (4).

The detailed proof of this theorem can be found in [21].

B. CPCP Model

For a small set of linear measurements D ∈ R
N , our CPCP

problem is to recover the low-rank and sparse matrices as

follows,

min
U,V,E

‖E‖1 + λ‖V ‖∗,
s.t., PQ(X) = PQ(UV T + E).

(7)

Theorem 2. Suppose (Z∗, E∗) is a solution of the problem (2)
with rank(Z∗) = r, then there exists the solution Uk ∈ R

m×d,
Vk ∈ R

n×d and Ek ∈ R
m×n to the problem (7) with d ≥ r,

and (UkV
T
k , Ek) is also a solution to the problem (2).

We omit the proof of this theorem since it is similar to

that of Theorem 1. In the following, we will discuss how

to solve the models (6) and (7). It is worth noting that

the RPCA problem can be viewed as a special case of the

RMC problem (6) when all entries of the corrupted matrix

are directly observed. We will mainly develop an efficient

solver based on alternating direction method of multipliers

(ADMM) for solving the non-convex problem (6). Although

our algorithm will produce different estimations of U and V ,

the estimation of UV T is stable as guaranteed by Theorems

1 and 2, and the convexity of the problems (2) and (3).

IV. OPTIMIZATION ALGORITHM

In this section, we propose an efficient ADMM algorithm

for solving the RMC problem (6), and then extend it for

solving the CPCP problem (7). We provide the convergence

analysis of our algorithm in Section V.
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A. Formulation

For efficiently solving the RMC problem (6), we can

assume without loss of generality that the unobserved data

XΩC = 0, and EΩC may be any values such that PΩC (X) =
PΩC (UV T ) + PΩC (E). Consequently, the constraint with

the linear projection operator PΩ in (6) is simplified into

X = UV T +E. We introduce the constraint X = UV T +E
into (6), and obtain the following equivalent form:

min
U,V,E

‖PΩ(E)‖1 + λ‖V ‖∗,
s.t., X = UV T + E, UTU = I.

(8)

The partial augmented Lagrangian function of (8) is

Lα(U, V,E, Y ) = ‖PΩ(E)‖1 + λ‖V ‖∗
+〈Y,X − E − UV T 〉+ α

2
‖X − E − UV T ‖2F ,

(9)

where Y ∈ R
m×n is a matrix of Lagrange multipliers, and

α > 0 is a penalty parameter.

B. Robust Bilateral Factorization Scheme

We will derive our scheme for solving the following sub-

problems with respect to U , V and E, respectively,

Uk+1 =argmin
U∈Rm×d

Lαk
(U, Vk, Ek, Yk),

s.t., UTU = I,
(10)

Vk+1 = argmin
V ∈Rn×d

Lαk
(Uk+1, V, Ek, Yk), (11)

Ek+1 = argmin
E∈Rm×n

Lαk
(Uk+1, Vk+1, E, Yk). (12)

1) Updating U: Fixing V and E at their latest values, and

by removing the terms that do not depend on U and adding

some proper terms that do not depend on U , the problem (10)

with respect to U is reformulated as follows:

min
U
‖UV T

k − Pk‖2F , s.t., UTU = I, (13)

where Pk = X − Ek + Yk/αk. In fact, the optimal solution

can be given by the SVD of the matrix PkVk as in [22]. To

further speed-up the calculation, we introduce the idea in [23]

that uses a QR decomposition instead of SVD. The resulting

iteration step is formulated as follows:

Uk+1 = Q, QR(PkVk) = QR, (14)

where Uk+1 is an orthogonal basis for the range space

R(PkVk), i.e., R(Uk+1) = R(PkVk). Although Uk+1 in (14)

is not an optimal solution to (13), our iterative scheme and

the one in [24] are equivalent to solve (13) and (15), and

their equivalent analysis is provided in Section V. Moreover,

the use of QR factorizations also makes our update scheme

highly scalable on modern parallel architectures [25].

2) Updating V: Fixing U and E, the optimization problem

(11) with respect to V can be rewritten as follows:

min
V

αk

2
‖Uk+1V

T − Pk‖2F + λ‖V ‖∗. (15)

To solve the problem (15), we first introduce the following

soft-thresholding operator Sτ and the singular value thresh-

olding (SVT) operator.

Sτ (Aij) :=

⎧⎪⎨
⎪⎩

Aij − τ , Aij > τ,

Aij + τ , Aij < −τ ,
0, otherwise.

Definition 1. For any given matrix M ∈ R
n×d whose rank is

r, and μ ≥ 0, the SVT operator is defined as follows:

SVTμ(M) = Udiag(Sμ(σ))V T
,

where U ∈ R
n×r, V ∈ R

d×r and σ = (σ1, . . . , σr)
T ∈ R

r×1

are obtained by SVD of M , i.e., M = U diag(σ)V .

Theorem 3. The trace norm minimization problem (15) has
a closed-form solution given by:

Vk+1 = SVTλ/αk
(PT

k Uk+1). (16)

Proof. The first-order optimality condition for (15) is

0 ∈ λ∂‖V T ‖∗ + αkU
T
k+1(Uk+1V

T − Pk),

where ∂‖·‖∗ is the set of subgradients of the trace norm. Since

UT
k+1Uk+1 = I , the optimality condition of (15) is rewritten

as follows:

0 ∈ λ∂‖V ‖∗ + αk(V − PT
k Uk+1). (17)

(17) is also the optimality condition for the following problem,

min
V

αk

2
‖V − PT

k Uk+1‖2F + λ‖V ‖∗. (18)

According to Theorem 2.1 in [26], then the optimal solution

of (18) is given by (16).

3) Updating E: Fixing U and V , E is updated by solving

min
E
‖PΩ(E)‖1+ αk

2
‖E+Uk+1V

T
k+1−X−Yk/αk‖2F . (19)

The optimal solution Ek+1 can be obtained by solving the

following two subproblems with respect to EΩ and EΩC :

min
EΩ

‖E‖1 + αk

2
‖E + Uk+1V

T
k+1 −X − Yk/αk‖2F , (20)

min
EΩC

‖E + Uk+1V
T
k+1 −X − Yk/αk‖2F . (21)

By the operator Sτ and letting τ = 1/αk, the closed-form

solution to the problem (20) is given by

(Ek+1)Ω = Sτ ((X − Uk+1V
T
k+1 + Yk/αk)Ω). (22)

We can easily obtain the closed-form solution to (21)

(Ek+1)ΩC = (X − Uk+1V
T
k+1 + Yk/αk)ΩC . (23)

Summarizing the analysis above, we arrive at an ADMM

algorithm to solve the RMC problem (6), as outlined in

Algorithm 1. Our algorithm is essentially a Gauss-Seidel-

type scheme of ADMM, and the update strategy of the Jacobi

version of ADMM is easily implemented, well suited for

parallel and distributed computing and hence is particularly

attractive for solving large-scale problems [27]. In addition,

EΩC should be set to 0 for the expected output E. This

algorithm can also be accelerated by adaptively changing α.

An efficient strategy [28] is to let α = α0 (the initialization

in Algorithm 1) and increase αk iteratively by αk+1 = ραk,

where ρ ∈ (1.0, 1.2] in general and α0 is a small constant.

Algorithm 1 is easily used to solve the RPCA problem, where

all entries of the corrupted matrix are directly observed.
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Algorithm 1 Solving RMC problem (6) via ADMM

Input: PΩ(X), λ and tol.

Initialize: U0 = eye(m, d), V0 = 0, Y0 = 0, α0 = 10−4,

αmax = 1010, and ρ = 1.2.

1: while not converged do
2: Update Uk+1 by (14);

3: Update Vk+1 by (16);

4: Update Ek+1 by (22) and (23);

5: Update Yk+1 by

Yk+1 = Yk + αk(X − Uk+1V
T
k+1 − Ek+1);

6: Update αk+1 by αk+1 = min(ραk, αmax);
7: Check the convergence condition,

‖X − Uk+1V
T
k+1 − Ek+1‖F < tol;

8: end while
Output: U , V and E, where PΩC (E) is set to 0.

C. Extension for CPCP
Algorithm 1 can be extended to solve the CPCP problem

(7) with the complex operator PQ, as outlined in Algorithm
2, which is to optimize the following augmented Lagrange
function,

Fα(U, V,E, Y ) =λ‖V ‖∗ + ‖E‖1
+〈Y,D − PQ(E + UV T )〉+ α

2
‖D − PQ(E + UV T )‖2. (24)

We minimize Fα with respect to (U, V,E) by using a recently

proposed linearization technique [29], which solves such prob-

lems where PQ is not the identity operator. Specifically, for

updating U and V , let T = UV T and g(T ) = αk

2 ‖D −
PQ(Ek + T ) + Yk/αk‖2, then g(T ) is approximated by

g(T ) ≈ g(Tk) + 〈∇g(Tk), T − Tk〉+ τ‖T − Tk‖2, (25)

where∇g(Tk) = αkP�
Q(PQ(Tk+Ek)−D−Yk/αk), P�

Q is the

adjoint operator of PQ, and τ is chosen as τ = 1/‖P�
QPQ‖2

as in [29], and ‖ · ‖2 the spectral norm of a matrix, i.e., the

largest singular value of a matrix.

Similarly, for updating E, let Tk+1 = Uk+1V
T
k+1 and

h(E) = αk

2 ‖D − PQ(E + Tk+1) + Yk/αk‖2, then h(E) is

approximated by

h(E) ≈ h(Ek) + 〈∇h(Ek), E − Ek〉+ τ‖E − Ek‖2, (26)

where ∇h(Ek) = αkP�
Q(PQ(Ek + Tk+1)−D − Yk/αk).

V. THEORETICAL ANALYSIS

In this section, we will present several theoretical properties

of Algorithm 1. First, we provide the equivalent relationship

analysis for our iterative scheme and the one in [24], as shown

by the following theorem.

Theorem 4. Let (U∗k , V
∗
k , E

∗
k) be the solution of the subprob-

lems (10), (11) and (12) at the k-th iteration, respectively,
Y ∗k = Y ∗k−1+αk−1(X−U∗k (V ∗k )T−E∗k), and (Uk, Vk, Ek, Yk)
be generated by Algorithm 1 at the k-th iteration (k =
1, . . . , T ). Then

1) ∃Ok ∈ O = {M ∈ R
d×d|MTM = I} such that U∗k =

UkOk and V ∗k = VkOk.
2) U∗k (V

∗
k )

T = UkV
T
k , ‖V ∗k ‖∗ = ‖Vk‖∗, E∗k = Ek, and

Y ∗k = Yk.

Algorithm 2 Solving CPCP problem (7) via ADMM

Input: D ∈ R
N , PQ, λ and tol.

1: while not converged do
2: Update Uk+1 by

Uk+1 = Q, QR((UkV
T
k −∇g(UkV

T
k )/τ)Vk) = QR;

3: Update Vk+1 by

V T
k+1 = SVTλ/αk

(UT
k+1(UkV

T
k −∇g(UkV

T
k )/τ));

4: Update Ek+1 by Ek+1 = S1/αk
(Ek −∇h(Ek)/τ);

5: Update Yk+1 by

Yk+1 = Yk + αk(D − PQ(Uk+1V
T
k+1 + Ek+1));

6: Update αk+1 by αk+1 = min(ραk, αmax);
7: Check the convergence condition,

(‖Tk+1−Tk‖2F +‖Ek+1−Ek‖2F )/(‖Tk‖2F +‖Ek‖2F ) <
tol;

8: end while
Output: U , V and E.

Remark: The proof of this theorem can be found in [21].

Since the Lagrange function (9) is determined by the product

UV T , V , E and Y , the different values of U and V are

essentially equivalent as long as the same product UV T and

‖V ‖∗ = ‖V ∗‖∗. Meanwhile, our scheme replaces SVD by

the QR decomposition, and can avoid the SVD computation

for solving the optimization problem with the orthogonal

constraint.

A. Convergence Analysis

The convergence of our derived ADMM algorithm is guar-

anteed, as shown in the following theorem.

Theorem 5. Let (Uk, Vk, Ek) be a sequence generated by
Algorithm 1, then we have the following conclusions:

1) (Uk, Vk, Ek) approaches to a feasible solution, i.e.,
limk→∞‖X − UkV

T
k − Ek‖F = 0.

2) Both sequences UkV
T
k and Ek are Cauchy sequences.

3) (Uk, Vk, Ek) converges to a KKT point of the problem
(8).

The proof of this theorem can be found in [21].

B. Complexity Analysis

We also analyze the time complexity of our RBF algorithm.

For the RMC problem (6), the main running time of our RBF

algorithm is consumed by performing SVD on the small matrix

of size n × d, the QR decomposition of the matrix PkVk,

and some matrix multiplications. In (16), the time complexity

of performing SVD is O(d2n). The time complexity of QR

decomposition and matrix multiplications is O(d2m+mnd).
The total time complexity of our RBF algorithm for solving the

problem (6) is O(t(d2n+d2m+mnd)) (usually d� n ≤ m),

where t is the number of iterations.

VI. EXPERIMENTAL EVALUATION

We now evaluate the effectiveness and efficiency of our RBF

method for RMC and CPCP problems, such as text removal

and face reconstruction. We ran experiments on an Intel(R)
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(a) (b) (c)

Fig. 1. Images used in text removal experiments: (a) Input image; (b) Original
image; (c) Outlier mask.

Core (TM) i5-4570 (3.20 GHz) PC running Windows 7 with

8GB main memory.

A. Text Removal

We first conduct an experiment on artificially generated

data, whose goal is to remove some generated text from an

image. The ground-truth image for the data matrix is of size

256× 222 with rank equal to 10. We then add to the image a

short phase in text form which plays the role of outliers. Fig.

1 shows the image together with the clean image and outliers

mask. For fairness, we set the rank of all the algorithms to

20, which is two times the true rank of the underlying matrix.

The input data are generated by setting 30% of the randomly

selected pixels of the image as missing entries. We compare

our RBF method with the state-of-the-art methods, including

PCP [12], SpaRCS1 [30], RegL12 [7] and BF-ALM [31].

We set the regularization parameter λ =
√
max(m,n) for

RegL1 and RBF, and the stopping tolerance tol = 10−4 for

all algorithms in this section.

The recovery results obtained by all these methods are

shown in Fig. 2, where the error of low-rank component

recovery (i.e., Error := ‖M − Z‖F /‖M‖F , where M and

Z represent the ground-truth image matrix and the recovered

image matrix, respectively) and the outlier detection accuracy

(the score Area Under the receiver operating characteristic

Curve, AUC) are also reported. For outlier detection, it can

be observed that our RBF method significantly outperforms

the other methods. As far as low-rank matrix recovery is

concerned, these RMC methods including SpaRCS, RegL1

and RBF, outperform PCP, not only visually but also quan-

titatively. Overall, RBF significantly outperforms PCP, RegL1

and SpaRCS in terms of both low-rank matrix recovery and

sparse outlier identification. In terms of efficiency, RBF is

tens of times faster than the other methods, where the running

time of PCP, SpaRCS, RegL1, BF-ALM and RBF is 36.25sec,

15.68sec, 26.85sec, 6.36sec and 0.87sec, respectively.

B. Face Reconstruction

We also test our RBF method for the face reconstruction

problems with the incomplete and corrupted face data or a

small set of linear measurements D as in [11], respectively.

The face database used here is a part of Extended Yale Face

Database B [32] with large corruptions. The face images

can often be decomposed as a low-rank part, capturing the

face appearances under different illuminations, and a sparse

1http://www.ece.rice.edu/∼aew2/sparcs.html
2https://sites.google.com/site/yinqiangzheng/

(a) (b) (c) (d) (e)

Fig. 2. Text removal results. The first row shows the foreground masks and the
second row shows the recovered background images: (a) PCP (Error: 0.2516;
AUC: 0.8558); (b) SpaRCS (Error: 0.2416; AUC: 0.8665); (c) RegL1 (Error:
0.2291; AUC: 0.8792); (d) BF-ALM (Error: 0.2435; AUC: 0.8568); (e) RBF
(Error: 0.1844; AUC: 0.9227).

Fig. 3. Face recovery results by these algorithms. From left column to right
column: Input corrupted images (black pixels denote missing entries), original
images, reconstruction results by CWM (1830.18sec), RegL1 (2416.85sec)
and RBF (52.73sec), respectively.

component, representing varying illumination conditions and

heavily “shadows”. The resolution of all images is 192× 168
and the pixel values are normalized to [0, 1], then the pixel

values are used to form data vectors of dimension 32,256.

The input data are generated by setting 40% of the randomly

selected pixels of each image as missing entries.

Fig. 3 shows some original and reconstructed images by

CWM3 [8], RegL1 and RBF, where the average computational

time of all these algorithms on each people’s faces is reported.

It can be seen that RBF not only performs better than the

other methods visually, but is also more than 30 times faster,

and effectively eliminates the heavy noise and “shadows” and

simultaneously completes the missing entries. In other words,

RBF can achieve the latent features underlying the original

images regardless of the observed data corrupted by outliers

and missing values.

Moreover, we implement a more challenging problem to

recover face images from incomplete line measurements. Con-

sidering the computational burden of the projection operator

PQ, we resize the original images into 42× 48 and normalize

the raw pixel values to form data vectors of dimension 2016.

Following [11], the input data is PQ(X), where Q is a sub-

3http://www4.comp.polyu.edu.hk/∼cslzhang/papers.htm
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Fig. 4. Face reconstruction results by CPCP and RBF, where the first column
shows the original images, the second and third columns show the low-rank
and sparse components obtained by CPCP, while the last two columns show
the low-rank and sparse components obtained by RBF.

space generated randomly with the dimension 0.75mn. Fig. 4

illustrates some reconstructed images by CPCP [11] and RBF,

respectively. It is clear that both CPCP and RBF effectively

remove “shadows” from faces images and simultaneously

successfully recover both low-rank and sparse components

from the reduced measurements.

VII. CONCLUSIONS

In this paper, we proposed a robust bilateral factorization

(RBF) framework for RMC and CPCP problems. Unlike

existing RLRMF methods, RBF can not only address large-

scale RMC problems, but also low-rank and sparse matrix

recovery problems with incomplete or corrupted observations.

To this end, we first presented two smaller-scale matrix trace

norm regularized models for RMC and CPCP problems. Then

we developed an efficient ADMM algorithm to solve both

RMC and RPCA problems, and analyzed the convergence of

our algorithm. Finally, we extended our algorithm to address

CPCP problems. The extensive experimental results on real-

world data sets demonstrated the superior performance of our

RBF method in comparison with the state-of-the-art methods

in terms of both efficiency and effectiveness.
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