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Abstract
The scale of computer clusters has grown significantly in

recent years. Today, a cluster may have 100 thousand ma-
chines and execute billions of tasks, especially short tasks,
each day. As a result, the scheduler, which manages resource
utilization in a cluster, also needs to be upgraded to work at
a much larger scale. However, upgrading the scheduler — a
central system component — in a large production cluster is
a daunting task as we need to ensure the cluster’s stability
and robustness, e.g., user transparency should be guaranteed,
and other cluster components and the existing scheduling
policies need to remain unchanged. We investigated existing
scheduler designs and found that most cannot handle the scale
of our production clusters or may endanger their robustness.
We analyzed one most suitable design that follows a shared-
state architecture, and its limitations led us to a fine-grained
staleness-aware state sharing design, called partitioned syn-
chronization (ParSync). ParSync features the simplicity re-
quired for maintaining the robustness of a production cluster,
while achieving high scheduling efficiency and quality in scal-
ing. ParSync has been deployed and is running stably in our
production clusters.

1 Introduction

In Alibaba, we operate large clusters each containing tens
of thousands of machines. Every day, billions of tasks are
submitted to, scheduled and executed in a cluster. A cluster
scheduler, or scheduler for short, manages both machines
and tasks in a cluster. Based on the resource requirements
(e.g., CPU, memory, network bandwidth) of tasks, a scheduler
matches tasks to appropriate resources using various schedul-
ing algorithms and makes complex trade-offs among multiple
scheduling objectives such as scheduling efficiency, schedul-
ing quality, resource utilization, fairness and priority of tasks.

*Co-first-authors ordered alphabetically.
†This work was done when the authors were visiting Alibaba.

The ability to balance these objectives largely depends on both
technical and business factors, and thus varies from company
to company and cluster to cluster.

Due to the rapid growth in our businesses in recent years,
we have faced serious challenges in scaling our scheduler,
which is a centralized architecture similar to YARN [44], as
there have been substantially more tasks and machines in our
clusters. Today, the size of some of our clusters is close to
100k machines and the average task submission rate is about
40k tasks/sec (and considerably higher in some months). This
scale simply exceeds a single scheduler’s capacity and an
upgrade to a distributed scheduler architecture is inevitable.

In this paper, we present a design for a distributed sched-
uler architecture that can handle the scale of our cluster
size and task submission rate, while at the same time achiev-
ing low-latency and high-quality scheduling. The design pre-
sented also satisfies two hard constraints (§2): backward com-
patibility and seamless user transparency. The scheduler’s
robustness and stability derived from these constraints are of
vital importance for our production environment.

Cluster schedulers have been extensively studied [9, 13,
14, 17, 25, 30, 32, 36, 37, 39, 44, 45] and we discuss the suit-
ability of existing schedulers for our cluster environment and
workloads in §3. Among them, a shared-state scheduler archi-
tecture, described in Omega [39], is able to handle our cluster
size and satisfy the two hard constraints because it requires
minimal intrusive architectural changes. In Omega, a master
maintains the cluster state, which indicates the availability
of resources in each machine in the cluster. There are multiple
schedulers, each of which maintains a local copy of the clus-
ter state by synchronizing with the master copy periodically1.
Each scheduler schedules tasks optimistically based on the
(possibly stale) local state and sends resource requests to the

1Omega [39] assumes that there is no synchronization overhead and thus
each scheduler synchronizes the entire local state with the master whenever
it communicates with the master to commit a task. But the synchronization
overhead is not negligible in our cluster as it has a large state (due to the
large size of the cluster), which does not allow us to synchronize the state
at every task commit because of the high task submission rate (much higher
than those in [39]). Thus, we synchronize the state periodically.



master. As multiple schedulers may request the same piece
of resource, this results in scheduling conflicts. The master
grants the resource to the first scheduler that requested it, and
the other schedulers will need to reschedule their task. The
scheduling conflicts and rescheduling overheads lead to high
latency when the task submission rate is high, which we vali-
date in §4 using both analytical models and simulations. Our
results show that the contention on high-quality resources and
the staleness of local states are the two main contributors to
high scheduling latency as they both substantially increase
scheduling conflicts.

Then in §5, we propose partitioned synchronization
(ParSync) to mitigate the negative impacts of these two fac-
tors. ParSync partitions the cluster state into N parts (N is
the number of schedulers), such that each scheduler synchro-
nizes 1/N of distinct partitions instead of the entire state
each time. As a result, at any time each scheduler has a fresh
view of 1/N of the partitions and can first schedule its tasks
to these partitions. This significantly reduces the contention
(with other schedulers) on high-quality resources. Based on
when a partition is synchronized, a scheduler knows how stale
its partitions are; thus, algorithm designers can now better
balance scheduling latency and scheduling quality by adjust-
ing the preference to fresher partitions. We also devise an
adaptive strategy to dynamically choose between lowering
scheduling latency and improving scheduling quality. We
validate the effectiveness of ParSync and various scheduling
algorithms developed based on ParSync in §6. ParSync has
been deployed in Fuxi 2.0, which is the latest version of the
distributed cluster scheduler in Alibaba, and is running sta-
bly in our production clusters, where each production cluster
contains thousands to 100K machines.

2 Background and Challenges

Workload statistics. Millions of jobs are submitted to a clus-
ter each day in Alibaba. Figure 1a (solid curve) plots the
number of jobs processed in a cluster each day in a randomly
picked month, which ranges from 3.34 to 4.36 million jobs.
A job consists of many tasks and Figure 1a (dotted curve)
shows that the number of tasks each day ranges from 3.1 to
4.4 billion. The majority of tasks are short tasks. As shown in
Figure 1b, 87% of tasks are completed in less than 10 seconds.

Motivation for scheduler upgrade. Our previous cluster
scheduler follows a typical master-worker architecture [44].
A single master manages all the resources in a cluster and
handles all the scheduling work. Each worker machine has
an agent process, which sends the latest status of the worker
via heart-beat messages to the master. The master receives
jobs submitted by users and then places each job in its corre-
sponding quota group [26]2. The cluster operator configures a

2Jobs belong to projects and projects are assigned resource quotas accord-
ing to their budgets. A quota group can be considered as a virtual cluster
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Figure 1: Job/task statistics

quota group to specify the minimum and maximum amounts
of resources the group can acquire. In particular, when the
cluster is overloaded, resources have to be divided among all
the groups by weighted fairness (based on their quotas).

In recent years, the scale of our cluster has significantly
increased and a single cluster can have 100k machines. Stat-
ically partitioning a large cluster is not an option because
there are some extremely large jobs from critical projects and
a large cluster is required to ensure that these large jobs and a
large number of daily production jobs can be both processed
without extended delay. There are also important technical rea-
sons (e.g., resource fragmentation [45], limited visibility [39])
and business factors (e.g., projects need to access the data of
other projects in the same business unit that stores its data
in a single cluster for operational and management reasons),
which require scheduling over an entire large cluster rather
than breaking it down into smaller ones.

However, the previous monolithic single-master architec-
ture could not handle the scale of the current clusters in Al-
ibaba. First, the 10x larger number of machines requires a
larger time gap between two consecutive heart-beat messages
from a worker to the master so that the master, which is on
the critical path of all decisions, would not be overloaded. But
a larger gap is more likely to leave idle machines unused for
a longer period of time during the gap. Second, the signifi-
cantly larger number of tasks simply exceeds the capability
of a single scheduler. Specifically, our previous scheduler
could only handle task submission rates in the range of a few
thousand tasks per second, but the average task submission
rate is 40K/sec (and the peak is 61K/sec) for the 30 days in
Figure 1a.

Objectives and constraints. In addition to the scalability
challenges posed by both the workload and the cluster size, the
new scheduler should also achieve a good trade-off among var-
ious scheduling objectives. We focus on the following objec-
tives: (1) scheduling efficiency or delay, i.e., how long a task
waits for its required resources to be allocated; (2) schedul-
ing quality, i.e., whether the resource preference of a task
(e.g., machines where its data are stored, machines with larger
memory or faster CPUs) is satisfied; (3) fairness [19] and

that is allocated with a certain amount of resources according to a project’s
available resource quotas.



priority; and (4) resource utilization. These objectives often
contradict each other. For example, high scheduling quality
may prolong the scheduling delay; maintaining strict fairness
can leave resources unused and thus hurt utilization.

Over the years, the complicated logic for balancing these
objectives has been programmed into various scheduling
strategies. In addition, other cluster components such as ap-
plication masters and worker agents are maintained by other
teams in Alibaba, and it takes years’ collaborative efforts to
make them robust and behave as expected. Thus, the new
scheduler design should make as few changes to the exist-
ing codebase as possible, so as to ensure the entire system’s
robustness and backward compatibility (e.g., other cluster
components need not be changed and the existing scheduling
strategies can be applied in the same way). Finally, the system
upgrade should be transparent to both the internal users and
cloud clients of Alibaba.

Methodology. We first investigate existing works that may
serve as a potential solution and pick the most suitable one
for further analysis. We then develop a simplified model to
gain insights mathematically. As it is hard to acquire an ac-
curate mathematical solution and the simplified model also
leaves out critical factors that cannot be dismissed in a real
production environment, we use a simulation to find out the
determining factors, which are used to derive our solution to
the scalability problem. Finally, we evaluate our solution in a
high-fidelity simulation cluster with workloads sampled from
the production clusters as shown in Figure 1b.

3 Can We Adopt an Existing Scheduler?

As many schedulers have been proposed, we first examine if
our problem can be addressed by an existing scheduler.

3.1 Shared-State Architecture

Omega [39] proposed the shared-state scheduler architecture
as described in §1. This architecture addresses the limitations
in monolithic, two-level, and static partitioning approaches,
respectively. First, each scheduler in the shared-state archi-
tecture can run a different scheduling strategy programmed
in separate code bases for different types of jobs, as to avoid
the software engineering difficulties of maintaining all strate-
gies in one code base and using multi-threading for solving
head-of-line blocking in monolithic architecture. Second, each
scheduler has a global view of the cluster, thus solving the
problem of limited visibility in two-level schedulers such as
Mesos [25]. This allows global policies (e.g., fairness and
priority) to be implemented. Third, each scheduler can assign
tasks to any machine in the cluster instead of a fixed subset of
partitions, which reduces resource fragmentation in statically
partitioned clusters and achieves higher utilization [45].

The shared-state architecture is a neat design that also sat-
isfies our two hard constraints given in §1. First, interactions
between application masters, worker agents and schedulers
would require little change. An application master still talks
to only one scheduler and performs application-level schedul-
ing on a pool of committed resources. An agent reports the
status of each task to its corresponding scheduler in the same
way. Thus, backward compatibility is ensured. Second, users
rely on the behaviors of global policies such as fairness and
priority to organize their workflows to ensure job completion
before deadline and effective resource utilization. They may
have accumulated many scripts for arranging job submissions
over the years. With global policies unchanged, these scripts
can be reused.

With the hard constraints resolved, we move on to analyze
whether this architecture also meets our other design goals
given in §1, i.e., scalability, low latency and high scheduling
quality. We present our analysis in §4, but before that, we also
consider other alternatives below.

3.2 Schedulers Focusing on Scalability
Shared-state approaches. Apollo [9], Mercury [30] and Yaq-
d [37] also use a shared state. They do not resolve conflicts by
a centralized coordinator as in Omega, but let schedulers push
tasks to distributed queues in workers. Based on task duration
estimation, Apollo shares a wait-time matrix (WTM) as the
state to keep the queue length in each worker. The WTM al-
lows a scheduler to infer future resource availability instead of
being limited to present resource availability. Yaq-d discusses
queue sizing and reordering strategies based on wait time. In
Mercury, tasks with guaranteed resources are handled by a
centralized scheduler in order to enforce fairness and priority,
while other tasks are handled by distributed schedulers.

These schedulers are not as general as Omega’s design
(e.g., their designs cannot be easily adopted in cluster) for
the following reasons. First, task duration estimation can be
inaccurate due to little prior information, changing input data
size, data skewness [11, 33] and temporal interference [8, 16].
Task duration estimation is particularly difficult for modern
clusters (e.g., clouds, our data centers) as they process diver-
sified tasks from both internal and external users running on a
broad range of systems. Second, predicted resource availabil-
ity improves scheduling quality primarily due to disk locality,
e.g., in Apollo’s cluster [9]. A scheduler would assign a task
to a busy machine as long as the benefit from disk locality
is greater than the extra time the task waits to be executed.
However, disk locality becomes less important [7] when faster
switches, NICs [1, 6] and compressed file format [2–5, 42]
are in use. Third, distinguishing tasks as in Mercury com-
plicates the intra-job scheduling design of the applications,
which compromises backward compatibility.



Other approaches. There are also distributed schedulers that
do not share a cluster state. Sparrow [36] uses batch sampling
and late binding to improve scheduling efficiency and task
completion time. Tarcil [17] extends Sparrow by dynamically
adjusting sampling sizes. Hawk [14] dispatches long batch
jobs to a centralized scheduler, which adopts the least-waiting-
time strategy, and short jobs to a set of distributed schedulers.
Hawk also reserves a small portion of the cluster for short
jobs and uses task stealing to avoid short tasks being blocked
by long tasks. Eagle [13] takes one step further to proac-
tively avoid assigning a short task to a machine with long
tasks running or waiting. It also enables a worker machine
to repetitively fetch remaining tasks from a job to mimic the
least-remaining-time-first strategy.

The designs of these schedulers are also not general and
adopting them has the following key concerns. First, they
also rely on accurate task duration estimation as in shared-
state approaches. Second, Sparrow does not have a global
view of a cluster to implement global policies, and its strat-
egy is customized for fine-grained tasks of Spark jobs [35]
and the duration of such tasks is in the range of milliseconds.
Hawk and Eagle focus on using a single scheduling algorithm
to reduce the JCT of homogeneous workloads. In contrast,
Omega’s design offers a global cluster view and allows multi-
ple schedulers to run different scheduling algorithms.

3.3 Other Related Work
Schedulers such as YARN [44], Mesos [25], Borg [41,45] and
Kubernetes [32] consider various issues in production clusters
such as generality, extensibility, robustness and resource uti-
lization, in contrast to schedulers discussed in §3.2 which fo-
cus on high scalability and low scheduling latency. Apart from
scheduler architectures, many scheduling algorithms have
been proposed. [23, 29, 31] focus on intra-job task scheduling
to optimize job completion time. Job scheduling algorithms
that aim to achieve objectives such as fairness [10, 19, 27, 47],
high resource utilization [12,15,16,20,20,21,27,28,34,40,46],
job completion time [22, 43], and workload autoscaling [38]
may also be adopted in our schedulers according to the ap-
plication needs of our clusters. These works do not focus on
scheduler architecture design and are orthogonal to our work.

4 An Analysis on Scheduling Conflicts

In §3 we singled out Omega’s shared-state architecture [39]
as a potential solution to our problem. As mentioned in §1,
multiple schedulers may contend for the same piece of re-
source, which leads to conflicts and hence scheduling delay.
Thus, we want to study the following questions: (1) What are
the factors that determine the conflict rate? how important is
each of these factors? (2) How bad can the scheduling delay
be? (3) How can we avoid or alleviate the scheduling delay?
What price do we need to pay?

4.1 Conflict Modeling

We first quantify conflicts by constructing an analytical model
for scheduling using the shared-state architecture presented
in §1. The scheduling of a task may be delayed when there
are not enough available resources to be allocated for the
submitted tasks, or when there are enough available resources
but the scheduler cannot keep up with the task submission
rate. As we focus on the scheduler design, we only investigate
the second case, i.e., the scheduler is the potential bottleneck
of allocating available resources to tasks in time.

One extreme case that puts schedulers on the test is when
the task submission rate and the resource needs of the tasks
just match with the total amount of resources in a cluster.
Suppose that there are S slots of resources in the cluster and
each task takes one slot for its execution. At each unit of time
(UT), J tasks are submitted for scheduling and each of the
tasks runs for a fixed duration of T UT. If we have a single
ideal scheduler that assigns tasks without delay and incurs
no conflict, then all the J tasks will be committed immedi-
ately as long as there are available slots. We say that a task
is committed when its requested resources are allocated. In
reality, however, we do not have such an ideal scheduler. In-
stead, we have multiple schedulers that can lead to conflicts.
By queuing theory, the scheduling delay will grow to infinity.
However, as we will discuss below, this extreme case helps
us see how much overhead due to conflicts is added by intro-
ducing multiple schedulers and how much price we should
pay to fix this problem. We are particularly interested in this
extreme case as it gives the scheduler the most pressure.

Now suppose that a scheduler can only schedule and com-
mit K < J tasks within each UT given that there is no conflict.
To keep up with the task submission rate, i.e., J tasks/UT, we
need to use at least N = J/K schedulers to share the schedul-
ing load. We assume that tasks are uniformly distributed to
the schedulers and each scheduler independently makes its
own scheduling decision based on the latest synchronized
local cluster state, where available slots are randomly cho-
sen for assignment. We will discuss the implications of these
assumptions in §4.2.

We name the above setting as the Baseline. As conflicts
cannot be avoided in reality, a scheduler cannot commit all
its K tasks within the current UT when conflicts occur, which
leads to scheduling delay. We investigate how many conflicts
can be incurred. Consider that the cluster has Sidle idle slots.
We denote the number of schedulers picking slot i as a random
variable Xi. Since each scheduler picks a slot with probability

K
Sidle

, Xi follows a binomial distribution. We denote the number
of conflicts at slot i as a random variable Yi = max(Xi−1,0).



Then, we can deduce the expectation of Yi as:

E(Yi) = 0 ·Pr{Xi ≤ 1}+
N−1

∑
j=1

j ·Pr{Xi = j+1}

=
N−1

∑
j=1

( j+1) ·Pr{Xi = j+1}−
N−1

∑
j=1

Pr{Xi = j+1}

= E(Xi)−Pr{Xi = 1}− (1−Pr{Xi = 1}−Pr{Xi = 0})

=
NK
Sidle
−1+

(
1− K

Sidle

)N
(1)

Since we have Sidle idle slots in total, the expectation of the
total number of conflicts is given by:

E(
S

∑
i=1

Yi) = Sidle ∗E(Yi) = NK−Sidle +Sidle ∗ (1−
K

Sidle
)N (2)

To reduce conflicts, naturally we may consider to add more
slots (so as to reduce the contention for resources) or more
schedulers (so as to increase the capacity to handle conflicts).
We analyze each of them as follows.

Adding extra slots. Merely adding extra slots to a cluster can
never reduce the expectation of the number of conflicts to 0
according to Eq.(2). We may reduce conflicts by adding more
extra slots, but Eq.(2) shows that the effect of increasing the
number of extra slots (i.e., Sidle) is superlinearly diminishing.

Adding extra schedulers. In the Baseline setting, each sched-
uler is operating at its full capacity and does not have room to
resolve conflicts. By adding more schedulers, each scheduler
may handle less than K tasks in each UT and now have time
to reschedule tasks due to conflicts. However, this may lead
to more conflicts, as the following analysis shows. Suppose
now we have A ∗N (where A > 1) instead of N schedulers,
and thus each scheduler has K

A tasks to schedule. Substituting
N with A∗N and K with K

A in Eq.(2), we obtain:

f (A) = E(
S

∑
i=1

Yi) = AN
K
A
−Sidle +Sidle ∗ (1−

K
ASidle

)AN (3)

=C1 +C2 ∗ (1−
1
x
)x∗C3 , (4)

where C1 = NK−Sidle, C2 = Sidle, C3 =
NK
Sidle

, and x = ASidle
K .

In Eq.(4), since C1, C2 and C3 are independent of A and
C2,C3 > 0, f (A) increases if (1− 1

x )
x increases. Since (1−

1
x )

x increases monotonically as A increases when x≥ 1, f (A)
also increases as A increases, i.e., the expected number of
conflicts increases when more schedulers are added. Thus,
we need to find out whether the overhead of having more
conflicts can be covered up by the benefit of having more time
for rescheduling tasks such that these tasks will be committed
within the same UT in which they are submitted.

Adding extra slots and schedulers. Due to the diminishing
returns by adding extra slots only or schedulers only, it is
reasonable to believe that adding both of them can lead to

a more cost-effective solution. However, as Sextra and A are
intertwined in Eq.(4) and Eq.(4) only indicates the number
of conflicts in a single round of scheduling, it is hard to de-
rive an accurate mathematical solution for Sextra and A to
achieve 0 scheduling delay in a series of rounds of schedul-
ing. Nevertheless, we can make use of the equations we have
derived for quantifying conflicts to construct a simulator for
the scheduling process. By simulating different combinations
of N,J,K,S, with the constraints J ∗T = S and N ∗K = J, we
can examine the minimal requirements for Sextra and A.

4.2 The Implications of Our Assumptions

Before we present the simulation, we remark that although
the assumptions made in §4.1 lead to an easier analysis, some
of them diverge from the reality in the following aspects:

[A1] It is assumed that schedulers pick slots for tasks in a
uniformly random fashion. In reality, some machines may be
preferred (e.g., because of more advanced hardware or data
locality) and result in more conflicts than the expectation.

[A2] It is (implicitly) assumed that all the schedulers schedule
tasks synchronously round after round, and the local cluster
states can be synchronized with the master state as frequently
as we want. However, in reality each scheduler acts asyn-
chronously with each other. We also cannot piggyback the
synchronization of the cluster state on the return trip of every
commit request as in Omega [39], as explained in Footnote 1
in §1. Instead, a time gap G is set between two synchroniza-
tions of a local state with the master. In-between the gap,
when a scheduler commits a task to some slot, the slot’s status
in the master state and the scheduler’s local state is updated.
Such updates make the local states of other schedulers stale,
and scheduling decisions based on a stale view of the state
lead to more conflicts than indicated by our equations in §4.1.

[A3] We assume conflicts are uniformly incurred on sched-
ulers. But in reality commit requests from schedulers are
handled by the master in an FIFO manner and thus schedulers
whose requests are sent earlier will get fewer conflicts.

4.3 Simulation Analysis

We construct a simulator following most of the setting
in §4.1. We also integrate the factors listed in §4.2 into the
simulator as follows.

To address [A1], we assign a score to each slot based on
a normal distribution and schedulers pick desired slots by
weighted sampling according to their scores (instead of in a
uniformly random fashion as in §4.1). We vary the variance
of slot scores to control how much slots should be contended.

To address [A2], we set a synchronization gap G. At each
time period G, schedulers synchronize their local state with



the master state. Each scheduler makes its scheduling deci-
sions independently based on its own local state, which may
become stale until its next synchronization. Since G controls
the staleness of the local states, we vary G to examine its
impact on scheduling delay.

To address [A3], commit requests are sent to the master
asynchronously by schedulers in our simulation and the re-
quests are processed in FIFO. We also distribute the master
state by partitioning so that commit requests to a slot are only
sent to the partition that contains the slot. We vary the number
of partitions to examine the effects of having a long queue at
a single master versus shorter queues at distributed partitions.

Simulation setting. We assume that the cluster has 200K
slots, and each task takes 1 slot and uses it for 5s, which is to
simulate a typical scenario in our cluster, i.e., task submission
rate is around 40K tasks/s and the duration of most tasks is
between 1s to 10s (§2). Suppose that a scheduler takes 0.25ms
to schedule a single task (close to our real scheduling latency)
and thus we need at least 10 schedulers to just match with the
40K/s task submission rate (assuming no conflicts). Tasks are
submitted in batches, where each batch has 100 tasks, and 10
batches are submitted to each scheduler in each second. Each
scheduler makes scheduling decisions for a whole batch and
schedules the next batch only after the tasks in the current
batch have all been committed.

We vary task submission rate R, synchronization gap G, slot
scores, and the number of partitions P of the master state, to
examine how Sextra changes with A = 2,4,8. We want to find
which factors are the main contributors to conflicts. For each
simulation, we use the following default setting: R = 40K/s,
G = 0.5s, a normal distribution of slot scores with mean = 10
and variance V = 2, and P = 1 (i.e., no partitioning).

In the simulation, we try to find the minimum number of
combinations of A and Sextra to achieve a small scheduling
delay. With a larger A, the number of tasks B in one batch
is adjusted to Bnew = B

A . With a larger Sextra, the number of
conflicts decreases. In the simulation, tasks are submitted at a
fixed rate for 90 seconds (similar patterns are observed after
90s), and we say that the scheduling delay is small when the
simulation finishes in less than 110% × 90s = 99s.

Simulation results. Figures 2a, 2b and 2c show that a signifi-
cant number of extra slots needs to be added as we increase R,
G or V . This is because a larger R means more work for each
scheduler, a larger G means making scheduling decisions
based on a staler state and for longer time, and a larger V
means more contentions for higher-quality slots, all of which
lead to more conflicts. To maintain the same scheduling delay,
more extra slots can help reduce the contentions for slots and
hence conflicts. However, Figure 2d shows that the impact of
P is minimal. This is because even when the master state is
not partitioned, some schedulers may have more conflicts at
one point of time but the number of conflicts evens out among
all schedulers over time.
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Figure 2: Simulation results

In each simulation, we also increase the number of sched-
ulers to 2, 4 and 8 times more to see how a larger A helps
reduce scheduling delay. Figures 2a-2d consistently show that
increasing A has diminishing benefits. This conforms with our
findings in §4.1 as sharing the same total amount of work by
more schedulers leads to more conflicts. Moreover, it is costly
to operate many schedulers in a real cluster, as we use active
standbys to replace failed ones to meet our SLAs.

Adding a large number of extra slots and schedulers is
a big price to pay for a large-scale production cluster, con-
sidering both the extra machine costs and daily operation
costs. Thus, we want to look for a new solution. According to
the simulation results, task submission rate, slot scores and
synchronization gap are the main factors that contribute to
conflicts. However, we cannot change task submission rate
as it is fixed by the workloads. Slot scores are related to the
resources desired by tasks, which may be compromised (e.g.,
a task may also accept a fast machine instead of the fastest
machine) to alleviate the contentions and hence reduce con-
flicts. Synchronization gap affects performance as it controls
the staleness of the local states, which in turn determine the
probability of conflicts. Our solution will focus on the last two
factors, i.e., slot quality and staleness of the local states.

5 Partitioned Synchronization

As our solution aims to reduce conflicts, we first describe an al-
ternative that offers no-conflict guarantee, namely pessimistic
scheduling. One implementation of pessimistic scheduling
is to let each scheduler have exclusive partitions of a clus-
ter, but this can lead to resource under-utilization as some
partitions may hold idle resources that can be used by other
schedulers [39, 45]. Another implementation is by applying



locks on resource slots, but this can block the actions of other
schedulers and increase scheduling delay due to reduced con-
current processing [24, 39]. We want to avoid the limitations
of pessimistic scheduling and reduce conflicts in optimistic
scheduling (as in Omega), while enjoying their benefits, i.e.,
high concurrent processing while having few conflicts.

5.1 The Design

Observation. We found that scheduling delay increases dis-
proportionately within the period G. When the cluster state
is just synchronized, it is fresher and scheduling has fewer
conflicts. But when the state becomes more outdated towards
the end of G, scheduling decisions result in more conflicts.
Conflicts lead to rescheduling, which may in turn cause new
conflicts, and hence rescheduling recursively. Consider our
default simulation setting in §4.3 and Sextra = 15,000, and
divide G into two equal intervals: 0s-0.25s and 0.25s-0.5s.
The average conflict rate in the first interval is 48% and that
in the second interval is increased to 64%. As a result, the
average delay of the first interval is only 23% of the total
average delay, while the second interval contributes to 76%
of the total. In other words, most of the delay is caused by the
staler view of the cluster state in the later interval of G.

Main idea. Our main idea is to reduce the staleness of the
local states and to find a good balance between resource qual-
ity (i.e., slot score) and scheduling efficiency, as these two are
the main contributors to conflicts according to our findings
in §4.3. We present our solution, partitioned synchroniza-
tion (ParSync), as follows.

ParSync logically partitions the master state into P parts.
Assume that we have N schedulers, where N ≤ P. Each sched-
uler still keeps a local cluster state, but different schedulers
synchronize different partitions of the state each time, in con-
trast to synchronizing the entire state (let us denote it as
StateSync) as in the approach discussed in §4. Specifically,
assume (for simplicity) P is a multiple of N, the i-th scheduler
starts its synchronization from the ( P

N ∗ (i−1)+1)-th parti-
tion to the ( P

N ∗ i)-th partition of the state in each round of
synchronization, and the subsequent rounds of synchroniza-
tion continue in a round-robin manner. Thus, in each round,
all schedulers synchronize different partitions of the cluster
state. This is also why we require P≥ N, as otherwise some
schedulers would synchronize the same partition(s).

How does ParSync work? First, each scheduler has a fresh
view of P

N partitions of the cluster resources, so that the sched-
uler can commit its tasks to available slots in these partitions
with a high success rate (since its view on these partitions
is fresher than that of any other schedulers). This design is
particularly favorable for scheduling short tasks in a highly
contended cluster like ours. For short tasks, it is more criti-
cal to acquire resources sooner for their execution, instead of
spending long time to find the most suitable slots because bet-

ter slots may not compensate for the scheduling delay (which
itself can be comparable with or even longer than the execu-
tion time of a short task). Note that the majority of the tasks
in our workloads are short tasks, as shown in Figure 1b.

Second, ParSync also effectively reduces the average stale-
ness of the entries in a local cluster state, which we explain
as follows. As the granularity of synchronization is changed
from the entire cluster state to P

N partitions, which effectively
changes the synchronization gap to G

N . In contrast to synchro-
nizing the entire state at every G time units, with ParSync
each scheduler synchronizes P

N partitions of its local state
at every G

N time units. Now let us define the staleness of a
partition as the period of time since its latest synchronization,
and let AS be the average staleness of all the partitions of a
local state. Whether ParSync is used or not, the average of
“AS”s over all time points is always G

2 . However, ParSync
reduces the variance of “AS”s, which we explain as follows.

Suppose that there is only one partition, then the minimum
and maximum AS are 0 and G (at time 0 and G, respectively).
If there are two partitions, then the minimum and maximum
AS are (0+ G

2 )/2 = G
4 and (G

2 +G)/2 = 3G
4 . Thus, when we

increase the number of partitions from 1 to 2, we also bound
the AS in the range of [G

4 ,
3G
4 ] instead of [0,G]. Intuitively

speaking, using more partitions here is like sacrificing the
period when the AS is small (i.e., [0, G

4 ]) to avoid the period
when the AS is large (i.e., [ 3G

4 ,G]). But this sacrifice can
lead to significant reduction in the scheduling delay, because
conflicts increase much faster in the later interval of G as we
discussed in the Observation earlier.

As having more partitions bounds the AS in a smaller range,
consequently the variance of AS is also reduced. When the
number of partitions becomes sufficiently large, we push the
minimum and maximum AS close to G

2 . Thus, the eventual
effect of ParSync on scheduling delay can be approximately
viewed as reducing G to G

2 , which also means that we reduce
the average staleness of a local state.

The above analysis is important because our Observation
earlier also indicates that a reduction in the staleness of the
local state can significantly reduce the number of conflicts
and hence also the scheduling delay.

ParSync allows us to better balance resource quality and
scheduling efficiency. For example, as conflicts are less likely
to happen in periods when the cluster is not in intensive use,
a scheduler may take higher risk of rescheduling and try to
commit tasks to high-quality slots in other staler partitions
(instead of its freshest P

N partitions). In this case, ParSync
may adopt optimistic scheduling to prioritize resource quality
(i.e., slot score). In contrast, a scheduling strategy aiming
for successful commits may take a pessimistic approach (but
with all schedulers concurrently working). In addition, each
scheduler still has a global view of the cluster and hence
global scheduling policies can also be implemented.
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Figure 3: The effects of different synchronization strategies

5.2 Simulation Analysis on ParSync

We further analyze the effectiveness of ParSync by simulation.
In all the simulations, we use the same setting and the default
values of the parameters as in §4.3.

Synchronization strategies. We first compare two synchro-
nization strategies: (1) DiffSyn: each scheduler synchronizes
different partitions of the cluster state, i.e., the strategy used in
ParSync; (2) SameSyn: all schedulers synchronize the same
partitions, i.e., all schedulers synchronize the ( P

N ∗(i−1)+1)-
th to ( P

N ∗ i)-th partitions in the i-th round, for 1≤ i≤ N. In
this simulation, a scheduler may pick slots from any partition
in the cluster (i.e., using optimistic scheduling).

We vary task submission rate R, synchronization gap G,
the variance of slot scores V , and the number of schedulers
(i.e., AN) from N to 4N, where N = 10. As shown in Fig-
ures 3(a)-(c), SameSyn requires more extra slots than DiffSyn
in order to achieve the same latency, which can be explained
as follows.

We found that schedulers tend to pick slots from fresher
partitions. This is because when a scheduler tries to commit
a task to a slot, it also updates the status of the slot in its
local partition to “taken” (either by this task or already taken).
Over time, more and more slots in the staler partitions are
marked “taken”, which are refreshed until the partitions are
synchronized. This becomes a problem for SameSyn because
all schedulers are competing for available slots from the same
fresher partitions, thus leading to more conflicts. In contrast,
under DiffSyn, the fresher partitions of each scheduler are dif-
ferent, meaning that each scheduler always has higher commit
rate in its own fresher partitions. Each scheduler under Diff-
Syn still has high conflict rate when committing tasks to its

staler partitions, but this situation also happens to SameSyn.

Scheduling strategies. We examine three scheduling strate-
gies: Quality-first, Latency-first, and Adaptive. In Quality-
first, a scheduler schedules a task by first choosing the par-
tition with the highest average slot score and then picking
available slots by weighted sampling based on slot scores. In
Latency-first, each scheduler schedules a task by first picking
slots from its freshest partitions, but if suitable slots are not
found, then it looks for slots in other partitions (from the least
stale partition first).

Adaptive uses Quality-first when it does not incur much
scheduling delay, while it adopts Latency-first when schedul-
ing efficiency is more critical. It calculates an exponential
moving average (EMA) of scheduling delay, such that Quality-
first is used when the EMA is smaller than a threshold τ, and
Latency-first is used otherwise. Note that τ is usually the SLA
for the scheduling delay specified by the cluster operator or
users. Here we intend to show that the adaptive strategy can
bound the scheduling delay by τ when the cluster is busy, and
attain high slot quality as Quality-first when the cluster is not
busy, instead of arguing what is the best trade-off we can make.
We run simulation by setting τ = 1.5s as a demonstration.

We simulate three scenarios that may happen in our pro-
duction cluster on a typical day as follows. We create two
groups of schedulers, A and B, and divide the timeline into
three phases: (1) A and B are both operating at 2/3 of their full
capacity; (2) A is operating at full capacity while B remains
the same; (3) A and B are both operating at full capacity. Each
phase is run for 30s.

Figure 4 plots the median and the 10th-90th interval of the
slot scores and scheduling delay of Group A (dark color) and
Group B (pale color), respectively. We also plot the cluster
utilization rate as a thick dashed curve in Figures 4b, 4d and 4f
for reference.

During Phase 1, the three strategies have similar slot quality
and scheduling delay. This is because the task submission rate
is only 2/3 of the full load and the cluster is only 60%-70%
utilized, and thus all schedulers (from both groups) have high-
quality slots to pick without incurring many conflicts.

During Phase 2, the three strategies start to behave dif-
ferently as Group A is now undergoing a stress test. When
Quality-first is used, Figure 4a shows that the slot quality
is not degraded compared with Phase 1; but Figure 4b re-
veals the real problem as the scheduling delay of Group A
schedulers surges, while that of Group B remains stable. Thus,
Quality-first is not effective when the scheduling load is high.
When Latency-first is used, Figures 4c&4d show that both
the slot quality and scheduling delay of both groups only be-
come slightly worse. This is because even though Group A is
fully loaded, the overall cluster utilization rate is only about
80% and thus the schedulers can still have enough quality
slots to pick from their freshest partitions. When Adaptive is
used, Figure 4f shows that the scheduling delay of Group A
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Figure 4: The performance of different scheduling strategies
(dotted green line denotes the cluster utilization)

increases to 1.5s and then remains bounded there, as τ is set
at 1.5s (note that this is much lower than the delay of Group
A in Figure 4b, which rises to 4.7s). This means that Group
A schedulers now switch to use Latency-first, while Group
B still use Quality-first. As a result, Group A now has lower
slot quality than Group B as shown in Figure 4e. Although
Group B uses Quality-first while Group A uses Latency-first,
the scheduling delay of Group B is actually much lower than
that of Group A in Phase 2 of Figure 4f because Group B is
only operating at 2/3 of its full capacity.

During Phase 3, even though Quality-first maintains the
same slot quality, the scheduling delay of both groups keeps
increasing. The slot quality of both Latency-first and Adaptive
worsens compared with Phase 2 due to the heavier load and
now the schedulers are competing more for quality slots. Fig-
ure 4d shows that the delay of Latency-first for both groups
also increases, though still much lower than Quality-first and
Adaptive. Adaptive bounds the delay of both groups at 1.5s.

In summary, Quality-first works well when the scheduling
load or the cluster load is not heavy, as it leads to high-quality
slot allocation. When the load is heavy, the delay of Quality-
first may become too high and Latency-first is preferred as
it achieves both high efficiency and slot quality. Adaptive is
also a good choice as Adaptive keeps the latency bounded
(which is particularly desirable as the bound can be tied to the
SLA), while Adaptive can also take advantage of Quality-first
to get high-quality slots when the load is not heavy.

To deploy ParSync in our cluster, we discuss some details
to important issues such as what changes are needed in the
upgrade, how the scheduling objectives are achieved, and how

the cluster is partitioned in Supplemental Material B in [18] .

6 Performance Evaluation

We conducted our experiments in a high-fidelity testing en-
vironment called Wind Tunnel. Note that although ParSync
is deployed in large production clusters in our company, con-
ducting real experiments to evaluate ParSync’s scalability on
these large clusters is prohibited by company policy as not
to cause unexpected interruption to normal business opera-
tions. The company relies heavily on Wind Tunnel to test
the robustness and performance of every cluster scheduler
component and scheduling algorithm, and any change must
be tested extensively in Wind Tunnel before applied to the
production clusters.

The results obtained from Wind Tunnel are close to the true
performance of the schedulers in our production clusters as
Wind Tunnel uses the same codebase of the entire production
cluster system and it incorporates critical factors from our pro-
duction environment. First, in Wind Tunnel, each scheduler
or resource manager is deployed on an independent machine
and executes code used in production. A set of machines is
then used to simulate resource slots in a production cluster.
The interaction between schedulers, resource managers, and
workers are the same as in production. Wind Tunnel makes
the staleness of local states to be more reflective of real sit-
uations by deploying resource managers and schedulers on
a real network topology. Second, the schedulers execute the
same scheduling logic as in our production cluster, which en-
ables the evaluation to reproduce the true scheduling capacity
of each scheduler. Third, each job has a list of preferred slots
computed at runtime for its tasks (instead of using a static
score for each slot as in the simulations in §5.2) to better
reflect the contentions on slots in reality.

The main difference between the high-fidelity simulation
by Wind Tunnel and a production cluster is that the execution
of a task is effectively “sleeping”, and each worker machine
in Wind Tunnel is simulating many worker machines in a
production cluster. All the rest are based on the same code
base. Therefore, the results obtained from Wind Tunnel are
similar to the results obtained from the production clusters.

Settings. In the experiments, we used the following default
settings unless otherwise specified. We deployed 20 machines
in Wind Tunnel for schedulers and 2 machines for resources
managers. We used another 30 machines in Wind Tunnel to
simulate 200k slots and each resource manager oversees 100k
slots. The workload we used was sampled from the production
trace whose statistics is shown in Figure 1. The baseline peak
task submission rate from the sampled workload is around
40k/s, and we varied the rate to 50%, 80% and 95% of 40k/s
to simulate different levels of pressure. The cluster state was
partitioned into 20 parts in ParSync. The synchronization gap
in our production cluster is around 0.5s.
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Figure 5: Performance of ParSync and StateSync

Performance metrics. We use scheduling delay and schedul-
ing quality as the major measures. Scheduling quality is the
percentage of tasks that are allocated to their preferred slots.
We also report the scheduling throughput and the number of
conflicts to analyze the performance.

6.1 Performance Comparison

There are many works related to cluster scheduling (§3). The
scheduling algorithms mentioned in 3.3 are orthogonal to our
work as many of them can also be applied for scheduling in
ParSync. As discussed in §3.2, most existing schedulers are
not as general as Omega’s shared-state design (§3.1), as they
have specific requirements (e.g., accurate task duration estima-
tion, strong disk locality) or cannot provide important features
such as backward compatibility, support of multiple schedul-
ing algorithms and global view. While these schedulers are
effective in their own settings, we do not compare ParSync
with them since the design objectives are different (and it is
also difficult to create an environment in Wind Tunnel for a
fair comparison, if possible, with these systems).

Instead, we compared ParSync with StateSync, which sim-
ulates Omega. We also tested StateSync with only 1 scheduler,
which simulates our previous centralized scheduler (similar
to YARN), but the delay is nearly two orders of magnitude
worse than StateSync and thus we do not report the details.

For ParSync, we tested Latency-first, Quality-first and
Adaptive (τ =2s) introduced in §5.2. StateSync adopts the
shared-state architecture in §4, which synchronizes the en-
tire state each time. Both ParSync and StateSync used 20
schedulers. Tasks were submitted during a 300-second period,
which was divided into five 60-second phases with different
submission rates: 50%, 80%, 95%, 80%, 50% of 40k/s. The
50%, 80% and 95% rates simulate medium, medium-heavy
and heavy loads of a cluster.

Figure 5a shows that the average scheduling delay of
ParSync using Latency-first is significantly smaller than the
other approaches throughout the five phases. The delay of
ParSync using Adaptive is bounded by τ. The delay of Quality-
first increases much faster than Latency-first and Adaptive dur-

0 60 120 180 240 300
0

500

1000

1500

2000

2500

Sc
he

du
lin

g 
Th

ro
ug

hp
ut

0

20

40

60

80

Ut
lili

za
tio

n 
Pe

rc
rn

ta
ge

 (%
)

(a) Scheduling throughput

0 60 120 180 240 300
0

200

400

600

800

1000

(b) Scheduling delay (ms)

0 60 120 180 240 300
0

200

400

600

800

1000

(c) Number of conflicts

0 60 120 180 240 300
0

20

40

60

80

100

(d) Scheduling quality (%)

Figure 6: Results of ParSync using Latency-first

ing the peak periods (e.g., Phase 3), but is still much smaller
than that of StateSync. Starting from Phase 2, StateSync’s
delay increases rapidly as its schedulers are not able to handle
the high task submission rate and uncommitted tasks starts
to accumulate. The high delay starts to drop only in Phase 5
when the accumulated tasks from the previous phases are
gradually committed. Although Figure 5b shows that the
scheduling quality of StateSync is actually quite good, its
high scheduling delay makes it infeasible for production use.

The results verify our findings in §4 that sharing the whole
cluster state without partitioned synchronization cannot scale
to handle high task submission rates in our cluster, as the
number of conflicts and the scheduling delay increase rapidly.

6.2 Scheduling Delay and Scheduling Quality
Next we analyze in details the performance of ParSync, as
reported in Figure 6 and Figure 7. In each figure, the dark
curve plots the median and the shadows plot the 10- and
90-percentile values among the 20 schedulers.

Scheduling throughput. Figures 6a and 7a show that both
Latency-first and Quality-first can handle the task submission
rate. In Phase 3, schedulers using Quality-first have through-
put lower than 1.9K/s in Figure 7a (note that on average,
each of the 20 schedulers receives 1K, 1.6K, 1.9K, 1.6K,
and 1K tasks per second in each of the five phases). This
is because of the surge in the scheduling delay in Phase 3
(Figure 7b), and hence some tasks are accumulated and only
successfully committed during Phase 4. This also explains
why the throughput of most schedulers goes above 1.6K/s at
the beginning of Phase 4. Figures 6a and 7a also show that the



0 60 120 180 240 300
0

500

1000

1500

2000

Sc
he

du
lin

g 
Th

ro
ug

hp
ut

0

20

40

60

80

Ut
lili

za
tio

n 
Pe

rc
rn

ta
ge

 (%
)

(a) Scheduling throughput

0 60 120 180 240 300
0

5000

10000

15000

20000

(b) Scheduling delay (ms)

0 60 120 180 240 300
0

500

1000

1500

2000

(c) Number of conflicts

0 60 120 180 240 300
0

20

40

60

80

100

(d) Scheduling quality (%)

Figure 7: Results of ParSync using Quality-first

cluster utilization (plotted in thick dash curves) is reflected by
the scheduling throughput in each phase.

Scheduling delay. Figure 6b shows that the scheduling delay
of Latency-first increases with the task submission rate, which
is mainly due to increasing scheduling conflicts as shown in
Figure 6c. The median and mean delay roughly follow the task
submission rate in each phase. We also observed that the total
number of uncommitted tasks accumulated by each scheduler
in each second is small and does not keep growing even during
Phase 3 (see detailed results in Supplemental Material A.1
in [18]). This demonstrates that Latency-first is able to sustain
and provide reasonable latency under heavy scheduling loads
even if the peak period continues. In contrast, Figure 7b shows
that using Quality-first, the scheduling delay increases rapidly
in Phase 2 and Phase 3. The delay starts to drop in Phase 4
but is still high because it needs to clear the accumulated
uncommitted tasks, which surges from 1,700 in Phase 2 to
5,800 in Phase 3 (1,700 and 5,800 are median values, details
are reported in Supplemental Material A.1 in [18]). This is
because Quality-first has a higher scheduling overhead as it
checks all partitions to find preferred slots, its delay increases
quickly when there are a large number of tasks to schedule.
We also remark that Quality-first’s high delay is not primarily
due to conflicts, as the number of conflicts of Quality-first is
not much larger than that of Latency-first in Phase 3 as shown
in Figures 6b and 7c.

Number of Conflicts. Figure 6c shows that Latency-first has
an insignificant number of conflicts in Phase 1 as there are
plenty of idle slots inside the freshest partition of each sched-
uler. There are more conflicts during Phase 2 to Phase 4 as

a scheduler may schedule some tasks to other less fresh par-
titions due to insufficient idle slots in its freshest partition.
Interestingly, we observe an inverse pattern in Figure 7c, as
Quality-first has a higher number of conflicts in Phase 1 and
Phase 5 than in other phases. We examined the details and
found that, in Phase 1 and Phase 5, Quality-first schedulers
schedule tasks to preferred slots in all the partitions evenly
since they all have plenty of idle slots. But from Phase 2, each
scheduler starts to have an increasingly more idle slots in its
own fresher partitions than in staler partitions (as discussed
in §5.1). Thus, each scheduler tends to schedule more tasks
to its fresher partitions, which incurs fewer conflicts.

Scheduling quality. Figures 6d and 7d show that Quality-
first achieves considerably better quality than Latency-first.
Note that there are always some tasks that may not get their
preferred slots, as tasks are competing for preferred slots that
may not be enough for all the tasks wanting them. Thus,
the percentage of tasks getting their preferred slots drops
accordingly when more tasks are submitted in Phases 2-4.
However, Quality-first is actually able to allocate most slots
to tasks that prefer them, although this is at the cost of higher
delay when the scheduling load is heavy.

Compared with the more ideal simulation results in Fig-
ure 4, we observe more variations in the results shown in
Figures 6 and 7 due to the introduction of real factors in our
production cluster. But overall, the results are still consistent
with our findings in §5.2, except that the trade-off between
latency and quality becomes more obvious in Figures 6 and 7.
The results in Figure 5 also validate that StateSync cannot
handle our high task submission rates as ParSync does.

6.3 The Performance of the Adaptive Strategy
In this set of experiments, we evaluated how the latency thresh-
old τ affects the performance of ParSync using the Adaptive
strategy, by setting τ = 1000, 2000 and 3000. The range
1000 ≤ τ ≤ 3000 is representative of our workloads and it
is not common to set the delay bound higher than 3,000 ms.
We ran the same five phases as in the experiments in §6.2.

Figure 8 reports the median values (more details are re-
ported in Supplemental Material A.2 in [18]) of the schedul-
ing delay and quality of all schedulers. For all values of τ,
Adaptive’s performance in Phases 1 and 5 is similar to that of
Quality-first (see Figure 7), because Adaptive uses Quality-
first when the scheduling load is not heavy. From Phase 2
to Phase 4, while Quality-first’s delay increases quickly as
reported in Figure 7b, Figure 8a shows that Adaptive can ef-
fectively bound the delay at τ. Whenever the EMA is greater
than τ during Phases 2-4, Adaptive switches to use Latency-
first and thus it does not accumulate uncommitted tasks as
in Quality-first. Consequently, its delay also drops quickly
from Phase 3 to Phase 4, in contrast to Figure 7b. However,



Table 1: The effects of slot quality: in each cell, left middle right values = Latency-first Adaptive(τ=1000) Quality-first results
(STET: average sum of task execution time; JSD: average job scheduling delay; JCT: average job completion time)

Metric(sec)/α 0.9 0.8 0.7 0.6 0.5 0.4
STET 922 914 904 888 873 854 858 822 772 836 788 712 797 726 622 762 600 542
JSD 0.4 0.8 3.7 0.4 0.8 3.3 0.4 0.8 2.9 0.4 0.8 2.0 0.4 0.8 1.9 0.4 0.7 1.5
JCT 10.3 10.6 12.7 10.3 10.5 12.1 10.2 10.3 11.2 10.2 10.0 9.9 10.1 9.5 9.1 10.1 8.6 8.4
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Figure 8: Results of the Adaptive Strategy

Figure 8b shows that Adaptive’s scheduling quality also drops
in Phases 2-4, although its quality is still higher than that of
Latency-first in Figure 6d because Adaptive uses Quality-first
to get more quality slots until the EMA reaches τ. This is also
why the quality of τ = 3000 is generally better than those of
τ = 2000 and τ = 1000.

Overall, the results demonstrate the effectiveness of Adap-
tive in balancing scheduling delay and quality under different
values of τ. We report more details in Supplemental Mate-
rial A.2, which show that we can choose different values of
τ to bound scheduling delay without significantly affecting
scheduling quality, throughput and the number of conflicts.

6.4 The Effects of Slot Quality
Running a task in its preferred slot reduces the task execution
time (TET). The shorter the TET, the more room it creates for
tolerating scheduling delay. Thus, if scheduling tasks to their
preferred slots can shorten their TET significantly, Quality-
first could be preferred to Latency-first. To test the effects of
slot quality, we use a factor α to adjust the benefit of running
a task in its preferred slot as follows: if the TET of running
a task in a non-preferred slot is t, then its TET in a preferred
slot is αt, where 0 < α < 1.

Table 1 reports the average sum of TET (STET, i.e., the
sum of the TET of all tasks in a job, averaged over all jobs),
average job scheduling delay (JSD, i.e., the duration between
the time when a job is submitted and when all its tasks are
committed), and average job completion time (JCT, i.e., the
duration between the time when a job is submitted and when
all its tasks are completed).

When we increase the benefit of preferred slots (i.e., smaller
α), Quality-first is favored in terms of STET since it schedules
more tasks to their preferred slots than both Latency-first and
Adaptive as reported in §6.2 and §6.3. The JSD of Quality-
first also decreases as α becomes smaller, because shorter TET
releases occupied slots to other tasks earlier and hence leads
to fewer conflicts. However, due to the higher scheduling
overhead of Quality-first, its JSD is still much larger than
that of Latency-first. In terms of JCT, since it benefits from
both shorter TET and JSD, Quality-first starts to achieve a
smaller JCT than Latency-first when the benefit of preferred
slots exceeds its scheduling overhead, i.e., when α≤ 0.6. In
comparison, the JCT of Adaptive always closely follows the
best one of Quality-first and Latency-first, which proves the
effectiveness of the adaptive strategy.

6.5 Other Experimental Results
We also examined the effects of the number of partitions
(which also changes the synchronization gap) and the scala-
bility of ParSync. Due to the page limit, we report the details
in Supplemental Material A.3 and A.4 in [18], and summarize
the results here: (1) increasing the partition number has almost
no impact on the scheduling performance; and (2) ParSync
achieves stable performance as the scale of the cluster and
task submission rate increases by 1 to 4 times of the capacity
of our current cluster.

7 Conclusions

We presented ParSync, which increases the scheduling ca-
pacity of our production cluster from a few thousand tasks
per second on thousands of machines to 40K tasks/sec on
100K machines. ParSync effectively reduces conflicts in con-
tending resources to achieve low scheduling delay and high
scheduling quality. The simplicity of ParSync allows us to
maintain user transparency and backward compatibility that
are essential to our production clusters.
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Supplemental Material to Scaling Large Pro-
duction Clusters with Partitioned Synchroniza-
tion

A Additional Experimental Results

Due to the page limit, we report additional experimental re-
sults in this section of the Supplemental Material.

A.1 The Effect of Uncommitted Tasks on
Scheduling Delay

We may also explain the scheduling delay of a scheduling
strategy by the number of uncommitted tasks it accumulates
in each phase. Figure 9 plots the number of uncommitted tasks
accumulated during the five phases by Latency-first, Quality-
first, and Adaptive (τ = 1000, τ = 2000 and τ = 3000). In
each figure, the dark curve plots the median and the shadows
plot the 10- and 90-percentile values among the 20 schedulers.

Latency-first has the smallest number of accumulated un-
committed tasks, Quality-first records a rapidly increasing
number of uncommitted tasks, while the adaptive strategy
keeps the number of uncommitted tasks under a threshold. In
each case, the result shows that the number of accumulated
uncommitted tasks has a positive correlation with the schedul-
ing delay (reported in Figure 6b, 7b, 10b, 11b and 12b). This
is understandable because rescheduling an uncommitted task
has an overhead and thus the greater the number of accumu-
lated uncommitted tasks, the higher is the scheduling delay.

For Latency-first, the total number of uncommitted tasks
accumulated by each scheduler in each second is much lower
than the number of tasks to be scheduled by each scheduler
in each second, and Figure 9a shows that the number of ac-
cumulated uncommitted tasks of Latency-first does not keep
growing in the next second even in Phase 3. This demonstrates
that Latency-first is able to sustain and provide reasonable
latency under heavy scheduling loads even if the peak period
continues.

A.2 Detailed Results of the Adaptive Strategy

As reported in Figures 10b, 11b and 12b, all the three settings
of τ of the adaptive strategy can contain the median scheduling
delay under the respective τ. The higher range (e.g., the 90-
percentile values) of the scheduling delay may exceed the τ

value. This is because when the switching from Quality-first
to Latency-first takes effect, the scheduling delay may have
already exceeded the τ value. However, we remark that this
could be easily adjusted, for example, if the cluster operator
wants to meet more restrict latency requirement, we can leave
some room when setting τ, i.e., using ετ where ε < 1.

In terms of scheduling quality, Figures 10d, 11d and 12d
show that all the three settings of τ are close to each other
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Figure 9: The number of accumulated uncommitted tasks
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Figure 10: Results of ParSync using Adaptive (τ = 1000)

during the five phases, although τ = 3000 is slightly better be-
cause more time is allowed to try Quality-first before switch-
ing to Latency-first (a more direct and clearer comparison
on the median values is shown in Figure 8b). In terms of
scheduling throughput, Figures 10a, 11a and 12a show that
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Figure 11: Results of ParSync using Adaptive (τ = 2000)
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Figure 12: Results of ParSync using Adaptive (τ = 3000)

all the three settings of τ are also close to each other, but a
smaller τ has a slightly higher throughput because of lower
scheduling delay, especially in Phase 3. In terms of conflicts,
Figures 10c, 11c and 12c show that all the three settings of
τ have similar number of conflicts except in Phase 3, during
which a larger τ leads to a larger number of conflicts because
more time is allowed to find preferred slots and hence more
conflicts can be incurred.

Overall, the results show that we can choose different
values of τ to bound the scheduling delay without signifi-
cantly affecting the scheduling quality, throughput and the
number of conflicts. We also remark that the range of τ, i.e.,
1000≤ τ≤ 3000 is representative of our workloads, as it is
not common to set the delay bound higher than 3,000 ms.
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Figure 13: Results of Latency-first with 40 partitions
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Figure 14: Results of Latency-first with 80 partitions

A.3 The Effects of the Number of Partitions

In the experiments in §6.2-6.4, the cluster state was parti-
tioned into 20 parts. With the synchronization gap G set to
500 ms (the default value in our production cluster), each
scheduler synchronizes the local state of one partition with
the master state every 25 ms. With G unchanged, we increased
the number of partitions to 40 and 80, respectively, which also
means that a scheduler synchronizes the state of one partition
every 12.5 ms and 6.25 ms.

Figures 13, 14, 15, and 16 show that changing the partition
number generally has little impact on the scheduling perfor-
mance. According to the discussion in §5.1, increasing the
number of partitions reduces the variance of average staleness



Table 2: Scalability test results (TST: total scheduling time in seconds) of ParSync using Latency-first and Quality-first

Scale Task Submission Rate # of Slots # of Schedulers TST (Latency-first) TST (Quality-first)
1 40K/s 200K 40 64.11 70.79
2 80K/s 400K 80 64.64 70.84
3 120K/s 600K 120 64.81 70.95
4 160K/s 800K 160 65.11 70.94
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Figure 15: Results of Quality-first with 40 partitions
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Figure 16: Results of Quality-first with 80 partitions

of the partitions, but the effect should be diminishing, i.e.,
increasing the number of partitions should have diminishing
reduction on the scheduling delay with other factors fixed.
Thus, our experimental results show that keeping the num-
ber of partitions the same as the number of schedulers (i.e.,
20 in our experiments) has sufficiently reduced the average

staleness already and is a good setting in practice.

A.4 Scalability Tests
We tested the scalability of ParSync by increasing the number
of slots (i.e., the size of the cluster) from 200K to 800K, the
task submission rate from 40K/s to 160K/s, and accordingly,
the number of schedulers is also increased from 20 to 80 to
match up with the increased scheduling load. We ran a single
phase of 60 seconds with 100% load.

Table 2 reports the total amount of time needed by ParSync
to complete the scheduling of all tasks using Latency-first
and Quality-first, respectively. The result shows that both
Latency-first and Quality-first achieve stable performance as
the scale goes up by 1 to 4 times. The scheduling delay is
also acceptable because in each scale the schedulers were
operating under full load. Note that the time reported is the
end-to-end time of scheduling all tasks, but the average delay
of scheduling a single task is much shorter as we have reported
in the previous experiments.

B Production Deployment Issues

To use ParSync in our cluster, there are a number of important
issues we need to address.
What changes are needed in the upgrade? To upgrade
from our previous monolithic scheduler to ParSync, we intro-
duced a resource manager (RM), a coordinator, and multiple
schedulers. The RM maintains the master cluster state. For
a large cluster, we may use multiple RM instances to han-
dle different partitions of the master state. The coordinator
gathers information from schedulers, e.g., the amount of re-
sources each quota group has been allocated and will need,
and then calculates the amount of resources a quota group
can be allocated while maintaining fairness among all groups.
Multiple schedulers are then deployed to schedule tasks and
update their local cluster states by ParSync. As the way of
synchronization is not coupled with the scheduling behavior,
most of the workflow on the scheduling path does not need
to be changed except for handling conflicts among multiple
schedulers. We also need to change the scheduling algorithms
to let them be aware of the staleness of the partitions, but this
is done only at the algorithm level and does not touch the
system architecture. Other components of the cluster function
in the same way and thus the correctness and robustness of
the scheduling framework are largely preserved.



How are the scheduling objectives achieved? As men-
tioned in §2, the objectives cannot be all optimized at the
same time. ParSync achieves a good balance between schedul-
ing efficiency and scheduling quality as we have discussed
in §5.2. For fairness, schedulers assign resources according
to the latest fairness information calculated by the coordina-
tor. Job priority usually exists within the same quota group
and all tasks in a group are scheduled by the same sched-
uler. But some production-level jobs may have higher prior-
ity over other jobs. As schedulers have a global view of the
cluster state, they can preempt less important jobs to acquire
resources. A global view of the cluster also allows various
scheduling algorithms [12, 15, 16, 20, 20, 21, 27, 34, 40, 46]
to be applied for high resource utilization. Moreover, we ap-
ply opportunistic scheduling [9] or over-commitment [45] to
schedule low-priority tasks to use temporarily under-utilized
resources. Rescheduling is needed if these tasks are later pre-
empted, but rescheduling is supported at the algorithm level.
How is the cluster partitioned? As schedulers favor fresher
partitions, it would be best if a scheduler can locate the re-
sources demanded by its tasks within its freshest partitions.
Typically we are concerned with two types of jobs, short jobs
and long jobs. As short jobs are the majority in our workloads,
our default cluster partitioning strategy is to favor tasks of
a short job to be committed with resources from the same
partition. We partition the cluster based on the network topol-
ogy, e.g., machines within a low-level cell are first grouped
together, then low-level cells within a higher-level cell are
grouped into the same partition. This suits the need of most
short jobs or network-intensive jobs that wish all of its tasks
can be co-located in the same partition. For long-running jobs,
which normally require more resources that may span over
several failure domains, their scheduling can resort to a global
view of the cluster. Although this leads to greater probabil-
ity of conflicts, long jobs can bear longer delay for finding
suitable resources as they typically run for days or months.
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