
A General and Efficient Querying Method for
Learning to Hash

Jinfeng Li, Xiao Yan, Jian Zhang, An Xu,
James Cheng, Jie Liu, Kelvin K. W. Ng, Ti-chung Cheng

Department of Computer Science and Engineering
The Chinese University of Hong Kong

{jfli,xyan,jzhang,axu,jcheng,jliu6,kwng6,tccheng4}@cse.cuhk.edu.hk

ABSTRACT
As an effective solution to the approximate nearest neighbors (ANN)
search problem, learning to hash (L2H) is able to learn similarity-
preserving hash functions tailored for a given dataset. However,
existing L2H research mainly focuses on improving query perfor-
mance by learning good hash functions, while Hamming ranking
(HR) is used as the default querying method. We show by analysis
and experiments that Hamming distance, the similarity indicator
used in HR, is too coarse-grained and thus limits the performance of
query processing. We propose a new fine-grained similarity indicator,
quantization distance (QD), which provides more information about
the similarity between a query and the items in a bucket. We then
develop two efficient querying methods based on QD, which achieve
significantly better query performance than HR. Our methods are
general and can work with various L2H algorithms. Our experiments
demonstrate that a simple and elegant querying method can produce
performance gain equivalent to advanced and complicated learning
algorithms.

1 INTRODUCTION
The problem of finding the nearest neighbors for a query in a dataset
emerges in a variety of applications such as recommendation [5],
sequence matching [3], entity resolution [13], de-duplication [31],
and similar item retrieval [18, 47]. However, the cost of finding the
exact nearest neighbors can be very high for large scale datasets
with high dimensionality [21]. Fortunately, it usually suffices to
find approximate nearest neighbors (ANN) [14, 19, 21, 27, 39, 42,
51] and ANN search has attracted widespread attention. There are
many performance metrics for ANN search, e.g., efficiency, memory
consumption, and preprocessing overhead. Among which, efficiency,
i.e., retrieving a large portion of the true nearest neighbors in a short
time, is an important metric.

Extensive hashing algorithms [2, 6, 14, 19, 27, 39, 41, 42, 51]
have been developed for ANN search. Hashing-based methods map
items in the dataset to buckets in hash tables and the hash functions
are designed to be similarity-preserving so that similar items are

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-4703-7/18/06. . . $15.00
https://doi.org/10.1145/3183713.3183750

hashed to the same bucket with high probability. A query is answered
by evaluating the items that are hashed to the same or similar buckets
as the query. There are two kinds of hashing-based methods, locality
sensitive hashing (LSH) [16, 21] and learning to hash (L2H)1 [19,
41, 42]. LSH uses predefined hash functions without considering
the underlying dataset, while L2H learns tailored hash functions for
the dataset. Although an additional training stage is needed, recent
studies [9, 11, 41, 44] showed by experiments that L2H significantly
outperforms LSH in terms of querying efficiency.

The performance of L2H depends on both the hash function
and the querying method. Hash function determines the buckets
that the items are hashed to, and a good hash function should
preserve the similarity between items as much as possible. It ex-
plains the superior performance of L2H over LSH in practice be-
cause L2H learns dataset-dependent hash functions. As a result,
existing L2H researches mainly focus on learning good hash func-
tions and many learning algorithms have been proposed, including
spectral hashing (SH) [44], principal component analysis hashing
(PCAH) [8, 43], iterative quantization (ITQ) [8, 9], semi-supervised
hashing (SSH) [40], and so on.

However, the querying method is also important to the efficiency
as it determines the order in which the buckets are probed. A good
querying method should fully utilize the information provided by
the hash function and probe the buckets containing the true nearest
neighbors first. The majority of existing L2H methods adopt Ham-
ming ranking (HR) as their querying method [4, 19], which probes
the buckets in ascending order of their Hamming distance to the
query.

Although HR is simple and intuitive, it has a critical drawback.
Specifically, Hamming distance is a coarse-grained indicator of the
similarity between the query and items in a bucket as it is discrete
and takes only a limited number of values. As a result, Hamming
ranking cannot define a good order for buckets with the same Ham-
ming distance from the query. Therefore, HR usually probes a large
number of unfavorable buckets, resulting in poor efficiency. One so-
lution is to use long code so that Hamming distance can classify the
buckets into more categories. However, long code has problems such
as time-consuming sorting, high storage demand and poor scalability,
especially for large-scale datasets [21].

While advanced hash function learning algorithms have become
increasingly complicated but lead to only marginal gain in query
performance, in this paper we show that we can achieve significant
gain in query performance with a novel design of the querying
method. Observing that L2H projects a query to a real number vector

1This paper refers to L2H as algorithms that learn binary embeddings.

https://doi.org/10.1145/3183713.3183750

SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA SIGMOD 2018 Research Paper

as an intermediate step, we find that the distance between the real
number vector and a bucket serves as a better similarity indicator
than Hamming distance. We formally define quantization distance
(QD) as the error of quantizing the projected real number vector of
a query to the signature of a bucket, and prove that QD provides
a (scaled) lower bound for the distance between the items in the
bucket and the query. Comparing with Hamming distance, QD is
fine-grained as it is continuous and can distinguish buckets with the
same hamming distance.

Using QD, we develop a querying algorithm named QD ranking
which probes the buckets in ascending order of their QD. By an-
alyzing the property of QD, we also design an efficient algorithm
called GQR to generate the bucket to probe on demand, thus avoid-
ing sorting all buckets at the start. Experimental results show that
GQR consistently achieves significantly better performance than
Hamming ranking. Our method is also proven to be a general query-
ing method and shown to achieve good performance for a variety
of L2H algorithms (e.g., ITQ [8, 9], PCAH [8, 43], and SH [44]) in
our experiments. Moreover, we observe that the performance gain
of GQR over Hamming ranking increases with dataset size, which is
desirable as practical datasets are growing rapidly in size. Compared
with Hamming ranking, our methods are also more memory efficient
as the same performance can be achieved with fewer hash tables and
shorter code length.

Our contributions are three folds. Firstly, we show by theory and
analysis that QD is a better similarity indicator than Hamming dis-
tance, which forms the basis of our QD ranking algorithm. Secondly,
we propose the GQR algorithm, which is efficient and solves the
slow start problem of QD ranking. Thirdly, extensive experiments on
a variety of datasets and hash function learning algorithms were con-
ducted to verify the performance of our methods. We demonstrate
that a simple and elegant querying method can achieve performance
gain equivalent to complicated learning algorithms, which we hope
can stimulate more research on new querying methods for L2H.

Section 2 gives the background of our work. Section 3 discusses
the limitations of Hamming ranking. Section 4 defines QD and
introduces the QD ranking algorithm. Section 5 proposes the more
efficient GQR algorithm. Section 6 reports the performance results.
Section 7 discusses related work. Section 8 concludes the paper.

2 LEARNING TO HASH
L2H is conducted in two stages, learning and querying. Learning
trains good hash functions for the dataset of interest. The hash
functions are used to construct the hash tables. In the querying stage,
a querying method chooses the buckets in each hash table to probe,
and items in the chosen buckets are ranked by their distance to the
query to obtain the final results. As hash function learning is not the
focus of this paper, we refer the interested readers to existing work
such as ITQ [8, 9], SH [44], and SSH [40] for details. In this section,
we briefly introduce the hashing and querying processes of L2H to
provide some background for our work.

2.1 Hashing
Given a d-dimensional item (or query), hashing maps it to a binary
code with lengthm. Similarity is preserved in the mapping, that is,
if two items are close to each other in the original d-dimensional

h
0

- 0.1

0.1

0.5

O1

O2 O3

Figure 1: Quantization

0	

4	

8	

12	

16	

20	

0	 4	 8	 12	 16	 20	

	#
bu

ck
et
s	i
n	
10
00
s	

Hamming	distance	

Figure 2: Number of buckets
versus hamming distance

space, then there is a high probability that they have identical or
similar m-dimensional binary codes. The mapping is achieved by
two operations, projection and quantization.

Projection. Projection applies the learned hash functions to an
item and projects it to an m-dimensional real number vector. Denote
the hash functions as h1, h2, ..., hm , the projected vector of item o
is p (o) =(h1 (o), h2 (o), ..., hm (o)). A hash function is usually a d-
dimensional vector and the projection is calculated as hi (o) = hTi o.

Quantization. Quantization discretizes the projected vector into
a binary code c (o) =(c1 (o), c2 (o), ..., cm (o)) with ci (o) ∈ {0, 1} for
1 ≤ i ≤ m. Thresholding is usually applied, that is, ci (o) = 1 if hi (o)
is non-negative and ci (o) = 0 otherwise. For two items that are close
in the original d dimensional space, an L2H algorithm ensures that
their binary codes have a high probability to be similar. A bucket in a
hash table contains items with the same binary code. Given a bucket
b, we also use b to denote its binary code (also called signature)
when there is no ambiguity, and we use bj to denote the j-th bit of
the signature.

Quantization inevitably loses some similarity information. Con-
sider an example of mapping items to a single bit in Figure 1. There
are three items o1,o2,o3 and their projected values are −0.1, 0.1, 0.5,
respectively. Thus, o1 and o2 are quantized to different buckets, while
o2 and o3 are quantized to the same bucket. However, o1 is more
similar to o2 than o3.

2.2 Querying
Given a query q, the querying process probes a number of buck-
ets and evaluates their belonging items to obtain the query results.
Querying usually consists of two steps, retrieval and evaluation. Re-
trieval determines which buckets to probe according to the querying
method and fetches items in the chosen buckets. Evaluation calcu-
lates the distances between q and the retrieved items, and updates
the nearest neighbors by ranking the distances.

The querying method has a significant influence on the perfor-
mance of similarity search as it decides which buckets to probe.
Datasets in today’s applications are usually large, and to achieve a
short query delay, usually only a small fraction of buckets are probed.
Thus, a good querying method should effectively identify the buck-
ets containing items similar to the query and probe them as early
as possible. Otherwise, computation will be wasted on evaluating
unfavorable buckets, resulting in poor efficiency. In addition, the
querying method should also be simple as spending too much time
on deciding which bucket to probe will also harm efficiency. To the
best of our knowledge, existing work on L2H [4, 42] extensively
use Hamming ranking or its variant, hash lookup, as their querying
method.

A General and Efficient Querying Method for
Learning to Hash SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA

(0, 0) (1, 0)

(0, 1) (1, 1)

𝑜1 𝑜3 𝑜6

𝑜5
𝑜8

𝑜2
𝑜4 𝑜7

𝑜9

𝑞2

𝑞1

(a) Hamming ranking

Bucket	ID	 HD	 QD	
(0,	0)	 0	 0	
(1,	0)	 1	 0.2	
(0,	1)	 1	 0.8	
(1,	1)	 2	 1	

(b) Comparison between Ham-
ming distance and quantization
distance

Figure 3: An example of Hamming ranking

Hamming ranking. Given a query q, Hamming ranking calcu-
lates its binary code c (q) and sorts all the buckets by their hamming
distances to c (q). The bucket with smaller hamming distance (where
ties are broken arbitrarily) is probed first. If there are B buckets,
both the time and space complexity of retrieval (sorting) is O (B).
The complexity of evaluation is linear to the number of items to be
evaluated.

We further analyze in details the limitations of Hamming ranking
in Section 3, which motivates the design of a more efficient and
effective querying method.

2.3 Performance Metrics
The performance of a querying method is mainly measured by effi-
ciency, which can be observed from the recall-time curve.

Recall-time curve. For a query q, if r of the true k-nearest neigh-
bors are found by a querying method using t seconds, the recall
achieved by this method is r/k at t . As time goes on and more buck-
ets are probed, recall gradually increases . The recall-time curve is
obtained by plotting the achieved recall against the querying time,
which is the main performance indicator we will use to compare
different querying methods.

3 LIMITATIONS OF HAMMING RANKING
Although Hamming ranking is simple and intuitive, it suffers from a
fundamental problem that its similarity indicator, Hamming distance,
is too coarse-grained. Firstly, the relationship between Hamming
distance and similarity (between a query and the items in a bucket)
is unclear. Secondly, Hamming distance cannot distinguish between
buckets with the same Hamming distance. Let m be the code length,
then the number of buckets having Hamming distance r from a
query is Crm . We plot the number of buckets as a function of the
Hamming distance from a query in Figure 2, which shows that the
number can be quite large even for a moderate Hamming distance.
Buckets with the same Hamming distance have the same priority
for probing according to Hamming ranking but their items can have
very different similarities to the query.

We further illustrate the problems of Hamming ranking using an
example. Consider Figure 3a where the code length is 2. Query q1
is mapped to bucket (0, 0), and hence Hamming ranking will probe
bucket (0, 0) first. Both buckets (0, 1) and (1, 0) have a Hamming
distance of 1 from q1, and thus Hamming ranking will assign them
equal priority for probing. However, it is obvious that bucket (1, 0)
should be probed before bucket (0, 1), since q1 is actually closer to

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

p
re

ci
si

o
n

recall

HR-16

HR-32

HR-64

(a) recall-precision curve

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

re
ca

ll

time

HR-16

HR-32

HR-64

(b) recall-time curve

Figure 4: performance of Hamming ranking on cifar-10 dataset

items in bucket (1, 0). Similarly arguments also apply for another
query q2.

The above example reveals the coarse-grain problem of Hamming
ranking that leads to probing many unfavorable buckets, thus result-
ing in low efficiency. The problem becomes more severe when high
recall is required, as buckets with larger Hamming distances may
be probed and the number of buckets having the same Hamming
distance grows rapidly as shown in Figure 2.

Long code length [8, 9, 11, 20, 44] has been used to address the
coarse-grain problem of Hamming ranking. With a code length ofm,
Hamming ranking can classify the buckets into (m + 1) categories
according to their Hamming distance from a query. Thus, longer
code provides better ability to distinguish the buckets, so that the
evaluation is more likely to be conducted on favorable buckets. To
show that, precision, which is the ratio between the number of re-
turned true k-nearest neighbors and the number of retrieved items,
is plotted against recall in Figure 4a. It can be observed that preci-
sion increases with code length for the same recall. However, long
code brings other problems, as shown in Figure 4b, the efficiency
decreases with code length because it is more time-consuming to
process long codes and decide which bucket to probe (i.e., the re-
trieval complexity increases). Moreover, long code also means more
memory consumption, which can be a problem when multiple hash
tales are used.

To summarize, the problem of Hamming ranking is inherently
in its similarity indicator, i.e., Hamming distance. For better query
performance and lower memory consumption, a new similarity in-
dicator is needed and two requirements should be satisfied. First,
the new indicator needs to provide useful information about the
similarity between the query and items in a bucket, and be able to
distinguish buckets having the same Hamming distance. Second, the
indicator should have nice properties that enables the design of an
efficient retrieval algorithm.

4 QUANTIZATION DISTANCE RANKING
In this section, we begin by introducing quantization distance
(QD), and show by analysis that it is a better similarity indicator than
Hamming distance. Using QD, the QD ranking algorithm is then
formulated. Without loss of generality, we assume that there is only
one hash table, and extending QD ranking to multiple hash tables is
straightforward. We conduct our analysis on Euclidean distance but
other similarity metrics such as angular distance can also be adapted
with some modifications.

SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA SIGMOD 2018 Research Paper

4.1 Quantization Distance
To address the problems of Hamming distance and preserve more
information about similarity, we measure the difference between the
projected vector of a query and the binary code of a bucket, which
motivates the definition of quantization distance as follows.

Definition 1. (Quantization Distance) The quantization distance
between query q and bucket b is given as

dist (q,b) =
m∑
i=1

(ci (q) ⊕ bi) ∗ |pi (q) |.

In the definition above, ci (q) and bi are the ith bit of the binary
codes for query q and bucket b, respectively; pi (q) is the ith entry of
q’s projected vector; and ⊕ is the exclusive-or operation. Intuitively,
QD measures the minimum change that we need to make to the
projected vector p (q) such that it can be quantized to bucket b. When
ci (q) = bi , no change is needed for pi (q). When ci (q) , bi , we need
to add or deduct |pi (q) | to/from pi (q) to ensure that pi (q) can be
quantized to bi . As an illustration, consider q1 in Figure 3, where
p (q1) =(−0.2, −0.8). The QD and Hamming distance of the buckets
from q1 are shown in Figure 3b. While Hamming distance cannot
distinguish bucket (0, 1) from (1, 0), QD can identify that bucket
(1, 0) should be probed before bucket (0, 1) for q1.

The advantages of QD over Hamming distance are two folds.
Firstly, using projected vector rather than binary code, QD preserves
more information about similarity. When two bits in the binary
codes (of the query and bucket) are different, Hamming distance only
returns 1 but does not measure how large the difference is. In contrast,
QD views each different position in the binary codes differently and
measures the minimum change required to make the bits identical.
Secondly, as a real number rather than an integer, QD has the ability
to distinguish between buckets with the same Hamming distance
from a query. With a code length of m, Hamming distance can only
classify the buckets into (m + 1) categories while QD could classify
the buckets into up to 2m categories, thus significantly reducing
buckets with the same distance from the query.

In the following, we show by theoretical analysis that QD is a
good similarity indicator.

Theorem 1. (The projection operation of L2H is bounded) Or-
ganizing the hash vectors learned by L2H into a hashing matrix H ,
the projection operation can be expressed by p (q) = Hq. There exists
a constant M , such that for any q ∈ Rd , we have ∥Hq∥2 ⩽ M ∥q∥2 .

Each hash vector is a d-dimensional column vector, that is, hi ∈
Rd for 1 ≤ i ≤ m. With hTi as its rows, the hashing matrix, H ∈
Rm×d can be expressed as H = [h1,h2, · · · ,hm]T . Theorem 1 fol-
lows directly from the definition of the spectral norm of matrix [49]
with M = σmax (H), where σmax (H) is the largest singular value of
H . A direct corollary of Theorem 1 is that the projection operation
in L2H is similarity preserving, that is, two items close to each other
in the original d-dimensional space also have their projected vectors
close to each other, as stated in Corollary 1 below.

Corollary 1. For two items q and o, we have ∥p (q) − p (o)∥2 ≤
M ∥q − o∥2.

The proof of Corollary 1 is straightforward, as ∥p (q) − p (o)∥2 =
∥H (q − o)∥2 ≤ M ∥q − o∥2. Corollary 1 shows that the distance

between the projected vectors gives a (scaled) lower bound on the
distances of two items in the original d-dimensional space. However,
the projected vectors of the items are not stored in the hash tables to
reduce memory consumption. Thus, we need to connect Corollary 1
to the quantization rule and rewrite the bound using the binary code,
from which we obtain Theorem 2 as follows.

Theorem 2. (QD gives a (scaled) lower bound of the distance
between a query and the items in a bucket) Denote the QD be-
tween query q and bucket b as dist (q,b), there exists a constant µ,
such that for any item o in bucket b, we have ∥o−q∥2 ≥ µ · dist(q,b).

PROOF.

∥o − q∥2 ≥
1
M
∥p (o) − p (q)∥2

≥
1

M
√
m
∥p (o) − p (q)∥1

≥
1

M
√
m

m∑
i=1

(ci (q) ⊕ ci (o)) ∗ |pi (q) |

=
1

M
√
m

m∑
i=1

(ci (q) ⊕ bi) ∗ |pi (q) |)

□

The first inequality follows from Corollary 1. The second inequal-
ity holds as for any m dimensional vector x , we have

√
m∥x ∥2 ≥

∥x ∥1 [49]. The last equality holds because item o has the same binary
code as b, as it is in bucket b. The third inequality holds because of
the quantization rule and is explained as follows. When ci (q) = ci (o),
the term |pi (o) − pi (q) | ≥ 0 and it is included in the l1 − norm in
Line 2 of the proof but not included in the summation of Line 3.
When ci (q) , ci (o), pi (o) and pi (q) have different signs, which
means |pi (o) − pi (q) | = |pi (o) | + |pi (q) | ≥ |pi (q) |. Thus, we have
µ = 1

M
√
m

.
From Theorem 2, we know that (µ · dist(q,b)) provides a lower

bound of the distance between a query and the items in a bucket.
Since µ is just a scaling factor irrelevant to either the query or
the bucket, we can drop it and use QD directly as the similarity
indicator. It is reasonable to probe buckets with a smaller lower
bound first, which is the idea behind the QD ranking algorithm in
the next subsection. Moreover, QD can also be used as a criteria
for early stop. If we are only interested in finding items within a
certain distance to the query, retrieval and evaluation can stop when
all buckets with a QD smaller than the corresponding threshold are
probed. We can also keep a record of the distance between the query
and the k-th nearest neighbor in the evaluated items as dk , if all
remaining buckets have µ · dist(q,b) ≥ dk , probing can be stopped.

4.2 The QD Ranking Algorithm
We have analyzed that QD is a good indicator of similarity. Using
QD, our QD ranking algorithm is presented in Algorithm 1.

QD ranking uses QD to define a linear order for the buckets and
probe the buckets with small QD first. In Algorithm 1, we set the
number of items to evaluate as N and use it as the stopping criteria,
but other stopping criteria can also be used, such as probing a certain
number of buckets, after a period of time or early stop explained in
the previous subsection. The re-ranking in Line 10 can be conducted

A General and Efficient Querying Method for
Learning to Hash SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA

Algorithm 1 QD Ranking

Input: query q, and the number of candidates to collect N
Output: approximate k-nearest neighbors to q

1: Set candidate set C = ∅
2: Count the total number of buckets M
3: Compute the projected vector p (q) and binary code c (q) of q
4: Calculate QD for all buckets and sort the buckets with QD
5: i = 1
6: while |C | < N and i ≤ M do
7: Find the i-th bucket in the sorted order and collect items in it

to C
8: i = i + 1
9: end while

10: re-rank the items in C by their Euclidean distances to q in as-
cending order

11: return the top-k items

only once after all items are collected or multiple times when probing
each bucket. The latter supports early stop as we can keep a record
of the current k-th nearest neighbor. The sorting process of QD
ranking has a higher complexity than that of Hamming ranking,
since Hamming ranking can use efficient bucket sort. However, we
will show in the experiments that QD ranking benefits from the
fine-grained similarity indicator it uses and hence provides superior
performance.

For many approximate k-nearest neighbor search applications,
the query delay is an important concern and there is usually a time
limit within which results should be returned. In this case, only a
small number of buckets may be probed for fast response. For a
specific query, a large fraction of the buckets is irrelevant as they
will not be probed, thus calculating QD and conducting sorting for
them are wasteful. We call this the slow start problem of the QD
ranking algorithm, in which sorting all the buckets takes a long time
and evaluation can only start after sorting. Slow start may result
in poor performance as the time spent on sorting can be dominant
when only a small number of buckets are actually probed. In the
next section we propose a solution to generate the buckets to probe
on demand, so that sorting of unnecessary buckets is avoided.

5 GENERATE TO PROBE
To solve the slow start problem of the QD ranking algorithm, we pro-
pose an efficient generate-to-probe QD ranking (GQR) algorithm.
Designing a generate-to-probe algorithm is challenging as the linear
orders of the buckets w.r.t. different queries vary significantly. We
first present a framework of the GQR algorithm, and then introduce
the concept of flipping vector, which is key to our algorithm design.
Lastly, we prove the correctness and improve the efficiency of the
GQR algorithm by leveraging the properties of QD.

5.1 Algorithm Framework
We first give the framework of the GQR algorithm in Algorithm 2.
GQR keeps generating buckets to probe until the required number of
candidates (N) are collected or all the buckets are probed. Different
from the QD ranking algorithm, GQR does not sort all the buckets

according to their QD at the beginning. Instead, GQR invokes the
дenerate_bucket () function whenever it needs a bucket to probe.

Algorithm 2 Generate-to-Probe QD Ranking

Input: query q, code lengthm, number of candidates to collect N
Output: approximate k-nearest neighbors of q

1: Set candidate set C = ∅
2: Compute the binary code c (q) and projected vector p (q) of q
3: i = 1
4: while |C | < N and i ≤ 2m do
5: b = дenerate_bucket (c (q), p (q), i, m)
6: Collect items in bucket b into C
7: i + +
8: end while
9: re-rank the items in C by their Euclidean distances to q in as-

cending order
10: return the top-k items

The дenerate_bucket () function is key to the correctness and
efficiency of GQR. For correctness, the function needs to fulfill two
requirements: (R1) each bucket is generated at most once given any
N and each bucket is generated at least once when N is sufficiently
large; and (R2) the bucket b produced by дenerate_bucket () in the
ith iteration is indeed the bucket with the ith smallest QD. (R1)
ensures that GQR can probe all the buckets and does not probe the
same bucket multiple times. (R2) guarantees that GQR probes the
buckets in ascending order of their QD. If both (R1) and (R2) are
fulfilled, GQR will be equivalent to QD ranking in semantics. For
the efficiency of GQR, дenerate_bucket () should produce buckets
with low complexity.

5.2 Flipping Vector
The main idea of дenerate_bucket () is to manipulate the binary code
c (q) to generate the buckets to probe without sorting. We achieve
this using flipping vector, which is defined as follows.

Definition 2. (Flipping Vector) Under a code length of m, for a
given query q, the flipping vector of bucket b is an m dimensional
binary vectorv = (v1,v2, ...,vm) withvi = ci (q) ⊕bi for 1 ≤ i ≤ m.

As the ⊕ operation is reflexive, given a flipping vector v, its
corresponding bucket b can be calculated by bi = ci (q) ⊕vi . We call
v a flipping vector as the resultant bucket is calculated by flipping
the entries in c (q) that corresponds to the non-zero elements in v.
For a given query, flipping vectorv is uniquely determined by bucket
b and vice versa. Recall the expression of QD in Definition 1, we
can rewrite it as follows.

dist (q,b) =
m∑
i=1

(ci (q) ⊕ bi) ∗ |pi (q) |.

=

m∑
i=1

vi ∗ |pi (q) |.

(1)

The above equation shows that the QD of a bucket can be cal-
culated without actually knowing the binary code of the bucket,
i.e., knowing p (q) and flipping vector v is sufficient. We define
dist (q,v) =

∑m
i=1vi ∗ |pi (q) | as the QD of flipping vector v (w.r.t.

SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA SIGMOD 2018 Research Paper

q), and Theorem 3 shows the relationship between dist (q,v) and
dist (q,b).

Theorem 3. (Quantization distance of flipping vector) Given a
query q, for a flipping vector v and its corresponding bucket b, we
have dist (q,v) = dist (q,b).

Theorem 3 follows from the definition of QD and flipping vector.
Since both QD and bucket can be derived from flipping vector, we
focus on how to generate the flipping vectors in ascending order of
their QDs. Intuitively, the all-zero flipping vector has the smallest
QD. For the flipping vector with the second smallest QD, we need
to set the bit corresponding to the entry with the smallest absolute
value in projected vector pi (q) to 1 while keeping other bits 0. As
the QD is calculated using the absolute values of the entires of the
projected vector and the order of these absolute values matters, we
introduce the definition of sorted projected vector as follows.

Definition 3. (Sorted Projected Vector) For a query q, its sorted
projected vector p̃ (q) is obtained by sorting the absolute values of
the elements in its projected vector p (q). In other words, we sort
p (q)=(|p1 (q) |, |p2 (q) |, ..., |pm (q) |) to obtain the sorted projected
vector p̃ (q).

The sorting process defines a one-to-one mapping between the
index of an entry in the projected vector and that in the sorted
projected vector. We denote this mapping by y = f (x), where y
is the index of an entry in the projected vector and x is the index
of the corresponding entry in the sorted projected vector. Consider
a projected vector p=(0.6, 0.2, −0.4), its sorted projected vector is
p̃ = (0.2, 0.4, 0.6), we have f (1) = 2, f (2) = 3 and f (3) = 1.

We use sorted projected vector because generating flipping vec-
tors from it is more efficient. Instead of generating flipping vectors
v directly, we generate sorted flipping vector, ṽ, which is a binary
vector indicating the entries to flip in the sorted projected vector.
Given a sorted flipping vector, the corresponding bucket can be
obtained by Algorithm 3.

Algorithm 3 Sorted Flipping Vector to Bucket

Input: sorted flipping vector ṽ, binary code c (q), code lengthm
Output: bucket to probe b

1: b = c (q), i = 1
2: while i <=m do
3: if ṽi == 1 then
4: l=f (i)
5: bl = 1 − cl (q)
6: end if
7: i = i + 1
8: end while
9: return b

In Algorithm 3, when ṽi = 1, we first find the index of the entry
in the original projected vector by l=f (i), and then flip the l-th entry
of c (q) to obtain the bucket. We can see that the QD of the resultant
bucket is dist (q, ṽ) =

∑m
i=1 ṽi ∗ |p̃i (q) |.

When query q is clear from the context, we simply denote the
QD of flipping vector v from q as dist (v), and that of sorted flipping
vector ṽ from q as dist (ṽ). In the next subsection, we show that

sorted flipping vector has nice properties that lead to the design of
an efficient дenerate_bucket () algorithm.

5.3 Bucket Generation
With the definitions of sorted projected vector and sorted flipping
vector, we present the дenerate_bucket () algorithm in Algorithm 4.
We use a min-heap, hmin , to generate sorted flipping vectors when
needed. Each element in hmin is a tuple (ṽ,dist (ṽ)), where dist (ṽ)
is the QD of sorted projected vector ṽ. The top of the min-heap is the
tuple with the smallest dist (ṽ). When the function is called for the
first time, we initialize hmin with ṽr = (1, 0, ..., 0). When we need a
bucket to probe, we dequeue the top element, ṽ, from hmin , and use
it to construct the bucket as described in Algorithm 3. We also apply
the Swap and Append operations (which will be explained later) on
ṽ to generate two new tuples and insert them into hmin . Note that
we need to probe bucket c (q) at the very beginning, and Line 3 in
Algorithm 4 is used to handle this special case.

Algorithm 4 дenerate_bucket (c (q), p̃ (q), i, m)

Input: binary code c (q), sorted projected vector p̃ (q), iteration
count i, code lengthm

Output: the next bucket to probe b
1: if i == 1 then
2: hmin .insert (ṽ

r = (1, 0, ..., 0), |p̃1 (q) |)
3: ṽ = (0, 0, ..., 0)
4: else
5: ṽ = hmin .del_min()
6: Set j as the index of the rightmost 1 in ṽ
7: if j < m then
8: ṽ+ = Append (ṽ)
9: hmin .insert (ṽ

+,dist (ṽ) + p̃j+1 (q))
10: ṽ− = Swap (ṽ)
11: hmin .insert (ṽ

−,dist (ṽ) + p̃j+1 (q) − p̃j (q))
12: end if
13: end if
14: Use ṽ to calculate the bucket b to probe by Algorithm 3
15: Return the bucket b

The Swap andAppend operations on a sorted flipping vector ṽ are
key to Algorithm 4 in fulfilling (R1) and (R2) stated in Section 5.1.
We give their definitions as follows.

Append. If the index of the rightmost non-zero entry of ṽ is i and
i < m, Append returns a new sorted flipping vector ṽ+, by assigning
ṽ+ = ṽ, and ṽ+i+1 = 1.

Swap. If the index of the rightmost non-zero entry of ṽ is i and
i < m, Swap returns a new sorted flipping vector ṽ−, by assigning
ṽ− = ṽ, ṽ−i = 0, and ṽ−i+1 = 1.

Intuitively, Append adds a new non-zero entry to the right-hand
side of the rightmost 1 in ṽ, while Swap exchanges the positions of
the rightmost 1 and the 0 on its right-hand side. Note that Append
and Swap are only valid when the index of the rightmost non-zero
entry of ṽ is smaller than m. Starting with ṽr = (1, 0, ..., 0), an
example for Append and Swap with a code length of 4 is given in
Figure 5.

A General and Efficient Querying Method for
Learning to Hash SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA

1000

0100

Swap
(-)

1100

Append
(+)

0010

-

0110

+

1010

-

1110

+

0001

-

0011

+

0101

-

0111

+

1001

-

1011

+

1101

-

1111

+

Figure 5: An example of generation tree

Let Ṽ be the set of all flipping vectors with length m, ṽr =
(1, 0, ..., 0) and ṽ0 = (0, 0, ..., 0). To better understand the properties
of Append and Swap, we define the generation tree as follows.

Definition 4. (Generation Tree) The generation tree is a rooted
binary tree with ṽr as the root, and the two edges of each internal
node correspond to the Append and Swap operations, such that the
right child of an internal node is generated by applying Append on
the node, while the left child is generated by applying Swap on the
node.

An example of generation tree is given in Figure 5, and it has
the following properties which are crucial to the efficiency and
correctness of Algorithm 2.

Property 1. (Exactly once) Let T be the generation tree with root
ṽr . Each flipping vector ṽ ∈ Ṽ \ {ṽ0} appears exactly once in T .

PROOF. For an arbitrary vector ṽ ∈ Ṽ \{ṽ0, ṽr }, by the definitions
of Append and Swap, we can derive a unique sequence of operations
on ṽr to generate it as follows. If ṽi = 0 and there is a non-zero
entry to the right of ṽi , then Swap is applied in the i-th step of
generating ṽ, i.e., Swap is in the i-th position of the sequence. If ṽi =
1 and i is not the rightmost non-zero entry, then Append is applied
in the i-th step of generating ṽ. For example, ṽ = (1, 1, 0, 1) in
Figure 5 is generated by (Append ,Append ,Swap) and ṽ = (1, 0, 1, 0)
is generated by (Append ,Swap). Thus, for each ṽ ∈ Ṽ \ {ṽ0, ṽr }, we
have a unique sequence of Append and Swap that generates ṽ from
ṽr , which corresponds to a unique path in T from ṽr to a non-root
node, and hence each flipping vector in Ṽ \ {ṽ0} appears exactly
once in T . □

Property 1 shows that all possible sorted flipping vectors can be
obtained from the generation tree exactly once. The relationship
among the QDs of an internal node in the generation tree and its two
children is stated in Property 2.

Property 2. (Quantization distance order) Let ṽ be an internal
node in the generation tree, and ṽ+ and ṽ− be the right and left
child of ṽ, i.e., ṽ+ = Append (ṽ) and ṽ− = Swap (ṽ). We have
dist (ṽ) ≤ dist (ṽ+) and dist (ṽ) ≤ dist (ṽ−).

PROOF. According to the definition of QD and assuming that the
index of the rightmost non-zero entry in ṽ is i (note that i < m since

ṽ is an internal node), we have
dist (ṽ+) − dist (ṽ) = p̃i+1 (q) ≥ 0 and
dist (ṽ−) − dist (ṽ) = p̃i+1 (q) − p̃i (q) ≥ 0. □

Property 2 shows that in the generation tree, the QD of a child
is no smaller than its parent. The proof also explains why we
can calculate the QD of newly generated sorted flipping vector by
dist (ṽ+) = dist (ṽ)+p̃i+1 (q) and dist (ṽ−) = dist (ṽ)+p̃i+1 (q)−p̃i (q)
in Line 9 and Line 11 of Algorithm 4.

Now we prove the correctness of Algorithm 2. To ensure the
correctness of Algorithm 2, Algorithm 4 should produce the buckets
in the order of their QD and generate each bucket exactly once. First,
we prove that Algorithm 4 generates each bucket exactly once for
sufficiently large N . While this follows directly from Property 1,
another proof can also be provided. One observation is that each
ṽ ∈ Ṽ \ {ṽ0} has only one parent in the generation tree and is inserted
into hmin only when its parent is dequeued from hmin . As ṽ is
dequeued from hmin after all its ancestors according to Property 2,
thus ṽ will not be inserted into hmin again and each flipping vector ṽ
is generated at most once by Algorithm 4. Moreover, Property 1 also
ensures that each flipping vector ṽ in Ṽ \ {ṽ0} is generated at least
once for sufficiently large N . Since the all-zero flipping vector is
handled in Line 3 of Algorithm 4, we can conclude that Algorithm 4
generates each flipping vector exactly once for sufficiently large N .

Second, we prove that when i = k, the vector ṽk generated by
Algorithm 4 is indeed the flipping vector having the k-th smallest
QD from q. For a ṽ j dequeued from hmin before ṽk , there are two
cases. Case 1 is that ṽk is in hmin when ṽ j is dequeued, implying
that dist (ṽk) ≥ dist (ṽ j). Case 2 is that ṽk is not in hmin when ṽ j

is dequeued, which implies that one ancestor of ṽk must be in hmin ,
otherwise ṽk cannot be generated later. Denote that ancestor as ṽ ′.
According to Property 2 and the property of min-heap, we have
dist (ṽk) ≥ dist (ṽ ′) ≥ dist (ṽ j). Therefore, we can conclude that
for any ṽ j dequeued before ṽk , dist (ṽk) ≥ dist (ṽ j) holds. Using a
similar analysis, we can also conclude that for any ṽ j dequeued after
ṽk , dist (ṽ j) ≥ dist (ṽk). This completes the proof of the correctness
of Algorithm 4. The algorithm generates a flipping vector only when
needed and calculates the QD of a child efficiently based on that of
its parent.

The memory consumption of Algorithm 2 is also significantly
lower than that of Algorithm 1 and Hamming ranking, as we do not
need to store the QD of all buckets. Another nice property is that
there are at most i elements in hmin for Algorithm 4 at iteration
i. In most cases, both i and the size of the heap are small in the
entire querying process. Note that the generation tree is common
to all queries, we can code a flipping vector as an integer and store
the generation tree (the corresponding integers) into an array. In
this case, we do not need to actually conduct the Append and Swap
operations, as fetching the corresponding elements from the array is
more efficient.

We remark that QD and GQR are inspired to some extent by
Multi-Probe LSH [28]. Beside the fact that our methods work for
L2H with binary code and Multi-Probe LSH works for LSH with
integer code, there are three more fundamental differences. The first
difference lies in the definition of the distance metric. The score in
Multi-Probe LSH is the sum of the squared difference between the
projected value of a query and a bucket. In contrast, QD uses the sum

SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA SIGMOD 2018 Research Paper

Table 1: Statistics of datasets and linear search in seconds

Dataset Dim# Item# Linear Search
CIFAR60K 512 60,000 31.34s
GIST1M 960 1,000,000 999.75s
TINY5M 384 5,000,000 1978.19s
SIFT10M 128 10,000,000 1247.07s

of the absolute differences and introduces an additional exclusive-or
operation to exclude the contribution (to flipping cost) of identical
bits. Secondly, QD is also more general. The score indicates the
similarity between the query and items in a bucket only when the
hash vector follows Gaussian distribution. However, QD can provide
a distance lower bound as long as the hash functions can be written
in a matrix form. Thirdly, GQR can use a shared generation tree to
optimize the querying process, but Multi-Probe LSH can not adopt
such optimization as it works with integer code. Note that Multi-
Probe LSH will also generate invalid buckets but this problem does
not exist for GQR.

6 EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of our algorithms, QD
ranking in Algorithm 1 and generate-to-probe QD ranking in Al-
gorithm 2, denoted by QR and GQR, respectively. We compared
our algorithms with the state-of-the-art methods under various set-
tings. For fair comparison, we tuned other algorithms to achieve
their best performance. All experiments were conducted using a
machine with 64 GB Ram and a 2.10 GHz Intel Xeon E5-2620
Processor, running CentOS 6.5. All the querying algorithms and
learning algorithms were implemented in C++ and MATLAB, re-
spectively. We used MATLAB 9.1 and gcc 5.2.0 to compile the re-
lated source codes. We release all the source codes we implemented
in www.cse.cuhk.edu.hk/systems/hash/gqr, while the
source codes of other projects can be found in their websites.

6.1 Datasets and Settings
We used four datasets with different sizes and number of features, as
shown in Table 1. More results with 8 additional datasets are reported
in the Appendix due to space limitation. CIFAR-10 2 (denoted by
CIFAR60K) is a small-scale dataset used as benchmark in many
ANN search evaluations [9, 17, 20, 23, 25, 26]. Following the com-
mon practice in these work, we extracted a 512 dimensional GIST
descriptor for each of the 60, 000 CIFAR-10 images and the GIST
descriptors are treated as items in the dataset. For a middle-scale
dataset, we used GIST1M 3, which contains one million vectors,
each with 960 features. For large-scale datasets, we downloaded 5
million GIST descriptors of TINY images4 with a dimensionality of
384, denoted as TINY5M. We also used SIFT10M5, which contains
10 million SIFT descriptors with a dimensionality of 128.

2https://www.cs.toronto.edu/ kriz/cifar.html
3http://corpus-texmex.irisa.fr/
4http://horatio.cs.nyu.edu/mit/tiny/data/
5http://corpus-texmex.irisa.fr/

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

re
ca

ll

time (in seconds)

GQR

QR

(a) CIFAR60K

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

re
ca

ll

time (in seconds)

GQR

QR

(b) GIST1M

0

0.2

0.4

0.6

0.8

1

0 40 80 120 160 200

re
ca

ll

time (in seconds)

GQR

QR

(c) TINY5M

0

0.2

0.4

0.6

0.8

1

0 25 50 75 100 125

re
ca

ll

time (in seconds)

GQR

QR

(d) SIFT10M

Figure 6: Comparison between GQR and QR

The hash functions were trained using ITQ [8, 9] unless otherwise
stated, and kept the same for all querying methods. By default, we
report the performance of 20-nearest neighbors search. For each
dataset and querying method, we randomly sampled 1000 items as
queries and measured the overall query processing time. We report
the average recall or the number of items retrieved to evaluate query
performance. We also present the running time of brute-force linear
search as a benchmark in the last column of Table 1.

Code length. For L2H algorithms, such as ITQ [8, 9], SH [44]
and PCAH [8, 43], a proper code lengthm is crucial for performance.
If the code is too short, a querying method may lack enough infor-
mation to distinguish favorable buckets from unfavorable ones and
end up evaluating many irrelevant items. If the code is too long,
the number of buckets will be large (equal to the number of items
eventually) and retrieval will take excessive memory and time to
sort the buckets. Following the methodology in [16] and [4], we fix
the expected number of items inside a bucket, EP , to calculate the
code length. Specifically, similar to [16] and [4], we set EP to 10
in our experiments, andm was set to an integer around loд2 (N /10),
where N is the number of items in the dataset. Therefore, the default
code length is 12, 16, 18 and 20 for CIFAR60K, GIST1M, TINY5M
and SIFT10M, respectively. We will also experimentally verify that
the above settings are almost optimal in the following subsections.

6.2 Comparison between QR and GQR
In this experiment, we compared the performance of QR and GQR.
Both QR and GQR probe buckets according to their QD; thus, they
probe buckets in the same order. Their difference lies in how the
buckets are generated, i.e., QR calculates QD for all buckets and
sorts them, while GQR generates the buckets on demand.

Figure 6 shows that GQR consistently outperforms QR on all four
datasets. The performance gap is smaller for CIFAR60K but widens
for larger datasets. For SIFT10M, the performance gap is substantial
as reported in Figure 6d. This can be explained by the fact that GQR
does not need to sort all the buckets at the start, thus is immune to the
slow start problem of QR. In our experiment, CIFAR60K, GIST1M,
TINY5M and SIFT10M have 3, 872, 57, 835, 218, 004 and 567, 753
buckets, respectively, and sorting these buckets takes 0.48, 8.82,

A General and Efficient Querying Method for
Learning to Hash SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

re
ca

ll

time (in seconds)

GQR

GHR

HR

(a) CIFAR60K

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

re
ca

ll

time (in seconds)

GQR

GHR

HR

(b) GIST1M

0

0.2

0.4

0.6

0.8

1

0 40 80 120 160 200

re
ca

ll

time (in seconds)

GQR

GHR

HR

(c) TINY5M

0

0.2

0.4

0.6

0.8

1

0 25 50 75 100 125

re
ca

ll

time (in seconds)

GQR

GHR

HR

(d) SIFT10M

Figure 7: Comparison between GQR and HR/GHR (best viewed in color)

53.9 and 114.1 seconds. In many cases, the time spent on sorting is
non-negligible, and thus GQR outperforms QR. For larger datasets,
there are more buckets, and hence the performance gap widens with
dataset size. However, the performance gap narrows at very high
recall (near 100%), as a large portion of buckets needs to be probed
and the time that GQR spends on generate-to-probe also increases
and gradually approaches that of sorting.

As GQR consistently outperforms QR, we only compare GQR
with existing querying methods in the following experiments.

6.3 Comparison between GQR and HR
In this experiment, we compared the performance ofGQR with Ham-
ming ranking,HR, which is extensively used in existing L2H work [4,
42]. We also implemented another algorithm named generate-to-
probe Hamming ranking (GHR or hash lookup as commonly called)
using an idea similar toGQR, i.e., the buckets to probe are generated
in ascending order of their Hamming distances by manipulating the
binary code of the query rather than sorting.

6.3.1 Recall-time. The recall-time curves for GQR, GHR and
HR are plotted in Figure 7 for the four datasets. The result shows
that GHR and HR have similar performance trade-off as GQR and
QR, i.e.,GHR consistently outperforms HR and the performance gap
widens for large datasets, which proves again that sorting all buckets
at the beginning will cause the slow start problem. However, the
performance gained by generate-to-probe on HR is not as significant
as on QR, because Hamming distance only takes discrete values and
sorting is more efficient.

The result also shows that GQR achieves superior performance
than both HR and GHR for all datasets, which can be explained by
the fact that QD is a better indicator of similarity than Hamming
distance. To show this, we plot the recall versus the number of
retrieved items in Figure 8, which shows that for the same number
of retrieved items, GQR always finds more true k-nearest neighbors
than HR and GHR on all datasets. This demonstrates that QD can
direct the evaluation to the more favorable (high quality) buckets,
leading to higher efficiency. Moreover, the quality gap between the
buckets generated by GQR and GHR/HR widens with the size of
dataset. This can be explained by the fact that hamming distance
can classify the buckets into only m + 1 categories, while QD can
classify the buckets into up to 2m categories. Larger datasets have
longer code and the advantage of making a finer classification of the
buckets is more obvious, i.e., favorable buckets can be more easily
distinguished from unfavorable ones.

6.3.2 Querying Time. The recall gap betweenGQR,GHR and
HR may seem moderate in Figure 7, but the speedup in querying time
is actually significant as the recall-time curve is flat at high recall
and a small improvement in recall may translate into a large time
saving. To show this, we compare the running time of GQR with HR
and GHR at a number of typical recalls reported in the experiments
of existing work [28–30] in Figure 9. GQR has a minimum speedup
of 1.6 over HR andGHR, and the speedup can be as much as 3 times,
which means that GQR can achieve the same recall as GHR and HR
with only half of the time in most cases.

6.3.3 Effect of Code Length. In the previous experiments, we
set the code length to an integer around loд2 (N /10). To show that
there is no bias in our choice of code length, we tested different
code lengths and plot the time taken to reach 90% recall for the two
larger datasets in Figure 10. The result shows that the previously
chosen code lengths, 18 for TINY5M and 20 for SIFT10M, are very
close to the optimal code length of HR and GHR. The performance
of all algorithms first increases with code length but then decreases
due to the trade-off between the retrieval and evaluation costs. How-
ever, even at the optimal code length for GHR and HR, GQR still
outperforms them.

6.3.4 Effect of k. We also report the speedup of GQR and
GHR over HR in running time to achieve 90% recall for different
number of target nearest neighbors (k). Figure 11 shows that GQR is
significantly faster than HR and GHR for a wide range of values of
k. The speedup is more significant for small k, and can be as much
as 8 times over HR and 3.4 times over GHR.

6.3.5 Effect of Multiple Hash Tables. Using multiple hash ta-
bles is a general strategy for improving the performance of similarity
search [4, 16], but more memory space is needed. We demonstrate
the performance advantage of GQR over GHR by comparing the
performance of single-hash-table GQR with multi-hash-table GHR.
Figure 12 shows thatGHR needs about 30 hash tables to reach a sim-
ilar performance to single-hash-table GQR on the SIFT10M dataset.
However, GHR cannot reach the performance of GQR even with 30
hash tables on the TINY5M dataset. As using multiple hash tables
incurs additional memory cost, usingGQR instead of GHR can yield
significant memory saving.

6.4 Compatibility with L2H Algorithms
The experiments in the previous subsections were conducted us-
ing hash functions learnt by ITQ. However, there are many other

SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA SIGMOD 2018 Research Paper

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

re
ca

ll

retrieved items (1000x)

GQR

GHR & HR

(a) CIFAR60K

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

re
ca

ll

retrieved items (10000x)

GQR

GHR & HR

(b) GIST1M

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

re
ca

ll

retrieved items (100000x)

GQR

GHR & HR

(c) TINY5M

0

0.2

0.4

0.6

0.8

1

0 3 6 9 12 15

re
ca

ll

retrieved items (10000x)

GQR

GHR & HR

(d) SIFT10M

Figure 8: Recall-items curves

0

2

4

6

8

10

80% 85% 90% 95%

ti
m

e
(i

n
 s

e
co

n
d

s)

recall

HR GHR GQR

(a) CIFAR60K

0

40

80

120

160

200

80% 85% 90% 95%

ti
m

e
(i

n
 s

e
co

n
d

s)

recall

HR GHR GQR

(b) GIST1M

0

80

160

240

320

400

80% 85% 90% 95%

ti
m

e
 (

in
 s

e
co

n
d

s)

recall

HR GHR GQR

(c) TINY5M

0

25

50

75

100

125

80% 85% 90% 95%

ti
m

e
(i

n
 s

e
co

n
d

s)

recall

HR GHR GQR

(d) SIFT10M

Figure 9: Querying time comparison between GQR and HR/GHR

0

120

240

360

480

600

12 16 20 24

ti
m

e
(i

n
 s

ec
o

n
d

s)

code length

HR GHR GQR

(a) TINY5M

0

80

160

240

320

400

16 20 24 28

ti
m

e
(i

n
 s

ec
o

n
d

s)

code length

HR GHR GQR

(b) SIFT10M

Figure 10: Effect of varying code length

0

0.6

1.2

1.8

2.4

3

1 10 50 100

sp
ee

d
u

p

K

GHR GQR

(a) TINY5M

0

2

4

6

8

10

1 10 50 100

sp
ee

d
u

p

K

GHR GQR

(b) SIFT10M

Figure 11: Speedup over HR for various k

0

100

200

300

400

500

80% 85% 90% 95% 98% 99%

ti
m

e
(i

n
 s

e
co

n
d

s)

recall on TINY5M

GHR (1) GHR (10)

GHR (20) GHR (30)

GQR (1)

(a) TINY5M

0

30

60

90

120

150

80% 85% 90% 95% 98% 99%

ti
m

e
(i

n
 s

e
co

n
d

s)

recall on SIFT10M

GHR (1) GHR (10)

GHR (20) GHR (30)

GQR (1)

(b) SIFT10M

Figure 12: Effect of multiple hash tables

L2H algorithms such as PCA hashing (PCAH) [8, 43] and spec-
tral hashing (SH) [44], which often show complicated performance

trade-offs and different compatibility issues (e.g. datasets, dimen-
sionality). A good querying method should be general enough to
achieve good performance for a wide variety of L2H algorithms. In
this experiment, we demonstrate the generality of GQR by reporting
its performance with PCAH and SH. PCAH uses the eigenvectors
of the covariance matrix of the dataset as hash functions, while SH
uses the thresholded eigenvectors of the graph Laplacian as hash
functions.

The recall-time curve for GQR, GHR and HR with PCAH is plot-
ted in Figure 13. Similar to the cases of ITQ, GQR outperforms both
GHR and HR consistently on the four datasets. We also plot the
time taken to reach some typical recalls in Figure 14. The average
speedups of GQR over GHR are 2.3, 2.8, 2.1 and 4.3 for CIFAR60K,
GIST1M, TINY5M and SIFT10M, respectively. We plot the per-
formance for SH in Figure 15 and Figure 16. The curves are quite
similar to those of PCAH and ITQ. Note that there is also a trend
that GQR achieves higher speedup on larger datasets.

L2H algorithms have been extensively studied up to now, and
to learn even better hash functions, new L2H algorithms are be-
coming increasingly complicated. However, complicated algorithms
are expensive or even impractical for large datasets and their per-
formance gains are sometimes only marginal. GQR is a general
querying method that offers significant performance gains for a va-
riety of L2H algorithms. Our experiments show that using GQR
in combination with simple L2H algorithms may even outperform
complicated L2H algorithms with GHR. For example, comparing
Figure 7 and Figure 13, we can see that PCAH plus GQR offers bet-
ter performance to ITQ plus GHR. However, ITQ adopts an iterative
training process and is much more complex than PCAH. In cases
that the complexity of hash function training is of concern, GQR can
help by resolving to simple L2H algorithms.

A General and Efficient Querying Method for
Learning to Hash SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

re
ca

ll

time (in seconds)

GQR

GHR

HR

(a) CIFAR60K

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

re
ca

ll

time (in seconds)

GQR

GHR

HR

(b) GIST1M

0

0.2

0.4

0.6

0.8

1

0 40 80 120 160 200

re
ca

ll

time (in seconds)

GQR

GHR

HR

(c) TINY5M

0

0.2

0.4

0.6

0.8

1

0 25 50 75 100 125

re
ca

ll

time (in seconds)

GQR

GHR

HR

(d) SIFT10M

Figure 13: Comparison between GQR and HR/GHR with PCAH

0

4

8

12

16

80% 85% 90% 95%

ti
m

e
(i

n
 s

e
co

n
d

s)

recall

HR GHR GQR

(a) CIFAR60K

0

60

120

180

240

300

80% 85% 90% 95%

ti
m

e
(i

n
 s

e
co

n
d

s)

recall

HR GHR GQR

(b) GIST1M

0

300

600

900

1200

1500

80% 85% 90% 95%

ti
m

e
 (

in
 s

e
co

n
d

s)

recall

HR GHR GQR

(c) TINY5M

0

40

80

120

160

200

80% 85% 90% 95%

ti
m

e
 (

 in
 s

e
co

n
d

s)

recall

HR GHR GQR

(d) SIFT10M

Figure 14: Querying time comparison between GQR and HR/GHR with PCAH

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

re
ca

ll

time (in seconds)

GQR

GHR

HR

(a) CIFAR60K

0

0.2

0.4

0.6

0.8

1

0 40 80 120 160 200

re
ca

ll

time (in seconds)

GQR

GHR

HR

(b) GIST1M

0

0.2

0.4

0.6

0.8

1

0 40 80 120 160 200

re
ca

ll

time (in seconds)

GQR

GHR

HR

(c) TINY5M

0

0.2

0.4

0.6

0.8

1

0 25 50 75 100 125

re
ca

ll

time (in seconds)

GQR

GHR

HR

(d) SIFT10M

Figure 15: Comparison between GQR and HR/GHR with SH

0

6

12

18

24

30

80% 85% 90% 95%

ti
m

e
(i

n
 s

e
co

n
d

s)

recall

HR GHR GQR

(a) CIFAR60K

0

120

240

360

480

600

80% 85% 90% 95%

ti
m

e
 (

in
 s

e
co

n
d

s)

recall

HR GHR GQR

(b) GIST1M

0

300

600

900

1200

1500

80% 85% 90% 95%

ti
m

e
(i

n
 s

e
co

n
d

s)

recall

HR GHR GQR

(c) TINY5M

0

50

100

150

200

250

80% 85% 90% 95%

ti
m

e
(i

n
 s

e
co

n
d

s)

recall

HR GHR GQR

(d) SIFT10M

Figure 16: Querying time comparison between GQR and HR/GHR with SH

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

re
ca

ll

time (in seconds)

PCAH + GQR

PCAH + GHR

OPQ + IMI

(a) CIFAR60K

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

re
ca

ll

time (in seconds)

PCAH + GQR

PCAH + GHR

OPQ + IMI

(b) GIST1M

0

0.2

0.4

0.6

0.8

1

0 40 80 120 160 200

re
ca

ll

time (in seconds)

PCAH + GQR

PCAH + GHR

OPQ + IMI

(c) TINY5M

0

0.2

0.4

0.6

0.8

1

0 4 8 12 16 20

re
ca

ll

time (in seconds)

PCAH + GQR

PCAH + GHR

OPQ + IMI

(d) SIFT1M

Figure 17: Comparison between PCAH+HR, PCAH+GQR and OPQ+IMI

SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA SIGMOD 2018 Research Paper

Table 2: Training cost

Wall time (s) CPU time (s) Memory (GB)
Dataset OPQ PCAH OPQ PCAH OPQ PCAH
CIFAR60K 43.9 12.0 295.6 12.4 1.2 1.0
GIST1M 2456.7 84.3 26166.7 153.8 23.1 15.5
TINY5M 10588.0 236.8 119391.0 464.5 54.5 30.4
SIFT1M 640.1 35.3 6096.8 40.0 4.7 2.5

6.5 Comparison with Vector Quantization
Vector quantization (VQ) based methods such as K-means hash-
ing [11], OPQ [7] and CQ [50] were also proposed for similarity
search, which represent the state-of-the-art similarity search meth-
ods. The VQ based methods usually learn one or more codebooks
using K-means and quantize an item to its nearest codeword(s) in the
codebook(s). Using a specially designed querying algorithm called
Inverted Multi-Index (IMI) [1], the VQ based methods were reported
to significantly outperform the L2H methods using Hamming rank-
ing. In this experiment, we show thatGQR can boost a binary hashing
based L2H algorithm to achieve comparable query performance with
OPQ, one of the state-of-the-art VQ based methods.

We used the NNS Benchmark [24, 32] to compare with OPQ+IMI.
Figure 17 reports the time-recall curves of PCAH with Hamming
ranking, PCAH with GQR, and OPQ with IMI. More results for
another 8 datasets are reported in Figures 21-22 in the Appendix due
to space limitation. The performance on SIFT10M was not reported
as OPQ ran of memory in our machine in the training process. As a
replacement, we used SIFT1M6.

The results show that with Hamming ranking, there is a large
performance gap between PCAH and OPQ. Remarkably, with GQR,
the performance of PACH is improved to be comparable with that of
OPQ. We emphasize that this result is significant as OPQ requires
more memory and much longer time to train as reported in Table 2,
where Wall time is the elapsed time and CPU time is the summation
of the working time of all the CPU cores in the machine. By boost-
ing the performance of simple binary hashing methods, GQR gives
users more freedom in the selection of hashing methods in their
applications, especially when the training overhead is a concern.

7 RELATED WORK
The nearest neighbors search problem has been extensively stud-
ied [4, 6, 11, 12, 27, 37–39, 41, 42, 51]. Initially, researchers at-
tempted to find the exact nearest neighbors with the help of data
structures such as R-tree [10] and k-d tree [2]. However, these meth-
ods suffer from the curse of dimensionality and are proved to per-
form even worse than linear scan for datasets with more than 20
features [48]. Since approximate nearest neighbors suffice in most
applications, a large number of approximation algorithms are pro-
posed. Tree based methods such as k-means tree and random k-d tree
partition the entire space using a tree and search the tree with data
structures such as priority queue to answer the query [29, 30, 35].
However, the preprocessing and querying efficiency is usually low
as the tree is time-consuming to manipulate. Hashing based methods

6http://corpus-texmex.irisa.fr/

use hash tables and enjoy high querying efficiency. Among them,
L2H has been shown to outperform LSH by experiments as L2H can
train tailored hash functions for the datasets.

L2H consists of two aspects, hash function learning and query
processing. Many hash function learning algorithms, including PCA
hashing [8, 43], spectral hashing [44], K-means hashing [11], semi-
supervised hashing [40] and others [4, 19, 42], were proposed and
the goal is to preserve as much similarity as possible. Hash function
learning is usually formulated as an optimization problem with
the objective of minimizing quantization error or the difference
between the distance (of item pairs) in the original feature space
and the resultant binary space. For better query performance, some
hash function learning algorithms are complicated, making them
inefficient for large datasets [4]. For querying methods, Hamming
ranking (HR) has been extensively used in existing L2H methods [4,
19].

While querying method was inadequately discussed for L2H, it
has been extensively studied for LSH. Entropy LSH [36] generates
random points around the query and probes the buckets these points
hashed to. Multi-Probe LSH [28] adds a perturbation sequence to the
hash code of the query to generate the buckets to probe. However, En-
tropy LSH and Multi-probe LSH cannot guarantee to scan the entire
dataset (all buckets) and require multiple hash tables. GQR can use
one hash table to save memory and avoid expensive de-duplication.
Some LSH algorithms guarantee to enumerate all the items and can
work with only one hash table. C2LSH [16] uses only one hash value
for each hash table (i.e.,m = 1) and dynamically expands the search
space bi-directionally from c (q). LSB-tree [39] and SK-LSH [27]
probe buckets sharing the longest common prefix with c (q) at first.
These LSH algorithms work on external memory and can handle
large datasets, but their query performance is generally worse than
L2H methods in practice.

8 CONCLUSIONS
We proposed an efficient querying method, QR, for L2H, which
uses a new similarity indicator called quantization distance to define
a linear order for the buckets and probe the buckets sequentially.
Based on the property of quantization distance, we also designed
GQR, the generate-to-probe version of QR, which can generate buck-
ets to probe on demand and avoid the slow start problem of QR.
Experimental results show that GQR significantly outperforms the
widely used HR querying method consistently across a variety of
datasets, code lengths, numbers of hash tables, and numbers of target
neighbors (k). We also show that GQR is a general querying method
and can work with a wide variety of L2H algorithms. Remarkably,
GQR can also boost the performance of a binary hashing based L2H
algorithm to be comparable with that of the state-of-the-art vector
quantization based method, OPQ, but using significantly less train-
ing overhead. In the future, we plan to extend GQR to the distributed
setting on data-parallel systems such as LoSHa [21], Husky [45, 46]
and others [15, 22].

Acknowledgments. We thank the reviewers for their valuable com-
ments. We also thank Haoran Shu for his contribution in the early
stage of this work. This work was supported in part by Grants
(CUHK 14206715 & 14222816) from the Hong Kong RGC.

A General and Efficient Querying Method for
Learning to Hash SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA

REFERENCES
[1] Artem Babenko and Victor S. Lempitsky. 2012. The Inverted Multi-Index. In

CVPR. 3069–3076.
[2] Jon Louis Bentley. 1975. Multidimensional Binary Search Trees Used for Asso-

ciative Searching. In CACM, Vol. 18. 509–517.
[3] Konstantin Berlin, Sergey Koren, Chen-Shan Chin, James P Drake, Jane M Lan-

dolin, and Adam M Phillippy. 2015. Assembling Large Genomes With Single-
Molecule Sequencing and Locality-Sensitive Hashing. In Nature biotechnology,
Vol. 33. 623–630.

[4] Deng Cai. 2016. A Revisit of Hashing Algorithms for Approximate Nearest
Neighbor Search. In CoRR, Vol. abs/1612.07545.

[5] Abhinandan Das, Mayur Datar, Ashutosh Garg, and Shyamsundar Rajaram. 2007.
Google News Personalization: Scalable Online Collaborative Filtering. In WWW.
271–280.

[6] Junhao Gan, Jianlin Feng, Qiong Fang, and Wilfred Ng. 2012. Locality-Sensitive
Hashing Scheme Based on Dynamic Collision Counting. In SIGMOD. 541–552.

[7] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. 2013. Optimized Product
Quantization for Approximate Nearest Neighbor Search. In CVPR. 2946–2953.

[8] Yunchao Gong and Svetlana Lazebnik. 2011. Iterative Quantization: A Procrustean
Approach to Learning Binary Codes. In CVPR. 817–824.

[9] Yunchao Gong, Svetlana Lazebnik, Albert Gordo, and Florent Perronnin. 2013.
Iterative Quantization: A Procrustean Approach to Learning Binary Codes for
Large-Scale Image Retrieval. In TPAMI, Vol. 35. 2916–2929.

[10] Antonin Guttman. 1984. R-Trees: A Dynamic Index Structure for Spatial Search-
ing. In SIGMOD. 47–57.

[11] Kaiming He, Fang Wen, and Jian Sun. 2013. K-Means Hashing: An Affinity-
Preserving Quantization Method for Learning Binary Compact Codes. In CVPR.
2938–2945.

[12] Pinjia He, Jieming Zhu, Shilin He, Jian Li, and Michael R. Lyu. 2017. Towards
Automated Log Parsing for Large-Scale Log Data Analysis. In TDSC.

[13] Johannes Hoffart, Stephan Seufert, Dat Ba Nguyen, Martin Theobald, and Gerhard
Weikum. 2012. KORE: Keyphrase Overlap Relatedness for Entity Disambiguation.
In CIKM. 545–554.

[14] Qiang Huang, Jianlin Feng, Yikai Zhang, Qiong Fang, and Wilfred Ng. 2015.
Query-Aware Locality-Sensitive Hashing for Approximate Nearest Neighbor
Search. In PVLDB, Vol. 9. 1–12.

[15] Yuzhen Huang, Tatiana Jin, Yidi Wu, Zhenkun Cai, Xiao Yan, Fan Yang, Jinfeng
Li, Yuying Guo, and James Cheng. 2018. FlexPS: Flexible Parallelism Control in
Parameter Server Architecture. In PVLDB.

[16] Piotr Indyk and Rajeev Motwani. 1998. Approximate Nearest Neighbors: Towards
Removing the Curse of Dimensionality. In STOC. 604–613.

[17] Wang-Cheng Kang, Wu-Jun Li, and Zhi-Hua Zhou. 2016. Column Sampling
Based Discrete Supervised Hashing. In AAAI. 1230–1236.

[18] Brian Kulis and Kristen Grauman. 2009. Kernelized Locality-Sensitive Hashing
for Scalable Image Search. In ICCV. 2130–2137.

[19] Learning to Hash. 2017. http://cs.nju.edu.cn/lwj/L2H.html.
[20] Cong Leng, Jiaxiang Wu, Jian Cheng, Xi Zhang, and Hanqing Lu. 2015. Hashing

for Distributed Data. In ICML. 1642–1650.
[21] Jinfeng Li, James Cheng, Fan Yang, Yuzhen Huang, Yunjian Zhao, Xiao Yan, and

Ruihao Zhao. 2017. LoSHa: A General Framework for Scalable Locality Sensitive
Hashing. In SIGIR. 635–644.

[22] Jinfeng Li, James Cheng, Yunjian Zhao, Fan Yang, Yuzhen Huang, Haipeng Chen,
and Ruihao Zhao. 2016. A Comparison of General-Purpose Distributed Systems
for Data Processing. In IEEE BigData. 378–383.

[23] Wu-Jun Li, Sheng Wang, and Wang-Cheng Kang. 2016. Feature Learning Based
Deep Supervised Hashing with Pairwise Labels. In IJCAI. 1711–1717.

[24] Wen Li, Ying Zhang, Yifang Sun, Wei Wang, Wenjie Zhang, and Xuemin Lin. 2016.
Approximate Nearest Neighbor Search on High Dimensional Data - Experiments,
Analyses, and Improvement. In CoRR, Vol. abs/1610.02455.

[25] Xuelong Li, Di Hu, and Feiping Nie. 2017. Large Graph Hashing with Spectral
Rotation. In AAAI. 2203–2209.

[26] Wei Liu, Cun Mu, Sanjiv Kumar, and Shih-Fu Chang. 2014. Discrete Graph
Hashing. In NIPS. 3419–3427.

[27] Yingfan Liu, Jiangtao Cui, Zi Huang, Hui Li, and Heng Tao Shen. 2014. SK-
LSH: An Efficient Index Structure for Approximate Nearest Neighbor Search. In
PVLDB, Vol. 7. 745–756.

[28] Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and Kai Li. 2007. Multi-
Probe LSH: Efficient Indexing for High-Dimensional Similarity Search. In VLDB.
950–961.

[29] Marius Muja and David G. Lowe. 2009. Fast Approximate Nearest Neighbors
with Automatic Algorithm Configuration. In VISAPP. 331–340.

[30] Marius Muja and David G. Lowe. 2014. Scalable Nearest Neighbor Algorithms
for High Dimensional Data. In TPAMI, Vol. 36. 2227–2240.

[31] Ankur Narang and Souvik Bhattacherjee. 2011. Real-time Approximate Range
Motif Discovery & Data Redundancy Removal Algorithm. In EDBT. 485–496.

[32] NNS Benchmark. 2017. https://github.com/DBWangGroupUNSW/nns_benchmark.

[33] Mohammad Norouzi, Ali Punjani, and David J. Fleet. 2012. Fast Search in
Hamming Space with Multi-Index Hashing. In CVPR. 3108–3115.

[34] Mohammad Norouzi, Ali Punjani, and David J. Fleet. 2014. Fast Exact Search in
Hamming Space With Multi-Index Hashing. In TPAMI, Vol. 36. 1107–1119.

[35] OpenCV. 2017. http://opencv.org/.
[36] Rina Panigrahy. 2006. Entropy Based Nearest Neighbor Search in High Dimen-

sions. In SODA. 1186–1195.
[37] Loïc Paulevé, Hervé Jégou, and Laurent Amsaleg. 2010. Locality Sensitive

Hashing: A Comparison of Hash Function Types and Querying Mechanisms. In
PRL, Vol. 31. 1348–1358.

[38] Yuxin Su, Irwin King, and Michael R. Lyu. 2017. Learning to Rank Using
Localized Geometric Mean Metrics. In SIGIR. 45–54.

[39] Yufei Tao, Ke Yi, Cheng Sheng, and Panos Kalnis. 2009. Quality and Efficiency
in High Dimensional Nearest Neighbor Search. In SIGMOD. 563–576.

[40] Jun Wang, Ondrej Kumar, and Shih-Fu Chang. 2010. Semi-Supervised Hashing
for Scalable Image Retrieval. In CVPR. 3424–3431.

[41] Jingdong Wang, Heng Tao Shen, Jingkuan Song, and Jianqiu Ji. 2014. Hashing
for Similarity Search: A Survey. In CoRR, Vol. abs/1408.2927.

[42] Jingdong Wang, Ting Zhang, Jingkuan Song, Nicu Sebe, and Heng Tao Shen.
2017. A Survey on Learning to Hash. In TPAMI.

[43] Xin-Jing Wang, Lei Zhang, Feng Jing, and Wei-Ying Ma. 2006. AnnoSearch:
Image Auto-Annotation by Search. In CVPR. 1483–1490.

[44] Yair Weiss, Antonio Torralba, and Robert Fergus. 2008. Spectral Hashing. In
NIPS. 1753–1760.

[45] Fan Yang, Yuzhen Huang, Yunjian Zhao, Jinfeng Li, Guanxian Jiang, and James
Cheng. 2017. The Best of Both Worlds: Big Data Programming with Both
Productivity and Performance. In SIGMOD. 1619–1622.

[46] Fan Yang, Jinfeng Li, and James Cheng. 2016. Husky: Towards a More Efficient
and Expressive Distributed Computing Framework. In PVLDB, Vol. 9. 420–431.

[47] Fan Yang, Fanhua Shang, Yuzhen Huang, James Cheng, Jinfeng Li, Yunjian Zhao,
and Ruihao Zhao. 2017. LFTF: A Framework for Efficient Tensor Analytics at
Scale. In PVLDB, Vol. 10. 745–756.

[48] Cui Yu. 2002. High-Dimensional Indexing: Transformational Approaches to
High-Dimensional Range and Similarity Searches (Lecture Notes in Computer
Science), Vol. 2341. Springer.

[49] Fuzhen Zhang. 2011. Matrix Theory: Basic Results and Techniques. Springer
Science & Business Media.

[50] Ting Zhang, Chao Du, and Jingdong Wang. 2014. Composite Quantization for
Approximate Nearest Neighbor Search. In ICML. 838–846.

[51] Yuxin Zheng, Qi Guo, Anthony K. H. Tung, and Sai Wu. 2016. LazyLSH:
Approximate Nearest Neighbor Search for Multiple Distance Functions with a
Single Index. In SIGMOD. 2023–2037.

APPENDIX
Comparison with Multi-Index Hashing
In this experiment, we conducted experiments by adopting the Multi-
Index Hashing (MIH) algorithm [33, 34], which is an efficient algo-
rithm to find all buckets within a certain Hamming distance from
(the binary code of) the query. The performance of MIH on ITQ and
PCAH, compared with GQR and GHR, is reported in Figures 18-19.
The results show that MIH has slightly worse performance than
GHR, while our method GQR significantly outperforms both MIH
and GHR.

We explain why MIH has worse performance as follows. The idea
ofMIH is to chop the code into multiple blocks and build a hash table
for each block. Searching is then conducted by merging the search
results from the individual blocks, though additional de-duplication
and filtering are required. The efficiency of MIH lies in its ability to
avoid searching the empty buckets under long code length (e.g., 64
bit or 128 bit), in which the code space is much larger than the dataset
cardinality and there are many empty buckets. However, long code
usually results in poor recall-time performance when used as bucket
index [4], and thus we used short code length in our experiments.
Specially, we set the code length as an integer approximately equal to
log2 (N), where N is the cardinality of the dataset. In the experiment,
we found that the portion of empty buckets hardly exceeds 20%. In
this case, MIH is similar to but less efficient than hash lookup (i.e.,

SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA SIGMOD 2018 Research Paper

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

re
ca

ll

time (in seconds)

GQR

GHR

MIH

(a) CIFAR60K

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

re
ca

ll

time (in seconds)

GQR

GHR

MIH

(b) GIST1M

0

0.2

0.4

0.6

0.8

1

0 40 80 120 160 200

re
ca

ll

time (in seconds)

GQR

GHR

MIH

(c) TINY5M

0

0.2

0.4

0.6

0.8

1

0 25 50 75 100 125

re
ca

ll

time (in seconds)

GQR

GHR

MIH

(d) SIFT10M

Figure 18: Comparison between GQR, GHR and MIH with ITQ

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

re
ca

ll

time (in seconds)

GQR

GHR

MIH

(a) CIFAR60K

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

re
ca

ll

time (in seconds)

GQR

GHR

MIH

(b) GIST1M

0

0.2

0.4

0.6

0.8

1

0 40 80 120 160 200

re
ca

ll

time (in seconds)

GQR

GHR

MIH

(c) TINY5M

0

0.2

0.4

0.6

0.8

1

0 25 50 75 100 125

re
ca

ll

time (in seconds)

GQR

GHR

MIH

(d) SIFT10M

Figure 19: Comparison between GQR, GHR and MIH with PCAH

0

0.2

0.4

0.6

0.8

1

0 2 4 6

re
ca

ll

time (in seconds)

GQR

GHR

(a) CIFAR60K

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

re
ca

ll

time (in seconds)

GQR

GHR

(b) GIST1M

0

0.2

0.4

0.6

0.8

1

0 25 50 75 100 125

re
ca

ll

time (in seconds)

GQR

GHR

(c) TINY5M

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

re
ca

ll

time (in seconds)

GQR

GHR

(d) SIFT1M

Figure 20: Comparison between GQR and GHR with K-means Hashing

GHR), since MIH needs to pay extra cost for de-duplication and
filtering.

The result of this experiment shows that the superior performance
of GQR over Hamming ranking mainly comes from the fine-grained
similarity metric, i.e., QD. An efficient algorithm that searches the
Hamming space, e.g., MIH , does not solve the coarse-grained prob-
lem of Hamming distance.

Compatibility with K-Means Hashing
Unlike existing hashing algorithms that normally adopt hyper-planes
in quantization, K-means hashing [11] uses K-means to train the
codewords for quantization. Since K-neans hashing adopts Hamming
distance in query processing, GQR can also improve its performance
as shown below.

The vector quantization algorithms usually learn one or more
codebooks using K-means and quantize an item to its nearest code-
words in the codebooks. For K-means hashing, we define the flipping
cost of the i-th bit of query q as dist (q, cq′) − dist (q, cq), where cq
is the codeword that q is quantized to, while cq′ is the codeword that
only differs from cq in the i-th bit of their binary codes. Note that a
codeword in K-means is a real-number vector, which is indexed by
a binary code.

In the original K-means hashing paper [11], hash lookup (denoted
by GHR) is used as the querying method. We compared the time-
recall performance of GHR and GQR in Figure 20. The performance
on SIFT10M is not reported because the training of K-means hashing
ran out of memory in our machine. The result shows that GQR can
outperform GHR by a large margin for K-means hashing.

Comparison with OPQ and More Datasets
In this experiment, we used 8 additional datasets of different types
from the NNS Benchmark [24, 32] to compare OPQ, ITQ and
PCAH. OPQ uses IMI and ITQ/PCAH uses GQR to accelerate
similarity search. We randomly sampled 1000 queries for datasets
DEEP1M 7, MSONG1M 8, GLOVE1.2M 9, and GLOVE2.2M 9. We
directly used the 200 queries provided together with the correspond-
ing datasets by the NNS Benchmark [24, 32] for AUDIO50K 10,
NUSWIDE0.26M 11, UKBENCH1M 12, and IMAGENET2.3M 13.
Some statistics of the 8 datasets are listed in Table 3.

7https://yadi.sk/d/I_yaFVqchJmoc
8http://www.ifs.tuwien.ac.at/mir/msd/download.html
9https://nlp.stanford.edu/projects/glove/

10http://www.cs.princeton.edu/cass/audio.tar.gz
11http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
12http://vis.uky.edu/ stewe/ukbench/
13http://cloudcv.org/objdetect/

A General and Efficient Querying Method for
Learning to Hash SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA

0

0.2

0.4

0.6

0.8

1

0 8 16 24 32 40

re
ca

ll

time (in seconds)

OPQ

ITQ

PCAH

(a) DEEP1M

0

0.2

0.4

0.6

0.8

1

0 4 8 12 16 20

re
ca

ll

time (in seconds)

OPQ

ITQ

PCAH

(b) MSONG1M

0

0.2

0.4

0.6

0.8

1

0 40 80 120 160 200

re
ca

ll

time (in seconds)

OPQ

ITQ

PCAH

(c) GLOVE1.2M

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

re
ca

ll

time (in seconds)

OPQ

ITQ

PCAH

(d) GLOVE2.2M

Figure 21: Comparison between (ITQ/PCAH + GQR) and (OPQ + IMI)

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5

re
ca

ll

time (in seconds)

OPQ

ITQ

PCAH

(a) AUDIO50K

0

0.2

0.4

0.6

0.8

1

0 0.04 0.08 0.12 0.16 0.2

re
ca

ll

time (in seconds)

OPQ

ITQ

PCAH

(b) NUSWIDE0.26M

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

re
ca

ll

time (in seconds)

OPQ

ITQ

PCAH

(c) UKBENCH1M

0

0.2

0.4

0.6

0.8

1

0 4 8 12 16 20

re
ca

ll

time (in seconds)

OPQ

ITQ

PCAH

(d) IMAGENET2.3M

Figure 22: Comparison between (ITQ/PCAH + GQR) and (OPQ + IMI)

Table 3: Additional Datasets

Dataset Dim# Item# Code Length Type
DEEP1M 256 1,000,000 16 Image

MSONG1M 420 994,185 16 Audio
GLOVE1.2M 200 1,193,514 16 Text
GLOVE2.2M 300 2,196,017 18 Text
AUDIO50K 192 53,387 12 Audio

NUSWIDE0.26M 500 268,643 14 Image
UKBENCH1M 128 1,097,907 16 Image

IMAGENET2.3M 150 2,340,373 16 Image

We report the performance of PCAH/ITQ using GQR and OPQ
using IMI, for another 8 datasets in Figures 21-22. The results show
that in the majority of the cases GQR can boost the performance
of PCAH and/or ITQ to be comparable with that of OPQ, while in
other cases there is no clear winner.

	Abstract
	1 introduction
	2 Learning to Hash
	2.1 Hashing
	2.2 Querying
	2.3 Performance Metrics

	3 Limitations of Hamming Ranking
	4 Quantization Distance Ranking
	4.1 Quantization Distance
	4.2 The QD Ranking Algorithm

	5 Generate to Probe
	5.1 Algorithm Framework
	5.2 Flipping Vector
	5.3 Bucket Generation

	6 Experimental Evaluation
	6.1 Datasets and Settings
	6.2 Comparison between QR and GQR
	6.3 Comparison between GQR and HR
	6.4 Compatibility with L2H Algorithms
	6.5 Comparison with Vector Quantization

	7 Related work
	8 Conclusions
	References

