
Noname manuscript No.
(will be inserted by the editor)

Efficient Processing of K-Hop Reachability Queries

James Cheng · Zechao Shang · Hong Cheng ·

Haixun Wang · Jeffrey Xu Yu

Received: date / Accepted: date

Abstract We study the problem of answering k-hop
reachability queries in a directed graph, i.e., whether

there exists a directed path of length k, from a source

query vertex to a target query vertex in the input graph.

The problem of k-hop reachability is a general prob-

lem of the classic reachability (where k = ∞). Exist-
ing indexes for processing classic reachability queries,

as well as for processing shortest-path distance queries,

are not applicable or not efficient for processing k-hop

reachability queries. We propose an efficient index for
processing k-hop reachability queries. Our experimen-

tal results on a wide range of real datasets show that

our method is efficient and scalable in terms of both

index construction and query processing.

1 Introduction

The reachability query, which asks whether one ver-

tex can reach another vertex in a directed graph, is
a basic operator for a variety of databases (e.g., XML,

RDF) and network applications (e.g., social and biolog-

ical networks). The problem of how to efficiently answer

reachability queries has attracted a lot of interest lately

[2,5–8,13–16,22,26–28,30,32–34,37,38]. There are also

J. Cheng
Department of Computer Science and Engineering
The Chinese University of Hong Kong
E-mail: jcheng@cse.cuhk.edu.hk

Z. Shang, H. Cheng, J. X. Yu
Department of Systems Engineering and Engineering Man-
agement
The Chinese University of Hong Kong
E-mail: zcshang, hcheng, yu@se.cuhk.edu.hk

H. Wang
Microsoft Research Asia, Beijing, China
E-mail: haixunw@microsoft.com

several extensions to the classic reachability problem;
for example, reachability in uncertain graphs where the

existence of an edge is given by a probability [24], and

reachability with constraints such as edges on the path

must have certain labels [23], etc.

In this work, we study a new type of reachability

queries. Instead of asking whether a vertex t is reachable

from a vertex s, we ask whether t is reachable within
k hops from s. In other words, the query asks whether

there exists a path from s to t such that the length of

the path is no more than k. We call this problem the

k-hop reachability problem.

The primary motivation for the k-hop reachability

problem is that in many real life networks (e.g., wireless

or sensor networks, the Web and Internet, telecommu-
nication networks, social networks, etc.), the number

of hops within which s can reach t indicates the level of

influence s has over t. Applications on such networks

can benefit more from k-hop reachability than classic
reachability (i.e., k = ∞). We give some examples as

follows.

In a wireless or sensor network, where a broadcasted
message may get lost during any hop, the probabil-

ity of reception degrades exponentially over multiple

hops [31]. In these applications, reachability may not

be meaningful or have much practical use, while k-hop
reachability, since it can model the level and sphere of

the influence, is helpful in many analytical tasks.

In many real life networks, the k-hop reachability
between two vertices is of more interest when the value

of k is small. For example, in social networks, although

there is a well-known six-degrees-of-separation theory

(i.e., any two persons are only 6 or fewer hops away from
each other), the degree of acquaintance may even de-

crease super exponentially (i.e., two persons may hardly

know each other if they are just 3 hops apart).

2 James Cheng et al.

Clearly, we are more interested to know if two per-

sons are connected within only a few hops, instead of

beyond 6 hops for which case one can almost know for

sure they are connected. On the other hand, a small k

does not necessarily make the problem easier. Consider
an application that, given two persons, asks whether

one is reachable from the other within 6 hops. A naive

implementation is to invoke a breadth-first search (BFS).

However, among the search quests in reality, a majority
of them have at least one of the persons as a celebrity

at some level of the BFS. A BFS from a celebrity (e.g.,

Lady Gaga, who has 40,000,000 fans on Facebook) can

quickly cover a considerable proportion of the entire so-

cial network within as small as 3 hops, and is clearly
out of the question for online query processing.

The problem of k-hop reachability cannot be derived

from classic reachability, which is actually a special case

of k-hop reachability, i.e., when k = ∞. Indeed, the k-
hop problem is more challenging since more information

is required to answer the k-hop reachability query. To

see this, consider the transitive closure [30] of the ad-

jacency matrix of a directed graph. If we are given this

transitive matrix, we can find out if s can reach t in-
stantly by checking whether their corresponding entry

in the transitive matrix is 1 or 0. However, for large

graphs, it is infeasible to pre-compute and store the

transitive closure, as it takes O(n2) space, where n is
the number of vertices in the graph. Thus, the reacha-

bility problem is essentially the problem of how to ef-

fectively “encode” the 0-1 transitive matrix into a small

index structure which still provides efficient lookup of

reachability between any two vertices. For k-hop reach-
ability, the matrix we need to “encode” is no longer a

0-1 matrix. Instead, each entry cst in the matrix con-

tains the length of the shortest path from s to t. Clearly,

this matrix contains much more information than the
0-1 transitive matrix. In Section 3, we further analyze

in details why all the existing indexes are not suitable

for processing k-hop reachability queries.

We propose an efficient index for processing k-hop

reachability queries. Our index, called k-reach, is con-
structed based on the concept of vertex cover [17]. The

main idea of the index design is based on the fact that all

vertices in a graph are reachable within 1 hop of some

vertex in the vertex cover of the graph. The vertex cover
is small for a wide range of real world graphs. Thus, we

only need to pre-compute k-hop reachability informa-

tion among a small portion of the vertices, while we also

show that it only requires at most 2 bits for encoding

each k-hop reachability information.

Another advantage of k-reach is that it allows the

inclusion of all high-degree vertices in the vertex cover.

This not only gives the same coverage with a smaller

vertex cover (and hence reduces the index size), but

also allows queries that involve high degree vertices to

be answered more efficiently (e.g., the “Lady Gaga”

example given earlier).

The k-reach index may have large storage space

if the size of the vertex cover is large. Thus, we also

propose a more scalable method to address this prob-
lem. The more scalable k-reach index employs a partial

coverage as well as relaxes the 1-hop edge coverage in

the classic vertex cover to k-hop vertex coverage, thus

significantly reducing the index size for handling large

graphs.

The k-reach index is simple in design and easy to

implement. The index can handle both classic reach-
ability queries and k-hop reachability queries, and can

even be easily extended to processing shortest-path dis-

tance queries. We conducted experiments on a wide

range of real datasets. Our results show that k-reach is

significantly more efficient and scalable than the state-
of-the-art shortest-path distance indexes [3,25], which

can be used to answer k-hop reachability queries, thus

demonstrating the need for a k-hop reachability index.

The results also show that k-reach is also efficient for
processing classic reachability queries, even comparable

with the state-of-the-art indexes [26,27,33,37] that are

primarily designed for classic reachability.

Organization. The rest of the paper is organized as

follows. Section 2 formally defines the notations and the

problem. Section 3 analyzes the difficulties of applying

the existing works for handling k-hop reachability and
highlight the challenges. Section 4 presents the details

of the k-reach index. Section 5 presents a more scal-

able index. Section 6 reports the experimental results.

Section 7 discusses other related works, followed by the
conclusions in Section 8.

2 Notations and Problem Definition

Table 1 lists the notations that are frequently used in
this paper.

Let G = (V,E) be a directed graph, where V is the

set of vertices and E is the set of edges in G, respec-
tively. An edge (u, v) ∈ E is a directed edge from u to

v, while (v, u) ∈ E means that the edge is directed from

v to u.

Given a pair of vertices s and t in G, we say that t

is reachable from s, denoted by s → t, if there exists

a simple directed path P = 〈s, · · · , t〉 in G. If |P | ≤ k,

where |P | is the path length (i.e., the number of edges
on P), then t is also k-hop reachable from s, de-

noted by s →k t. A reachability query is to determine

whether s → t, while a k-hop reachability query is

Efficient Processing of K-Hop Reachability Queries 3

Table 1 Frequently used notations

Notation Description
G = (V,E) A directed graph
n or m The number of vertices or edges in G
|G| The size of G, |G| = (n+m)
s→ t t is reachable from s
s→k t t is reachable from s within k hops
inNei(v,G) The set of in-neighbors of v in G
inDeg(v,G) The in-degree of v in G, i.e., |inNei(v,G)|
outNei(v,G) The set of out-neighbors of v in G
outDeg(v,G) The out-degree of v in G, i.e., |outNei(v,G)|
Nei(v,G) The set of neighbors of v in G
Deg(v,G) The out-degree of v in G, i.e., |Nei(v,G)|

to determine whether s →k t. Note that a reachability
query is in fact an ∞-hop reachability query.

Problem definition. Given a directed graph G, the
k-hop reachability indexing problem is to construct an

index structure for G to answer k-hop reachability queries.

The following notations will also be used throughout
the paper in the discussion of our indexing and query

processing algorithms.

Given a directed graph G = (V,E), define n = |V |,
m = |E|, and |G| = (n + m). We denote the set of
in-neighbors of a vertex v in G by inNei(v,G) =

{u : (u, v) ∈ E}, and the in-degree of v in G by

inDeg(v,G) = |inNei(v,G)|. Similarly, we denote the

set of out-neighbors of v in G by outNei(v,G) =

{u : (v, u) ∈ E}, and the out-degree of v in G by
outDeg(v,G) = |outNei(v,G)|. We also denote the set

of neighbors of v in G by Nei(v,G) = (inNei(v,G) ∪
outNei(v,G)), and the degree of v in G by Deg(v,G) =

|Nei(v,G)|.

3 Reachability vs. k-Hop Reachability

In this section, we analyze the suitability of the exist-

ing graph reachability indexes [2,5–8,13–16,22,26–28,

30,32–34,37,38] for processing k-hop reachability queries.
An understanding of these existing works with their re-

lation to the problem of k-hop reachability query pro-

cessing helps not only the work in this paper but also

potential future work along this direction.

We categorize the existing works of reachability in-

dexing into six approaches and then show that they

cannot be applied or are inefficient for processing k-hop
reachability queries. Note that some existing works may

fall into more than one category since they may com-

bine different approaches to solve the problem.

3.1 Directed Acyclic Graph based Approach

The first category of indexes is related to directed acyclic

graph (DAG). Many existing indexes for processing

reachability queries assume that the input graph is a

DAG [6–8,22,26–28,30,33,38], because if the input graph

is not a DAG, one can pre-process it and turn it into
a DAG as follows. First, compute all the strongly con-

nected components (SCCs) in the input graph, where

an SCC is a maximal subgraph in which there is a path

from each vertex to every other vertex in the subgraph.
Then, condense each SCC into a single super-vertex,

where each super-vertex is a vertex in the DAG. Finally,

a directed edge (c1, c2) is added from a super-vertex c1
to another super-vertex c2 in the DAG iff there exists a

directed edge (u, v) in the original graph such that u is
in c1 and v is in c2 (note that c1 and c2 are two SCCs

in the original graph).

Condensing a general graph into a DAG can save

space and it works for processing reachability queries
since all vertices within an SCC are pairwise reachable

from each other. However, for processing k-hop reach-

ability queries, the DAG-based approach fails because

two reachable vertices in the DAG may not be k-hop

reachable in the original graph, since the shortest path
connecting them may have been condensed into a much

shorter path (of length ≤ k) in the DAG. To answer a

k-hop reachability query, one has to expand the ver-

tices involved in the DAG to their corresponding SCCs
in the original graph in order to examine the k-hop in-

formation, which is no cheaper than directly checking

k-hop in the original graph.

3.2 Traversal-based Vertex Coding Approach

The second category of graph reachability indexes fo-

cuses on designing some vertex coding scheme based on
graph traversal [2,6,8,32,34,37,38]. A traversal, e.g.,

depth-first search (DFS), of a graph assigns each vertex

a pair of codes according to the traversal order (e.g., the

discovery time and finish time of a vertex in a DFS).
The pair of codes obtained from a traversal forms an in-

terval, which can be further modified to capture more

information of descendants or of other relevant links.

Then, reachability queries can be answered based on

the containment relationship of the intervals. Different
graph traversal methods may be applied and there can

be multiple traversals depending on the design of the

index.

For processing k-hop reachability queries, however,
the interval containment test of a traversal-based ap-

proach fails to capture the k-hop requirement. To ex-

amine the number of hops from the source vertex to

4 James Cheng et al.

the target vertex, one needs to explore the input graph.

Although the vertex coding may help guide the explo-

ration, the process can be as expensive as a trivial BFS

to process the k-hop reachability query starting from

the source vertex.

3.3 Chain-Cover based Approach

The third category of graph reachability indexes are

constructed based on a chain cover of the input graph

or partially relied on some chain cover [7,8,22,26–28].

A chain cover of a graph G = (V,E) consists of a set
of chains, {C1, · · · , Ct}, where Ci ⊆ V ,

⋃
1≤i≤t Ci = V

and (Ci ∩ Cj) = ∅, for 1 ≤ i, j ≤ t and i 6= j. For

each chain Ci = {v1, · · · , vci}, we have vx → vy for

1 ≤ x < y ≤ ci. After computing a chain cover of
G, each vertex v ∈ V is assigned a list of chain codes

{σ1, · · · , σt}, where σi indicates that v can reach the

vertex at the σi-th position in the chain Ci. Thus, a

reachability query can be answered by examining the

lists of chain codes of the vertices involved.

Since a chain or the list of chain codes of a vertex
retain only the reachability information between the

vertices, the chain-cover based indexes cannot process

a k-hop reachability query. It is not clear how we may

extend the chain cover to contain the information of

k-hop reachability, since the connections among both
the chains and vertices in a chain are all involved. Even

though the information of k-hop reachability can be in-

dexed in the chain cover, resolving the inter-connection

between chains and intra-connection within a chain to
process k-hop reachability can be complicated and ex-

pensive.

3.4 2-Hop Cover based Approach

The fourth category of works construct reachability in-

dexes based on the concept of 2-hop cover [5,13–16,

27]. The 2-hop cover approach computes for each ver-
tex v in an input graph G = (V,E) two vertex sub-

sets, Lin(v) and Lout(v), where Lin(v) consists of a set

of vertices in G that can reach v and Lout(v) consists

of a set of vertices in G that can be reached from v.
Then, a reachability query is answered as follows: a

source vertex s can reach a target vertex t if and only

if (Lout(s) ∩ Lin(t)) 6= ∅.
The 2-hop cover clearly also cannot be used to pro-

cess k-hop reachability queries because all distance in-

formation between the vertices is lost. The 2-hop cover
can be extended to encode the distance information of

each reachable vertex in Lin(v) or Lout(v) related to

v. However, as shown in many existing works of graph

reachability [7,8,26,27], the 2-hop cover has not only

a higher complexity but is also significantly less effi-

cient than the recent indexes in real performance for

processing reachability queries, not to mention for pro-

cessing k-hop reachability queries. On the contrary, we
show that our approach is efficient for processing both

reachability queries and k-hop reachability queries.

3.5 Shortest-Path Approaches

Indexes for processing shortest-path or distance queries

[3,12,16,25] can be trivially used to process k-hop reach-
ability queries. Shortest-path or distance query pro-

cessing, however, has a significantly higher cost than

k-hop reachability query processing, as we will show in

our experiments. The 2-hop cover based indexes [12,16]
are not efficient enough for processing k-hop reachabil-

ity queries, as explained in Section 3.4. The highway-

centric labeling approach has an expensive index con-

struction cost and is not scalable, and is also shown to

be significantly slower than our method in query pro-
cessing in Section 6.4.

Apart from the above-mentioned three indexes, there

are also indexes for processing shortest-path distance

queries in undirected graphs [35,36]. These indexes also

have a high indexing cost, and we are not aware how

they can be extended to process reachability queries
that concern directed graphs.

There are also many indexes developed for process-

ing shortest-path and distance queries in planar graphs

or road networks (see [1] and the references therein).

However, these indexes are specifically optimized for

road networks and cannot be applied to directed gen-
eral graphs.

3.6 Other Approaches

Other approaches such as transitive closure [30] can

also be extended to encode the k-hop reachability in-

formation. However, the transitive closure is in general
too large to be practical. A recent work has been pro-

posed to compress the transitive closure using bit vec-

tor compression techniques [33], which has shown to be

effective for processing reachability queries. However,

unlike encoding for graph reachability which requires
only boolean indicators, encoding the k-hop reachabil-

ity information not only requires more bits for each en-

try, but also breaks the continuity of long sequences of

‘0’s and ‘1’s which is crucial for the effectiveness of the
bit vector compression techniques [33]. More critically,

both transitive closure [30] and compression on transi-

tive closure [33] work only on the much smaller DAG of

Efficient Processing of K-Hop Reachability Queries 5

the input graph, while the DAG-based approach is not

applicable for processing k-hop reachability queries as

discussed in Section 3.1.

4 A Vertex-Cover-based Index

Having discussed the limitations of the existing indexes
for processing k-hop reachability queries, in this sec-

tion we propose an efficient index, called k-reach, as a

solution.

4.1 K-Reach: Index Construction

The k-reach index is constructed based on the concept

of vertex cover [17]. We first discuss how to compute

a minimum vertex cover of a graph G. Then, we de-

fine the index structure and describe the algorithm that

constructs the index.

4.1.1 Minimum Vertex Cover Approximation

A set of vertices, S, is a vertex cover of a graph G =

(V,E) if for every edge (u, v) ∈ E, we have ({u, v} ∩
S) 6= ∅. Obviously, V itself is a vertex cover of G but
is too large to be used to construct an index. Thus, we

want to minimize the size of the vertex cover.

A vertex cover S is called a minimum vertex cover
of G if S has the smallest size among all vertex cov-

ers of G. The problem of computing the minimum ver-

tex cover is well-known to be NP-hard [17]. However,

there is a polynomial time algorithm for computing a

2-approximate minimum vertex cover, which is given as
follows.

We randomly select an edge (u, v) from E, add both
u and v to S, and then remove u and v from G, together

with all edges incident to the two vertices. Note that all

edges incident to u or v, whether in-edges or out-edges,

can be removed from G because all these edges are cov-

ered by either u or v in S. This process is repeated until
all edges are removed from G.

The above algorithm takes O(m+ n) time since ev-

ery edge is only touched once. Let C be a minimum
vertex cover of G. Then, for every pair of vertices, u

and v, selected to be included in S in the above pro-

cess, either u or v must be in C, because otherwise the

edge (u, v) is not covered by any vertex in C. Thus, we
have |S| ≤ 2|C|. From the analysis, we also see that we

may simply ignore the direction of the edges in com-

puting a 2-approximate minimum vertex cover of G.

Algorithm 1: Construction of k-reach

Input : A directed graph, G = (V,E); and an
integer, k

Output: A k-reach index of G

compute a 2-approximate minimum vertex cover, S, of1

G;
initialize a weighted, directed graph I = (VI , EI , ωI);2

VI ← S;3

foreach u ∈ S do4

compute Sk(u) = {v : v ∈ S, u→k v} by a k-hop5

BFS from u;
foreach v ∈ Sk(u) do6

EI ← (EI ∪ {(u, v)});7

if u→k−2 v then8

ωI((u, v))← (k − 2);9

else if u→k−1 v then10

ωI((u, v))← (k − 1);11

else // i.e., u→k v12

ωI((u, v))← k;13

14

return I = (VI , EI , ωI);15

4.1.2 Definition of k-Reach and Its Construction

We now define the structure of the k-reach index as

follows.

Definition 1 (k-reach) Given a directed graph G =

(V,E), a vertex cover S of G, and an integer k, the
k-reach index of G is a weighted, directed graph I =

(VI , EI , ωI) defined as follows.

– VI = S.

– EI = {(u, v) : u, v ∈ S, u →k v}.
– ωI is a weight function that assigns a weight to each

edge e = (u, v) ∈ EI as follows:

– if u →k−2 v, then ωI(e) = (k − 2);

– else if u →k−1 v, then ωI(e) = (k − 1);

– else (i.e., u →k v), then ωI(e) = k.

Note that in Definition 1, “u →k−2 v” implies “u →k−1

v”, both of which also imply “u →k v”.

Next, we describe the index construction process, as

shown in Algorithm 1.
Algorithm 1 first computes a 2-approximate min-

imum vertex cover, S, of the input graph G by the

algorithm given in Section 4.1.1. Then, it constructs

the graph I = (VI , EI , ωI) by performing a breath-first

search (BFS) of G within k hops from each starting ver-
tex u ∈ S. This process computes the set of all vertices

in S that can be reached from u in k hops in G, i.e., the

set Sk(u) in Line 5. The rest of the algorithm is simply

including each edge (u, v) in EI , for each v ∈ Sk(u),
and assigning the weight to (u, v).

We give an example of the k-reach index constructed

by Algorithm 1 as follows.

6 James Cheng et al.

Example 1 Given the graphG in Figure 1. Assume that

the 2-approximate algorithm randomly picks the edges,

(b, d) and (g, i), in G. Then, {b, d, g, i} forms the set

of 2-approximate minimum vertex cover of G. We can

verify that {b, d, g, i} is indeed a vertex cover of G, since
every edge in G is incident to at least one of the vertices

in {b, d, g, i}.
Let k = 3. The k-reach graph, I = (VI , EI , ωI), of

G is shown in Figure 2. Since k = 3, the possible edge

weights are k − 2 = 1, k − 1 = 2, and k = 3. For
example, b →3 g in G and thus we have the directed

edge (b, g) with ωI((b, g)) = 3 as shown in Figure 2.

We will further explain how we use the k-reach graph

to process a k-hop reachability query in Example 2 in
Section 4.2. 2

Fig. 1 An example graph G (the vertex cover is {b, d, g, i})� �� ����� ��
Fig. 2 The k-reach graph (k = 3), I = (VI , EI , ωI), of G in
Figure 1

4.1.3 Complexity of Constructing k-Reach

Computing the 2-approximate minimum vertex cover

S requires O(m + n) time. Constructing the weighted,

directed graph I = (VI , EI , ωI) takes O(
∑

u∈S |Gk(u)|)
time, where Gk(u) is the subgraph of G that can be

reached from u in k hops. Note that it is straightfor-

ward to parallelize this process if more machines or

CPU cores are available.

The size of the index, i.e., the size of the graph I,

depends on both the size of S and Sk(u) for each u ∈ S.
However, it is difficult to derive a theoretical bound

of S or Sk(u) for real-world graphs since they often

vary significantly in characteristics with respect to S

and Sk(u), even though some graphs may share some
similar properties such as sparsity and power-law degree

distribution. We are not aware of any existing work that

gives a theoretical bound on the size of the minimum

Algorithm 2: Query processing using k-reach

Input : A directed graph, G = (V,E); a k-reach
index, I = (VI , EI , ωI), of G; and two query
vertices, s and t

Output: A boolean indicator whether s→k t

// case 1: both s and t are in the vertex cover

if s ∈ VI and t ∈ VI then1

if (s, t) ∈ EI then2

return true;3

else4

return false;5

// case 2: only s is in the vertex cover

else if s ∈ VI and t /∈ VI then6

if ∃v ∈ inNei(t, G) such that (s, v) ∈ EI and7

ωI((s, v)) ≤ (k − 1) then
return true;8

else9

return false;10

// case 3: only t is in the vertex cover

else if s /∈ VI and t ∈ VI then11

if ∃v ∈ outNei(s,G) such that (v, t) ∈ EI and12

ωI((v, t)) ≤ (k − 1) then
return true;13

else14

return false;15

// case 4: both s and t are not in the vertex

cover

else if s /∈ VI and t /∈ VI then16

if ∃u ∈ outNei(s,G) and ∃v ∈ inNei(t, G) such17

that (u, v) ∈ EI and ωI((u, v)) ≤ (k − 2) then
return true;18

else19

return false;20

vertex cover for real-world graphs. Thus, we examine
the size of the index experimentally for a wide range of

real-world graphs.

Finally, constructing the k-reach index uses O(m+

n) memory space. Note that the constructed index is

then stored on disk simply in the adjacency list repre-
sentation [17] of the k-reach graph I.

4.2 K-Reach: Query Processing

We now discuss how we process a k-hop reachability

query using the k-reach index.

4.2.1 Query Processing using k-Reach

We give the algorithm for query processing using k-
reach in Algorithm 2.

Given two query vertices, s and t, Algorithm 2 pro-

cesses the k-hop reachability query by considering four

Efficient Processing of K-Hop Reachability Queries 7

cases. The following theorem proves the correctness of

the algorithm for processing a k-hop reachability query

using the k-reach index. The proof also explains how a

query is processed.

Theorem 1 Given a directed graph, G = (V,E), the

k-reach index, I = (VI , EI , ωI), of G, and two query

vertices, s and t, Algorithm 2 returns true if s →k t in

G and false otherwise.

Proof Note that VI is a vertex cover of G. There are

only four possible cases in processing a k-hop reacha-

bility query by considering the membership of s and

t in VI . Algorithm 2 processes the query according to
which case the query belongs to as follows.

Case 1: both s and t are in VI . In this case, if s →k t

in G, then the edge (s, t) must exist in I. Thus, the

answer to the query by Algorithm 2 is trivially correct.

Case 2: only s is in VI . In this case, all in-neighbors
(if any) of t must be in VI . Otherwise (i.e., if ∃v ∈
inNei(t, G) such that v is not in VI), then the edge

(v, t) is not covered since both v and t are not in the

vertex cover VI . Thus, if s →k t in G, then there must
exist an in-neighbor v of t such that ωI((s, v)) ≤ (k−1),

since the (directed) path from s to t must pass through

at least one in-neighbor of t. Therefore, it is sufficient

to check whether (s, v) ∈ EI and ωI((s, v)) ≤ (k− 1) in

order to determine whether s →k t.
Case 3: only t is in VI . This case is similar to Case

2. Now since s is not in the vertex cover VI , all out-

neighbors (if any) of s must be in VI ; otherwise the

edge (s, v) is not covered for some v ∈ outNei(s,G)
and v /∈ VI . Thus, similar to Case 2, it is sufficient to

check whether (v, t) ∈ EI and ωI((v, t)) ≤ (k − 1) in

order to determine whether s →k t.

Case 4: both s and t are not in VI . In this case,

all out-neighbors (if any) of s and all in-neighbors (if
any) of t must be in VI ; otherwise the edges (s, u)

and (v, t) are not covered for some u ∈ outNei(s,G),

v ∈ inNei(t, G), and u, v /∈ VI . Thus, if s →k t in G,

then there must exist an out-neighbor u of s and an
in-neighbor v of t such that ωI((u, v)) ≤ (k − 2), since

the (directed) path from s to t must first go from s to

some u ∈ outNei(s,G), and finally pass through some

v ∈ inNei(t, G) to t. Therefore, it is sufficient to check

whether (u, v) ∈ EI and ωI((u, v)) ≤ (k − 2) in order
to determine whether s →k t. 2

We give an example of using the k-reach index to

process k-hop reachability queries as follows. We use

s 9k t to indicate that t is not k-hop reachable
from s.

Example 2 Consider the graph G in Figure 1 and the

k-reach graph I = (VI , EI , ωI) of G in Figure 2, where

k = 3. We discuss how we use k-reach to process each

of four cases in Algorithm 2 as follows.

Case 1: both s and t are in VI . Let s = b ∈ VI .

We first consider t = g ∈ VI . Since (b, g) ∈ EI , we

have b →k g. However, if t = i ∈ VI , then b 9k i
since (b, i) /∈ EI , although b can reach i in G (but in

4 > k = 3 hops).

Case 2: only s is in VI . Let s = d ∈ VI . If t = h /∈ VI ,

then we have d →k h since there is an in-neighbor g of

h such that (d, g) ∈ EI with ωI((d, g)) = 2 ≤ (k −
1) = 2. But if t = j /∈ VI , then d 9k j since for the

only in-neighbor i of j, although (d, i) ∈ EI , we have

ωI((d, i)) = 3 > (k − 1). We can easily verify in G that

j is reachable from d in at least 4 hops and thus not

3-hop reachable from d.

Case 3: only t is in VI . Let s = a /∈ VI . If t = d ∈ VI ,

we have a →k d since there is an out-neighbor b of a

such that (b, d) ∈ EI with ωI((b, d)) = 1 ≤ (k− 1) = 2.

But if t = g ∈ VI , then a 9k g since ωI((b, g)) = 3 >

(k − 1). We can easily verify in G that g is reachable
from a in at least 4 hops and thus not 3-hop reachable

from a.

Case 4: both s and t are not in VI . Let s = c /∈ VI .

If t = f /∈ VI , we have c →k f since there is an out-

neighbor b of c and an in-neighbor d of f such that
(b, d) ∈ EI with ωI((b, d)) = 1 ≤ (k − 2) = 1. But

if t = h /∈ VI , then c 9k h since h has only one in-

neighbor g but ωI((b, g)) = 3 > (k − 2). We can easily

verify in G that h is reachable from c in at least 5 hops
and thus not 3-hop reachable from c. 2

4.2.2 Complexity of Query Processing using k-Reach

Since existing indexes for reachability querying are all

in-memory indexes, for fairness of comparison in query

processing we first load the k-reach graph I into main
memory and keep the graph in its adjacency list repre-

sentation. We also keep the original graph in memory

and use a bit vector to indicate whether each v ∈ V

belongs to VI . Then, the membership tests whether

s and t belong to VI take O(1) time by directly ac-
cessing the bit vector in memory. Checking whether an

edge (u, v) exists in EI and retrieving its weight take

O(log outDeg(u, I)) or O(log inDeg(v, I)) CPU time, by

a binary search of v in the adjacency list of u or a binary
search of u in the adjacency list of v.

Thus, Case 1 of Algorithm 2 takesO(log outDeg(s, I))

time, Case 2 takes O(outDeg(s, I) + inDeg(t, G)) time,

Case 3 takes O(outDeg(s,G)+inDeg(t, I)) time, Case 4

usesO(
∑

u∈outNei(s,G)(outDeg(u,I)+inDeg(t, G))) time.
Note that for Cases 2 to 4 we can perform intersection

of the involved adjacency lists and terminate earlier as

soon as an edge is found to give a true answer.

8 James Cheng et al.

4.3 The Curse of High-Degree Vertices

According to the complexity analysis of query process-

ing in Section 4.2.2, the query performance depends

largely on the degree of a vertex in G and in I. Many
large real-world graphs have a power-law degree distri-

bution and hence a small number of vertices may have

a very high degree. For example, the singer-songwriter

Lady Gaga has 40,000,000 fans on Facebook. Therefore,
it is crucial to avoid having these high-degree vertices

as query vertices that fall into Case 4, or even Cases 2

and 3, of Algorithm 2. Nevertheless, statistically these

high-degree vertices may indeed have a higher proba-

bility to be picked as query vertices since they usually
represent objects that attract more attention.

To enable these high-degree query vertices to be pro-
cessed efficiently, we modify the algorithm for comput-

ing the 2-approximate minimum vertex cover in Section

4.1.1 as follows. In picking an edge in order to include

its two end vertices in the vertex cover, we give a higher

priority to edges with either or both end vertices that
have a high degree. Since most real-world graphs have

only a very small percentage of high-degree vertices [29],

we can easily include all such vertices in the vertex cover

without sacrificing the approximation ratio. In fact, in-
cluding the high-degree vertices in the vertex cover is a

greedy strategy that tends to reduce the size of the ver-

tex cover in practice, since a high-degree vertex covers

more edges than a low-degree one.

Prior study has shown that for a typical real-world

graph with power-law degree distribution, if the graph

has 1 million vertices, then the “h-index” of the graph is
only about 300 [10]; that is, the 1 million-vertex graph

contains only about h = 300 vertices with degree at

least h = 300.

The vertices that have a high degree in G, how-

ever, also tend to have a high degree in I. This not

only reflects a tradeoff in query performance but also

increases the index size. However, this problem can be
alleviated as follows. Since there are only three types

of edge weight, i.e., k, (k − 1), and (k − 2), in I, we

only need to use 2 bits to represent each edge weight.

Thus, the set of neighbors of those high-degree vertices

in I can be effectively represented in a more compact
way, such as interval lists or partitioned word aligned

hybrid compression [33], which have been shown effec-

tive for reducing the storage size of the edge transitive

closure graph for processing reachability queries. Note
that with the compact representations, we only need to

locate the corresponding interval or bits for query pro-

cessing [33], instead of searching the list of neighbors.

4.4 A General k

We next consider if one wants to ask k-hop reachability
queries for different values of k. In this case, a specific

k-reach index (i.e., the index is built on a specific value

of k) is not able to handle a general k. However, we note

that if the index can process k-hop reachability queries
with a general k, then the index is essentially an index

for shortest-path distance queries.

Our index can be easily generalized to process shortest-

path distance queries by keeping the distance informa-

tion between any two vertices in the vertex cover, which
can be computed by doing a full BFS instead of a k-hop

BFS in Line 5 of Algorithm 1. This requires lg δ bits for

each edge weight (instead of 2 bits as with a specific k),

where δ is the diameter of the input graph.

5 Answering k-Hop Reachability Queries in

Large Graphs

The vertex-cover-based index proposed in Section 4 is

efficient for processing both classic reachability queries

and k-hop reachability queries when the input graph is

not large, as we will verify by experiments. However,
when the input graph is large, the size of the vertex

cover is often not small for many real world graphs.

When the vertex cover is large, the vertex-cover-based

index will have a high indexing cost and may not scale.

Although the index construction process, i.e., the k-hop
BFS from vertices in the vertex cover, can be paral-

lelized, the storage requirement may still be high for

large graphs.

To address the scalability problem of the vertex-
cover-based index, we propose a partial vertex cover to

trade query processing time for index storage space.

5.1 Overview

We first give an overview on the design of our index to

be presented in the following three subsections:

1. First in Section 5.2 we introduce a one-level index

constructed based on a partial vertex cover with

maximum coverage of vertices, and identify its weak-

nesses.
2. Then in Section 5.3 we present a two-level index,

which alleviates the problem of the one-level index.

3. Finally in Section 5.4 we improve the two-level index

by relaxing the coverage of the partial vertex cover
(at both levels) from 1 hop to k hops, thus giving

significantly greater coverage and hence a more scal-

able index.

Efficient Processing of K-Hop Reachability Queries 9

5.2 Partial Vertex Cover with Maximum Coverage

We first introduce a partial vertex cover with maximum

coverage of vertices in a graph and then apply it to

construct a simple version of a more scalable k-reach

index.

Given a fixed number or a budget b, we want to
compute a partial vertex cover, S, of size b such that

S covers the largest number of vertices in G. Formally,

the problem is to find a subset S ⊆ V , such that |S| ≤ b

and |
⋃

v∈S Nei(v,G)| is maximized.
The problem is in fact equivalent to the maximum

coverage problem, which is NP-hard and cannot be ap-

proximated within (1− 1
e
+o(1)) ≈ 0.632 under standard

assumptions [21].

We compute a partial vertex cover S with maximum
coverage by a greedy process as follows. At each itera-

tion, we select the vertex with the highest degree (ties

are broken arbitrarily) into S, then we remove the ver-

tex and all edges incident to it from G, and repeat the
process until |S| = b.

This greedy algorithm is an approximation algo-

rithm, which has an approximation ratio of (1− 1
e
) [21].

Moreover, it is also shown in [20] that the greedy algo-

rithm is the best-possible polynomial time approxima-
tion algorithm for maximum coverage.

We now define a one-level index that is constructed

based on a partial vertex cover.

Definition 2 (k-reach with partial coverage)

Given a directed graph G = (V,E), a partial vertex
cover S of G, and an integer k, the k-reach index of

G with respect to S is a weighted, directed graph D =

(VD, ED, ωD) defined as follows.

– VD = {v : v ∈ V, u ∈ S, u →k v or v →k u}.
– ED = {(u, v) : u ∈ S, v ∈ VD, u →k v} ∪ {(v, u) :

u ∈ S, v ∈ VD, v →k u}.
– ωD is a weight function that assigns a weight, d(u, v),

to each edge e = (u, v) ∈ ED, where d(u, v) is the

shortest-path distance from u to v in G.

In Definition 2, we assume that v →0 v, i.e., v
reaches v itself in 0 hop, and hence S ⊆ VD. But note

that the edge (v, v) needs not to be added to ED as to

save space.

Intuitively, the graphD keeps the set of vertices that

are within k hops from or to some vertex in S, as well
as their shortest-path distance information (encoded by

edge weight).

The idea of using D to answer k-hop reachabil-

ity queries is as follows. Given two query vertices, s
and t, we have two cases: (1) if t ∈ outNei(s,D) or

s ∈ inNei(t,D), then s →k t; or (2) if there exist

v ∈ (outNei(s,D) ∩ inNei(t,D)) such that (d(s, v) +

d(v, t)) ≤ k, then s →k t. However, since the coverage

by S may be only partial, it is possible that neither

(1) nor (2) is true, but we still have s →k t. Thus, we

will need to traverse the graph G by BFS to determine

whether s →k t if both cases (1) and (2) fail.

In the worst case, the space complexity is O(|S||V |).
Thus, we can only afford a small partial vertex cover S

for a large graph. However, there is always a tradeoff

here: a smaller partial vertex cover means that more
queries do not fall into cases (1) and (2), and are hence

answered by traversing the graph G, which leads to a

higher cost for query processing; on the other hand,

a larger partial vertex cover allows us to answer more

queries efficiently by cases (1) and (2), but it implies
a larger index size as well as higher index construction

cost.

To address the above-mentioned problem, we intro-

duce a two-level index in the following subsection.

5.3 A Two-Level Index

The main idea of the two-level index is: (1) first com-

pute a small partial vertex cover S with maximum cov-

erage and construct the k-reach index of G with respect

to S; (2) then remove S (together with all edges inci-
dent to vertices in S) from G to obtain a smaller graph

G′; and (3) compute a second k-reach index of G′ with

respect to a partial vertex cover of G′.

The intuition behind the two-level k-reach index is

that many real world graphs consist of only a small
number of high-degree vertices, and the removal of these

vertices will significantly reduce the size of the graph,

so that the index construction cost is lowered at the

first level with a smaller partial vertex cover while more
coverage is attained at the second level in a smaller

graph G′.

We formally define the two-level k-reach index as

follows.

Definition 3 (Two-level k-reach) Given a directed

graph G = (V,E) and an integer k, a two-level k-

reach index of G consists of two weighted, directed
graphs, D1 = (VD1

, ED1
, ωD1

) andD2 = (VD2
, ED2

, ωD2
),

defined as follows.

Given a partial vertex cover S of G, D1 = (VD1
, ED1

,

ωD1
) is the k-reach index of G with respect to S.

Let G′ = (V ′, E′) be the graph obtained after remov-
ing S and all edges incident to S from G. Let S′ be a

partial vertex cover of G′, D2 = (VD2
, ED2

, ωD2
) is the

k-reach index of G′ with respect to S′.

With another level added to the index, query evalu-

ation also needs to be processed at both levels. If space

10 James Cheng et al.

is limited such that we cannot build a k-reach index

with full coverage, and given the same available space,

the two-level k-reach index in general gives better query

performance than the one-level k-reach index due to

better coverage (i.e., less queries are answered by graph
traversal).

However, the same problem mentioned in Section
5.2 that exists in the one-level k-reach index still exists

in the graph D2 at the second level, though to a lesser

degree; that is, we still require O(|S′||VG′ |) space at the
second level. Thus, the index size can still be too large
and index construction too costly for the method to

scale to handle large graphs. To make the index more

scalable, we propose a relaxed vertex cover as well as

some optimization techniques in the following subsec-

tion.

5.4 A More Scalable K-Reach Index

We present techniques that we apply to reduce the size

of our index in order to process large graphs.

5.4.1 K-Relaxed Partial Vertex Cover

Given a fixed number or a budget b and an integer

k, a k-relaxed partial vertex cover with maximum

coverage is a subset, S, such that |S| ≤ b and S covers
the largest number of vertices that are within k hops

of any vertex in S. Formally, the problem is to find a

subset S ⊆ V , such that |S| ≤ b and |
⋃

v∈S{u : v →k

u}| is maximized.

Intuitively, a k-relaxed partial vertex cover relaxes

the coverage from 1 hop in a partial vertex cover to k

hops. Thus, given the same budget b, a k-relaxed partial
vertex cover can cover significantly more vertices than

a partial vertex cover. Or from another angle, we can

attain the same coverage using a much smaller budget.

As a result, with the same computing resources (e.g.,
available main memory and storage space), using a k-

relaxed partial vertex cover in place of a partial vertex

cover allows us to handle much larger graphs.

Note that this k-relaxed partial vertex cover is dif-

ferent from the h-hop vertex cover proposed in [11], as

the former covers vertices while the latter must cover

every edge within h hops. Note that for the special case
when k = h = 1, the k-relaxed (full) vertex cover is in

fact the dominating set, while the h-hop vertex cover

is the vertex cover. It is well known that the minimum

dominating set is significantly smaller than the mini-
mum vertex cover in general. Thus, with the same set of

vertices, the k-relaxed partial vertex cover can have sig-

nificantly greater coverage than the h-hop vertex cover.

5.4.2 Removal of Redundant Edges

A redundant edge in either D1 or D2 (defined in Def-

inition 3) is an edge without which query processing

using D1 or D2 returns the same answer. We may ap-

ply triangle inequality to remove redundant edges as

follows.
Let D be a k-reach graph with partial coverage.

For each edge (u, v) ∈ ED, if there exist two edges

(u,w), (w, v) ∈ ED such that d(u,w)+d(w, v) ≤ d(u, v),

then the edge (u, v) is redundant and can be removed
from D.

Removing redundant edges by triangle inequality,

however, is expensive since an intersection is needed

between outNei(u,D) and inNei(v,D) for each edge

(u, v) ∈ ED. In our algorithm (to be presented in Sec-
tion 5.5), we incorporate edge removal in the process of

constructing D to avoid expensive triangle inequality

checking.

5.5 Algorithms and Complexity

We now present the algorithms for constructing a more
scalable k-reach index and query processing using the

index, followed by an analysis of their complexity.

We first give the algorithm for index construction, as

shown in Algorithm 3. The algorithm consists of mainly

two parts: Lines 1-10 for the construction of D1 at the
first level and Lines 11-22 for the construction of D2

at the second level. In addition, Lines 23-24 also obtain

a much smaller residual graph D3, so that queries in-

volving uncovered vertices can be processed in a small
graph instead of the large input graph.

To construct D1, the algorithm greedily picks the

vertex v that has the largest uncovered neighbors, until

b vertices are selected into S. Then, a BFS is started

from v in G for k hops. For any vertex u visited within
the k hops, we process u as follows: (1) if u has already

been selected in S, we simply add the edge (v, u) to

D1, with the edge weight ωD1
((v, u)) = d(v, u), where

d(v, u) is the shortest-path distance from v to u com-
puted by the BFS; or else (2) if all vertices on the path

of the BFS expansion from v to u (except v) are in S,

we add u and the edge (v, u) to D1, and mark u as

covered. The above 2 steps are then applied in a simi-

lar way to the reverse graph of G, in order to process
reachability from u to v. Then, we add v to S and mark

v as covered.

During the k-hop BFS starting from v, when we

visit u, the edge (v, u) is redundant in D1 if there exists
some vertex w ∈ S on the path from v to u, i.e., w is

a BFS predecessor of u, since d(v, u) can be obtained

by (d(v, w) + d(w, u)). Note that w ∈ S and thus both

Efficient Processing of K-Hop Reachability Queries 11

Algorithm 3: Construction of scalable k-reach

Input : A directed graph, G = (V,E); an integer, k;
and a budget, b

Output: A more scalable k-reach index of G,
consisting of D1 = (VD1

, ED1
, ωD1

),
D2 = (VD2

, ED2
, ωD2

), and a residual graph
D3

// construction of D1 at the first level

mark all vertices in V uncovered ;1

S ← ∅, VD1
← ∅, ED1

← ∅;2

let Gr be the reverse graph of G, i.e., edge (v, u) in Gr3

iff edge (u, v) in G;
i← 1;4

while i ≤ b do5

select the vertex v that has the largest number of6

uncovered neighbors;
start a k-hop BFS from v in G, for any vertex u7

visited: if u ∈ S, then add (v, u) to ED1
with

ωD1
((v, u)) = d(v, u); else if none of u’s

predecessors (except v) are in S, then add u to
VD1

and (v, u) to ED1
with ωD1

((v, u)) = d(v, u),
and mark u as covered ;
process Line 7 with “G replaced by Gr” and8

“(v, u) replaced by (u, v)”;
add v to S and mark v as covered ;9

i← i + 1;10

// construction of D2 at the second level

remove S, and all edges incident to vertices in S, from11

G, and name the remaining graph as G′;
let G′

r
be the reverse graph of G′;12

S′ ← ∅, VD2
← ∅, ED2

← ∅;13

while some vertices in G′ are not covered and main14

memory is not used up do
process Lines 6-9 with “G, Gr , S, VD1

, and ED1
”15

replaced by G′, G′
r , S

′, VD2
, and ED2

”,
respectively;

foreach pair (u, v) ∈ (VD1
∩ S′) do16

if (u, v) ∈ ED2
then17

ωD2
((u, v))←18

min{ωD2
((u, v)),min{ωD1

((u, x)) +
ωD1

((x, y)) + ωD1
((y, v)) : x, y ∈ S}}, where

ωD1
((x, y)) = 0 if x = y;

else19

d← min{ωD1
((u, x)) + ωD1

((x, y)) +20

ωD1
((y, v)) : x, y ∈ S}, where ωD1

((x, y)) = 0
if x = y;
if d ≤ k then21

add (u, v) to ED2
with ωD2

((u, v)) = d;22

// construction of the residual graph D3

remove S′, and all edges incident to vertices in S′,23

from G′, and name the remaining graph as D3;
return D1 = (VD1

, ED1
, ωD1

), D2 = (VD2
, ED2

, ωD2
),24

and D3;

d(v, w) and d(w, u) are in D1, where w is the nearest

BFS predecessor of u.

After computing S and the graph D1, we remove S,

together with all edges incident to S, from G to obtain

a smaller graph, named as G′. Then, we compute S′

Algorithm 4: Query processing using scalable k-

reach
Input : A more scalable k-reach index of G,

consisting of D1 = (VD1
, ED1

, ωD1
),

D2 = (VD2
, ED2

, ωD2
), a residual graph D3,

and two query vertices, s and t
Output: A boolean indicator whether s→k t

// case 1: both s and t are in S
if s ∈ S and t ∈ S then1

if (s, t) ∈ ED1
then2

return true;3

else4

return false;5

// case 2: s or t is in S, but not both

else if s ∈ S or t ∈ S then6

if (s, t) ∈ ED1
, or ∃v ∈ S such that7

ωD1
((s, v)) + ωD1

((v, t)) ≤ k, then
return true;8

else9

return false;10

// case 3: both s and t are in S′

else if s ∈ S′ and t ∈ S′ then11

if (s, t) ∈ ED2
, or ∃u, v ∈ S such that12

ωD1
((s, u)) + ωD1

((u, v)) + ωD1
((v, t)) ≤ k, then

return true;13

else14

return false;15

// case 4: s, t /∈ S and s or t is in S′

else if s ∈ S′ or t ∈ S′ then16

if (s, t) ∈ ED2
, or ∃v ∈ S′ such that17

ωD2
((s, v)) + ωD2

((v, t)) ≤ k, or ∃u, v ∈ S such

that ωD1
((s, u)) + ωD1

((u, v)) + ωD1
((v, t)) ≤ k,

then
return true;18

else19

return false;20

// case 5: both s and t are not S or S′

else if s, t ∈ VD3
then21

if ∃u, v ∈ S such that22

ωD1
((s, u)) + ωD1

((u, v)) + ωD1
((v, t)) ≤ k,

or ∃u, v ∈ S′ such that23

ωD2
((s, u)) + ωD2

((u, v)) + ωD2
((v, t)) ≤ k then

return true;24

else25

start BFS from s in D3 and from t in the26

reverse graph of D3 in parallel for dk/2e hops:
if the two BFSs meet at a common vertex v
and d(s, v) + d(t, v) ≤ k, return true;
otherwise, return false;

and D2 from G′ in the same way as we compute S and
D1 from G, except that the size of S′ and hence D2 are

determined by the available main memory size, i.e., we

stop the process until main memory is not sufficient to

12 James Cheng et al.

hold the index, or until all vertices have been already

covered.

Finally, we remove S′, together with all edges inci-
dent to S′, from G′ to obtain a residual graphD3. Thus,

D3 is often a significantly smaller and sparser than G.

Next, we present our algorithm for query processing
using the scalable k-reach index constructed by Algo-

rithm 3. As shown in Algorithm 4, a query may fall into

one of the five cases. We discuss each case as follows.

Case 1 is simple, for which we only need to check

the existence of an edge in D1 to answer a query. Case 2

processes a query by first checking the existence of the

edge (s, t) in D1; if (s, t) does not exist, we then check

if there exists a vertex v as an out-neighbor of s and an
in-neighbor of t, such that ωD1

((s, v))+ωD1
((v, t)) ≤ k.

Case 3 first checks the existence of the edge (s, t) in D2

and if (s, t) does not exist, it further checks whether

there exist an out-neighbor u of s and an in-neighbor v
of t such that ωD1

((s, u))+ωD1
((u, v))+ωD1

((v, t)) ≤ k,

where ωD1
((u, v)) = 0 if u = v. Case 4 is Case 3 but

it may also check whether there exists a vertex v as an

out-neighbor of s and an in-neighbor of t in D2, such

that ωD2
((s, v)) + ωD2

((v, t)) ≤ k. Lastly, Case 5 first
checks whether there exist an out-neighbor u of s and

an in-neighbor v of t in either D1 or D2, and if the

sum of the weights of the edges (s, u), (u, v) and (v, t)

is greater than k, then the query is answered by BFS
from s and t in parallel to see if they can meet at a

common vertex in dk/2e hops.

The following theorem proves the correctness of the
algorithm for processing a k-hop reachability query by

Algorithm 4. The proof also presents details about how

a query is processed by Algorithm 4.

Theorem 2 Given D1, D2 and D3, and two query ver-
tices, s and t, Algorithm 4 returns true if s →k t in G

and false otherwise.

Proof According to the index construction shown in Al-

gorithm 3, the vertex set V can be divided into three

disjoint subsets, S, S′, and VD3
. A query vertex, s or

t, may belong to one of these three subsets, and hence

there are 9 possible combinations as shown in Table 2.

The table also maps each of the 9 possible combinations

to one of the 5 cases of query processing presented in
Algorithm 4. We then prove the correctness for each

case as follows.

Case 1: If s, t ∈ S, then both (s, t) and (t, s) are in
ED1

if and only if s →k t in G.

Case 2: Without loss of generality, let us assume

s ∈ S and t /∈ S, i.e., t ∈ S′ or t ∈ VD3
. If (s, t) ∈ ED1

,
then by the construction of D1, we have s →k t in

G. Otherwise, if s →k t in G, then there must exist

some v ∈ S such that v is a predecessor of t when a

Table 2 The five cases of query processing in Algorithm 4

S S′ VD3

Case 1 s, t
Case 2 s t
Case 2 s t
Case 2 t s
Case 3 s, t
Case 4 s t
Case 2 t s
Case 4 t s
Case 5 s, t

k-hop BFS is started from s, and thus the edge (s, t) is

considered redundant and not created in D1 (see Line
7 of Algorithm 3). Since ∀x, y ∈ S, (x, y) ∈ ED1

if

x →k y in G, and v is a predecessor of t in the BFS

from s to t, we have s →k t in G if ∃v ∈ S such that

ωD1
((s, v)) + ωD1

((v, t)) ≤ k.

Case 3: If s →k t in G′ (and hence also in G), then

both (s, t) and (t, s) are in ED2
since s, t ∈ S′. Else

if s →k t in G but not in G′, then s must reach t

through some u, v ∈ S, which are not in G′, where

ωD1
((u, v)) = 0 if u = v. Note that if u 6= v, then (s, u),

(u, v) and (v, t) must be in ED1
, since s →k t in G.

Case 4: If s →k t in G′, we have either (s, t) ∈ ED2

or s reaches t via some v ∈ S′ since only one of s and t
is in S′, and the other is in VD3

. Else if s →k t in G but

not in G′, then s must reach t through some u, v ∈ S

as discussed in Case 3.

Case 5: If s →k t in G, we have the following 3 cases:

(1) s reaches t through some u, v ∈ S within k hops in

G; or (2) s reaches t through some u, v ∈ S′ within k
hops in G′ (and hence also in G); or (3) s reaches t in

D3 within k hops (and hence also in G). All the three

cases are handled by Algorithm 4. Note that if s reaches

t via u and v, then both u and v must be either in S or

in S′. The reason is: suppose u ∈ S, then we have either
u = v or there must exist some v ∈ S since s →k t in

G (and similarly for u, v ∈ S′). 2

We now analyze the complexity of our algorithms.

The complexity (in terms of both time and storage

space) of constructing the more scalable k-reach index

(i.e., Algorithm 3), is clearly bounded by that of con-
structing a basic k-reach index (i.e., Algorithm 1), since

the more scalable version is a partial and relaxed ver-

sion of the basic k-reach index, with the second level

(i.e., D2) even constructed from a smaller subgraph G′

of G.

As discussed for the k-reach graph I in Section 4.2.2,
for query processing we also first load D1, D2 and D3

into main memory and keep the graphs in their adja-

cency list representation. The complexity of query pro-

Efficient Processing of K-Hop Reachability Queries 13

cessing by Algorithm 4 then depends on which case a

query is processed.

For Case 1, it takes O(log outDeg(s,D1)) or

O(log inDeg(t,D1)) time, where D1 is stored in the

adjacency list representation. For Case 2, it intersects

outNei(s,D1) and inNei(t,D1) to find the first common
vertex v, which takes O(outDeg(s,D1) + inDeg(t,D1))

time in the worst case. For Case 3, it requires to join

outNei(s,D1) and inNei(t,D1), which takes

O(outDeg(s,D1) × inDeg(t,D1)) time. For Case 4, it

adds O(outDeg(s,D2)+ inDeg(t,D2)) time to the time
of Case 3. For Case 5, it has two joins in Line 25 of Algo-

rithm 4, which takes O(outDeg(s,D1)× inDeg(t,D1)+

outDeg(s,D2)× inDeg(t,D2)), while the k-hop BFS in

Line 29 takes O(|VD3
|+ |ED3

|) time in the worst case.

The size of the graph D1 depends on the value of

the budget b, which can be specified by a user accord-
ing to the available memory or storage space. We set

the default value of b as the “h-index” of a graph, i.e.,

the maximum h such that h vertices in the graph have

degree at least h. For a power-law graph, the value of
h can be approximated by h ≤ n

R

R−1 [10], where R is a

constant between −0.8 and −0.7 for a typical power-law

graph [19].

The size of the graph D2 depends on the available

main memory. The more memory that can be allocated

to D2 is, the greater is the coverage and also the smaller
the residual graphD3. In addition, the size ofD3 can be

approximated by (m−
∑j

i=1(
i
n
)R), where j = |S|+|S′|.

5.6 An Adaptive k-Reach Index

We combine the basic k-reach index proposed in Sec-

tion 4 and the more scalable version proposed in this
section as follows. Given a graph G, we first compute

an approximate minimum vertex cover, S, of G. Given

S, we can estimate the upper bound of the size of the

basic k-reach index as |S|2. If the size |S|2 is affordable
with the available computing resource, we construct the

basic k-reach index by Algorithm 1; otherwise, we con-

struct the more scalable k-reach index by Algorithm 3.

Then, queries are processed by Algorithm 2 or Algo-

rithm 4 depending on which version of k-reach is con-
structed. According to Section 4.1.1, constructing the

approximate minimum vertex cover S only requires a

scan of the graph once, which is only an insignificant

portion of the overall index construction cost.

5.7 Extending to General k

In Section 4.4, we have discussed how the basic k-reach

index proposed in Section 4 may be extended to handle

different values of k. We now discuss how the more scal-

able version proposed in this section may be extended

to handle any value of k.

The key observation for the extension is that each

edge weight ωD1
((u, v)) in D1 or ωD2

((u, v)) in D2 of

the scalable k-reach index actually encodes the shortest-
path distance from u to v in G. Let d(s, t) be the ex-

act shortest-path distance from any vertex s to another

vertex t in G. For any k, the scalable k-reach index, con-

sisting ofD1 = (VD1
, ED1

, ωD1
), D2 = (VD2

, ED2
, ωD2

),

and a residual graph D3, can be used to obtain d(s, t),
if d(s, t) ≤ k.

With the above observation, if we construct a scal-

able δ-reach index by Algorithm 3, where δ is the diam-

eter of the input graph, we can answer k-hop reachabil-

ity queries with any value of k. We outline the extended
query processing algorithm in Algorithm 5.

Algorithm 5 is similar to Algorithm 4. The only
difference is that in Algorithm 4, if (s, t) ∈ ED1

(or

(s, t) ∈ ED2
), we know for sure that ωD1

((s, t)) ≤ k (or

ωD2
((s, t)) ≤ k) because the input is a k-reach index;

while in Algorithm 5, even if we know (s, t) ∈ ED1
(or

(s, t) ∈ ED2
), we still need to test if ωD1

((s, t)) ≤ k (or

ωD2
((s, t)) ≤ k) because the input is a δ-reach index

and δ ≥ k.

The complexity analysis of Algorithm 5 follows the

same way as that of Algorithm 4 given in Section 5.5.

In fact, the complexity remains the same because in
Section 5.5 we give the worst case complexity, but note

that D1, D2 and D3 belong to a δ-reach index, which

is at least as large as those of any k-reach index since

k ≤ δ.

Finally, we note that, based on the above-mentioned

observation, our index can also be used to return the
exact shortest-path distance from s to t. If we use a

scalable k-reach index, then we can obtain d(s, t) if

d(s, t) ≤ k, or return false if d(s, t) > k (i.e., s 9k t).

If we use a scalable δ-reach index, then the index is

simply an index for processing general shortest-path
distance queries. As processing general shortest-path

distance queries is not the focus of this paper, we do

not go into the details but give the algorithm for pro-

cessing general shortest-path distance queries using our
index in Appendix A.

6 Experimental Evaluation

We now evaluate the performance of our index, k-reach.

Since this is the first work that proposes an index for
processing k-hop reachability queries, we compare with

closely related works, that is, (1) the state-of-the-art

methods that were proposed for answering shortest-

14 James Cheng et al.

Algorithm 5: Query processing for general k us-

ing scalable δ-reach

Input : A more scalable δ-reach index of G (δ is the
diameter of G), consisting of
D1 = (VD1

, ED1
, ωD1

),
D2 = (VD2

, ED2
, ωD2

), a residual graph D3,
and two query vertices, s and t

Output: A boolean indicator whether s→k t

// case 1: both s and t are in S
if s ∈ S and t ∈ S then1

if (s, t) ∈ ED1
and ωD1

((s, t)) ≤ k then2

return true;3

else4

return false;5

// case 2: s or t is in S, but not both

else if s ∈ S or t ∈ S then6

if (s, t) ∈ ED1
and ωD1

((s, t)) ≤ k,7

or ∃v ∈ S such that ωD1
((s, v)) + ωD1

((v, t)) ≤ k,8

then
return true;9

else10

return false;11

// case 3: both s and t are in S′

else if s ∈ S′ and t ∈ S′ then12

if (s, t) ∈ ED2
and ωD2

((s, t)) ≤ k,13

or ∃u, v ∈ S such that14

ωD1
((s, u)) + ωD1

((u, v)) + ωD1
((v, t)) ≤ k, then

return true;15

else16

return false;17

// case 4: s, t /∈ S and s or t is in S′

else if s ∈ S′ or t ∈ S′ then18

if (s, t) ∈ ED2
and ωD2

((s, t)) ≤ k,19

or ∃v ∈ S′ such that ωD2
((s, v))+ωD2

((v, t)) ≤ k,20

or ∃u, v ∈ S such that

ωD1
((s, u)) + ωD1

((u, v)) + ωD1
((v, t)) ≤ k, then

return true;21

else22

return false;23

// case 5: both s and t are not S or S′

else if s, t ∈ VD3
then24

if ∃u, v ∈ S such that25

ωD1
((s, u)) + ωD1

((u, v)) + ωD1
((v, t)) ≤ k,

or ∃u, v ∈ S′ such that26

ωD2
((s, u)) + ωD2

((u, v)) + ωD2
((v, t)) ≤ k then

return true;27

else28

start BFS from s in D3 and from t in the29

reverse graph of D3 in parallel for dk/2e hops:
if the two BFSs meet at a common vertex v
and d(s, v) + d(t, v) ≤ k, return true;
otherwise, return false;

path distance queries [3,25] and (2) the state-of-the-

art methods that were proposed for processing clas-

sic reachability queries [26,27,33,37]. We will evaluate

the performance of k-reach for processing both k-hop

reachability queries and classic reachability queries by

comparing with the performance of the closely related

methods.
All systems, both ours and others we compared with,

were implemented in C++ and compiled using the same

gcc compiler. We ran all experiments on machines with

an Intel 3.3 GHz CPU, 16GBRAM, and running Ubuntu
11.04 Linux OS. The experiments were run for 10 times

and the results were found to be consistent over the 10

runs.

6.1 Datasets

We conducted our experiments on a wide range of real

datasets that are popularly used to assess the perfor-

mance of graph reachability indexes in the existing works

[26–28,33,37].
We group the datasets into two sets. The first set of

datasets are relatively smaller datasets. The datasets

AgroCyc, Anthra, Ecoo, Human, Mtbrv, and Vchocyc,

are from EcoCyc (ecocyc.org) and describe the genome
and biochemical machinery of E. coli K-12 MG1655.

The aMaze and Kegg datasets are metabolic networks

from [32]. The Nasa and Xmark datasets are XML docu-

ments from [28]. The datasets ArXiv (arxiv.org), CiteSeer

(citeseer.ist.psu.edu), and PubMed (pubmedcentral.nih.gov),
are citation networks. The GO dataset (www. geneontol-

ogy.org) is a gene ontology graph. The YAGO dataset

(mpi-inf.mpg.de/yago-naga/yago) is a graph that de-

scribes the structure of relationships among terms in
the semantic knowledge data-base YAGO.

The second set of datasets are larger datasets. The

citeseerx and cit-patent (patent) datasets are cita-

tion networks (snap.stanford.edu/data), in which non-

leaf vertices have an average out-degree of 10 to 30. The
go-uniprot dataset is the joint graph of Gene Ontolo-

gyterm and the annotations from the UniProt database

(www.uniprot.org), which is the universal protein re-

source. The uniprot22m, uniprot100m and uniprot150m
daatsets are the subsets of the complete RFG graph of

UniProt. These larger datasets are mainly used in some

more recent works to test the scalability of reachability

indexes.

Table 3 shows the number of vertices and edges (|V |
and |E|), the maximum vertex degree (deg

max
), the di-

ameter (δ), and the median length of the shortest paths

between all pairs of vertices (µ) of the datasets. We note

that the value µ for the six larger datasets is approx-
imated by the method proposed in [4], while it is too

expensive to compute the exact value of µ and the value

of δ for these large graphs.

Efficient Processing of K-Hop Reachability Queries 15

Table 3 Datasets (|V |: the number of vertices; |E|: the num-
ber of edges; deg

max
: the maximum vertex degree; δ: the diam-

eter; µ: the median length of all shortest paths in the graph)

|V | |E| deg
max

δ µ

AgroCyc 12,684 13,657 5,488 10 2
aMaze 3,710 3,947 3,097 11 2
Anthra 12,499 13,327 5,401 10 2
ArXiv 6,000 66,707 700 20 5
CiteSeer 10,720 44,258 192 18 3
Ecoo 12,620 13,575 5,435 10 2
GO 6,793 13,361 71 11 3
Human 38,811 39,816 28,571 10 3
Kegg 3,617 4,395 3,282 16 2
Mtbrv 9,602 10,438 4,005 12 2
Nasa 5,605 6,538 32 22 7
PubMed 9,000 40,028 432 11 3
Vchocyc 9,491 10,345 3,917 10 2
Xmark 6,080 7,051 887 24 5
YAGO 6,642 42,392 2,371 9 1

citeseerx 6,540,401 15,011,260 384,942 - 4
go-uniprot 6,967,956 34,770,235 1,186,282 - 4
patent 3,774,768 16,518,947 793 - 8
uniprot22m 1,595,444 1,595,442 1,539,898 - 2
uniprot100m 16,087,295 16,087,293 12,875,285 - 2
uniprot150m 25,037,600 25,037,598 17,661,135 - 2

6.2 Query Set

To compare the performance of query processing of

the various indexes, we randomly generated 1 million
queries for each dataset. We emphasize that, as we will

explain later in details in Tables 10 and 11 in Sec-

tion 6.5, these queries are not chosen to favor the per-

formance of our index. In fact, the majority of these
queries fall into the case which is the worst case for

query processing using k-reach.

6.3 Evaluation on Different Aspects of the Scalable
k-Reach

Before we presented the final scalable k-reach index

in Section 5, we first introduced (1) a one-level index

constructed based on a partial vertex cover with maxi-

mum coverage of vertices (we name this index as pre-

k-reach-v1 in this experiment), and (2) a two-level
index which alleviates the problem of the one-level in-

dex (we name this index as pre-k-reach-v2 in this ex-

periment). Since these two indexes, pre-k-reach-v1 and

pre-k-reach-v2, lead to the design of the final scalable
k-reach index, we examine here how the weaknesses in

pre-k-reach-v1 and pre-k-reach-v2 are addressed to give

our final index.

Tables 4 to 6 report the index construction time,
the index size, and the total query time for processing

1 million randomly generated queries (where k is set to

µ, i.e., the median length of the shortest paths between

Table 4 Index construction time (elapsed time in millisec-
onds) of pre-k -reach-v1, pre-k -reach-v2, and k -reach pre-
sented in Section 5 (shortest time shown in bold)

pre-k-reach-v1 pre-k-reach-v2 k-reach

citeseerx - 32663.86 1687.33
go-uniprot 6493.60 3775.40 3366.05
patent 60793.11 4355.52 2578.73
uniprot22m 230.22 113.77 249.18
uniprot100m 888.00 846.88 12785.97
uniprot150m 1314.95 1432.66 18973.30

Table 5 Index size (in MB) of pre-k -reach-v1, pre-k -reach-
v2, and k -reach presented in Section 5 (smallest size shown
in bold)

pre-k-reach-v1 pre-k-reach-v2 k-reach

citeseerx - 1351.68 61.71
go-uniprot 468.92 354.12 114.19
patent 2337.11 198.21 62.05
uniprot22m 12.70 16.80 16.74
uniprot100m 126.84 169.59 167.78
uniprot150m 196.43 263.49 259.14

Table 6 Total query time (elapsed time in milliseconds) of
pre-k -reach-v1, pre-k -reach-v2, and k -reach presented in Sec-
tion 5 for processing 1 million randomly generated queries
(shortest time shown in bold)

pre-k-reach-v1 pre-k-reach-v2 k-reach

citeseerx - 282684.09 1497.28
go-uniprot 2554.72 1862.08 613.90
patent 107085.34 66183.42 69579.86
uniprot22m 456.50 446.61 256.70
uniprot100m 641.38 592.37 378.30
uniprot150m 663.86 604.89 430.18

all pairs of vertices in each dataset). In this experiment

we focus on the large datasets only because the more

scalable k-reach index proposed in Section 5 is primarily
designed for handling large datasets.

The results show that for processing the citeseerx,

go-uniprot, and patent datasets, k-reach is signifi-
cantly more efficient than pre-k-reach-v1 and pre-k-

reach-v2 in terms of both indexing and query perfor-

mance. In processing the three uniprot datasets, k-

reach is more expensive in indexing but more efficient
in query processing, but we emphasize that online query

processing is the more important performance indica-

tor than offline indexing performance. Thus, the overall

performance of k-reach clearly justifies why it is chosen

to be our final index instead of pre-k-reach-v1 and pre-
k-reach-v2.

The superiority of k-reach in query performance can

be explained by the greater coverage by the two-level
k-relaxed partial vertex cover employed by k-reach, as

compared with the partial vertex cover employed by

pre-k-reach-v1 and pre-k-reach-v2, although this comes

16 James Cheng et al.

at an expense of higher indexing cost for some datasets.

Compared with k-reach and pre-k-reach-v2 which em-

ploy a two-level index structure, we can see from the

results that the one-level index, pre-k-reach-v1, is sig-

nificantly less efficient in query processing.

We note that the query performance of the indexes

does not vary significantly for different budget values.

The explanation for this is because the majority of the

queries belong to the case which is the worst case for

query processing using k-reach (see details in Section
6.5). We could easily generate the queries so that they

are evenly distributed to the five cases as presented in

Algorithm 4, but then it is expected that query perfor-

mance becomes proportionally better as larger budget
includes more queries into the first four cases. How-

ever, such a result is expected while in real applications

queries are certainly not generated in this way. Thus, we

stick to using the randomly generated queries in our ex-

periments. For the results presented in this subsection
and subsequent discussion, we use a budget b = 1000.

6.4 Performance of Processing k-Hop Reachability

Queries

In this experiment, we evaluate the performance of the

k-reach index for processing k-hop reachability queries.
Since k-reach is the first index for processing k-hop

reachability queries, we compare with the state-of-the-

art indexes for processing shortest-path distance queries

in directed graphs, namely the highway-centric labeling
approach (denoted by HCL) [25] and the pruned land-

mark labeling approach (denoted by PLL) [3]. We also

compare with the (h, k)-reach index, which is a method

used to reduce the index size at the expense of query

performance [11].

We report the index construction time, the index

size, and the total query time for processing 1 million

randomly generated queries in Tables 7 to 9. We set

k = µ for both k-reach and (h, k)-reach, while h = 2

for (h, k)-reach which is the best value of h reported in
[11].

For the small datasets, PLL has the shortest index-

ing time for most of the datasets, but k-reach’s indexing

time is not much longer than PLL’s. HCL is clearly too

expensive to construct even for these small datasets.
For query processing, k-reach is clearly the winner in

all cases, as it is from a few times to a hundred times

faster than HCL, and at least an order of magnitude

faster than PLL. Compared with (h, k)-reach, k-reach
has a slightly larger index size but is significantly faster

in indexing and query processing, showing that (h, k)-

reach cannot address the scalability problem of the k-

Table 7 Index construction time (elapsed time in millisec-
onds) of k -reach, (h,k)-reach, HCL, and PLL (shortest time
shown in bold)

k-reach (h,k)-reach HCL PLL

AgroCyc 22.67 30.94 12628.83 21.14
aMaze 13.93 12.06 26835.21 8.28
Anthra 20.37 31.45 12660.50 21.22
ArXiv 183.45 831.22 209056.20 66.62
CiteSeer 178.77 676.38 18016.52 98.98
Ecoo 22.12 34.06 12523.01 22.13
GO 80.87 152.35 5020.84 35.45
Human 49.03 72.25 108930.20 79.12
Kegg 16.31 14.67 31331.48 7.12
Mtbrv 19.54 25.33 7591.70 17.51
Nasa 47.04 59.54 4250.49 27.44
PubMed 119.34 673.10 17352.12 63.57
Vchocyc 19.10 25.22 7380.21 17.36
Xmark 33.57 54.33 9431.89 14.42
YAGO 23.14 176.71 4455.69 28.38

citeseerx 1687.33 - - -
go-uniprot 3366.05 - - 161328.70
patent 2578.73 - - -
uniprot22m 249.18 - - 6326.11
uniprot100m 12785.97 - - -
uniprot150m 18973.30 - - -

reach index proposed in [11] and hence the more scal-
able index proposed in this paper is needed.

For processing the large datasets, our adaptive scheme

(presented in Section 5.6) chooses the more scalable
k-reach index proposed in Section 5.4. The results re-

ported in Tables 7 to 9 clearly show that k-reach is

more scalable than (h, k)-reach, HCL, and PLL, which

either ran out of the main memory capacity (16GB) of
our machine or took unreasonably long running time

(longer than two orders of magnitude than that of our

method) for most of the large datasets. Although PLL

obtains the results for two of the six large datasets, its

indexing performance is drastically worse than that of
k-reach in terms of both indexing time and index size,

while its query performance is also considerably worse

than that of k-reach.

In conclusion, the results verify that k-reach is a

good index for processing k-hop reachability queries, as

evidenced by its significantly better query performance

and scalability. It demonstrates the need of an index
for processing k-hop reachability queries because the

results also show that the state-of-the-art indexes for

processing shortest-path distance queries are not effi-

cient and scalable enough for processing k-hop reach-
ability queries, while in Section 3 we have shown that

it is non-trivial to adopt existing classic reachability

indexes for processing k-hop reachability queries.

In the following subsection, we further show that the

randomly generated queries tested in the experiment do

not favor the performance of the k-reach index.

Efficient Processing of K-Hop Reachability Queries 17

Table 8 Index size (in MB) of k -reach, (h,k)-reach, HCL,
and PLL (smallest size shown in bold)

k-reach (h,k)-reach HCL PLL

AgroCyc 0.14 0.04 0.80 10.45
aMaze 0.08 0.03 0.16 2.76
Anthra 0.13 0.03 0.78 10.29
ArXiv 3.88 4.52 2.32 5.15
CiteSeer 5.45 5.81 0.75 9.49
Ecoo 0.14 0.04 0.79 10.40
GO 2.19 2.34 0.55 5.88
Human 0.34 0.04 2.48 31.98
Kegg 0.12 0.05 0.21 2.98
Mtbrv 0.11 0.03 0.61 7.91
Nasa 0.86 0.57 0.55 5.02
PubMed 3.11 3.14 0.68 7.72
Vchocyc 0.11 0.03 0.60 7.82
Xmark 0.41 0.44 0.60 5.03
YAGO 0.35 0.21 0.43 5.51

citeseerx 61.71 - - -
go-uniprot 114.19 - - 5941.60
patent 62.05 - - -
uniprot22m 16.74 - - 1314.83
uniprot100m 167.78 - - -
uniprot150m 259.14 - - -

Table 9 Total query time (elapsed time in milliseconds) of
k -reach, (h,k)-reach, HCL, and PLL, for processing 1 million
randomly generated queries (shortest time shown in bold)

k-reach (h,k)-reach HCL PLL

AgroCyc 5.29 56.02 13.61 624.62
aMaze 13.20 634.71 63.26 491.37
Anthra 5.13 54.52 13.06 588.02
ArXiv 43.62 297.64 13338.44 737.43
CiteSeer 43.89 201.48 367.65 880.96
Ecoo 5.27 56.24 13.69 611.37
GO 24.30 60.90 119.76 736.10
Human 6.50 52.03 12.69 599.73
Kegg 14.94 682.13 79.18 492.51
Mtbrv 5.15 56.61 14.08 611.90
Nasa 14.45 53.93 54.38 715.16
PubMed 33.72 128.14 339.65 797.66
Vchocyc 5.08 57.71 14.00 596.66
Xmark 11.80 69.35 53.48 582.77
YAGO 25.38 212.14 161.54 659.67

citeseerx 1497.28 - - -
go-uniprot 613.90 - - 977.53
patent 69579.86 - - -
uniprot22m 256.70 - - 834.38
uniprot100m 378.30 - - -
uniprot150m 430.18 - - -

6.5 The Different Cases of Query Processing

In Algorithm 2 we show that there are four cases in pro-

cessing a k-hop reachability query, while in Algorithm 4

there are five cases. The complexity analysis in Section
4.2.2 and in Section 5.5 show that processing a Case 1

query has the lowest time complexity, and processing a

Case 4 or Case 5 query is the most costly for Algorithm

Table 10 Percentage of queries (among the 1 million ran-
domly generated queries) in each of the four cases of Algo-
rithm 2

Case 1 Case 2 Case 3 Case 4

AgroCyc 0.10 2.98 2.96 93.97
aMaze 1.65 11.19 11.23 75.93
Anthra 0.08 2.73 2.79 94.40
ArXiv 41.94 22.79 22.88 12.38
CiteSeer 19.15 24.62 24.62 31.61
Ecoo 0.10 3.02 3.05 93.83
GO 19.18 24.63 24.66 31.53
Human 0.01 0.94 0.96 98.09
Kegg 2.92 14.17 14.21 68.71
Mtbrv 0.15 3.66 3.67 92.52
Nasa 10.80 22.12 22.03 45.05
PubMed 15.12 23.77 23.71 37.40
Vchocyc 0.15 3.65 3.68 92.53
Xmark 4.06 16.08 16.10 63.75
YAGO 1.55 10.96 10.89 76.60

Table 11 Percentage of queries (among the 1 million ran-
domly generated queries) in each of the five cases of Algo-
rithm 4

Case 1 Case 2 Case 3 Case 4 Case 5

citeseerx 0 0.02 0.0003 0.24 99.74
go-uniprot 0 0.04 0.0002 0.22 99.74
patent 0 0.01 0.0003 0.43 99.56
uniprot22m 0 0.004 0.002 0.99 99.01
uniprot100m 0 0.006 0.0001 0.1 99.89
uniprot150m 0 0.004 0 0.06 99.94

2 and Algorithm 4, respectively. Thus, we want to ex-

amine whether the queries used in the experiments may

favor the performance of k-reach.

Tables 10 and 11 present the percentage of queries

in each of the different cases in Algorithm 2 and in

Algorithm 4, for the 1 million queries tested.

For the small datasets, Table 10 shows that for most

of the datasets, the majority of the queries are Case 4

queries, while the minority are Case 1 queries. For the
large datasets, Table 11 shows that over 99% of the

queries fall into Case 5, while most of the remaining

queries are also in Case 4 (the case with the second

highest query complexity). This distribution is mainly

because the size of the vertex cover or the k-relaxed
partial vertex cover is only a small percentage of the

total number of vertices in the graphs and hence a ran-

domly selected vertex has a lower probability being in

the vertex cover or the k-relaxed partial vertex cover.

The above results show that, if we select the query

vertices so that they fall into the different cases evenly,

the average query processing time can be significantly
shorter than the results currently reported. Note that

such a query selection can be done by selecting query

vertices with a probability proportional to their degree;

18 James Cheng et al.

however, for fairness of comparison with other cases, we

keep the query set as the randomly selected queries in

the performance evaluation.

We remark that, even though up to 99% of the

queries fall into the worst case of k-reach, k-reach is
still an efficient and scalable index for processing k-hop

reachability queries, as we have shown that k-reach is

significantly more efficient and scalable than other in-

dexes (in Section 6.4) and BFS (in [11]).

6.6 Performance on Different Values of k

We next examine the performance of k-reach for differ-

ent values of k. We test k ∈ {2, 4, 6, 8, 10, 12, µ, n}, but
note that for some datasets and some k = k′, if δ < k′,

then the performance result of k-reach is the same as
k = n (e.g., k = 10 is the same as k = n if δ = 9 < 10).

We use the same set of randomly generated queries for

all values of k. Note that for the same query vertices, s

and t, the answer whether t is reachable from s within
k hops may be different for different values of k.

We found that our adaptive scheme (presented in

Section 5.6) chooses the basic k-reach index proposed

in Section 4 when processing the small datasets, and it

chooses the more scalable version proposed in Section
5.4 for processing the six large datasets. Thus, we report

the results for the small and large datasets separately.

6.6.1 Performance on Small Datasets

We first discuss the performance results for the small
datasets, obtained by the basic k-reach index proposed

in Section 4. Table 12 reports the total running time of

processing the 1 million queries by k-reach, for different

values of k. We omit the results of indexing performance
because both the construction time and the index size

of k-reach are almost the same for the different values

of k; thus we refer the readers to the results reported

for k-reach (where k = µ) in Tables 7 and 8.

The results in Table 12 show that the performance of
the different k-reach indexes is stable with the different

values of k for all the small datasets. Note that the

values of k ranging from 2 to n cover the two extreme

ends (k = 1 is trivial since it only needs to check edge
existence). Thus, the result demonstrates the efficiency

of the k-reach index for processing k-hop reachability

queries of any k for the small datasets.

6.6.2 Performance on Large Datasets

Next we present the performance results for the large

datasets, obtained by the more scalable k-reach index

proposed in Section 5.4. Tables 13 to 15 report the

index construction time, the index size, and the total

query time for processing 1 million randomly generated

queries for the different k-reach indexes.

The results show that both indexing performance

and query performance degrade, though gracefully, when
the value of k increases. This is expected since the scal-

able k-reach index is used for processing these large

datasets. Hence, the larger the value of k, the larger is

the number of vertices covered, and thus the larger is
the size of the index and the index construction cost.

The query processing time largely depends on the index

size and hence also increases as k increases.

We notice a surprising phenomenon for indexing the

datasets uniprot100m and uniprot150m, however, as
the indexing time first increases from k = 2 to k = 4

and then drops significantly starting k = 6, and grad-

ually becomes stable. Note that µ = 2 for these two

datasets and hence µ-reach is in fact 2-reach, the small
difference in the results reported for µ-reach and 2-reach

is just because the results were collected from differ-

ent runs of the same program. We examined the two

datasets closely and found that when k > 4, most of

the vertices in the graphs are covered quickly by the
first-level index, and hence a significantly less number

of BFS is executed. The results also mean that the per-

formance of k-reach reported in Section 6.4 is actually

the worst performance of k-reach for any k for these
two datasets.

6.7 Vertex Degree of the k-Reach Graphs

From the complexity analysis of Algorithms 2 and 4
shown in Sections 4.2.2 and 5.5, we can see that the

complexity of query processing depends largely on the

degree (i.e., the number of in-neighbors or out-neighbors)

of the vertices in the k-reach graphs I, or D1 and D2.

Thus, we show the average and maximum vertex de-
gree in these k-reach graphs (where k is set to µ) so

that we may have a better understanding of the query

processing algorithms and their complexity.

Table 16 reports the average and maximum degree
(in-degree or out-degree) of the vertices in the k-reach

graph I (defined in Section 4.1.2), while Table 17 re-

ports the average and maximum degree of the vertices

in the k-reach graphs D1 and D2 (defined in Section 5).

The results show that, although the maximum vertex
degree can be quite large for many datasets, the average

vertex degree is actually very small (less than 1% of the

total number of vertices for most of the datasets), indi-

cating that the query complexity is small in the average
case.

The results also show that both the average and

maximum vertex degree in D2 are significantly smaller

Efficient Processing of K-Hop Reachability Queries 19

Table 12 Total query time (elapsed time in milliseconds) of k-reach, where k ∈ {2, 4, 6, 8, 10, 12, µ, n}, for processing 1 million
randomly generated queries, for the small graphs

2-reach 4-reach 6-reach 8-reach 10-reach 12-reach µ-reach n-reach

AgroCyc 5.31 5.31 5.33 5.27 5.23 5.27 5.29 5.28
aMaze 13.24 13.31 13.32 13.29 13.29 13.31 13.20 13.30
Anthra 5.14 5.13 5.09 5.11 5.09 5.11 5.13 5.09
ArXiv 44.70 44.65 43.61 43.36 42.69 42.59 43.62 42.67
CiteSeer 43.82 43.97 43.63 43.44 43.75 43.31 43.89 43.31
Ecoo 5.32 5.29 5.26 5.24 5.26 5.26 5.27 5.24
GO 24.25 24.37 24.17 24.34 24.19 24.06 24.30 24.01
Human 6.52 6.48 6.47 6.44 6.45 6.44 6.50 6.44
Kegg 14.97 15.18 15.24 15.20 15.22 15.25 14.94 15.22
Mtbrv 5.13 5.13 5.12 5.09 5.07 5.09 5.15 5.07
Nasa 14.42 14.52 14.46 14.50 14.52 14.47 14.45 14.50
PubMed 33.88 33.79 33.66 33.73 33.45 33.46 33.72 33.52
Vchocyc 5.10 5.09 5.12 5.09 5.08 5.07 5.08 5.07
Xmark 11.66 11.82 11.80 11.83 11.84 11.83 11.80 11.89
YAGO 25.42 25.44 25.36 25.31 25.26 25.36 25.38 25.35

Table 13 Index construction time (elapsed time in milliseconds) of k-reach, where k ∈ {2, 4, 6, 8, 10, 12, µ, n}, for the large
graphs

2-reach 4-reach 6-reach 8-reach 10-reach 12-reach µ-reach n-reach

citeseerx 1204.12 1680.79 1705.64 1857.45 1662.18 1657.89 1687.33 1753.23
go-uniprot 2521.51 3368.41 3513.85 3374.41 3347.57 3382.76 3366.05 3443.61
patent 647.48 1379.63 2180.24 2594.61 2778.38 2722.73 2578.73 2749.48
uniprot22m 248.48 234.15 234.03 234.33 233.99 234.03 249.18 234.06
uniprot100m 12801.62 14682.78 3190.21 2916.94 2915.32 2914.77 12785.97 2917.02
uniprot150m 18936.10 20081.49 7744.62 4868.32 4885.96 4878.05 18973.30 4875.51

Table 14 Index size (in MB) of k-reach, where k ∈ {2, 4, 6, 8, 10, 12, µ, n}, for the large graphs

2-reach 4-reach 6-reach 8-reach 10-reach 12-reach µ-reach n-reach

citeseerx 61.40 61.71 62.10 62.15 62.83 62.74 61.71 62.88
go-uniprot 116.39 114.19 119.74 118.67 118.48 122.12 114.19 122.18
patent 43.43 49.22 57.43 62.05 64.95 64.22 62.05 64.50
uniprot22m 16.74 16.74 16.74 16.74 16.74 16.74 16.74 16.74
uniprot100m 167.78 168.79 168.76 168.76 168.76 168.76 167.78 168.76
uniprot150m 259.14 262.59 262.66 262.65 262.65 262.65 259.14 262.65

Table 15 Total query time (elapsed time in milliseconds) of k-reach, where k ∈ {2, 4, 6, 8, 10, 12, µ, n}, for processing 1 million
randomly generated queries, for the large graphs

2-reach 4-reach 6-reach 8-reach 10-reach 12-reach µ-reach n-reach

citeseerx 472.75 1520.68 3613.43 5905.23 7535.72 8444.22 1497.28 9102.79
go-uniprot 497.85 619.40 676.77 676.94 672.12 684.62 613.90 680.75
patent 3137.97 18477.71 47288.82 69789.80 77827.87 79825.51 69579.86 80395.65
uniprot22m 247.13 246.90 249.10 251.11 247.90 251.47 256.70 249.05
uniprot100m 379.41 378.12 380.10 378.42 382.28 380.99 378.30 398.77
uniprot150m 431.04 444.92 434.67 438.85 445.42 432.91 430.18 439.01

than those in D1, which is because the high-degree ver-

tices are included in D1 and removed from the input

graph before we compute D2.

6.8 Performance of k-Reach for General k

In Sections 4.4 and 5.7, we discuss how k-reach may be
extended to handle different values of k. Note that this

is different from the experiment presented in Section

6.6, in which a different k-reach index is constructed

20 James Cheng et al.

Table 16 Average and maximum vertex degree in the k-
reach graph I , where k = µ

average degree maximum degree

AgroCyc 93 5761
aMaze 361 1717
Anthra 75 5499
ArXiv 725 3178
CiteSeer 25 345
Ecoo 92 5708
GO 16 1134
Human 309 28604
Kegg 292 1828
Mtbrv 74 4260
Nasa 36 3362
PubMed 57 614
Vchocyc 79 4174
Xmark 126 4403
YAGO 6 56

Table 17 Average and maximum vertex degree in the k-
reach graphs D1 and D2, where k = µ

average maximum average maximum
degree (D1) degree (D1) degree (D2) degree (D2)

citeseerx 526 348750 126 9539
go-uniprot 6008 3242101 23 11306
patent 2792 175176 896 65564
uniprot22m 53183 1595236 0 0
uniprot100m 7859 15551205 12 57
uniprot150m 11883 23415904 21 122

for each specific value of k. Here, we evaluate the per-

formance of a single index for processing k-hop reacha-
bility queries for any k.

For the basic k-reach index, we generalize it to pro-

cess shortest-path distance queries as described in Sec-

tions 4.4, and we name it as k-dist in this experiment.

We report the index construction time, the index size,

and the total query time for processing 1 million ran-
domly generated queries in Table 18. We also report

the results of k-reach (where k is set to µ) for refer-

ence. The result shows that both the indexing time and

query time of k-dist are comparable with those of k-
reach. This is because the algorithms for index con-

struction and query processing of k-dist are basically

the same for k-dist as for k-reach. Thus, if the k-reach

graph covers most of the vertices in the input graph,

the only big difference is that k-dist uses lg δ bits for
each edge weight (instead of 2 bits in k-reach), where

δ is the diameter of the input graph. Thus, we can see

that k-dist is on average 2.42 times larger than k-reach.

For the more scalable version of k-reach, we extend

it by Algorithm 5 (denoted by gen-k-reach) for pro-
cessing general k-hop reachability queries, and by Al-

gorithm 6 in Appendix A (denoted by k-dist) for pro-

cessing shortest-path distance queries, as shown in Ta-

Table 18 Performance of k -dist for processing general k and
shortest-path distance queries, with reference to k -reach for
processing µ-hop reachability queries, on the small datasets

indexing indexing index index query query
time (ms) time (ms) size (MB) size (MB) time (ms) time (ms)
(k-dist) (k-reach) (k-dist) (k-reach) (k-dist) (k-reach)

AgroCyc 21.30 22.67 0.16 0.14 6.00 5.29
aMaze 14.15 13.93 0.22 0.08 13.70 13.20
Anthra 18.15 20.37 0.13 0.13 5.80 5.13
ArXiv 198.45 183.45 14.41 3.88 75.93 43.62
CiteSeer 176.68 178.77 20.97 5.45 55.80 43.89
Ecoo 23.14 22.13 0.16 0.14 6.00 5.27
GO 83.64 80.87 8.46 2.19 33.53 24.30
Human 47.00 49.03 0.17 0.34 6.73 6.50
Kegg 19.26 16.31 0.37 0.12 15.53 14.94
Mtbrv 15.52 19.54 0.14 0.11 5.99 5.15
Nasa 46.67 47.04 3.24 0.86 22.12 14.45
PubMed 119.06 119.34 11.68 3.11 47.24 33.72
Vchocyc 15.16 19.10 0.13 0.11 5.99 5.08
Xmark 34.59 33.57 1.43 0.41 16.68 11.80
YAGO 23.80 23.14 0.67 0.35 30.38 25.38

Table 19 Total query time (elapsed time in milliseconds) of
gen-k -reach for general k and k -dist for processing shortest-
path distance queries, with reference to k -reach for processing
µ-hop reachability queries, on the large datasets

gen-k-reach k-dist k-reach

citeseerx 9200.29 9699.34 1497.28
go-uniprot 693.70 667.29 613.90
patent 80425.12 82228.21 69579.86
uniprot22m 244.55 293.58 256.70
uniprot100m 345.20 433.50 378.30
uniprot150m 402.34 484.70 430.18

ble 19. We report the total query time only because,

as discussed in Section 5.7, the indexing time and in-

dex size of both gen-k-reach and k-dist are exactly the

same as those of n-reach, which are already reported

in Tables 13 and 14. We also report the query time of
k-reach (where k is set to µ) for reference.

The result shows that for most datasets, the query
time of gen-k-reach and k-dist is not much longer than

that of k-reach, which is not surprising since the query

complexity of the three algorithms are actually the same.

In general, gen-k-reach and k-dist take longer time to
process a query than k-reach. However, compared with

the results of the state-of-the-art indexes for processing

shortest-path distance queries, HCL [25] and PLL [3],

as shown in Table 9, gen-k-reach and k-dist are signifi-

cantly more efficient and scalable.

This result demonstrates the flexibility of our in-

dexing technique even for processing shortest-path dis-
tance queries. In the following subsection, we further

show that our index is also efficient for processing clas-

sic reachability queries.

Efficient Processing of K-Hop Reachability Queries 21

6.9 Performance of Processing Classic Reachability

Queries

In this experiment, we report the performance of k-

reach for processing classic reachability queries, by set-
ting k = n or k = ∞. We want to demonstrate that, al-

though processing k-hop reachability queries has higher

cost than processing classic reachability queries since

some distance information needs to be handled for k-
hop reachability, k-reach is also a reasonably good index

for processing even classic reachability queries.

We compare with the state-of-the-art indexes for
processing classic reachability queries, which include

path-tree cover (PTree) [26], 3-hop1 [27],GRAIL [37],

and Partitioned Word Aligned Hybrid compression

(PWAH) [33]. We denote our index as n-reach, as to
indicate that this is for the case when k = n, which is

essentially an index for processing reachability queries.

6.9.1 Performance on Index Construction

Table 20 reports the index construction time of all the

indexes for all the datasets.

For the smaller datasets, the results show that con-

structing the n-reach index is faster than constructing
the PTree index in most cases. Compared with GRAIL

and PWAH, however, constructing n-reach is consider-

ably slower. For processing the large datasets, the re-

sults show that constructing the n-reach index is the
most efficient in all cases. On average, constructing n-

reach is 6.36 and 50.22 times faster than constructing

GRAIL and PWAH. We were not able to obtain the re-

sults for most of the large datasets for PTree and 3-hop,

since they either ran out of the main memory capacity
(16GB) of our machine or took unreasonably long run-

ning time (longer than two orders of magnitude than

that of our method).

Table 21 reports the storage size on disk (including

all data structures, also the input graph if needed, that

are used for query processing) of the various indexes

for the different datasets. The results show that the
size of PWAH is the smallest for most of datasets. The

size of n-reach is comparable with that of PTree and

GRAIL but considerably larger than that of PWAH for

the small datasets. However, for the large datasets, the
size of n-reach is the smallest or among the smallest.

We also remark that our index is mainly designed for

processing k-hop reachability queries, and therefore it is

reasonable that it uses more space since more distance

information is required to be indexed.

1 Note that 3-hop is only the name of the index [27] for
processing classic reachability queries, and does not imply
3-hop reachability.

Table 20 Index construction time (elapsed time in millisec-
onds) of n-reach, PTree, 3-hop, GRAIL, and PWAH (shortest
time shown in bold)

n-reach PTree 3-hop GRAIL PWAH

AgroCyc 22.40 54.31 18565.46 5.75 1.75
aMaze 14.21 236.46 462194.20 1.72 2.46
Anthra 19.61 51.44 18774.03 5.55 1.63
ArXiv 214.18 5974.43 - 5.72 67.85
CiteSeer 180.31 215.29 19101.36 7.97 51.44
Ecoo 22.81 54.45 18196.82 5.71 1.77
GO 81.81 63.28 3978.72 3.51 8.11
Human 50.17 174.09 - 27.72 3.15
Kegg 16.30 271.78 - 1.70 2.90
Mtbrv 17.30 41.17 10780.23 4.03 1.63
Nasa 45.82 29.78 5452.37 2.45 4.01
PubMed 120.62 275.27 32461.93 6.25 42.13
Vchocyc 18.32 40.65 10727.72 4.07 1.74
Xmark 35.21 63.61 56348.11 2.70 4.86
YAGO 23.30 109.69 4904.51 5.14 14.48

citeseerx 1753.23 - - 7331.45 14191.77
go-uniprot 3443.61 - - 13942.16 24548.55
patent 2749.48 - - 6635.41 751736.47
uniprot22m 234.06 12420.24 - 2050.53 1033.37
uniprot100m 2917.02 - - 27826.83 12074.84
uniprot150m 4875.51 - - 45018.57 20042.67

Table 21 Index size (in MB) of n-reach, PTree, 3-hop,
GRAIL, and PWAH (smallest size shown in bold)

n-reach PTree 3-hop GRAIL PWAH

AgroCyc 0.14 0.65 0.38 0.29 0.06
aMaze 0.08 0.19 5.44 0.09 0.06
Anthra 0.13 0.64 0.22 0.29 0.06
ArXiv 3.88 2.58 - 0.37 0.31
CiteSeer 5.45 1.39 0.29 0.37 0.39
Ecoo 0.14 0.64 0.37 0.29 0.06
GO 2.19 0.51 0.17 0.18 0.08
Human 0.34 1.94 - 0.89 0.16
Kegg 0.12 0.19 - 0.09 0.07
Mtbrv 0.11 0.49 0.28 0.22 0.05
Nasa 0.86 0.30 0.11 0.13 0.06
PubMed 3.11 1.36 0.36 0.32 0.35
Vchocyc 0.11 0.49 0.29 0.22 0.05
Xmark 0.41 0.32 0.48 0.14 0.06
YAGO 0.35 1.08 0.14 0.29 0.12

citeseerx 62.88 - - 99.83 148.78
go-uniprot 122.18 - - 106.42 242.66
patent 64.50 - - 57.70 5334.12
uniprot22m 16.74 6.13 - 24.44 18.64
uniprot100m 168.76 - - 245.75 208.63
uniprot150m 262.65 - - 382.25 349.25

6.9.2 Performance of Query Processing

Table 22 reports the total time used to process the

1 million queries by the different indexes. The results

show that query processing by the n-reach index is sig-

nificantly faster than all the other indexes for processing
the small datasets. However, for processing the larger

datasets, n-reach is slower than GRAIL and PWAH,

especially for the datasets citeseerx and patent. The

main reason for this is because for processing the large
datasets, the mechanism in processing n-hop reacha-

bility queries requires joins and complete BFS in D3,

which has significantly high complexity than the mech-

22 James Cheng et al.

Table 22 Total query time (elapsed time in milliseconds) of
n-reach, PTree, 3-hop, GRAIL, and PWAH, for processing 1
million randomly generated queries (shortest time shown in
bold)

n-reach PTree 3-hop GRAIL PWAH

AgroCyc 5.28 28.28 571.94 68.83 11.81
aMaze 13.30 37.52 14032.12 2612.58 22.84
Anthra 5.09 27.45 287.34 61.48 11.31
ArXiv 42.67 3067.89 - 1772.53 216.52
CiteSeer 43.31 337.45 653.69 169.88 238.09
Ecoo 5.24 28.10 534.00 74.16 11.64
GO 24.01 150.59 269.22 95.37 40.89
Human 6.44 32.47 - 203.35 8.86
Kegg 15.22 40.75 - 3600.05 22.26
Mtbrv 5.07 27.10 557.63 63.68 12.49
Nasa 14.50 60.02 223.89 58.81 33.07
PubMed 33.52 547.93 707.32 174.82 260.74
Vchocyc 5.07 27.14 549.58 61.71 12.69
Xmark 11.89 41.22 297.59 215.43 90.44
YAGO 25.35 149.00 389.48 90.94 93.17

citeseerx 9102.79 - - 436.93 180.29
go-uniprot 680.75 - - 82.41 438.57
patent 80395.65 - - 8859.53 14450.54
uniprot22m 249.05 428.54 - 78.57 223.76
uniprot100m 398.77 - - 165.27 287.82
uniprot150m 439.01 - - 207.04 300.83

anism employed by GRAIL and PWAH for processing

classic reachability queries. Overall, the results show

that n-reach is still a reasonably good index even for

processing classic reachability queries, especially given
the fact that it is primarily designed for processing k-

hop reachability queries.

6.9.3 An Examination on the Remarkably Short Query
Time

As shown in Table 22, the query time of n-reach for

processing 1 million queries is only 5 milliseconds for a

number of datasets, which gives the remarkably short

average query time of only 5 nanoseconds per query.

As shown in Table 21, the index sizes of the corre-
sponding datasets (all of them are small datasets) are

all so small that they are in fact smaller than the size

of the L3 cache (6MB) and even the L2 cache (256KB).

Thus, one may question whether the remarkably short
average query time is because the index is being kept

in the cache memory. Since such short query time ap-

pears only on the small datasets, we want to see how

the query time may change if we gradually increase the

dataset size. In particular, we examine whether the fast
query response time is due to some caching effect. To

do this, we test the performance of our index on a set

of synthetic datasets with varying sizes. We generate

synthetic datasets that follow a power-law degree dis-
tribution by the model proposed in [18]. We set the

average degree to 10 and vary the number of vertices

from 1K to 200K.

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

 0 20 40 60 80 100
 120

 140
 160

 180
 200

In
d
e
x
in

g
 t
im

e
 (

m
s
e
c
)

Number of vertices (in 1000)

Fig. 3 Index construction time (elapsed time in milliseconds)
of n-reach for processing synthetic datasets with 1K ≤ |V | ≤
200K

0

1000

2000

3000

4000

5000

6000

 0 20 40 60 80 100
 120

 140
 160

 180
 200

In
d
e
x
 s

iz
e
(M

B
)

Number of vertices (in 1000)

Fig. 4 Index size (in MB) of n-reach for processing synthetic
datasets with 1K ≤ |V | ≤ 200K

10

20

30

40

50

60

70

80

90

100

 0 20 40 60 80 100
 120

 140
 160

 180
 200

T
o
ta

l
q
u
e
ry

 t
im

e
 (

m
s
e
c
)

Number of vertices (in 1000)

Fig. 5 Total query time (elapsed time in milliseconds) of n-
reach for processing 1 million randomly generated queries in
synthetic datasets with 1K ≤ |V | ≤ 200K

Figures 3 and 4 report the index construction time

(elapsed time in milliseconds) and index size (in MB)

of n-reach for processing synthetic datasets with 1K ≤
|V | ≤ 200K. We also randomly generate 1 million queries

for each of the synthetic datasets, and report the total
query time (elapsed time in milliseconds) of n-reach in

Figure 5.

The results show that both the indexing time and
the index size increase slowly as the dataset size in-

creases. However, Figure 5 shows that there is a much

more rapid increase in the query time when |V | in-

Efficient Processing of K-Hop Reachability Queries 23

creases from 1K to 5K and then from 5K to 10K, and

the query time increases only slowly after |V | ≥ 10K.

To explain this, we also verified that the index size at

|V | = 1K is almost the same as the L2 cache size and at

|V | = 5K is slightly smaller than the L3 cache size, but
the index size becomes larger than the cache size when

|V | ≥ 10K. Thus, this result reveals that for handling

very small datasets when their index size is smaller than

the cache size, the index is likely kept in cache mem-
ory and hence it can give a remarkably short query

time as small as 5 nanoseconds per query. However,

we emphasize that the existing indexing methods that

we compare with were all compiled using the same gcc

compiler in the same way as our codes. Moreover, Ta-
ble 21 shows that the index size of PWAH is smaller

that of n-reach in most cases, but Table 22 shows that

n-reach still obtains shorter query time than PWAH in

most cases.

6.10 Summary of Experimental Results

To summarize, we have the following main findings:

– Compared with the state-of-the-art indexes for pro-

cessing shortest-path distance queries, HCL [25] and

PLL [3], k-reach is significantly more efficient and

scalable for processing both k-hop reachability queries
(as shown in Section 6.4) and shortest-path distance

queries (as shown in Section 6.8).

– The k-reach index is efficient, in terms of both in-

dexing construction and query processing, for dif-

ferent values of k (as shown in Section 6.6).
– The k-reach index can be easily extended to process

k-hop reachability queries of any k or even shortest-

path distance queries, with similar or only slightly

degraded performance (as shown in Section 6.8).
– The k-reach index achieves reasonably good perfor-

mance even for processing classic reachability queries,

compared with the state-of-the-art indexes for pro-

cessing classic reachability queries such as PTree

[26], 3-hop [27], GRAIL [37], and PWAH [33].

7 Related Work

A large number of indexes have been proposed for pro-
cessing graph reachability queries [2,5–8,13–16,22,26–

28,30,32–34,37,38].We have analyzed these indexes and

discussed why they are not suitable for processing k-hop

reachability queries in Section 3. We have also discussed
why the existing indexes for processing shortest-path

queries [3,12,16,25,35,36] are not efficient for process-

ing k-hop reachability queries in Section 3.5.

Some other variations of graph reachability have

also been proposed. For example, Jin et al. [24] stud-

ied distance-constraint reachability in uncertain graphs

where the existence of an edge is given by a probability,

and a query asks the probability that the distance from
s to t is less than or equal to a user-defined threshold

d in an uncertain graph. Their work focuses on design-

ing probabilistic estimators for estimating the probabil-

ity of reachability. Jin et al. also proposed constrained
graph reachability by requiring edges on the path to

have certain labels [23].

We are also aware of a recent work that applies the
concept of vertex cover to construct an index for an-

swering single-source shortest-path distance queries [9].

They identified the limitation of vertex cover for pro-

cessing shortest-path distance queries and proposed a

tree-structured index in which every node is a graph
that keeps distance information. The k-reach graph has

a similar limitation, i.e., it is a complete graph, if it

is used for processing shortest-path distance queries.

However, the k-reach graph for k-hop reachability is a
significantly smaller sparse graph. Moreover, their in-

dex is also too expensive for processing k-hop reacha-

bility queries.

Compared with the preliminary version of this pa-

per [11], we proposed a more scalable method for han-

dling large graphs. The preliminary version proposed

to further reduce the size of the basic k-reach index
by extending the coverage of the vertex cover to edges

within h hops of a covering vertex. However, covering

edges is a more rigid definition than covering vertices,

which can be easily seen by comparing the size of a min-

imum vertex cover and that of a minimum dominating
set (the latter is in general significantly smaller). Thus,

for many real world graphs, the size of the h-hop ver-

tex cover may still be large. In this paper, we propose

to employ a partial coverage as well as relax the 1-hop
edge coverage in the classic vertex cover to k-hop vertex

coverage, thus significantly reducing the index size for

handling large graphs.

8 Conclusions

We proposed an efficient index, k-reach, to process k-

hop reachability queries. The k-reach index is simple
in design and easy to implement. In particular, the k-

reach index can effectively handle skewed degree distri-

bution in real-world graphs, and is able to process both

classic reachability queries (i.e., the case when k = ∞)
and k-hop reachability queries. We analyzed the limi-

tations of the existing works in handling k-hop reacha-

bility (see Section 3). Our experimental results verified

24 James Cheng et al.

the efficiency of k-reach in answering k-hop reachabil-

ity queries, for both small and large values of k, thus

demonstrating its suitability for different real life ap-

plications where the value of k may vary. The results

also showed that k-reach is significantly faster and more
scalable than the state-of-the-art shortest-path distance

indexes [3,25]. In addition, we showed that k-reach is

also efficient for processing classic reachability queries,

as compared with the state-of-the-art indexes that are
tailored for classic reachability [26,27,33,37].

References

1. I. Abraham, A. Fiat, A. V. Goldberg, and R. F. F. Wer-
neck. Highway dimension, shortest paths, and provably
efficient algorithms. In SODA, pages 782–793, 2010.

2. R. Agrawal, A. Borgida, and H. V. Jagadish. Efficient
management of transitive relationships in large data and
knowledge bases. In SIGMOD Conference, pages 253–
262, 1989.

3. T. Akiba, Y. Iwata, and Y. Yoshida. Fast exact shortest-
path distance queries on large networks by pruned land-
mark labeling. To appear in SIGMOD Conference, 2013.

4. P. Boldi, M. Rosa, and S. Vigna. Hyperanf: approximat-
ing the neighbourhood function of very large graphs on
a budget. In WWW, pages 625–634, 2011.

5. R. Bramandia, B. Choi, and W. K. Ng. On incremental
maintenance of 2-hop labeling of graphs. InWWW, pages
845–854, 2008.

6. L. Chen, A. Gupta, and M. E. Kurul. Stack-based algo-
rithms for pattern matching on DAGs. In VLDB, pages
493–504, 2005.

7. Y. Chen and Y. Chen. An efficient algorithm for answer-
ing graph reachability queries. In ICDE, pages 893–902,
2008.

8. Y. Chen and Y. Chen. Decomposing DAGs into span-
ning trees: A new way to compress transitive closures. In
ICDE, pages 1007–1018, 2011.

9. J. Cheng, Y. Ke, S. Chu, and C. Cheng. Efficient pro-
cessing of distance queries in large graphs: a vertex cover
approach. In SIGMOD Conference, pages 457–468, 2012.

10. J. Cheng, Y. Ke, A. W.-C. Fu, J. X. Yu, and L. Zhu. Find-
ing maximal cliques in massive networks by h*-graph. In
SIGMOD Conference, pages 447–458, 2010.

11. J. Cheng, Z. Shang, H. Cheng, H. Wang, and J. X. Yu. K-
reach: Who is in your small world. PVLDB, 5(11):1292–
1303, 2012.

12. J. Cheng and J. X. Yu. On-line exact shortest distance
query processing. In EDBT, pages 481–492, 2009.

13. J. Cheng, J. X. Yu, X. Lin, H. Wang, and P. S. Yu. Fast
computation of reachability labeling for large graphs. In
EDBT, pages 961–979, 2006.

14. J. Cheng, J. X. Yu, X. Lin, H. Wang, and P. S. Yu. Fast
computing reachability labelings for large graphs with
high compression rate. In EDBT, pages 193–204, 2008.

15. J. Cheng, J. X. Yu, and N. Tang. Fast reachability query
processing. In DASFAA, pages 674–688, 2006.

16. E. Cohen, E. Halperin, H. Kaplan, and U. Zwick. Reach-
ability and distance queries via 2-hop labels. In SODA,
pages 937–946, 2002.

17. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms, Third Edition. The MIT
Press, 3rd edition, 2009.

18. S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin.
Structure of growing networks with preferential linking.
Phys Rev Lett, 85(21):4633–4636, 2000.

19. M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-
law relationships of the internet topology. In SIGCOMM,
pages 251–262, 1999.

20. U. Feige. A threshold of ln n for approximating set cover.
J. ACM, 45(4):634–652, 1998.

21. D. S. Hochbaum. Approximation algorithms for np-hard
problems. PWS Publishing Co., Boston, MA, USA, 1997.

22. H. V. Jagadish. A compression technique to materi-
alize transitive closure. ACM Trans. Database Syst.,
15(4):558–598, 1990.

23. R. Jin, H. Hong, H. Wang, N. Ruan, and Y. Xiang. Com-
puting label-constraint reachability in graph databases.
In SIGMOD Conference, pages 123–134, 2010.

24. R. Jin, L. Liu, B. Ding, and H. Wang. Distance-constraint
reachability computation in uncertain graphs. PVLDB,
4(9):551–562, 2011.

25. R. Jin, N. Ruan, Y. Xiang, and V. E. Lee. A highway-
centric labeling approach for answering distance queries
on large sparse graphs. In SIGMOD Conference, pages
445–456, 2012.

26. R. Jin, N. Ruan, Y. Xiang, and H. Wang. Path-tree: An
efficient reachability indexing scheme for large directed
graphs. ACM Trans. Database Syst., 36(1):7, 2011.

27. R. Jin, Y. Xiang, N. Ruan, and D. Fuhry. 3-hop: a high-
compression indexing scheme for reachability query. In
SIGMOD Conference, pages 813–826, 2009.

28. R. Jin, Y. Xiang, N. Ruan, and H. Wang. Efficiently
answering reachability queries on very large directed
graphs. In SIGMOD Conference, pages 595–608, 2008.

29. M. E. J. Newman. The structure and function of complex
networks. SIAM Review, 45(2):167–256, 2003.

30. K. Simon. An improved algorithm for transitive closure
on acyclic digraphs. Theor. Comput. Sci., 58(1-3):325–
346, 1988.

31. F. Stann and J. Heidemann. Rmst: Reliable data trans-
port in sensor networks. In 1st IEEE International Work-

shop on Sensor Net Protocols and Applications, pages
102 – 112, 2003.

32. S. Trißl and U. Leser. Fast and practical indexing and
querying of very large graphs. In SIGMOD Conference,
pages 845–856, 2007.

33. S. J. van Schaik and O. de Moor. A memory efficient
reachability data structure through bit vector compres-
sion. In SIGMOD Conference, pages 913–924, 2011.

34. H. Wang, H. He, J. Yang, P. S. Yu, and J. X. Yu. Dual la-
beling: Answering graph reachability queries in constant
time. In ICDE, page 75, 2006.

35. F. Wei. TEDI: efficient shortest path query answering on
graphs. In SIGMOD Conference, pages 99–110, 2010.

36. Y. Xiao, W. Wu, J. Pei, W. Wang, and Z. He. Effi-
ciently indexing shortest paths by exploiting symmetry
in graphs. In EDBT, pages 493–504, 2009.

37. H. Yildirim, V. Chaoji, and M. J. Zaki. Grail: Scalable
reachability index for large graphs. PVLDB, 3(1):276–
284, 2010.

38. L. Zhu, B. Choi, B. He, J. X. Yu, and W. K. Ng. A uni-
form framework for ad-hoc indexes to answer reachabil-
ity queries on large graphs. In DASFAA, pages 138–152,
2009.

Efficient Processing of K-Hop Reachability Queries 25

Appendix A

Algorithm 6 presents an extension of Algorithm 4 to

return the exact shortest-path distance from s to t if

s can reach t in k hops. The main difference is that

in Algorithm 4, we can terminate the process as soon

as we find that s can reach t in k hops in D1 or D2

or D3, while in Algorithm 6 we need to continue with

the intersection and join in order to find the minimum

distance. However, the complexity of Algorithm 6 is the

same as that of Algorithm 4 given in Section 5.5, since
we give the worst case complexity in Section 5.5.

26 James Cheng et al.

Algorithm 6 Querying shortest-path distance using scalable k-reach

Input : A more scalable k-reach index of G, consisting of D1 = (VD1
, ED1

, ωD1
), D2 = (VD2

, ED2
, ωD2

), a residual
graph D3, and two query vertices, s and t

Output: A boolean indicator whether s→k t, and d(s, t) if s→k t is true

// case 1: both s and t are in S
if s ∈ S and t ∈ S then1

if (s, t) ∈ ED1
then2

return true, and ωD1
((s, t));3

else4

return false;5

// case 2: s or t is in S, but not both

else if s ∈ S or t ∈ S then6

if (s, t) ∈ ED1
then7

return true, and ωD1
((s, t));8

else if ∃v ∈ S such that ωD1
((s, v)) + ωD1

((v, t)) ≤ k then9

return true, and min{ωD1
((s, v)) + ωD1

((v, t)) : v ∈ S};10

else11

return false;12

// case 3: both s and t are in S′

else if s ∈ S′ and t ∈ S′ then13

if (s, t) ∈ ED2
then14

return true, and ωD2
((s, t));15

else if ∃u, v ∈ S such that ωD1
((s, u)) + ωD1

((u, v)) + ωD1
((v, t)) ≤ k then16

return true, and min{ωD1
((s, u)) + ωD1

((u, v)) + ωD1
((v, t)) : u, v ∈ S};17

else18

return false;19

// case 4: s, t /∈ S and s or t is in S′

else if s ∈ S′ or t ∈ S′ then20

d←∞;21

if (s, t) ∈ ED2
then22

d← min{d, ωD2
((s, t))};23

if ∃u, v ∈ S such that ωD1
((s, u)) + ωD1

((u, v)) + ωD1
((v, t)) ≤ k, then24

d← min{d,min{ωD1
((s, u)) + ωD1

((u, v)) + ωD1
((v, t)) : u, v ∈ S}};25

if ∃v ∈ S′ such that ωD2
((s, v)) + ωD2

((v, t)) ≤ k then26

d← min{d,min{ωD2
((s, v)) + ωD2

((v, t)) : v ∈ S}};27

if d ≤ k then28

return true, and d;29

else30

return false;31

// case 5: both s and t are not S or S′

else if s, t ∈ VD3
then32

d←∞;33

if ∃u, v ∈ S such that ωD1
((s, u)) + ωD1

((u, v)) + ωD1
((v, t)) ≤ k, then34

d← min{d,min{ωD1
((s, u)) + ωD1

((u, v)) + ωD1
((v, t)) : u, v ∈ S}};35

if ∃u, v ∈ S′ such that ωD2
((s, u)) + ωD2

((u, v)) + ωD2
((v, t)) ≤ k, then36

d← min{d,min{ωD2
((s, u)) + ωD2

((u, v)) + ωD2
((v, t)) : u, v ∈ S′}};37

if d ≤ k then38

return true, and d;39

else40

start BFS from s in D3 and from t in the reverse graph of D3 in parallel for dk/2e hops: if the two BFSs meet41

at a common vertex v and d(s, v) + d(t, v) ≤ k, return true, and d(s, v) + d(t, v); otherwise, return false;

