Efficient Core Decomposition in Massive Networks
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Abstract—The k-core of a graph is the largest subgraph in effective visualization tools [6]. It was used to describe t
which every vertex is connecteq.to a’g least other vertices within  grchitecture of randomly damaged uncorrelated networks [7
the subgraph. Core decomposition finds thek-core of the graph It was applied to predict protein functions based on khe

for every possiblek. Past studies have shown important applica- f tei tein int fi work d inial
tions of core decomposition such as in the study of the propées cores ot protein-protein interaction networks and amina ac

of large networks (e.g., sustainability, connectivity, cetrality, ~Sequences [8]. It was used to analyze the static structure
etc.), for solving NP-hard problems efficiently in real networks of large-scale software systems [9]. In addition, hieraah
(e.g., maximum clique finding, densest subgraph approximan, degree core tree [10] was proposed for summarizing the
etc.), and for large-scale network fingerprinting and visudization. structure of massive graphs and performing model validatio

The k-core is a well accepted concept partly because there exists | h th th t &t has b tensivel
a simple and efficient algorithm for core decomposition, by n grap eory, the concept gkcore has been extensively

recursively removing the lowest degree vertices and theincident  Studied in random graphs to understand various graph prop-
edges. However, this algorithm requires random access to ¢h erties [11], [12], [13], [14], [15]. Thek-cores can be used as
graph and hence assumes the entire graph can be kept in main heuristics for maximum clique finding since a clique of size
memory. Nevertheless, real-world networks such as onlineosial is guaranteed to be in(&—1)-core, which can be significantly

networks have become exceedingly large in recent years and ler than th iginal h M d st
still keep growing at a steady rate. In this paper, we propose Smailer than the original grapn. IMoreover, core decommos|

the first external-memory algorithm for core decompositionin €an be applied to give a (1/2)-approximation algorithm for
massive graphs. When the memory is large enough to hold the the densest subgraph problem [16] and a (1/3)-approximatio
graph, our algorithm achieves comparable performance as 8 algorithm for the densest at-ledstsubgraph problem [17]

in-memory algorithm. When the graph is too large to be kept j, jinear time. It can also be used as an approximation of

in the memory, our algorithm requires only O(kme:) scans of - . .
the graph, where k... is the largest core number of the graph. betweenness score [10] and to discover dense clustersdg noi

We demonstrate the efficiency of our algorithm on real netwoks ~ Spatial data [18].
with up to 52.9 million vertices and 1.65 billion edges. Compared with the computation of other similar concepts

of cohesive groupsn a network [19], such asliques n-

cligues n-clans k-plexes f-groups n-clubs lambda sets
Given a graphG, the k-core of GG is the largest subgraphmost of which are algorithmically difficult (NP-hard or atkt

of G in which every vertex has degree of at leaswithin the quadratic), there exists a simple and efficient algorithm fo

subgraph [1]. The problem afore decompositioim G is to computingk-cores.

find the k-core of G for all k. Given a graphz, we can compute thé-core of G by re-
Core decomposition has been shown to be an importanirsively deleting all the vertices (together with theicigrent

concept in the study of graph properties and has many signédges) with degree less than Batagelj and Zaversnik [20]

cant applications in network analysis. It was first introeldito  propose a linear algorithm for core decomposition, whiaksus

simplify graph topology to aid in the analysis and visuai@a bin-sort to order the vertices and recursively deletes dreex

of networks [1], [2]. It was then recognized as an importantith the lowest degree.

tool for visualization of complex networks and interpreat ~ This algorithm, however, requires random accesses to the

of cooperative processes in them [3], [4]. It was used graph and thus assumes that the whole graph can be kept in

analyze complex networks [5], in particular their hieraesh main memory. Unfortunately, many real-world networks have

self-similarity, centrality, and connectivity. It was eloped to grown exceedingly large in recent years and are continuing

find structural fingerprints of large-scale networks andgfes to grow at a steady rate. For example, the Web graph has
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over 1 trillion webpages (Google), most social networkg.(e.

TABLE |

-~ o NOTATIONS
Facebook, MSN) have hundreds of millions to billions of
particip{;\r]ts, many c?tati_on networks (e.g., DBLP, Citepee Symbol Description
have millions of publications, other networks such as phonge M Size of main memory (internal memory)
call networks, email networks, stock-market networks,, etie B Size of disk (external memory) block

| ivelv large n Number of vertices in grapl’ = (V, E)
also massively ge. m Number of edges in grapt’ = (V, E)

In this paper, we develop the firgxternal-memoryal- |G] / Size of G, defined a§G| = [E] =m i
gorithm for core decomposition in a massive network. Th ”ZEZ; ZZEU(’;C/;)) $E§ Zztgfefen?f??r?%s/c’fc? e
result of this research can be readily applied to design are, :&Vck:Eck) The k-core of (¥
efficient solution or approximation of many important buf Emas The maximum core number of any vertexh
high-complexity problems in massive real networks which $() Core number ob in G, the largestk st.v € Vg,

fit i . ite a few of these problem P (v) The upper bound on the core numberwin G
cannot fit in main memory. Qui W p 5 Ty The k-class of G, Ty = {0 - 0 € V. b(v) = k]
are described above, and all of these problems assume [he 3 (x) The maximumy value among all vertices iX
existence of a linear in-memory algorithm to find theores. deposit (v, ku) The number ofv's neighbors withy) > k.

All existing in-memory algorithms arebottom-up ap-
proaches that computetacore before dk+1)-core. However,

a k-core is a supergraph of @ + 1)-core and the 0-core is organization. Section Il formally defines the problem and
essentially the entire graph. Therefore, the bottom-up@ I  yives the basic notations. Section Il describes the in-orgm
cannot be adopted to design an efficient external-memq{)orithm. Section IV presents the overall framework of our
algorithm. solution. Section V details the EMcore algorithm. Sectidn V
We devise a novetop-down approach that recursively reports the experimental results. Section VIl discusses th
computes thé-cores from larger values df to smaller ones, related work. Section VIl gives the conclusion.
and progressively reduces search space and disk 1/0O cost by
removing the vertices in each computéetore. Our algo- Il.
rithm, EMcore, consists of three key components: an efficient _
strategy for graph partitioning, an effective mechanism fo N this paper, we focus on large networks that are modeled
estimating the upper bound of the core number of the vertic& 9raphs. For simplicity of presentation, we discuss our
and a recursive top-down core decomposition procedure. Giigorithm for undirected graphs only. The algorithm can be
graph partitioning cuts the original graph into small bledky €xtended to handle directed graphs in a way similar to the
only one scan of the graph. This allows core decompositiddaption of the in-memory algorithm for directed graphg[20
to load only the relevant blocks into main memory at each Table | shows the notations used throughout the paper.
recursive step. The estimation of the upper bound on thEr external-memory algorithm analysis, we use the stahdar
core number of vertices ensures the correctness of our t§f$2 model [21] with the following parametersM is the
down approach as well as reducing the overall search spd®&in memory size andB is the disk block size, where
We develop an effective mechanism for estimating the upper< B < M/2. In most practical cases, we consider the
bound and progressively refining it at each recursive stdpternal memory as the main memory and the external memory
Based on the upper bound, our top-down strategy identifieg&the disk, though other memory hierarchies are also gessib

range ofk-cores to be computed in main memory by loading Let G = (V. E) be an undirected and unlabeled graph. We
only the relevant blocks. definen = |V | andm = |E|. We define thesizeof G, denoted

We prove that our algorithm uses ony(k;,..;) scans of as|G|, as the_number of edges @, L€, |G| = m. We define
the graph in the worst case, whéirg,, is the largest possible the set ofneighborsof a vertexv in G as nb(v) = {u :
value of k for any k-core in the graph. In practice, however(%: ) € E}, and thedegre/eof vin G asd(v) = [nb(v)|.
our experimental results show that the actual amount of I/ émllarlly, for a subgraplt’ = (VG”EG’/) of G, we c/ieflne
required is significantly less than that required figr,, scans nb(v, &) = {u: (u,v) € Eg'} andd(v, &) = |nb(v, G')].
of the entire graph.

The k-core [1] of G is the largest subgraptfy
Our experimental results on various massive real networks

N OTATIONS AND PROBLEM DEFINITION

Voo, Ec,) of G such thatvv € Vg, d(v,Cx) > k. The
core numberof a vertexv € V, denoted as)(v), is defined

verify that our algorithm is both CPU-efficient and I/O-as the largest such thatv is in Cy, i.e., “'(v) — k* means

efficient. When main memory is sufficient to hold the entirgnatv € Ve, andv ¢ V We further define the notion of
network, our top-down algorithm achieves comparable perf%class ascﬁ‘ollows Chtar

mance to the state-of-the-art in-memory algorithm for core
decomposition [20]. When main memory is not sufficient to pefinition 1 §-cLAsS): Given a graphG = (V, E), the

keep the entire network, our algorithm is able to performecoy;_class v, of G is defined ast;, = {v: v € V,9(v) = k}.
decomposition efficiently for networks with up to 52.9 naltt

vertices and 1.65 billion edges, while the in-memory aliponi
fails in these large graphs.

In particular, thed-class, ¥, is the set of vertices it with
degree of 0.



The problem ofcore decompositionis: given a graphG, Algorithm 1 BottomUp
find thek-core of G for k = 0,1, ..., kpmas, Wherek,,q, isthe Input: G = (V, E).
maximum core number of any vertex dh Equivalently, the Output: The k-class,¥;, of G for all k.
problem is tofind thek-class ofG for k = 0,1,..., kpnaz. IN _ o _ _
this paper, we propose an external-memory algorithm thasfin 1. order the vertices id- in ascending order of their degree;
: . 2. while (G is not empty)
the k-classes ofz when main memory is not large enough to let d be the minimum vertex degree @;
hold the whole graplG. From thek-classes, we can easily 4 Ty 0 '

obtain anyk-core as the induced subgraph@fby the vertex 5 while (there exists a vertex with degree of at most)

setVi = Up<ick,., Vi 6. Uy ¥aU{v}; o
The following example illustrates the concept of core de”- removev and all edges incident te from G;
composition. 8. re-order the remaining vertices @

in ascending order of their degree;

Example 1:Figure 1 shows a graply that contains 14 9. output allVs;

vertices, a,...,n. The 0-class, ¥y, of G is an empty set
since there is no isolated vertex fA. The 1-class¥; =

{a,, C’j}f the 2—c|assxﬁ? N {d’ei f’g’mg’ and the 3'CE‘SS degree ofd or less, they cannot be in/aclass wheré: > d,
W3 = {h,i,k,[,n}. In this example, we havey.. = 3. The 44 thus must be in,. Therefore, they are added %,
0-core is the induced subgraph@fby vertex SeU0<i§3 Yi- and removed fron@. This process continues until all vertices

Since ¥y = 0 in this example, the 0-core is the same as t maining inG have degree greater thdnThen, the algorithm

;-core, which is simply the entire graph. Th.e 2-cqre is ﬂmoves on to the next iteration to compute the nkxtlass
induced subgraph by, U'W;) and the 3-core is the induced, are . - 4. The algorithm terminates when all vertices, and

subgraph by¥s;. One can easily verify that in th&-core, their edges, are removed fro6

8v<erl3€/ ie?:tex Is connected to at ledsbther vertices, where ¢, following example further explains the bottom-up com-
- = putation.

Example 2: Suppose that we compute theclasses of the
graph in Figure 1 by Algorithm 1. Line 1 sorts the vertices
as follows: {a(1), ¢(1), j(1), f(2), m(2), b(3), d(3), g(3),
e(4), k(4), n(4), h(5), I(5), i(6)}, where the number in the
parentheses indicates the degree of the vertex in the ¢urren
G. Then, in the first iteration (Lines 3-8) that computes the 1-
class, the vertices, ¢ and;j are first removed fronds together
with their incident edges since their degree is 1. After,tha
vertices are re-ordered 48(1), f(2), m(2), d(3), g(3), e(4),
k(4), n(4), h(5), I(5), i(5)}. Then vertexb is also removed
because after removingandc, the degree of becomes 1. At
this point, the ordered vertex list becomg8(2), m(2), d(2),

In this section, we describe the existing in-memory al(3), e(4), k(4), n(4), h(5), 1(5), i(5)}. The first iteration
gorithm for core decomposition and explain why it is notompletes and obtaing; = {a, c, 5, b}. In the second iteration
suitable to be extended to an external-memory algorithm. Weat computes the 2-class, the vertices removed are (in the
also discuss the advantage of the top-down approach over ¢iger): f, m, d, g, ande. In the third iteration that computes
bottom-up approach for core decomposition in large graphshe 3-class, the vertices removed are (in the orderk, h, I,

Algorithm 1 describes the skeleton of the existing inand;. O
memory algorithm for core decomposition [20]. It is a bottom
up approach as the algorithm starts the computation of:the When main memory is sufficient to hold the entire input
class from smaller values df and moves to larger values ofgraph, the most costly step of the in-memory algorithm is
k. sorting the vertices according to their degree at eachtitera

The algorithm first sorts the vertices in ascending order @ine 8). Batagelj and Zaversnik [20] use bin-sort to order t
their degree (among the vertices with the same degree, ¥@stices to achievé)(m + n) time complexity.
ordering can be arbitrary). Then, it starts to computedhe When the graph is too large to be placed in main memory,
class U4, whered is the minimum vertex degree ifi. It the bottom-up approach fails because it requires memogespa
removes fromG all vertices with degree of, together with of Q(m + n). The bottom-up approach is not suitable for
all the edges incident to them, and puts these verticesligto designing an efficient external-memory algorithm sincesitts
After removing these vertices and their edges, the degreecefe decomposition over the entire graph to computeithe
some vertices that are previously connected with the rechov@ass with the smallest. Although sorting can be done in

n

vertices decreases. If any vertices remainingzimow have O(plogu ) I/Os (assuming that we store separately the

Fig. 1. A Graph and Its-classes

IIl. IN-MEMORY CORE DECOMPOSITION



vertices and their degree on consecutive disk blocks)niois Algorithm 2 PartitionGraph

trivial to address the problem of random accesses to vertidaput: G = (V, E), memory sizeM, disk block sizeB.

and edges on disk during the computation. Output: A partition of disjoint vertex setsy/ = {Us,...,U;}.
In this paper, we propose a top-down approach, which

first computes thé:-class for larger and then moves down 1. create an empty partitio ;

to smaller values ofk. The top-down approach is more 2 “mem =%;  Il'the partof7 that are currently in memory
3. for each vertex,v € V, do

suitable for designing an external-memory algorithm. Any if(v is not connected to a vertex in any vertex setin..)

other advantage of the top-down approach over the bottorg- create a new séf = {v} and addU t0 Zmem;

up approach is that most applications and algorithm desigs  else

using k-cores only need thé-cores with larger values of 7- find the vertex set/ € % to which

k, and sometimes, only thk,,.,-core (e.g., for defining the addqi; Tﬁi}he most connections;

nucleus of a communication network [4], for predicting giot o ; Y —

functions [8], for approximating the[d]ensezt subgrag@lul)ﬂaI ,[16]]%, If(zv\?ﬁfeé%g{(]f ) /i memory Used fol/ reaches5
etc.). The top-down approach can obtain theores with 11.  if(Q 0,y >, cp d(u) = M)

larger k£ without computing those with smallgr. This can 12. letUnas be the vertex set ifnem S.t.

result in huge savings of computational resources for liagd| VU € Unem; 3yt A1) 2 Xyer Aw);

massive networks, because the smaller the valué,ahe WriteBlocKUnnas);

larger is the graph from which thie-core is computed.

IV. OVERALL FRAMEWORK Procedure 3WriteBlocKU)

In this section, we first give the overall framework of ourl- €t/ be the subgraph o that consists of all edges
connected to the vertices 0i;

exte_r.nal—memory aIg_onthm, caIIeIElMcore, for core d_ecom— 2. estimatep(v) for each vertexs in H:
position, and then discuss the details of each part in thé nex. \yrite H to the disk and remove/ from %o
section.

1) Graph partitioning:

The first step of EMcore is to partition the vertex set V- EXTERNAL-MEMORY CORE DECOMPOSITION

V of G, so that core decomposition by EMcore in later In this section, we discuss in detail the three parts in the

steps can be processed by loading only the correspongerall framework, followed by a detailed analysis of the

ing subgraphs of the relevant subsets of vertices (instealgorithm.

of the whole graph) in main memory. We describe an S

efficient partitioning strategy that uses only one scan éf Graph Partitioning

G. The purpose of graph partitioning is to decompose the orig-

o inal large graph into a set of smaller subgraphs, so that core

2) Estimation of the upper bound on the core number: gecomposition can be processed by loading only those releva

We develop heuristics to estimate the upper bound &Hbgraphs into main memory. There are many existing graph
the core number of the vertices in each subset in tR@rtitioning algorithms [22], [23], but they are in-memory
partition. The upper bound is refined progressively @gorithms. For core decomposition in massive networks tha
each step of core decomposition. cannot fit into main memory, we need an efficient algorithm
that partitions a large graph with limited memory consumpti
3) Recursive top-down core decomposition based on tifg this end, we devise a simple graph partitioning algorithm
upper-bound core number: that requires only one scan of the original graph and haaline

The main step of EMcore is a recursive procedm%PU time _complexity. o _ . )
of core decomposition. Based on the upper bound o_nThe outline of the partitioning algorithm is given in Algo-

the core number of the vertices, EMcore recursiveh hm 2. The algorithm reads the input graghfrom external
computes the:-classes on a set of vertices whose co emory once and partitiorig into a set of disjoint vertex sets,

number falls within a range such that the corresponding = (U1 -+ Ui}, whereU, ., Us = V andU; N U; = 0
relevant subgraph can be kept in main memory. offr all i # ;. )
algorithm is top-down, meaning that we compute the For each vertex, the algorithm processes as follows.

classes with ranges of larger core numbers before thodaere are two cases. The first case (Lines 4-5 of Algorithm

of smaller core numbers. 2) is thatv is not connected to any vertgx in any vertex set in
_ Umem (the part of7 that are currently in main memory). In

At the end of each recursive step, we remove fréMm this case, we simply create a new vertex Eewith a single

the k-classes already computed, as well as their incidefértex v and addlU to %

mem:-

edges, to reduce the search space and disk I/O cost forhe second case (Lines 6-10 of Algorithm 2) is thais
the next recursion of core decomposition. connected to some vertex(es) in some existing vertex sat(s)



WU pmem. The algorithm finds the vertex sét € %,.,, with in X. That is, ¢

which v has the most connections; that ¥/’ € Zem, X # 0.

|nb(v) NU| > |nb(v) NU'|. This vertex seU can be found  The following lemma describes how to refingv).

in O(d(v)) expected time using a hashtable. Note that we do

not keep all vertices irG in the hashtable, but only those in_ LEMMA 2: Given a vertexv < V, where the current

a vertex set ir#,,..,. After finding U, we addv to U. If the ¢(v) > 0, let Z contain all neighbors of with ¢ values

memory used fol is as large as the block siZ@, we write lower thany(v), thatis,Z = {u : u € nb(v), P(u) < P(v)}.

U to disk by Procedure 3. If (d(v) — |Z|) < ¥(v), then(v) can be refined as
After processing each vertex we also check (Lines 11-13 maz{d(v) —|Z|, ¥,e(Z)}-

of Algorithm 2) if the memory used by the current partition

reaches the available memory space assigned. When this iS prgof: Based on the definition o0,,..(Z), we know

the case, we reclaim the memory by writing the vertex sgiat all vertices inZ can only exist in thek-cores for
currently with the largest memory usage to disk. k <%,,..(Z), which means that the edges connectingnd

The writing of a vertex setU to the disk as shown in its neighbors inZ cannot exist in the,,,.(Z) + 1)-core.
Procedure 3 proceeds as follows. When we read the vertiqggerefore, ifv exists in the ¢,,,,(Z) + 1)-core, the degree
in U from the disk (during the scanning ¢f), we read their of v is at most(d(v) — | Z]).
edges as well. Let/ be the corresponding subgraph; that is, If (d(v) — |Z|) > ¥,,,.(Z), We havey(v) < (d(v) — |Z])

H = (Vu,En), whereVy = UU{v:u € U, (u,v) € E} and because it is possible that in thig(v) — |Z|)-core,v has a
Eyg = {(u,v) :u € U, (u,v) € E}. We write H to disk and, degree of(d(v) — |Z|). Otherwise, we havéd(v) — |Z|) <

at the same time, release the memory occupie@lglsol). ) (7), which means that cannot exist in thew,,, .. (Z) +
We delay the discussion of the estimation of the upper-boungcore, and thus we have(v) < ,...(Z). In both cases,
core number)(v), of eachv in H to Section V-B. P(() < maz{d(v) —|Z|, V,ae(2)}.

Before we move on to present our main algorithm for core Finally, for the current value of)(v), we have(d(v) —
decomposition, we ask whether we can devise a divide-angd{) < y(v) (given) andy,, . (Z) < ¥ (v) (by the definition
conquer solution that computes core decomposition on easthZ). Therefore,maz{d(v) — |Z|, ,.,..(Z)} is a tighter
subgraph obtained by the partition, and then merges théisesuvalue of+)(v), which completes the proof. [ |
to find the k-cores in the original graph. We note that the
divide-and-conquer method does not work because at each€émma 2 can be applied iteratively to replace the current
conquer phase, this approach still needs to perform searciv@lue of ¢’(v) whenever a tighter value is possible fotv).
the merged problem space to determine the core numbertsiwever, simply applying Lemma 2 might not be good enough
each vertex, and hence it demands as much memory as dgeee it is likely thaty,,,,(Z) > (d(v) — |Z]|) especially if

) = maz{Y(u) : v € X}, where

mam(

an in-memory algorithm. Z is not small. As a result, we often choosg,,, (Z) to
refine+)(v), which weakens the effectiveness of Lemma 2 in
B. Upper Bound on Core Number obtaining a good estimation af(v).

To get a better estimation ofi(v), we apply a finer

Our top-down core decomposition algorithm requires th@finement based on the following corollary of Lemma 2.
selection of a relevant set of vertices based on the uppeardoou

of their core number. In this subsection, we develop hedasist COROLLARY 1: Given a vertexv € V, where the current
to estimate this upper bound. P() >0, let Z ={u:uecnbv), Y(u) <)}

We usey(v) to denote the upper bound @r{v) of avertex . anyZ' C Z, Z' # 0, if (d(v) — |Z']) < ¥(v), then
v. The following lemma gives a coarse estimation:of). ¥(v) can be refined amaz{d(v) — |Z'|, ,...(Z")}.
LEMMA 1: ¢(v) = d(v).
v(v) () Proof: Similar to proof of Lemma 2. ]

Proof: It is trivial to show thatiy(v) = d(v) because
P(v) < d(v). n Based on Corollary 1, we can select the sutiseof Z that

attains the tightest estimation @f(v), rather than restricting
Lemma 1 serves as an initialization ¢f(v) for eachv. to the whole setZ for the estimation.
After the initialization, we can further refing(v). The basic ~ Procedure 4 describes our algorithm to estimate). Lines
idea is to refing)(v) based on the) values ofv’s neighbors. 1-2 first initialize ¥ (v) to be d(v) by Lemma 1. Then, a
Intuitively, v’s neighbors that have values lower than)(v) refinement is applied to obtain a tighter bound on the core
definitely have the true core number lower thafv). These number of each vertex i/ (Lines 3-7), as explained in
neighbors cannot contribute to the degreevah the ¢)(v)- Corollary 1.
core and thus iy has many of such neighborg(v) can be  Note that Line 5 of Procedure 4 uses the conditidfv —
further tightened. |Z| < 1 (v)", while Corollary 1 uses d(v) — |Z'| < ¥(v)".
We first define a notatiog,, ., (X) for a non-empty vertex An incorrect value of(v) may be assigned if Lines 6-7 of
set X to denote the maximump value among all the vertices Procedure 4 chooses son# with (d(v) — |Z']) > ¥(v).



Procedure 4 Estimates) Example 3:Assume that the vertex set of the graph in

1. for eachv € V do Figure 1 is partitioned into three se®; = {a,b,c,d,e, f},
2. initialize ¥ (v) asd(v); Us = {g,h,i,5}, andUs = {e, k, m,n}. Figure 2 shows the
3. for eachv € V do _ _ three corresponding subgraphhe first number next to each
4. letZ = {u:uenbv), ¥(u) <P(v)}; vertexw is the initial ) (v) = d(v), while z — y indicates that
5. if(d(v) = [Z] < 9(v)) _ the ¥ value is tightened from: to y by Procedure 4.

6 let f(X) = maz{d(v) — |X|, Ve (X))

7. V() «— min{f(Z"):Z2' C Z,7Z' # 0};

8. repeat Steps 3-7,;

However, thisZ’ cannot be selected to refing(v), since
Line 7 selects the subset df with the lowestf value and _ T
Z with (d(v) — |Z|) < ¥(v) is obviously a better refinement,® Ur=ta b-c.d.e.f} ®) U=ig b i}
Therefore, Lines 5-7 of Procedure 4 refingg) as stated in
Corollary 1 and the correctness of the refinement)6f) is
ensured. Let us consider vertekin Figure 2(a). We havg = {a, ¢}

In each refinement process as described in Lines 3-7, WiRcey(a) = (c) = 1 < 1(b) = 3 at this moment. It is easy
always refine the vertices with smallgrvalues before those to seemin{f(Z") : Z' C Z,Z" # ()} = 1 in this case and
with higher ones. This strategy allows the refinement totéigh thus we obtairﬂ(b) = 1. Similarly for vertexd, we compute
@e bounds more quickly since only the neighbors with low — {b} since nowy(b) = 1 < 7)(d) = 3. Thus, we obtain
1 values are u_seful in tightening the bounds (by Corolla@(d) = 2. Note that we cannot ugeto compute)(d) since we
1). The smallen/)_values refined are thus particularly effectivgio not have the degree @r information of g at the current
in tightening they> values for other vertices in the remainingstage, which will become available in a later stage of core
process. . decomposition. O

To tighten the value of)(v), we do not need to compute
f(Z") for all subsets ofZ in Line 7 of Procedure 4. The ¢, Recursive Top-Down Core Decomposition
definition of f(Z’) in Line 6 of Procedure 4 actually implies We now discuss our algorithEMcore, as outlined in Algo-

a dilemma: the larger the size df, the smaller is the value rithm 5. EMcore first invoke®artitionGraph(i.e., Algorithm

! pre 7\
of (.d(v) —12') b,UI thg larger may b.e the value of,,,, (2'); 2) to partitionG. Then, it invokes Procedure EmCoreStep
while a smallerZ’ implies the opposite. Moreover, for subsetf,O compute thek-classes withk in the rangelk,, k.], where

of the same size, clearly those vertice<ithat have a smaller & . .
= . e = , 1 < ky, recursively from higher value ranges to lower value
1 help more in obtaining a smallep,,..(Z’) than other

(c) Us=tk, I, m, n}

Fig. 2. \Vertex Set Partition and Their Subgraphs

vertices. Therefore, we can sort the verticeg/im ascendin ones.
o ' , . 9 In order to bound the memory usage, we determine each
order of theiry values. Then, we seleé¢t’ of size from1 to . T —ky
range [k, k.| as follows. We first definel,’ = {v : v €

|Z|, where the size-Z’ simply contains the first vertices in v e _
the ordered?, until we find thatf(Z’) reaches its minimum. V. k& <(v) < k. }; thatis, ¥, " is the set of vertices whose
In this way, we process at mokZ| number of subsets of ¢ values fall within the rangét;, k.,]. At each recursive step,
instead of2!4! subsets. we construct a subgraph that is relevant for computing the

We apply Procedure 4 to estimatév) for eachv in H in real core number of the verticesﬁij in main memory. Let
Line 2 of Procedure 3. SincH is only a small subgraph @f, b= %. Then,b is the maximum number of blocks that can be
the refinement process (Lines 3-7 of Procedure 4) converdedd in main memory. We uskeand a giverk,, to determine
quickly. To handle the worst-case scenario, in our algorjth k; as follows. )
we set a limit on the number of iterations for the refinement Let K be a set ofk values such that the vertices ih,*
process. We bound the cost of the refinement by the costasé scattered in at mostvertex sets inZZ. That is,

a disk 1/0. That is, we terminate the refinement process once

the accumulated time for refinement reaches the time for =k

disk 1/0O. Therefore, the total cost of our algorithm is alwayha_ {k 1<k <k, ’{U Uew,unt, # 0}’ = b}'
bounded by the number of disk 1/Os.

In Procedure 3, the subgragh is associated with a vertex
setU in partition % . However, there may be some vertices in min{k: ke K}, if K#0,
H that are not inU but are connected to some verticeslin k= { ko, otherwise
Since we may not have the degree of these vertices to indiali

their E values. we consider thed} values to becc when we lwe use an adjacency list to stawé(v) of a vertexv. In each subgraph, we
’ only need to keep the adjacency list of those vertices;inwherel <4 < 3.

ref'ne1_b(”)_for veU.The foIIowmg example illustrates how Thus, an edge between two vertices in the sémés counted twice, and the
we refiney by Procedure 4. three subgraphs have 14, 15, and 15 edges, respectively.

In this paper, we assumg is not empty. We then define

(1)



Algorithm 5 EMcore Procedure 7 ComputeCor&w, ki, k)

Input: G = (V, E), memory sizeM, disk block sizeB. 1. initialize ¢)(v) to be —1 for eachv € W;
Output: The k-class,V;, of G for all k. 2. k< ki
3. while (k < k)
1. invoke PartitionGraph g while (v e W, éd(ﬁ’%‘/") + dcfg‘mttiv’fk“)) é k)
2. computek, by settingk. = oo andb = %; 6. updraLetZ/?(\i;e)Utgnbez fgr ggihmrzmzri]nir?g :/Oerp[euvivn’ Gw;
3. invoke EmCoreStefk;, k..); 7' ke kil ’
8. for each k, wherek; < k < k,, do
9. VUp+{v:ve W) =k}
Procedure 6 EmCoreStefk;, k.,) 10. output¥y;
LW«
2. letH be the set of subgraphs of the vertex set€n
that contain any vertex ifV;
3. read into main memory to construct shown in Procedure 7, to compute thelassesl, from Gy,
~ the induced subgrapt'w by w; wherek; < k < k,. However, an immediate question raised
‘51' Irre“;i?\kee@(iogn%;tzgfr\frg(kl};ﬁﬁéntly in main memory here is: since?yy is the induced subgraph, is the core number
. v v ) o) i
6. depositany vertex connected to a vertexin, (ki < k < ku): computeql frorr.GW correct? We Wlll prove the correctness of
7. remove all vertices i, (k; < k < k,) and their edges our aIgonthm in Theorem 1, WhICh.WI” also become clearer
from the subgraphs ifi{, and merge any of as we continue to unwrap the details of our algorithm.
_ these subgraphs if their combined size is less tBan One key concept to ensure the correctness of our algorithm
8. if(k > 2) Ly is the concept oflepositassigned to each vertex (Line 6 of
9. computek; in W, by settingk:, = (ki —1); Procedure 6). We define the deposit of a vertex as follows.

10. write the subgraphs i that consist of no vertex @2}‘
L

to the disk, unless all the subgraphs can now be kept Definition 2 OQEPOSIT): Given a vertex) € V and an inte-

in main memory: gerk,, wherek, > 1(v), the depositof v with respect tak,,
11.  invokeEmCoreStef;, k.,); is defined asieposit(v, k,) = [{u: u € nb(v), Y (u) > ky}H.
12. else
13.  add all the remaining vertices b, and output¥y; The concept of deposit is used to ensure that the number of

edge connections to a vertexin the k-core, wherek; < k <

k., can be correctly counted even if the vertices and edges that

. belong to allk’-core are removed, wheig > k,. After we
Intuitively, k = min{k : k € K} means that we load compute thei-classes, wherg > k;, we can deposit a “coin”

as many parts of the graph as possible into main MemQg/each neighbor of a vertex in theclasses if the neighbor’s

(bounded by the memory siz&/) for core decomposition at core number has not been determined (i.e., the neighor’s

each recursive steg.kHowever, in the rare case When= 10 g |ess thark; and its core number will be computed in a later

(i.e., the vertices inb, * are in more thar vertex sets i), recursive step). This “coin” accounts for an edge connactio

we Sim|0|>;C assigrk; = k,, and loadb vertex sets if{U : U € to this neighbor vertex in the computation of its core number

%,UNV," # 0} each time into main memory to construct Using the deposit, we can safely remove all the vertices

the subgraph for core decomposition. and their edges after the core number of these vertices in the
To obtaink;, we keep a heap in main memory to maintaigurrent recursive step is computed (Line 7), without wargyi

the highest) in each vertex sel/ € % . The highest) among about the correctness of the core decomposition in the later

the vertices in eacly € % is inserted into the heap beforerecursive steps. In this way, we can save considerable Hisk |

U is written to disk during graph partitioning. Givenand costs for reading and writing these large-core-numbeiocest

k., we can easily determine the corresponding valug;dfy and their edges again and again in computing khelasses

querying the heap. with a smaller core number.
We now discuss how EmCoreStep computesifeasses, Procedure 7 computes the correct core number of the
wherek; < k < k,, as outlined in Procedure 6. vertices in the induced subgraphy as follows. The algorithm

Let W = TZ? In other words, W is the set of candidate iteratively deletes the lowest degree vertex and its edges a
vertices whose exact core number is to be computed at thisan in-memory algorithm. However, in selecting the lowest
recursive step. The first step is to construct the induceegree vertex, the algorithm considers the sum of the local
subgraphGy, of G by W. We constructGy, from the set degree inGy and the deposit of the vertex. We remark that
of subgraphs of the vertex sets # that contain a vertex in the initial value of the deposit of all vertices with respéat
W, since all vertices i/ and their inter-connection edgesk, = oo is set to 0. We prove the correctness of Procedure 7
are contained in these subgraphs. During the construatien, in Lemma 3.
can discard those vertices that are notlify together with After we compute¥,, wherek; < k < k,, we return to
their edges. Lines 5-6 of Procedure 6. We need to refine the upper bound

After Gy is constructed, we invoké&ComputeCorg as on the core number of remaining vertices as well as updating



their deposit. We first refine)(v) for any vertexv that is

currently in main memory but does not have its core number

computed. The refinement gf(v) involves two steps: (1) We

first sety(v) to be (k; — 1) if currently 1 (v) > k;. This

is because if)(v) > k;, thenv must be processed in the

current recursive step. However, sin€e core number is not

determinedyp is not in anyV;, wherek; < k < k,, which

implies thatiy(v) < (k — 1). (2) We then refine alb by Fig. 3. Induced Subgraptyy

Procedure 4, since now we have the exact core number of

more vertices computed, which can be used to tighten/the

value of the remaining vertices. After computing the 3-class, we can refinég) from 3 to
After the refinement, we have(v) < k; < v(u) for all 2. We also update the deposit of any vertex that is connected

v whose core number has not been determined anduany to a vertex in the 3-class fdt, = (k; — 1) = 2, as shown in

W,, wherek > k;. Then, Line 6 updates the deposit of ahe following table.

vertexv with respect tok!, = (k; — 1). The deposit (v, k; — 1)

can be calculated asidposit (v, ky) + [{u : u € nb(v),u €

Uk, <k<k, Y1), where the first part is the number of edge

connections t@ that were removed at previous recursive steps,

while the second part is the number of edge connections to

that are to be removed at the current recursive step. Therefo

deposit(v, k; — 1) ensures the correct computationfv) at

D

(a) W={g, h, i k, I n} (b)yW={d, e, f, g m}

TABLE 1l
deposit(v,2) WHERE € {e, f, 9,7, m}

[v el flg[j]m]
[ deposit(v,2) 21 [2]1] 2]

Now we can remove all the edges connected to any vertex
later recursive steps in {h,i,k,1,n}. After removing the edges, we only have 1

After the update of the deposit, we can safely remove ajﬂgeo(gl’g)z?ggla‘f’;e'zo\lgzg vegtr:%ea |J:1 ?:?d[frénzl(:cl;?ure 2(b).
vertices inW,, wherek; < k < k,, and their edges from the y & m 9 )

. . Next we compute fok!, = 2 and we load the subgraph in
subgraphs i{ (Line 7 of Procedure 6). Then, we merge any. U S )
of these subgraphs if their combined size is less tBarso ﬁgure 2(a) (and also Figure 2(c) which is sill in main mem-

as to further reduce the disk 1/O cost. Furthermore, we kegg) to construct the induced subgraphiby= {d, ¢, /, g,m},
: . . as shown in Figure 3(b). By using the deposit, it is easy to
those subgraphs that will be used in the next recursive step biain the 2-cl d by P d 7
main memory and only write the rest to disk, or keep all thaoain the Ca.SS{ .¢: f,g,m}, by Procedure .
subgraphs in main memory if they are now small enough After .computmg the 2-class, all the remaining vertices,
be all kept in main memory (Line 10 of Procedure 6). a,b, ¢, j}, belong to the 1-class. H
The recursive step goes on to process the next range of ) )
[k], k;—1], until k; = 2 (Lines 8-11 of Procedure 6). Note thaP- Analysis of Algorithm
the upper bound of the rangk,, for the next recursive step In this subsection, we provide the theoretical analysis re-
now changes t@k; — 1). This is because, after the refinemengarding the correctness as well as the complexity of our
in Line 5 in the current recursive step, we hav@) < (k,—1) algorithm EMcore.
for any vertexv whose core number has not been determined. ) A
Whenk; = 2, the remaining vertices must be all in the 1-class, LEMMA 3: Given W' = W, and Gy, for anyv € W,
¥, (Lines 12-13). if ¥(v) > ki, then ComputeCore (i.e., Procedure 7) correctly
There is still a small problem: are there any vertices in th@mpme%(“)'
O-class? The case df = 0, i.e., the 0-class, means that no  Proof: If ¥(v) > k;, to computey(v) we only need the
vertex in this class is connected to any other vertices. Thys-core ofG, Ck,- In Gw, the largest core number that a vertex
the O-class contains only isolated vertices in the graplichvh can have isk,. Thus, in computing)(v) using Gy instead
can be obtained trivially by one scan of the graph. To do thisf C;,, we are missing the edge s, v) : v € W, ¥(u) >
we add a check in Algorithm 2: as we scan the input grapp, (u,v) € E}, wherek; < (v) < k,.
if a vertex has a degree of 0, we output it as a 0-class vertexSince our algorithm follows a top-down approagh,c W,
The following example explains how the top-down coré Ju € nb(v), ¥(u) > ky, theny(u) must have already been
decomposition is processed. computed in some previous recursive step and deposited to
. ) deposit(v, k,,). Thus, we havéd(v, Gw )+ deposit (v, k,,)) =
_Example 4:Let us consider the three subgraphs given ify,, ¢,  for all v € W. Since ComputeCore removes a vertex
Figure 2 and suppoge= 2. Then, we obtairk; = 3andW =, oniy i (d(v, Gy) + deposit(v, ky)) < k, or equivalently,
Vs ={g,h,i,k,1,n}. We load the subgraphs in Figures 2(b), v,Cr) < k, it correctly computes)(v) for all v € W,
and 2(c) into main memory to construct the induced subgra ) > k. -
by W, Gw, which is shown in Figure 3(a), where the number
next to each vertex is the current)(v). It is then easy to  Using Lemma 3, we prove the correctness of our main
obtain the 3-class{h, i, k,l,n}, by Procedure 7. algorithm EMcore.



THEOREM 1: Given a graphG, EMcore (i.e., Algorithm 5)  The worst-case complexity is given in terms/gf .. In the
correctly computes thé-class ofG for all k, where0 < k < following, we give an estimation on the value bf,,..
kmae @nd k4. iS the maximum core number of any vertex We focus our analysis on real-world networks whose degree
in G. distribution follows apower law We note that similar analysis
§ can also be applied for graphs with other degree distribstio
However, extensive studies [24], [25], [26], [27], [28],9]2
[30] have shown that graphs with power-law degree distri-
butions are prevalent in real-world applications, suchhes t

, many social networks, neural networks, genome and

protein networks. More importantly, most real-world netis

t are too large to be kept in main memory follow a power-

Proof: Procedure 6 recursively computes a rangeko
classes withk € [k;, k,] each time, fromk, = co to k; = 2.
Let [k, k] and [k}, k,,] be the ranges of of two succussive
recursive steps. Procedure 6 assigfjs = k; — 1; thus,
since Lemma 3 proves the correctness of each recursion,
recursive procedure correctly computes all thelasses for
k > 2. After Procedure 6 computes the 2-class, the remaini o
vertices must belong to the 1-Elass, since the O-classdadyr degree distribution [2_7]' [31]. ,
outputted by a simple checking on the degree of each vert _)!:a_llou_tsos et al. [26] give the following power law degree
being read as we sca@ in Algorithm 2, by the fact that a istribution for real-world netwarks:

vertexv is in the O-class iff d(v) = 0. | 1

_ d(v) = — (r(v))", )
We now analyze the complexity of EMcore. For external- n

memory algorithms, the complexity analysis is mainly basadhere r(v) is the degree rankof a vertexwv, i.e., v is the
on the I/O model, which focuses on the importance of digk(v))-th highest-degree vertex i, andR < 0 is a constant
I/0Os over CPU computation. We remark that our algorithralled therank exponent
is not CPU intensive, it take® (k4. (m + n)) CPU time, Given a graphG with the above vertex degree distribution,
since graph partitioning takes linear time and each resaorsiwe now try to obtain the maximum core numbgg,, thatG
of k-class computation takes at masS{m + n) time. Note can havek,,.. is essentially the maximum value &fsuch
that the refinement of the value follows a similar strategy that the toptk-+1) highest-degree vertices @ are pairwisely
as the in-memory core decomposition algorithm and thus #®nnected (i.e., of degree at leayt Therefore, by substituting
time complexity is also bounded by that of the in-memory(v) by (k... +1) in Equation (2) and havind(v) of at least
algorithm, i.e.,O(m + n) time. The amortized CPU time k,,,..., we have
should be close t@(m + n) since each recursion operates
on an induced subgraph relevant for the rafigek,,] only, d(v) = i(k’maaj 1R > ks 3)
which is verified by our experimental results as comparet wit n® N
the in-memory algorithm. Thus, disk 1/0O time dominates the

overall complexity. An approximation for the solution of the inequality stataed i

Equation (3) by puttingk.,a. +1) =~ kmmq. gives the following
THEOREM 2: Given a graph;, EMcore computes thé- upper bound ork,;,,; .

classes ofy usingO(’“’"”(Tm*") I/0s andO (£ ) disk block N

space in the worst case. kmaz < NR-T. (4)

Proof: The graph partitioning process scans the graph _
only once and the total size of the subgraphs written to The value ofR measured in [26] for three snapshots of the

disk is the same as the size of the original graph. Thd§i€rnet graph is between0.8 and —0.7. For a graph of 1
Algorithm 2 usesO(™£™) 1/Os. Each subsequent recursivdnillion vertices, we haveé,,., <296 whenR = —0.7. Note
step reads/writes only those subgraphs relevant for cdngautthat this is the worst case. Some existing studies on large

the k-classes that fall into the range € [k;, k.. Thus, the Scale networks [6], [3], [5] show thak,.., is less than 50
number of disk 1/Os at each recursive step is bounded BpProximately. Our experimental results also show that,
O(mgn). Thus, the total number of disk I/Os@(’“’"”(g”)) is small and the maximum is 372 among the datasets used

in the worst case, since there are at nigst, recursive steps. (5¢€ Table Ill). But suppose thét,.., is close to its upper
The algorithm use®(2:£2) disk blocks since the total sizePound given by Equation (4) in the worst case, we have the

of the subgraphs written to disk 8(m + n). m following analysis on our algorithm.
Let S be the subgraph ofs such that one or both end

We further remark that the actual I/O cost of the algorithiwertices of every edge i are in thek,,..-class; that isS =
can be significantly smaller for the following reasons: (¢ (Vs, Es), whereVs = U, U{v:u € ¥y . (u,v) € E}
recursive step reads only the relevant subgraphs from #he diand Es = {(u,v) : (u,v) € E,u € ¥y, }. By Equation (2),
which takesO(b) = O(4%) instead ofO(2:42) disk 1/Os; (2) we have the following lower bound fds)|.
we cache some subgraphs in main memory for reuse in the
next recursive step; and (3) the size of each subgraph reduce Kot 1
after each recursive step. In our experiments, we showltleat t S| > Z (7“ )R kmaz (kmas + 1). (5)
actual I/O is close td”"* instead ofw.

n 2



The equality holds when there are orthy,.. + 1) vertices all experiments on a machine with an Intel Xeon 2.67GHz
in the k,,,.,.-core. The first component in the right-hand side dPU and 6GB RAM, running CentOS 5.4 (Linux).
Equation (5) is the sum of degrees of tfig,.. + 1) vertices. ) )
Since they are pairwise connected in this case, their dges Datasets. We use the following four datasets in our exper-
are double counted and hence deducting the number of th¥8gnts: road-network-California(RNCA, LiveJournal (LJ),
edges from the degree sum gives the lower bounBpf Billion Triple ChaIIeng_e(BT_C), andWeh 'I_'heRNCAdatas_,et is
By Equation (2), we also obtain the size of the entire graﬁ_hroad network o_f California, where vertices representsete- _
G, which is half of the degree sum of all verticeslin Since t0ons and endpoints, and edges represent the roads camgecti

all edges are counted twice in this case, the degree sum ndB§se intersections or road endpoints. Thelataset is the free
to be halved. on-line community called Livejournal (www.livejournabm),

where vertices are members and edges represent friend-
n ship between members. THRNCA and LJ datasets can be
G| = EZ(E)R_ (6) downloaded from the Stanford Network Analysis Platform
24 (http://snap.stanford.edu/data/index.html). TBIEC dataset is
a semantic graph converted from the Billion Triple Challeng
In our top-down approach, after computing the..-core, 2009 RDF dataset (http://vmlion25.deri.ie/), where eacten
we can removeS from G. According to Equation (5) and represents an object such as a person, a document, and an
Equation (6), for a network wittlR = —0.7 and 1 million eyent, and each edge represents the relationship between tw
Vel’ticeS,|S| is at least 12% of the entire netWOI‘k, which is a]odes such as “has_author”, “|inks_t0”, and “has-title’her
huge reduction on the search space and disk I/O cost.  \web graph is obtained from the YAHOO webspam dataset
The value ofk;,q, is in general small for large scale real(http://barcelona.research.yahoo.net/webspam), wiestes
W0r|d networks, in Wh|Ch case EMcore haS feWer number g}e pages and edges are hyper"nkS. We give the number of

recursive steps. On the other handkf.. is larger, we have vertices and edges, as well as the storage size in the disk, of
greater reduction on the search space and I/O cost. ThusiHg datasets in Table lII.

both cases, the analysis shows the effectiveness of our top-

down approach for core decomposition. DATASETST(QBiEl'O'é’ G =10%)

E. Algorithm Optimization | [ RNCA] LJ [ BTC | Web ]
There is one optimization that may considerably improve [ n=[V] 20M | 4.8M | 148.5M | 52.9M

the performance of the algorithm. Before we write a subgraph | 7 = [E] 55M | 69.0M | 673.3M | 1.65G

Disk size (byte)| 67.4M | 809.1M | 8.7G | 17.2G

H to the disk in Procedure 3, we can further triihto reduce — & o =2 307

both the search space and the disk 1/O cost by pre-computing
a partial 1-class. Suchi-class vertices in{ can be found by
iteratively deleting vertices with degree of 1 and the edges
incident to them. Note that the 1-class so computed m&yxperiment Settings. We test our algorithm for two scenar-
not be complete, since some inter-edges may exist betwéest (1) when main memory can hold the entire input graph;
different subgraphs in the partition and the computatiore heand (2)when main memory cannot hold the entire input graph.
only considers each local subgraph We use Case (1) to demonstrate that our external-memory

Since vertices with a smaller core number, together witilgorithm does not process a large graph at the expense of
their edges, cannot be incores with a greater core numbersignificantly increased CPU time complexity. We use Case
we can safely remove all these vertices and their edges fr¢2) to verify that our algorithm computes core decompositio
H. If there are many such vertices and edgeddinwe can efficiently when the existing in-memory algorithm becomes
continue to keepd in main memory and put intdf more infeasible.
vertices and edges fro@@. We write H to the disk until its
size reache$.

We remark that if after removing the partiatclass vertices ~ We first assess the performance of our algorithm when
and their edges, the graph becomes small enough to rgain memory is sufficient to hold the entire graph, by mainly
kept in main memory, then our algorithm simply perform§omparing the running time with the in-memory algorithm.

core decomposition in main memory, as does an in-memdf use two medium size network’NCAandLJ. _
algorithm. Table 1V reports the partitioning time, the recursive core

decomposition time (and the time to compute thg,,-class
VI. EXPERIMENTAL EVALUATION U,), the total running time, and the memory consumption of
In this section, we evaluate the performance of our aEMcore and IMcore. All time taken is the elapsed wall-clock
gorithm EMcore, comparing it with the state-of-the-art in-time. The total running time of EMcore is comparable to that
memory core decomposition algorithm by Batagelj and Zaf IMcore. For EMcore, the partitioning time occupies a krg
versnik [20], denoted asMcore in our experiments. We portion of the total running time. Thus, the actual time take
implement our algorithm in C++ (as does IMcore). We rahy the recursive core decomposition procedure (Procedure 6

A. When Main Memory is Sufficient



. . . TABLE VI
is considerably shorter, as shown in the second column of pygriTionING TIME, CORE DECOMPOSITIONTIME (AND TIME TO

Table IV. COMPUTE kyaz-CLASS), AND TOTAL RUNNING TIME (ALL TIME IS
ELAPSED WALL-CLOCK TIME) FORBTCAND Web

TABLE IV S— — -
PARTITIONING TIME, CORE DECOMPOSITIONTIME (AND TIME TO Partitioning | Core Decomposition| Total Running

COMPUTEkmae-CLASS), TOTAL RUNNING TIME (ALL TIME IS ELAPSED Time (ComputeW,,) Time Time
WALL -CLOCK TIME), AND MEMORY CONSUMPTION FORRNCAAND LJ EMcore BTO) 667 sec 445 (115) sec 1112 sec

Partitioning | Core Decomposition| Total Running Memory EMcore el) 544 sec 1315 (537) sec 1859 sec

Time (ComputeW;) Time Time Consumption

IMcore (RNCA — 9.6 (9.6) sec 9.6 sec 136 MB
EMcore RNCA 5.4 sec 5.3 (3.4) sec 10.7 sec 80 MB
™ J - 76 (76 76 765 MB N .
Phrae &2 I Table VI shows that the total running time of EMcore is very

competitive because it is only about two to three times more
than the partitioning time, while we know that the partifiogn
From Table IV, we can also calculate the total time takefme is linear. EMcore uses more time in partitioning than in
to compute thek,,..,-class, i.e., the partitioning time plus thethe recursive core decomposition for tB&C dataset, while
time shown inside the parentheses in second column of TaRlgs the opposite for théVebdataset. This is because ti\eb
IV, which are 8.8 sec and 73.3 sec, respectively. This resglitaset has a much larger,.. than theBTC dataset (see Table
shows that the total time taken to compute thg..-class by |11). Therefore, in processing thé/ebdataset, more recursions
our top-down approach, though an external-memory algorithare needed in the top-down core decomposition processe Tabl
is shorter than the in-memory bottom-up algorithm. VI also reports that the time taken to compute the,,-
Table IV also shows that EMcore consumes less memailass¥,, is a small portion of the overall core decomposition
than IMcore. This is because IMcore keeps the entire graphtjge, which shows an advantage of our top-down approach for
main memory, while EMcore does not keep the entire grapipplications that only require the,,,.-class.
in the running process but writes a block to disk whenever it Taple VII reports the CPU time, the disk I/O time, and the
is full. total running time (e.g., elapsed wall-clock time) in sed®in
The result thus suggests that our external-memory algorithrhe result shows that the disk I/O time of EMcore is larger
is as efficient as the state-of-the-art in-memory algorifom than the CPU time for processing tiBIC dataset, while it
the case when main memory is sufficient to keep the entigethe opposite for thaveb dataset. In general the disk 1/0
input graph. time dominates, as it is for thBTC dataset. However, in the
Table V further shows the percentage of the amount of diglgse of processing thalebdataset, the number of recursions
I/Os used by EMcore during graph partitioning and the tops much larger due to a largér,,.,, which gives rise to a
down recursive core decomposition, respectively. Thelresjarger CPU time. This result also indicates that our exferna
shows that the entire recursive process of top-down cagemory algorithm is I/O-efficient, as further verified by the
decomposition only uses almost the same amount of disk I/gRsults in Table VIII that the amount of disk 1/Os needed in
as in the process of graph partitioning. Since graph pamiity  the recursive core decomposition phase is almost the same as
reads and writes the whole graph approximately once, that needed in the graph partitioning phase, which reads the
result implies that the recursive procedure actually us#g oinput graph only once and writes an amount of data at most
O(™£™) disk I/0s in practice, instead of the theoretical boungs |arge as the input graph. Thus, the result again justifies o

of O(%) disk I/Os as given in Theorem 2. conclusion in Section VI-A that the recursive proceduresuse
only O(£") disk I/Os instead OO(W) disk I/Os in
TABLE V ractice
PERCENTAGE OFDISK I/OS FORRNCAAND LJ p )
Graph Top-Down Core TABLE VII
Partitioning | Decomposition CPU TiME, Disk I/O TIME, AND TOTAL RUNNING TIME (ELAPSED
EMcore RNCA 50% 50% WALL -CLOCK TIME) FORBTCAND Web
EMcore (J) 45% 2% CPU Disk I/0O | Total Running
Time Time Time
EMcore BTC) | 355 sec | 757 sec 1112 sec
B. When Main Memory is Insufficient EMcore We) | 1245 sec| 614 sec | 1859 sec
We now assess the performance of our algorithm when main
memory is not sufficient to hold the entire graph. We use two
larger networksBTC andWeh TABLE/ Vil )
Table VI reports the partitioning time, the recursive core PERCENTAGE OFDISK I/OS FORBTCAND We
decomposition time (and the time to compute thg,,-class Graph Top-Down Core
W d the total . ti . ds. Al ti tak Partitioning | Decomposition
_ k), an e total running time, in seconds. ime taken ENicore 610 =% =0%
is the elapsed wall-clock time. We only report the results EMcore We 77 79% 55304

of EMcore because IMcore ran out of all available memory
before it can finalize its computation.



VIl. RELATED WORK [3]

A considerable amount of research has been done on study-
ing the existence of a non-empkycore in a random graph [4]
[11], [12], [13], [14], [15], usually with the assumption of
certain degree distribution or structure properties. €healso
a study on the structural characteristicstedores in damaged
random networks and the nature of theore percolation in
complex networks [7]. We have discussed in Section | quite ([36]
number of studies that appkrcores in different areas, such [7]
as network analysis [1], [2], [6], [5], network visualizaii
[6], [3], [4], protein function prediction [8], structurenalysis g
of software systems [9], and graph model validation [10], as
well as many graph problems such as clique finding, dense
subgraph problems [16], [17], dense cluster discovery,[18f9]
and approximation of between-ness score [10].

From the algorithmic perspective, Batagelj and Zaversnill
[20] apply bin-sort to design a®(m + n) algorithm for |y,
core decomposition. However, the algorithm requires mgmor
space ofQ2(m + n), which is not feasible for many massivell2l
real networks today.

(5]

VIIl. CONCLUSIONS (13]

We propose the first external-memory algorithigMcore,
for core decomposition in massive networks that cannot Hé!
kept in main memory. To limit memory usage, we devise [as]
novel top-down approach for core decomposition. Compared
with the conventional bottom-up approach, which requiréjse]
enough memory to hold the entire graph since the 0-core is thg
entire graph, our top-down approach starts from the snalles
size core, i.e., thek,,.,-core, and recursively reduces thé1
search space and disk 1/O cost for edqebore computed. We
prove that EMcore requires onty(k,,...) scans of the graph [19]
in the worst case and we give detailed analysis on the val
of k... for scale-free networks. Our experimental results on
various real networks verify that EMcore is efficient for eor[21]
decomposition in massive networks with up to 52.9 million
vertices and 1.65 billion edges, which cannot be procesgesg|
by the in-memory algorithm. In particular, the amount ofkdis
I/Os required by EMcore is only about two times (one f
graph partitioning, one for the recursive core decompmsjti [24]
that of a graph scan in practice, instead @fk,,..) scans
in the worst case. The results also show that our algorith%‘r,’]
in spite of all the mechanisms (e.g., graph partitioningddus [26]
to achieve /O efficiency, is as efficient as the state-ofdtte
in-memory algorithm [20] when main memory is sufficient %"
keep the entire input graph. [28]

[29]
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