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Abstract—The k-core of a graph is the largest subgraph in
which every vertex is connected to at leastk other vertices within
the subgraph. Core decomposition finds thek-core of the graph
for every possiblek. Past studies have shown important applica-
tions of core decomposition such as in the study of the properties
of large networks (e.g., sustainability, connectivity, centrality,
etc.), for solving NP-hard problems efficiently in real networks
(e.g., maximum clique finding, densest subgraph approximation,
etc.), and for large-scale network fingerprinting and visualization.
The k-core is a well accepted concept partly because there exists
a simple and efficient algorithm for core decomposition, by
recursively removing the lowest degree vertices and their incident
edges. However, this algorithm requires random access to the
graph and hence assumes the entire graph can be kept in main
memory. Nevertheless, real-world networks such as online social
networks have become exceedingly large in recent years and
still keep growing at a steady rate. In this paper, we propose
the first external-memory algorithm for core decomposition in
massive graphs. When the memory is large enough to hold the
graph, our algorithm achieves comparable performance as the
in-memory algorithm. When the graph is too large to be kept
in the memory, our algorithm requires only O(kmax ) scans of
the graph, wherekmax is the largest core number of the graph.
We demonstrate the efficiency of our algorithm on real networks
with up to 52.9 million vertices and 1.65 billion edges.

I. I NTRODUCTION

Given a graphG, the k-core of G is the largest subgraph
of G in which every vertex has degree of at leastk within the
subgraph [1]. The problem ofcore decompositionin G is to
find thek-core ofG for all k.

Core decomposition has been shown to be an important
concept in the study of graph properties and has many signifi-
cant applications in network analysis. It was first introduced to
simplify graph topology to aid in the analysis and visualization
of networks [1], [2]. It was then recognized as an important
tool for visualization of complex networks and interpretation
of cooperative processes in them [3], [4]. It was used to
analyze complex networks [5], in particular their hierarchies,
self-similarity, centrality, and connectivity. It was employed to
find structural fingerprints of large-scale networks and design

effective visualization tools [6]. It was used to describe the
architecture of randomly damaged uncorrelated networks [7].
It was applied to predict protein functions based on thek-
cores of protein-protein interaction networks and amino acid
sequences [8]. It was used to analyze the static structure
of large-scale software systems [9]. In addition, hierarchical
degree core tree [10] was proposed for summarizing the
structure of massive graphs and performing model validation.

In graph theory, the concept ofk-core has been extensively
studied in random graphs to understand various graph prop-
erties [11], [12], [13], [14], [15]. Thek-cores can be used as
heuristics for maximum clique finding since a clique of sizek
is guaranteed to be in a(k−1)-core, which can be significantly
smaller than the original graph. Moreover, core decomposition
can be applied to give a (1/2)-approximation algorithm for
the densest subgraph problem [16] and a (1/3)-approximation
algorithm for the densest at-least-k-subgraph problem [17]
in linear time. It can also be used as an approximation of
betweenness score [10] and to discover dense clusters in noisy
spatial data [18].

Compared with the computation of other similar concepts
of cohesive groupsin a network [19], such ascliques, n-
cliques, n-clans, k-plexes, f -groups, n-clubs, lambda sets,
most of which are algorithmically difficult (NP-hard or at least
quadratic), there exists a simple and efficient algorithm for
computingk-cores.

Given a graphG, we can compute thek-core ofG by re-
cursively deleting all the vertices (together with their incident
edges) with degree less thank. Batagelj and Zaversnik [20]
propose a linear algorithm for core decomposition, which uses
bin-sort to order the vertices and recursively deletes the vertex
with the lowest degree.

This algorithm, however, requires random accesses to the
graph and thus assumes that the whole graph can be kept in
main memory. Unfortunately, many real-world networks have
grown exceedingly large in recent years and are continuing
to grow at a steady rate. For example, the Web graph has



over 1 trillion webpages (Google), most social networks (e.g.,
Facebook, MSN) have hundreds of millions to billions of
participants, many citation networks (e.g., DBLP, Citeseer)
have millions of publications, other networks such as phone-
call networks, email networks, stock-market networks, etc., are
also massively large.

In this paper, we develop the firstexternal-memoryal-
gorithm for core decomposition in a massive network. The
result of this research can be readily applied to design an
efficient solution or approximation of many important but
high-complexity problems in massive real networks which
cannot fit in main memory. Quite a few of these problems
are described above, and all of these problems assume the
existence of a linear in-memory algorithm to find thek-cores.

All existing in-memory algorithms arebottom-up ap-
proaches that compute ak-core before a(k+1)-core. However,
a k-core is a supergraph of a(k + 1)-core and the 0-core is
essentially the entire graph. Therefore, the bottom-up approach
cannot be adopted to design an efficient external-memory
algorithm.

We devise a noveltop-down approach that recursively
computes thek-cores from larger values ofk to smaller ones,
and progressively reduces search space and disk I/O cost by
removing the vertices in each computedk-core. Our algo-
rithm, EMcore, consists of three key components: an efficient
strategy for graph partitioning, an effective mechanism for
estimating the upper bound of the core number of the vertices,
and a recursive top-down core decomposition procedure. Our
graph partitioning cuts the original graph into small blocks by
only one scan of the graph. This allows core decomposition
to load only the relevant blocks into main memory at each
recursive step. The estimation of the upper bound on the
core number of vertices ensures the correctness of our top-
down approach as well as reducing the overall search space.
We develop an effective mechanism for estimating the upper
bound and progressively refining it at each recursive step.
Based on the upper bound, our top-down strategy identifies a
range ofk-cores to be computed in main memory by loading
only the relevant blocks.

We prove that our algorithm uses onlyO(kmax ) scans of
the graph in the worst case, wherekmax is the largest possible
value ofk for any k-core in the graph. In practice, however,
our experimental results show that the actual amount of I/Os
required is significantly less than that required forkmax scans
of the entire graph.

Our experimental results on various massive real networks
verify that our algorithm is both CPU-efficient and I/O-
efficient. When main memory is sufficient to hold the entire
network, our top-down algorithm achieves comparable perfor-
mance to the state-of-the-art in-memory algorithm for core
decomposition [20]. When main memory is not sufficient to
keep the entire network, our algorithm is able to perform core
decomposition efficiently for networks with up to 52.9 million
vertices and 1.65 billion edges, while the in-memory algorithm
fails in these large graphs.

TABLE I
NOTATIONS

Symbol Description
M Size of main memory (internal memory)
B Size of disk (external memory) block
n Number of vertices in graphG = (V, E)
m Number of edges in graphG = (V, E)
|G| Size ofG, defined as|G| = |E| = m

nb(v); nb(v, G′) The set of neighbors of a vertexv in G / G′

d(v); d(v, G′) The degree ofv in G / G′

Ck = (VCk
, ECk

) The k-core ofG
kmax The maximum core number of any vertex inG
ψ(v) Core number ofv in G, the largestk s.t. v ∈ VCk

ψ(v) The upper bound on the core number ofv in G
Ψk The k-class ofG, Ψk = {v : v ∈ V,ψ(v) = k}

ψ
max

(X) The maximumψ value among all vertices inX
deposit(v, ku) The number ofv’s neighbors withψ > ku

Organization. Section II formally defines the problem and
gives the basic notations. Section III describes the in-memory
algorithm. Section IV presents the overall framework of our
solution. Section V details the EMcore algorithm. Section VI
reports the experimental results. Section VII discusses the
related work. Section VIII gives the conclusion.

II. N OTATIONS AND PROBLEM DEFINITION

In this paper, we focus on large networks that are modeled
as graphs. For simplicity of presentation, we discuss our
algorithm for undirected graphs only. The algorithm can be
extended to handle directed graphs in a way similar to the
adaption of the in-memory algorithm for directed graphs [20].

Table I shows the notations used throughout the paper.
For external-memory algorithm analysis, we use the standard
I/O model [21] with the following parameters:M is the
main memory size andB is the disk block size, where
1 ≪ B ≤ M/2. In most practical cases, we consider the
internal memory as the main memory and the external memory
as the disk, though other memory hierarchies are also possible.

Let G = (V,E) be an undirected and unlabeled graph. We
definen = |V | andm = |E|. We define thesizeof G, denoted
as |G|, as the number of edges inG, i.e., |G| = m. We define
the set ofneighborsof a vertexv in G as nb(v) = {u :
(u, v) ∈ E}, and thedegreeof v in G as d(v) = |nb(v)|.
Similarly, for a subgraphG′ = (VG′ , EG′) of G, we define
nb(v,G′) = {u : (u, v) ∈ EG′} andd(v,G′) = |nb(v,G′)|.

The k-core [1] of G is the largest subgraphCk =
(VCk

, ECk
) of G such that∀v ∈ VCk

, d(v, Ck) ≥ k. The
core numberof a vertexv ∈ V , denoted asψ(v), is defined
as the largestk such thatv is in Ck, i.e., “ψ(v) = k” means
that v ∈ VCk

andv /∈ VCk+1
. We further define the notion of

k-class as follows.

Definition 1 (k-CLASS): Given a graphG = (V,E), the
k-class, Ψk, of G is defined asΨk = {v : v ∈ V, ψ(v) = k}.

In particular, the0-class,Ψ0, is the set of vertices inG with
degree of 0.



The problem ofcore decompositionis: given a graphG,
find thek-core ofG for k = 0, 1, . . . , kmax , wherekmax is the
maximum core number of any vertex inG. Equivalently, the
problem is tofind thek-class ofG for k = 0, 1, . . . , kmax . In
this paper, we propose an external-memory algorithm that finds
thek-classes ofG when main memory is not large enough to
hold the whole graphG. From thek-classes, we can easily
obtain anyk-core as the induced subgraph ofG by the vertex
setVk =

⋃

k≤i≤kmax

Ψi.
The following example illustrates the concept of core de-

composition.

Example 1:Figure 1 shows a graphG that contains 14
vertices,a, . . . , n. The 0-class,Ψ0, of G is an empty set
since there is no isolated vertex inG. The 1-classΨ1 =
{a, b, c, j}, the 2-classΨ2 = {d, e, f, g,m}, and the 3-class
Ψ3 = {h, i, k, l, n}. In this example, we havekmax = 3. The
0-core is the induced subgraph ofG by vertex set

⋃

0≤i≤3 Ψi.
SinceΨ0 = ∅ in this example, the 0-core is the same as the
1-core, which is simply the entire graph. The 2-core is the
induced subgraph by(Ψ2 ∪Ψ3) and the 3-core is the induced
subgraph byΨ3. One can easily verify that in thek-core,
every vertex is connected to at leastk other vertices, where
0 ≤ k ≤ 3. 2

Fig. 1. A Graph and Itsk-classes

III. I N-MEMORY CORE DECOMPOSITION

In this section, we describe the existing in-memory al-
gorithm for core decomposition and explain why it is not
suitable to be extended to an external-memory algorithm. We
also discuss the advantage of the top-down approach over the
bottom-up approach for core decomposition in large graphs.

Algorithm 1 describes the skeleton of the existing in-
memory algorithm for core decomposition [20]. It is a bottom-
up approach as the algorithm starts the computation of thek-
class from smaller values ofk and moves to larger values of
k.

The algorithm first sorts the vertices in ascending order of
their degree (among the vertices with the same degree, the
ordering can be arbitrary). Then, it starts to compute thed-
classΨd, where d is the minimum vertex degree inG. It
removes fromG all vertices with degree ofd, together with
all the edges incident to them, and puts these vertices intoΨd.
After removing these vertices and their edges, the degree of
some vertices that are previously connected with the removed
vertices decreases. If any vertices remaining inG now have

Algorithm 1 BottomUp

Input : G = (V,E).
Output : The k-class,Ψk, of G for all k.

1. order the vertices inG in ascending order of their degree;
2. while (G is not empty)
3. let d be the minimum vertex degree inG;
4. Ψd ← ∅;
5. while (there exists a vertexv with degree of at mostd)
6. Ψd ← Ψd ∪ {v};
7. removev and all edges incident tov from G;
8. re-order the remaining vertices inG

in ascending order of their degree;
9. output allΨk;

degree ofd or less, they cannot be in ak-class wherek > d,
and thus must be inΨd. Therefore, they are added toΨd

and removed fromG. This process continues until all vertices
remaining inG have degree greater thand. Then, the algorithm
moves on to the next iteration to compute the nextk-class
wherek > d. The algorithm terminates when all vertices, and
their edges, are removed fromG.

The following example further explains the bottom-up com-
putation.

Example 2:Suppose that we compute thek-classes of the
graph in Figure 1 by Algorithm 1. Line 1 sorts the vertices
as follows: {a(1), c(1), j(1), f(2), m(2), b(3), d(3), g(3),
e(4), k(4), n(4), h(5), l(5), i(6)}, where the number in the
parentheses indicates the degree of the vertex in the current
G. Then, in the first iteration (Lines 3-8) that computes the 1-
class, the verticesa, c andj are first removed fromG together
with their incident edges since their degree is 1. After that, the
vertices are re-ordered as{b(1), f(2), m(2), d(3), g(3), e(4),
k(4), n(4), h(5), l(5), i(5)}. Then vertexb is also removed
because after removinga andc, the degree ofb becomes 1. At
this point, the ordered vertex list becomes{f(2), m(2), d(2),
g(3), e(4), k(4), n(4), h(5), l(5), i(5)}. The first iteration
completes and obtainsΨ1 = {a, c, j, b}. In the second iteration
that computes the 2-class, the vertices removed are (in the
order):f , m, d, g, ande. In the third iteration that computes
the 3-class, the vertices removed are (in the order):n, k, h, l,
and i. 2

When main memory is sufficient to hold the entire input
graph, the most costly step of the in-memory algorithm is
sorting the vertices according to their degree at each iteration
(Line 8). Batagelj and Zaversnik [20] use bin-sort to order the
vertices to achieveO(m+ n) time complexity.

When the graph is too large to be placed in main memory,
the bottom-up approach fails because it requires memory space
of Ω(m + n). The bottom-up approach is not suitable for
designing an efficient external-memory algorithm since it starts
core decomposition over the entire graph to compute thek-
class with the smallestk. Although sorting can be done in
O( n

B
logM

B

n
B
) I/Os (assuming that we store separately the



vertices and their degree on consecutive disk blocks), it isnon-
trivial to address the problem of random accesses to vertices
and edges on disk during the computation.

In this paper, we propose a top-down approach, which
first computes thek-class for largerk and then moves down
to smaller values ofk. The top-down approach is more
suitable for designing an external-memory algorithm. An-
other advantage of the top-down approach over the bottom-
up approach is that most applications and algorithm designs
using k-cores only need thek-cores with larger values of
k, and sometimes, only thekmax -core (e.g., for defining the
nucleus of a communication network [4], for predicting protein
functions [8], for approximating the densest subgraph [16],
etc.). The top-down approach can obtain thek-cores with
larger k without computing those with smallerk. This can
result in huge savings of computational resources for handling
massive networks, because the smaller the value ofk, the
larger is the graph from which thek-core is computed.

IV. OVERALL FRAMEWORK

In this section, we first give the overall framework of our
external-memory algorithm, calledEMcore, for core decom-
position, and then discuss the details of each part in the next
section.

1) Graph partitioning:

The first step of EMcore is to partition the vertex set
V of G, so that core decomposition by EMcore in later
steps can be processed by loading only the correspond-
ing subgraphs of the relevant subsets of vertices (instead
of the whole graph) in main memory. We describe an
efficient partitioning strategy that uses only one scan of
G.

2) Estimation of the upper bound on the core number:

We develop heuristics to estimate the upper bound on
the core number of the vertices in each subset in the
partition. The upper bound is refined progressively at
each step of core decomposition.

3) Recursive top-down core decomposition based on the
upper-bound core number:

The main step of EMcore is a recursive procedure
of core decomposition. Based on the upper bound on
the core number of the vertices, EMcore recursively
computes thek-classes on a set of vertices whose core
number falls within a range such that the corresponding
relevant subgraph can be kept in main memory. Our
algorithm is top-down, meaning that we compute thek-
classes with ranges of larger core numbers before those
of smaller core numbers.

At the end of each recursive step, we remove fromG
thek-classes already computed, as well as their incident
edges, to reduce the search space and disk I/O cost for
the next recursion of core decomposition.

Algorithm 2 PartitionGraph

Input : G = (V,E), memory sizeM , disk block sizeB.
Output : A partition of disjoint vertex sets,U = {U1, . . . , Ul}.

1. create an empty partitionU ;
2. Umem = U ; // the part ofU that are currently in memory
3. for each vertex,v ∈ V , do
4. if (v is not connected to a vertex in any vertex set inUmem)
5. create a new setU = {v} and addU to Umem ;
6. else
7. find the vertex setU ∈ Umem to which

v has the most connections;
8. addv to U ;
9. if (

∑
u∈U

d(u) = B) // memory used forU reachesB
10. WriteBlock(U );
11. if (

∑
U∈Umem

∑
u∈U

d(u) =M )
12. letUmax be the vertex set inUmem s.t.

∀U ∈ Umem ,
∑

u∈Umax

d(u) ≥
∑

u∈U
d(u);

13. WriteBlock(Umax );

Procedure 3WriteBlock(U )
1. letH be the subgraph ofG that consists of all edges

connected to the vertices inU ;
2. estimateψ(v) for each vertexv in H ;
3. writeH to the disk and removeU from Umem ;

V. EXTERNAL-MEMORY CORE DECOMPOSITION

In this section, we discuss in detail the three parts in the
overall framework, followed by a detailed analysis of the
algorithm.

A. Graph Partitioning

The purpose of graph partitioning is to decompose the orig-
inal large graph into a set of smaller subgraphs, so that core
decomposition can be processed by loading only those relevant
subgraphs into main memory. There are many existing graph
partitioning algorithms [22], [23], but they are in-memory
algorithms. For core decomposition in massive networks that
cannot fit into main memory, we need an efficient algorithm
that partitions a large graph with limited memory consumption.
To this end, we devise a simple graph partitioning algorithm
that requires only one scan of the original graph and has linear
CPU time complexity.

The outline of the partitioning algorithm is given in Algo-
rithm 2. The algorithm reads the input graphG from external
memory once and partitionsV into a set of disjoint vertex sets,
U = {U1, . . . , Ul}, where

⋃

1≤i≤l Ui = V andUi ∩ Uj = ∅
for all i 6= j.

For each vertexv, the algorithm processesv as follows.
There are two cases. The first case (Lines 4-5 of Algorithm
2) is thatv is not connected to any vertex in any vertex set in
Umem (the part ofU that are currently in main memory). In
this case, we simply create a new vertex setU with a single
vertexv and addU to Umem .

The second case (Lines 6-10 of Algorithm 2) is thatv is
connected to some vertex(es) in some existing vertex set(s)in



Umem . The algorithm finds the vertex setU ∈ Umem with
which v has the most connections; that is,∀U ′ ∈ Umem ,
|nb(v) ∩ U | ≥ |nb(v) ∩ U ′|. This vertex setU can be found
in O(d(v)) expected time using a hashtable. Note that we do
not keep all vertices inG in the hashtable, but only those in
a vertex set inUmem . After findingU , we addv to U . If the
memory used forU is as large as the block sizeB, we write
U to disk by Procedure 3.

After processing each vertexv, we also check (Lines 11-13
of Algorithm 2) if the memory used by the current partition
reaches the available memory space assigned. When this is
the case, we reclaim the memory by writing the vertex set
currently with the largest memory usage to disk.

The writing of a vertex setU to the disk as shown in
Procedure 3 proceeds as follows. When we read the vertices
in U from the disk (during the scanning ofG), we read their
edges as well. LetH be the corresponding subgraph; that is,
H = (VH , EH), whereVH = U∪{v : u ∈ U, (u, v) ∈ E} and
EH = {(u, v) : u ∈ U, (u, v) ∈ E}. We writeH to disk and,
at the same time, release the memory occupied byH (alsoU ).
We delay the discussion of the estimation of the upper-bound
core number,ψ(v), of eachv in H to Section V-B.

Before we move on to present our main algorithm for core
decomposition, we ask whether we can devise a divide-and-
conquer solution that computes core decomposition on each
subgraph obtained by the partition, and then merges the results
to find the k-cores in the original graph. We note that the
divide-and-conquer method does not work because at each
conquer phase, this approach still needs to perform search in
the merged problem space to determine the core number of
each vertex, and hence it demands as much memory as does
an in-memory algorithm.

B. Upper Bound on Core Number

Our top-down core decomposition algorithm requires the
selection of a relevant set of vertices based on the upper bound
of their core number. In this subsection, we develop heuristics
to estimate this upper bound.

We useψ(v) to denote the upper bound onψ(v) of a vertex
v. The following lemma gives a coarse estimation onψ(v).

LEMMA 1: ψ(v) = d(v).

Proof: It is trivial to show thatψ(v) = d(v) because
ψ(v) ≤ d(v).

Lemma 1 serves as an initialization ofψ(v) for eachv.
After the initialization, we can further refineψ(v). The basic
idea is to refineψ(v) based on theψ values ofv’s neighbors.
Intuitively, v’s neighbors that haveψ values lower thanψ(v)
definitely have the true core number lower thanψ(v). These
neighbors cannot contribute to the degree ofv in the ψ(v)-
core and thus ifv has many of such neighbors,ψ(v) can be
further tightened.

We first define a notationψ
max

(X) for a non-empty vertex
setX to denote the maximumψ value among all the vertices

in X . That is, ψ
max

(X) = max{ψ(u) : u ∈ X}, where
X 6= ∅.

The following lemma describes how to refineψ(v).

LEMMA 2: Given a vertexv ∈ V , where the current
ψ(v) > 0, let Z contain all neighbors ofv with ψ values
lower thanψ(v), that is,Z = {u : u ∈ nb(v), ψ(u) < ψ(v)}.

If (d(v) − |Z|) < ψ(v), then ψ(v) can be refined as
max{d(v)− |Z|, ψ

max
(Z)}.

Proof: Based on the definition ofψ
max

(Z), we know
that all vertices inZ can only exist in thek-cores for
k ≤ ψ

max
(Z), which means that the edges connectingv and

its neighbors inZ cannot exist in the (ψ
max

(Z) + 1)-core.
Therefore, ifv exists in the (ψ

max
(Z) + 1)-core, the degree

of v is at most(d(v) − |Z|).
If (d(v) − |Z|) > ψ

max
(Z), we haveψ(v) ≤ (d(v) − |Z|)

because it is possible that in the(d(v) − |Z|)-core, v has a
degree of(d(v) − |Z|). Otherwise, we have(d(v) − |Z|) ≤
ψ
max

(Z), which means thatv cannot exist in the (ψ
max

(Z)+
1)-core, and thus we haveψ(v) ≤ ψ

max
(Z). In both cases,

ψ(v) ≤ max{d(v)− |Z|, ψ
max

(Z)}.
Finally, for the current value ofψ(v), we have(d(v) −

|Z|) < ψ(v) (given) andψ
max

(Z) < ψ(v) (by the definition
of Z). Therefore,max{d(v) − |Z|, ψ

max
(Z)} is a tighter

value ofψ(v), which completes the proof.

Lemma 2 can be applied iteratively to replace the current
value ofψ(v) whenever a tighter value is possible forψ(v).
However, simply applying Lemma 2 might not be good enough
since it is likely thatψ

max
(Z) > (d(v) − |Z|) especially if

Z is not small. As a result, we often chooseψ
max

(Z) to
refineψ(v), which weakens the effectiveness of Lemma 2 in
obtaining a good estimation ofψ(v).

To get a better estimation ofψ(v), we apply a finer
refinement based on the following corollary of Lemma 2.

COROLLARY 1: Given a vertexv ∈ V , where the current
ψ(v) > 0, let Z = {u : u ∈ nb(v), ψ(u) < ψ(v)}.

For anyZ ′ ⊆ Z, Z ′ 6= ∅, if (d(v) − |Z ′|) < ψ(v), then
ψ(v) can be refined asmax{d(v)− |Z ′|, ψ

max
(Z ′)}.

Proof: Similar to proof of Lemma 2.

Based on Corollary 1, we can select the subsetZ ′ of Z that
attains the tightest estimation ofψ(v), rather than restricting
to the whole setZ for the estimation.

Procedure 4 describes our algorithm to estimateψ(v). Lines
1-2 first initialize ψ(v) to be d(v) by Lemma 1. Then, a
refinement is applied to obtain a tighter bound on the core
number of each vertex inV (Lines 3-7), as explained in
Corollary 1.

Note that Line 5 of Procedure 4 uses the condition “d(v)−
|Z| < ψ(v)”, while Corollary 1 uses “d(v) − |Z ′| < ψ(v)”.
An incorrect value ofψ(v) may be assigned if Lines 6-7 of
Procedure 4 chooses someZ ′ with (d(v) − |Z ′|) ≥ ψ(v).



Procedure 4Estimate-ψ
1. for each v ∈ V do
2. initialize ψ(v) asd(v);
3. for each v ∈ V do
4. let Z = {u : u ∈ nb(v), ψ(u) < ψ(v)};
5. if (d(v)− |Z| < ψ(v))
6. let f(X) = max{d(v)− |X|, ψ

max
(X)};

7. ψ(v)← min{f(Z′) : Z′ ⊆ Z, Z′ 6= ∅};
8. repeat Steps 3-7;

However, thisZ ′ cannot be selected to refineψ(v), since
Line 7 selects the subset ofZ with the lowestf value and
Z with (d(v)− |Z|) < ψ(v) is obviously a better refinement.
Therefore, Lines 5-7 of Procedure 4 refinesψ(v) as stated in
Corollary 1 and the correctness of the refinement ofψ(v) is
ensured.

In each refinement process as described in Lines 3-7, we
always refine the vertices with smallerψ values before those
with higher ones. This strategy allows the refinement to tighten
the bounds more quickly since only the neighbors with low
ψ values are useful in tightening the bounds (by Corollary
1). The smallerψ values refined are thus particularly effective
in tightening theψ values for other vertices in the remaining
process.

To tighten the value ofψ(v), we do not need to compute
f(Z ′) for all subsets ofZ in Line 7 of Procedure 4. The
definition of f(Z ′) in Line 6 of Procedure 4 actually implies
a dilemma: the larger the size ofZ ′, the smaller is the value
of (d(v)−|Z ′|) but the larger may be the value ofψ

max
(Z ′);

while a smallerZ ′ implies the opposite. Moreover, for subsets
of the same size, clearly those vertices inZ that have a smaller
ψ help more in obtaining a smallerψ

max
(Z ′) than other

vertices. Therefore, we can sort the vertices inZ in ascending
order of theirψ values. Then, we selectZ ′ of size from1 to
|Z|, where the size-i Z ′ simply contains the firsti vertices in
the orderedZ, until we find thatf(Z ′) reaches its minimum.
In this way, we process at most|Z| number of subsets ofZ
instead of2|Z| subsets.

We apply Procedure 4 to estimateψ(v) for eachv in H in
Line 2 of Procedure 3. SinceH is only a small subgraph ofG,
the refinement process (Lines 3-7 of Procedure 4) converges
quickly. To handle the worst-case scenario, in our algorithm,
we set a limit on the number of iterations for the refinement
process. We bound the cost of the refinement by the cost of
a disk I/O. That is, we terminate the refinement process once
the accumulated time for refinement reaches the time for a
disk I/O. Therefore, the total cost of our algorithm is always
bounded by the number of disk I/Os.

In Procedure 3, the subgraphH is associated with a vertex
setU in partitionU . However, there may be some vertices in
H that are not inU but are connected to some vertices inU .
Since we may not have the degree of these vertices to initialize
their ψ values, we consider theirψ values to be∞ when we
refineψ(v) for v ∈ U . The following example illustrates how
we refineψ by Procedure 4.

Example 3:Assume that the vertex set of the graph in
Figure 1 is partitioned into three sets:U1 = {a, b, c, d, e, f},
U2 = {g, h, i, j}, andU3 = {e, k,m, n}. Figure 2 shows the
three corresponding subgraphs1. The first number next to each
vertexv is the initialψ(v) = d(v), while x→ y indicates that
theψ value is tightened fromx to y by Procedure 4.
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Fig. 2. Vertex Set Partition and Their Subgraphs

Let us consider vertexb in Figure 2(a). We haveZ = {a, c}
sinceψ(a) = ψ(c) = 1 < ψ(b) = 3 at this moment. It is easy
to seemin{f(Z ′) : Z ′ ⊆ Z,Z ′ 6= ∅} = 1 in this case and
thus we obtainψ(b) = 1. Similarly for vertexd, we compute
Z = {b} since nowψ(b) = 1 < ψ(d) = 3. Thus, we obtain
ψ(d) = 2. Note that we cannot useg to computeψ(d) since we
do not have the degree orψ information of g at the current
stage, which will become available in a later stage of core
decomposition. 2

C. Recursive Top-Down Core Decomposition

We now discuss our algorithmEMcore, as outlined in Algo-
rithm 5. EMcore first invokesPartitionGraph(i.e., Algorithm
2) to partitionG. Then, it invokes Procedure 6,EmCoreStep,
to compute thek-classes withk in the range[kl, ku], where
kl ≤ ku, recursively from higher value ranges to lower value
ones.

In order to bound the memory usage, we determine each
range [kl, ku] as follows. We first defineΨ

ku

kl
= {v : v ∈

V, kl ≤ ψ(v) ≤ ku}; that is,Ψ
ku

kl
is the set of vertices whose

ψ values fall within the range[kl, ku]. At each recursive step,
we construct a subgraph that is relevant for computing the
real core number of the vertices inΨ

ku

kl
in main memory. Let

b = M
B

. Then,b is the maximum number of blocks that can be
held in main memory. We useb and a givenku to determine
kl as follows.

Let K be a set ofk values such that the vertices inΨ
ku

k

are scattered in at mostb vertex sets inU . That is,

K =
{

k : 1 < k ≤ ku,
∣

∣{U : U ∈ U , U ∩Ψ
ku

k 6= ∅}
∣

∣ ≤ b
}

.

In this paper, we assumeK is not empty. We then define

kl =

{

min{k : k ∈ K}, if K 6= ∅,
ku, otherwise.

(1)

1We use an adjacency list to storenb(v) of a vertexv. In each subgraph, we
only need to keep the adjacency list of those vertices inUi, where1 ≤ i ≤ 3.
Thus, an edge between two vertices in the sameUi is counted twice, and the
three subgraphs have 14, 15, and 15 edges, respectively.



Algorithm 5 EMcore

Input : G = (V,E), memory sizeM , disk block sizeB.
Output : The k-class,Ψk, of G for all k.

1. invokePartitionGraph;
2. computekl by settingku =∞ and b = M

B
;

3. invokeEmCoreStep(kl, ku);

Procedure 6EmCoreStep(kl, ku)

1. W ← Ψ
ku

kl
;

2. letH be the set of subgraphs of the vertex sets inU

that contain any vertex inW ;
3. readH into main memory to construct

the induced subgraphGW by W ;
4. invokeComputeCore(GW , kl, ku);
5. refineψ(v) for any vertexv currently in main memory;
6. depositany vertex connected to a vertex inΨk (kl ≤ k ≤ ku);
7. remove all vertices inΨk (kl ≤ k ≤ ku) and their edges

from the subgraphs inH, and merge any of
these subgraphs if their combined size is less thanB;

8. if (kl > 2)

9. computek′l in Ψ
k
′

u

k′

l

by settingk′u = (kl − 1);

10. write the subgraphs inH that consist of no vertex inΨ
k
′

u

k′

l

to the disk, unless all the subgraphs can now be kept
in main memory;

11. invokeEmCoreStep(k′l, k
′

u);
12. else
13. add all the remaining vertices toΨ1 and outputΨ1;

Intuitively, kl = min{k : k ∈ K} means that we load
as many parts of the graph as possible into main memory
(bounded by the memory sizeM ) for core decomposition at
each recursive step. However, in the rare case when|K| = ∅

(i.e., the vertices inΨ
ku

ku
are in more thanb vertex sets inU ),

we simply assignkl = ku and loadb vertex sets in{U : U ∈

U , U ∩ Ψ
ku

ku
6= ∅} each time into main memory to construct

the subgraph for core decomposition.
To obtainkl, we keep a heap in main memory to maintain

the highestψ in each vertex setU ∈ U . The highestψ among
the vertices in eachU ∈ U is inserted into the heap before
U is written to disk during graph partitioning. Givenb and
ku, we can easily determine the corresponding value ofkl by
querying the heap.

We now discuss how EmCoreStep computes thek-classes,
wherekl ≤ k ≤ ku, as outlined in Procedure 6.

Let W = Ψ
ku

kl
. In other words,W is the set of candidate

vertices whose exact core number is to be computed at this
recursive step. The first step is to construct the induced
subgraphGW of G by W . We constructGW from the set
of subgraphs of the vertex sets inU that contain a vertex in
W , since all vertices inW and their inter-connection edges
are contained in these subgraphs. During the construction,we
can discard those vertices that are not inW , together with
their edges.

After GW is constructed, we invokeComputeCore, as

Procedure 7ComputeCore(GW , kl, ku)
1. initializeψ(v) to be−1 for eachv ∈W ;
2. k ← kl;
3. while (k ≤ ku)
4. while (∃v ∈ W , (d(v,GW ) + deposit(v, ku)) < k)
5. removev and all edges incident tov from GW ;
6. updateψ(v) to bek for each remaining vertexv in GW ;
7. k ← k + 1;
8. for each k, wherekl ≤ k ≤ ku, do
9. Ψk ← {v : v ∈ W,ψ(v) = k};

10. outputΨk;

shown in Procedure 7, to compute thek-classesΨk fromGW ,
wherekl ≤ k ≤ ku. However, an immediate question raised
here is: sinceGW is the induced subgraph, is the core number
computed fromGW correct? We will prove the correctness of
our algorithm in Theorem 1, which will also become clearer
as we continue to unwrap the details of our algorithm.

One key concept to ensure the correctness of our algorithm
is the concept ofdepositassigned to each vertex (Line 6 of
Procedure 6). We define the deposit of a vertex as follows.

Definition 2 (DEPOSIT): Given a vertexv ∈ V and an inte-
gerku, whereku > ψ(v), the depositof v with respect toku
is defined asdeposit(v, ku) = |{u : u ∈ nb(v), ψ(u) > ku}|.

The concept of deposit is used to ensure that the number of
edge connections to a vertexv in thek-core, wherekl ≤ k ≤
ku, can be correctly counted even if the vertices and edges that
belong to allk′-core are removed, wherek′ > ku. After we
compute thek-classes, wherek ≥ kl, we can deposit a “coin”
to each neighbor of a vertex in thek-classes if the neighbor’s
core number has not been determined (i.e., the neighbor’sψ
is less thankl and its core number will be computed in a later
recursive step). This “coin” accounts for an edge connection
to this neighbor vertex in the computation of its core number.

Using the deposit, we can safely remove all the vertices
and their edges after the core number of these vertices in the
current recursive step is computed (Line 7), without worrying
about the correctness of the core decomposition in the later
recursive steps. In this way, we can save considerable disk I/O
costs for reading and writing these large-core-number vertices
and their edges again and again in computing thek-classes
with a smaller core number.

Procedure 7 computes the correct core number of the
vertices in the induced subgraphGW as follows. The algorithm
iteratively deletes the lowest degree vertex and its edges as
in an in-memory algorithm. However, in selecting the lowest
degree vertex, the algorithm considers the sum of the local
degree inGW and the deposit of the vertex. We remark that
the initial value of the deposit of all vertices with respectto
ku = ∞ is set to 0. We prove the correctness of Procedure 7
in Lemma 3.

After we computeΨk, wherekl ≤ k ≤ ku, we return to
Lines 5-6 of Procedure 6. We need to refine the upper bound
on the core number of remaining vertices as well as updating



their deposit. We first refineψ(v) for any vertexv that is
currently in main memory but does not have its core number
computed. The refinement ofψ(v) involves two steps: (1) We
first set ψ(v) to be (kl − 1) if currently ψ(v) ≥ kl. This
is because ifψ(v) ≥ kl, then v must be processed in the
current recursive step. However, sincev’s core number is not
determined,v is not in anyΨk, wherekl ≤ k ≤ ku, which
implies thatψ(v) ≤ (kl − 1). (2) We then refine allv by
Procedure 4, since now we have the exact core number of
more vertices computed, which can be used to tighten theψ
value of the remaining vertices.

After the refinement, we haveψ(v) < kl ≤ ψ(u) for all
v whose core number has not been determined and anyu in
Ψk, where k ≥ kl. Then, Line 6 updates the deposit of a
vertexv with respect tok′u = (kl − 1). Thedeposit(v, kl − 1)
can be calculated as (deposit(v, ku) + |{u : u ∈ nb(v), u ∈
⋃

kl≤k≤ku
Ψk}|), where the first part is the number of edge

connections tov that were removed at previous recursive steps,
while the second part is the number of edge connections tov
that are to be removed at the current recursive step. Therefore,
deposit(v, kl − 1) ensures the correct computation ofψ(v) at
later recursive steps.

After the update of the deposit, we can safely remove all
vertices inΨk, wherekl ≤ k ≤ ku, and their edges from the
subgraphs inH (Line 7 of Procedure 6). Then, we merge any
of these subgraphs if their combined size is less thanB, so
as to further reduce the disk I/O cost. Furthermore, we keep
those subgraphs that will be used in the next recursive step in
main memory and only write the rest to disk, or keep all the
subgraphs in main memory if they are now small enough to
be all kept in main memory (Line 10 of Procedure 6).

The recursive step goes on to process the next range ofk,
[k′l, kl−1], until kl = 2 (Lines 8-11 of Procedure 6). Note that
the upper bound of the range,k′u, for the next recursive step
now changes to(kl − 1). This is because, after the refinement
in Line 5 in the current recursive step, we haveψ(v) ≤ (kl−1)
for any vertexv whose core number has not been determined.
Whenkl = 2, the remaining vertices must be all in the 1-class,
Ψ1 (Lines 12-13).

There is still a small problem: are there any vertices in the
0-class? The case ofk = 0, i.e., the 0-class, means that no
vertex in this class is connected to any other vertices. Thus,
the 0-class contains only isolated vertices in the graph, which
can be obtained trivially by one scan of the graph. To do this,
we add a check in Algorithm 2: as we scan the input graph,
if a vertex has a degree of 0, we output it as a 0-class vertex.

The following example explains how the top-down core
decomposition is processed.

Example 4:Let us consider the three subgraphs given in
Figure 2 and supposeb = 2. Then, we obtainkl = 3 andW =
Ψ

∞

3 = {g, h, i, k, l, n}. We load the subgraphs in Figures 2(b)
and 2(c) into main memory to construct the induced subgraph
by W , GW , which is shown in Figure 3(a), where the number
next to each vertexv is the currentψ(v). It is then easy to
obtain the 3-class,{h, i, k, l, n}, by Procedure 7.
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Fig. 3. Induced SubgraphGW

After computing the 3-class, we can refineψ(g) from 3 to
2. We also update the deposit of any vertex that is connected
to a vertex in the 3-class fork′u = (kl − 1) = 2, as shown in
the following table.

TABLE II
deposit(v, 2) WHEREv ∈ {e, f, g, j,m}

v e f g j m

deposit(v, 2) 2 1 2 1 2

Now we can remove all the edges connected to any vertex
in {h, i, k, l, n}. After removing the edges, we only have 1
edge(d, g) and 3 isolated verticese, f and j in Figure 2(b),
and only 2 isolated verticesg andm in Figure 2(c).

Next we compute fork′u = 2 and we load the subgraph in
Figure 2(a) (and also Figure 2(c) which is still in main mem-
ory) to construct the induced subgraph byW = {d, e, f, g,m},
as shown in Figure 3(b). By using the deposit, it is easy to
obtain the 2-class,{d, e, f, g,m}, by Procedure 7.

After computing the 2-class, all the remaining vertices,
{a, b, c, j}, belong to the 1-class. 2

D. Analysis of Algorithm

In this subsection, we provide the theoretical analysis re-
garding the correctness as well as the complexity of our
algorithm EMcore.

LEMMA 3: Given W = Ψku

kl
andGW , for any v ∈ W ,

if ψ(v) ≥ kl, then ComputeCore (i.e., Procedure 7) correctly
computesψ(v).

Proof: If ψ(v) ≥ kl, to computeψ(v) we only need the
kl-core ofG, Ckl

. InGW , the largest core number that a vertex
can have isku. Thus, in computingψ(v) usingGW instead
of Ckl

, we are missing the edge set{(u, v) : v ∈ W, ψ(u) >
ku, (u, v) ∈ E}, wherekl ≤ ψ(v) ≤ ku.

Since our algorithm follows a top-down approach,∀v ∈W ,
if ∃u ∈ nb(v), ψ(u) > ku, thenψ(u) must have already been
computed in some previous recursive step and deposited to
deposit(v, ku). Thus, we have(d(v,GW )+deposit(v, ku)) =
d(v, Ckl

) for all v ∈ W . Since ComputeCore removes a vertex
v only if (d(v,GW ) + deposit(v, ku)) < k, or equivalently,
d(v, Ckl

) < k, it correctly computesψ(v) for all v ∈ W ,
ψ(v) ≥ kl.

Using Lemma 3, we prove the correctness of our main
algorithm EMcore.



THEOREM 1: Given a graphG, EMcore (i.e., Algorithm 5)
correctly computes thek-class ofG for all k, where0 ≤ k ≤
kmax and kmax is the maximum core number of any vertex
in G.

Proof: Procedure 6 recursively computes a range ofk-
classes withk ∈ [kl, ku] each time, fromku = ∞ to kl = 2.
Let [kl, ku] and [k′l, k

′
u] be the ranges ofk of two succussive

recursive steps. Procedure 6 assignsk′u = kl − 1; thus,
since Lemma 3 proves the correctness of each recursion, the
recursive procedure correctly computes all thek-classes for
k ≥ 2. After Procedure 6 computes the 2-class, the remaining
vertices must belong to the 1-class, since the 0-class is already
outputted by a simple checking on the degree of each vertex
being read as we scanG in Algorithm 2, by the fact that a
vertexv is in the 0-class iff d(v) = 0.

We now analyze the complexity of EMcore. For external-
memory algorithms, the complexity analysis is mainly based
on the I/O model, which focuses on the importance of disk
I/Os over CPU computation. We remark that our algorithm
is not CPU intensive, it takesO(kmax (m + n)) CPU time,
since graph partitioning takes linear time and each recursion
of k-class computation takes at mostO(m + n) time. Note
that the refinement of theψ value follows a similar strategy
as the in-memory core decomposition algorithm and thus its
time complexity is also bounded by that of the in-memory
algorithm, i.e.,O(m + n) time. The amortized CPU time
should be close toO(m + n) since each recursion operates
on an induced subgraph relevant for the range[kl, ku] only,
which is verified by our experimental results as compared with
the in-memory algorithm. Thus, disk I/O time dominates the
overall complexity.

THEOREM 2: Given a graphG, EMcore computes thek-
classes ofG usingO(kmax (m+n)

B
) I/Os andO(m+n

B
) disk block

space in the worst case.

Proof: The graph partitioning process scans the graph
only once and the total size of the subgraphs written to
disk is the same as the size of the original graph. Thus,
Algorithm 2 usesO(m+n

B
) I/Os. Each subsequent recursive

step reads/writes only those subgraphs relevant for computing
the k-classes that fall into the rangek ∈ [kl, ku]. Thus, the
number of disk I/Os at each recursive step is bounded by
O(m+n

B
). Thus, the total number of disk I/Os isO(kmax (m+n)

B
)

in the worst case, since there are at mostkmax recursive steps.
The algorithm usesO(m+n

B
) disk blocks since the total size

of the subgraphs written to disk isO(m+ n).

We further remark that the actual I/O cost of the algorithm
can be significantly smaller for the following reasons: (1) each
recursive step reads only the relevant subgraphs from the disk,
which takesO(b) = O(M

B
) instead ofO(m+n

B
) disk I/Os; (2)

we cache some subgraphs in main memory for reuse in the
next recursive step; and (3) the size of each subgraph reduces
after each recursive step. In our experiments, we show that the
actual I/O is close tom+n

B
instead ofkmax (m+n)

B
.

The worst-case complexity is given in terms ofkmax . In the
following, we give an estimation on the value ofkmax .

We focus our analysis on real-world networks whose degree
distribution follows apower law. We note that similar analysis
can also be applied for graphs with other degree distributions.
However, extensive studies [24], [25], [26], [27], [28], [29],
[30] have shown that graphs with power-law degree distri-
butions are prevalent in real-world applications, such as the
WWW, many social networks, neural networks, genome and
protein networks. More importantly, most real-world networks
that are too large to be kept in main memory follow a power-
law degree distribution [27], [31].

Faloutsos et al. [26] give the following power law degree
distribution for real-world networks:

d(v) =
1

nR
(r(v))R, (2)

where r(v) is the degree rankof a vertexv, i.e., v is the
(r(v))-th highest-degree vertex inG, andR < 0 is a constant
called therank exponent.

Given a graphG with the above vertex degree distribution,
we now try to obtain the maximum core numberkmax thatG
can have.kmax is essentially the maximum value ofk such
that the top-(k+1) highest-degree vertices inG are pairwisely
connected (i.e., of degree at leastk). Therefore, by substituting
r(v) by (kmax +1) in Equation (2) and havingd(v) of at least
kmax , we have

d(v) =
1

nR
(kmax + 1)R ≥ kmax . (3)

An approximation for the solution of the inequality stated in
Equation (3) by putting(kmax+1) ≃ kmax gives the following
upper bound onkmax .

kmax ≤ n
R

R−1 . (4)

The value ofR measured in [26] for three snapshots of the
internet graph is between−0.8 and−0.7. For a graph of 1
million vertices, we havekmax ≤ 296 whenR = −0.7. Note
that this is the worst case. Some existing studies on large
scale networks [6], [3], [5] show thatkmax is less than 50
approximately. Our experimental results also show thatkmax

is small and the maximum is 372 among the datasets used
(see Table III). But suppose thatkmax is close to its upper
bound given by Equation (4) in the worst case, we have the
following analysis on our algorithm.

Let S be the subgraph ofG such that one or both end
vertices of every edge inS are in thekmax -class; that is,S =
(VS , ES), whereVS = Ψkmax

∪ {v : u ∈ Ψkmax
, (u, v) ∈ E}

andES = {(u, v) : (u, v) ∈ E, u ∈ Ψkmax
}. By Equation (2),

we have the following lower bound for|S|.

|S| ≥
kmax+1
∑

r=1

(
r

n
)R −

kmax (kmax + 1)

2
. (5)



The equality holds when there are only(kmax +1) vertices
in thekmax -core. The first component in the right-hand side of
Equation (5) is the sum of degrees of the(kmax +1) vertices.
Since they are pairwise connected in this case, their inter-edges
are double counted and hence deducting the number of these
edges from the degree sum gives the lower bound of|S|.

By Equation (2), we also obtain the size of the entire graph
G, which is half of the degree sum of all vertices inV . Since
all edges are counted twice in this case, the degree sum needs
to be halved.

|G| =
1

2

n
∑

r=1

(
r

n
)R. (6)

In our top-down approach, after computing thekmax -core,
we can removeS from G. According to Equation (5) and
Equation (6), for a network withR = −0.7 and 1 million
vertices,|S| is at least 12% of the entire network, which is a
huge reduction on the search space and disk I/O cost.

The value ofkmax is in general small for large scale real-
world networks, in which case EMcore has fewer number of
recursive steps. On the other hand, ifkmax is larger, we have
greater reduction on the search space and I/O cost. Thus, in
both cases, the analysis shows the effectiveness of our top-
down approach for core decomposition.

E. Algorithm Optimization

There is one optimization that may considerably improve
the performance of the algorithm. Before we write a subgraph
H to the disk in Procedure 3, we can further trimH to reduce
both the search space and the disk I/O cost by pre-computing
a partial 1-class. Such1-class vertices inH can be found by
iteratively deleting vertices with degree of 1 and the edges
incident to them. Note that the 1-class so computed may
not be complete, since some inter-edges may exist between
different subgraphs in the partition and the computation here
only considers each local subgraphH .

Since vertices with a smaller core number, together with
their edges, cannot be ink-cores with a greater core number,
we can safely remove all these vertices and their edges from
H . If there are many such vertices and edges inH , we can
continue to keepH in main memory and put intoH more
vertices and edges fromG. We writeH to the disk until its
size reachesB.

We remark that if after removing the partial1-class vertices
and their edges, the graph becomes small enough to be
kept in main memory, then our algorithm simply performs
core decomposition in main memory, as does an in-memory
algorithm.

VI. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of our al-
gorithm EMcore, comparing it with the state-of-the-art in-
memory core decomposition algorithm by Batagelj and Za-
versnik [20], denoted asIMcore in our experiments. We
implement our algorithm in C++ (as does IMcore). We ran

all experiments on a machine with an Intel Xeon 2.67GHz
CPU and 6GB RAM, running CentOS 5.4 (Linux).

Datasets. We use the following four datasets in our exper-
iments: road-network-California(RNCA), LiveJournal (LJ),
Billion Triple Challenge(BTC), andWeb. TheRNCAdataset is
a road network of California, where vertices represent intersec-
tions and endpoints, and edges represent the roads connecting
these intersections or road endpoints. TheLJ dataset is the free
on-line community called Livejournal (www.livejournal.com),
where vertices are members and edges represent friend-
ship between members. TheRNCA and LJ datasets can be
downloaded from the Stanford Network Analysis Platform
(http://snap.stanford.edu/data/index.html). TheBTC dataset is
a semantic graph converted from the Billion Triple Challenge
2009 RDF dataset (http://vmlion25.deri.ie/), where each node
represents an object such as a person, a document, and an
event, and each edge represents the relationship between two
nodes such as “has-author”, “links-to”, and “has-title”. The
Web graph is obtained from the YAHOO webspam dataset
(http://barcelona.research.yahoo.net/webspam), wherevertices
are pages and edges are hyperlinks. We give the number of
vertices and edges, as well as the storage size in the disk, of
the datasets in Table III.

TABLE III
DATASETS(M = 106 , G= 109 )

RNCA LJ BTC Web

n = |V | 2.0M 4.8M 148.5M 52.9M
m = |E| 5.5M 69.0M 673.3M 1.65G
Disk size (byte) 67.4M 809.1M 8.7G 17.2G
kmax 6 372 54 307

Experiment Settings. We test our algorithm for two scenar-
ios: (1) when main memory can hold the entire input graph;
and (2)when main memory cannot hold the entire input graph.
We use Case (1) to demonstrate that our external-memory
algorithm does not process a large graph at the expense of
significantly increased CPU time complexity. We use Case
(2) to verify that our algorithm computes core decomposition
efficiently when the existing in-memory algorithm becomes
infeasible.

A. When Main Memory is Sufficient

We first assess the performance of our algorithm when
main memory is sufficient to hold the entire graph, by mainly
comparing the running time with the in-memory algorithm.
We use two medium size networks,RNCAandLJ.

Table IV reports the partitioning time, the recursive core
decomposition time (and the time to compute thekmax -class
Ψk), the total running time, and the memory consumption of
EMcore and IMcore. All time taken is the elapsed wall-clock
time. The total running time of EMcore is comparable to that
of IMcore. For EMcore, the partitioning time occupies a large
portion of the total running time. Thus, the actual time taken
by the recursive core decomposition procedure (Procedure 6)



is considerably shorter, as shown in the second column of
Table IV.

TABLE IV
PARTITIONING T IME , CORE DECOMPOSITIONT IME (AND T IME TO

COMPUTEkmax -CLASS), TOTAL RUNNING T IME (ALL TIME IS ELAPSED

WALL -CLOCK TIME), AND MEMORY CONSUMPTION FORRNCAAND LJ

Partitioning Core Decomposition Total Running Memory
Time (ComputeΨk) Time Time Consumption

IMcore (RNCA) − 9.6 (9.6) sec 9.6 sec 136 MB
EMcore (RNCA) 5.4 sec 5.3 (3.4) sec 10.7 sec 80 MB
IMcore (LJ) − 76 (76) sec 76 sec 765 MB
EMcore (LJ) 30.9 sec 52.5 (42.4) sec 83.4 sec 643 MB

From Table IV, we can also calculate the total time taken
to compute thekmax -class, i.e., the partitioning time plus the
time shown inside the parentheses in second column of Table
IV, which are 8.8 sec and 73.3 sec, respectively. This result
shows that the total time taken to compute thekmax -class by
our top-down approach, though an external-memory algorithm,
is shorter than the in-memory bottom-up algorithm.

Table IV also shows that EMcore consumes less memory
than IMcore. This is because IMcore keeps the entire graph in
main memory, while EMcore does not keep the entire graph
in the running process but writes a block to disk whenever it
is full.

The result thus suggests that our external-memory algorithm
is as efficient as the state-of-the-art in-memory algorithmfor
the case when main memory is sufficient to keep the entire
input graph.

Table V further shows the percentage of the amount of disk
I/Os used by EMcore during graph partitioning and the top-
down recursive core decomposition, respectively. The result
shows that the entire recursive process of top-down core
decomposition only uses almost the same amount of disk I/Os
as in the process of graph partitioning. Since graph partitioning
reads and writes the whole graph approximately once, this
result implies that the recursive procedure actually uses only
O(m+n

B
) disk I/Os in practice, instead of the theoretical bound

of O(kmax (m+n)
M

) disk I/Os as given in Theorem 2.

TABLE V
PERCENTAGE OFDISK I/OS FORRNCAAND LJ

Graph Top-Down Core
Partitioning Decomposition

EMcore (RNCA) 50% 50%
EMcore (LJ) 48% 52%

B. When Main Memory is Insufficient

We now assess the performance of our algorithm when main
memory is not sufficient to hold the entire graph. We use two
larger networks,BTC andWeb.

Table VI reports the partitioning time, the recursive core
decomposition time (and the time to compute thekmax -class
Ψk), and the total running time, in seconds. All time taken
is the elapsed wall-clock time. We only report the results
of EMcore because IMcore ran out of all available memory
before it can finalize its computation.

TABLE VI
PARTITIONING T IME , CORE DECOMPOSITIONT IME (AND T IME TO

COMPUTEkmax -CLASS), AND TOTAL RUNNING T IME (ALL TIME IS

ELAPSED WALL-CLOCK TIME) FORBTC AND Web

Partitioning Core Decomposition Total Running
Time (ComputeΨk) Time Time

EMcore (BTC) 667 sec 445 (115) sec 1112 sec
EMcore (Web) 544 sec 1315 (537) sec 1859 sec

Table VI shows that the total running time of EMcore is very
competitive because it is only about two to three times more
than the partitioning time, while we know that the partitioning
time is linear. EMcore uses more time in partitioning than in
the recursive core decomposition for theBTC dataset, while
it is the opposite for theWebdataset. This is because theWeb
dataset has a much largerkmax than theBTCdataset (see Table
III). Therefore, in processing theWebdataset, more recursions
are needed in the top-down core decomposition process. Table
VI also reports that the time taken to compute thekmax -
classΨk is a small portion of the overall core decomposition
time, which shows an advantage of our top-down approach for
applications that only require thekmax -class.

Table VII reports the CPU time, the disk I/O time, and the
total running time (e.g., elapsed wall-clock time) in seconds.
The result shows that the disk I/O time of EMcore is larger
than the CPU time for processing theBTC dataset, while it
is the opposite for theWeb dataset. In general the disk I/O
time dominates, as it is for theBTC dataset. However, in the
case of processing theWebdataset, the number of recursions
is much larger due to a largerkmax , which gives rise to a
larger CPU time. This result also indicates that our external-
memory algorithm is I/O-efficient, as further verified by the
results in Table VIII that the amount of disk I/Os needed in
the recursive core decomposition phase is almost the same as
that needed in the graph partitioning phase, which reads the
input graph only once and writes an amount of data at most
as large as the input graph. Thus, the result again justifies our
conclusion in Section VI-A that the recursive procedure uses
only O(m+n

B
) disk I/Os instead ofO(kmax (m+n)

M
) disk I/Os in

practice.

TABLE VII
CPU TIME , DISK I/O TIME , AND TOTAL RUNNING T IME (ELAPSED

WALL -CLOCK TIME) FORBTC AND Web

CPU Disk I/O Total Running
Time Time Time

EMcore (BTC) 355 sec 757 sec 1112 sec
EMcore (Web) 1245 sec 614 sec 1859 sec

TABLE VIII
PERCENTAGE OFDISK I/OS FORBTC AND Web

Graph Top-Down Core
Partitioning Decomposition

EMcore (BTC) 50% 50%
EMcore (Web) 47.7% 52.3%



VII. R ELATED WORK

A considerable amount of research has been done on study-
ing the existence of a non-emptyk-core in a random graph
[11], [12], [13], [14], [15], usually with the assumption of
certain degree distribution or structure properties. There is also
a study on the structural characteristics ofk-cores in damaged
random networks and the nature of thek-core percolation in
complex networks [7]. We have discussed in Section I quite a
number of studies that applyk-cores in different areas, such
as network analysis [1], [2], [6], [5], network visualization
[6], [3], [4], protein function prediction [8], structure analysis
of software systems [9], and graph model validation [10], as
well as many graph problems such as clique finding, dense
subgraph problems [16], [17], dense cluster discovery [18],
and approximation of between-ness score [10].

From the algorithmic perspective, Batagelj and Zaversnik
[20] apply bin-sort to design anO(m + n) algorithm for
core decomposition. However, the algorithm requires memory
space ofΩ(m + n), which is not feasible for many massive
real networks today.

VIII. C ONCLUSIONS

We propose the first external-memory algorithm,EMcore,
for core decomposition in massive networks that cannot be
kept in main memory. To limit memory usage, we devise a
novel top-down approach for core decomposition. Compared
with the conventional bottom-up approach, which requires
enough memory to hold the entire graph since the 0-core is the
entire graph, our top-down approach starts from the smallest-
size core, i.e., thekmax -core, and recursively reduces the
search space and disk I/O cost for eachk-core computed. We
prove that EMcore requires onlyO(kmax ) scans of the graph
in the worst case and we give detailed analysis on the value
of kmax for scale-free networks. Our experimental results on
various real networks verify that EMcore is efficient for core
decomposition in massive networks with up to 52.9 million
vertices and 1.65 billion edges, which cannot be processed
by the in-memory algorithm. In particular, the amount of disk
I/Os required by EMcore is only about two times (one for
graph partitioning, one for the recursive core decomposition)
that of a graph scan in practice, instead ofO(kmax ) scans
in the worst case. The results also show that our algorithm,
in spite of all the mechanisms (e.g., graph partitioning) used
to achieve I/O efficiency, is as efficient as the state-of-the-art
in-memory algorithm [20] when main memory is sufficient to
keep the entire input graph.
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