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Graph Data
 Graph is a powerful modeling tool 
 Graph data is everywhere (e.g. chemistry, 

biology, image, vision, social networks, the 
Web, etc.)

4/3/2010 2DASFAA 10 Tutorial
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Graph Data
 Volume of graph data grows rapidly in 

recent years
 SCI Finder report: 4000 new compound 

structures are added each day 
 Demand for more efficient techniques for 

querying large graph databases
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Graph Queries
 Graph queries in real applications
 Chemical informatics and bio-informatics:
 Graphs model compounds and proteins
 Graph queries can be used for screening, drug 

design, motif discovery in 3D protein structures, 
protein interaction analysis, etc.

 Computer vision: 
 Graphs represent organization of entities in images
 Graph queries can be used to identify objects and 

scenes
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Graph Queries
 Graph queries in real applications
 Heterogeneous web-based data sources and 

e-commerce sites:
 Graphs model schemas
 Graph matching solves the problem of schema 

matching and integration
 Others: program flows, software and data 

engineering, taxonomies, etc
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Tutorial Coverage
 Transaction graph databases
 Containing a set of relatively small graphs
 Mostly in scientific domains, e.g., chemistry and 

bioinformatics
 Query types:
 Subgraph queries
 Supergraph queries
 Similarity queries

 Other graph data such as large networks, see 
[Faloutsos and Tong, ICDE’09]
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Tutorial Coverage
 Subgraph queries
 Supergraph queries
 Similarity queries
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 Problem definition
Given a graph database D and a graph query q
Find all graphs g in D s.t. q is a subgraph

 
of g

Subgraph Query Processing
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Applications
 Protein interaction analysis
 Motif discovery in 3D protein structures
 Drug design
 Schema matching
 Graph similarity search
 Correlation discovery in graph databases
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Challenges
 Sub-problem: subgraph isomorphism (sub-

 Iso) => NP-complete
 Sequential scan of D + pair-wise 

comparison between q and each g in D
=> |D| sub-Iso tests
 Each g in D is relatively small but 

inefficient for large D or online applications
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Existing Solution
 Filtering and Verification

 Filtering: filter false answers by an index 
and produce a candidate set C
 Verification: verify if q ⊆

 
g, for each g ∈

 
C 

(by sub-Iso test)
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Query Processing Cost
 Let C be the candidate set obtained by 

filtering using an index
Cost  = Cost(index-probing) + 

Cost(disk I/O) x |C|  +
Cost(sub-Iso) x |C|

 Objectives of existing indexes: 
 Keep a low Cost(index-probing)
 Minimize |C|
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Representative Work

 Feature-based
 

approach
 Closure-based

 
approach

 Verification-free
 

approach 
 Coding-based

 
approach

 Fast sub-Iso approach
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Representative Work
 Feature-based

 
approach:

 Select a set of features, F
 Filtering by inclusion logic: for each g ∈ D, if ∃f∈F such that 

f ⊆
 

q and f ⊈
 

g, then q ⊈
 

g and we filter out g

 Closure-based
 

approach: 
 Index database based on graph closure

 Verification-free
 

approach: 
 Attempt to totally eliminate the candidate set => no verification

 Coding-based
 

approach:
 Encode the graphs/query for more efficient matching

 Fast sub-Iso approach:
 Speed up sub-Iso in the verification/filtering steps
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Feature-
based

Closure-
based

Verification-
free

Coding-
based

Fast
sub-Iso

GraphGrep 
[Shasha et al., PODS’02]

X

gIndex 
[Yan et al., SIGMOD’04]

X

C-tree 
[He and Singh, ICDE’06]

X X

FG-index 
[Cheng et al., SIGMOD’07]

X X X

GString 
[Jiang et al., ICDE’07]

X

TreePi 
[Zhang et al., ICDE’07]

X X

GDIndex 
[Williams et al., ICDE’07]

X

Tree+∆
[Zhao

 

et al., VLDB’07]
X

GCoding 
[Zou et al., EDBT’08]

X

QuickSI 
[Shang et al., VLDB’08]

X X



Representative Work
 Feature-based approach
 GraphGrep [Shasha et al., PODS’02]
 gIndex [Yan et al., SIGMOD’04]
 TreePi [Zhang et al., ICDE’07]
 Tree+∆

 
[Zhao

 
et al., VLDB’07]

 Others: FG-index, QuickSI
 Closure-based approach
 Verification-free approach
 Coding-based approach
 Fast sub-Iso approach
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GraphGrep 
[Shasha et al., PODS’02]

 First work adopts the filtering-and-verification
 framework for subgraph query processing

 Motivation: sequential scan too expensive => 
reduce candidate set size by filtering

 Main idea: filtering by paths
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GraphGrep 
[Shasha et al., PODS’02]

 Index construction 
 Enumerate the set of all paths, of length up to L, 

of all graphs in the database
 Keep these paths in a hashtable
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g1 g2 g3

Index 
(hashtable of paths)



GraphGrep 
[Shasha et al., PODS’02]

Query processing
 Filtering: 
 Hash all paths, of length up to L, of a query q
 Filter out graphs that do not contain all paths in q
 Filter by inclusion logic: 

 F: the set of features, i.e., paths
 Df

 

: projected database of f, i.e., the set of graphs in D that are 
supergraphs of f 

 C = ∩f⊆q ∧

 

f∈F

 

Df

 Verification: 
 Test sub-Iso between q and each g ∈ C
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g1 g2 g3

q

Index 
(hashtable of paths)

Filtering:
 DCA ={g1 , g3 }
DBA ={g1 , g2 , g3 }
DCAB ={g1 , g3 }
 C=DCA ⋂

 

DBA ⋂ DCAB
={g1 , g3 }

Verification:


 

Do sub-Iso for (q, g1 ) and 
(q, g3 ) 

Answer: {g1 , g3 }



GraphGrep 
[Shasha et al., PODS’02]

 Strengths 
 Indexing paths with length limit is fast
 Index size is small

 Limitations
 Filtering power of paths is limited
 Large candidate set => high verification cost
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gIndex 
[Yan et al., SIGMOD’04]

 First work using pattern mining to do graph 
indexing

 Motivation: paths lose structural info => 
filtering not effective enough => 
use subgraphs to improve filtering

 Main idea: filtering by discriminative frequent 
subgraphs
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gIndex 
[Yan et al., SIGMOD’04]

 Discriminative frequent subgraph
 F: the set of frequent subgraphs in D
 g is a discriminative frequent subgraph wrt F if 

g ∈
 

F and |Dg

 

| << |⋂f∈F∧

 

f⊂g Df

 

|
 Size-increasing support => reduce the size 

of F 
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gIndex 
[Yan et al., SIGMOD’04]

 Index construction 
 Mine the set of discriminative frequent 

subgraphs, F, with a size-increasing support
 Query processing
 Filtering: 
 Enumerate subgraphs of q, up to a size limit
 Filter by inclusion logic: C = ∩f⊆q ∧

 

f∈F

 

Df

 Verification: 
 Test sub-Iso between q and each g ∈ C
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gIndex 
[Yan et al., SIGMOD’04]

 Strengths 
 Subgraph features achieve better filtering than 

path features 
 Discriminative frequent subgraphs effectively 

eliminate redundancy in the feature set
 Limitations
 Verification always needed: |C| ≥

 
|ans|
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TreePi 
[Zhang et al., ICDE’07]

 Motivation: 
 Many real graph datasets are tree-like 
Trees are easier to manipulate than graphs
 Trees retain more structural info than paths 

 Main idea: 
 Filtering by discriminative frequent subtrees 
 Fast sub-Iso testing by measuring distance 

between tree centers
 Tree center: by repeatedly removing leaves in a tree 

until a center node/edge remains
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TreePi 
[Zhang et al., ICDE’07]

 Strengths 
 Lower indexing cost than subgraph approach
 The use of tree center distance further reduces 

candidate set size and speeds up sub-Iso test
 Limitations
 Filtering power of trees may be limited
 Verification always needed: |C| ≥

 
|ans|
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Tree + ∆
 [Zhao et al., VLDB’07]

 Motivation: 
 Trees alone are not enough => need the help of some 

subgraphs on demand
 Main idea: 
 Filtering by frequent subtrees + on-demand

 discriminative subgraphs
 Select on-demand a small set of graph-features Fg

 

, 
where the filtering power of a graph-feature f ∈ Fg

 

is 
estimated from f’s subtree-features
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Tree + ∆
 [Zhao et al., VLDB’07]

 Strengths 
Achieve similar filtering power of graph-features 

without costly graph mining => low indexing cost
 Limitations
 Low indexing cost but query performance is 

bounded by that of using graph-features
 On-demand graph-feature selection incurs extra 

query cost 
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Other Indexes using Features

 FG-index [Cheng et al., SIGMOD’07]: 
frequent subgraphs
 QuickSI [Shang et al., VLDB’08]: frequent 

subtrees
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Representative Work
 Feature-based approach
 Closure-based approach
 C-tree [He and Singh, ICDE’06]
 Others: FG-index

 Verification-free approach
 Coding-based approach
 Fast sub-Iso approach
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C-tree 
[He and Singh, ICDE’06]

 First closure-based graph index
 Motivation: 
 Sub-structure features may still lose information 

of the original graphs
 Use information of original graphs instead (to 

build an index tree)
 Main idea: an R-tree like graph index built on 

graph closures

4/3/2010 33DASFAA 10 Tutorial



C-tree 
[He and Singh, ICDE’06]

 Closures
 Vertex/edge closure: a set of vertices/edges => 

a single generalized vertex/edge 
 Graph closure: a set of graphs => a structural 

union of the graphs into a supergraph by some 
mapping, where common vertices/edges defined 
by vertex/edge closure 
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C-tree 
[He and Singh, ICDE’06]

 Index construction
 Construct an R-tree like index tree, C-tree, 

where each node is a closure of its children
 Operations (e.g., insert, delete) of a C-tree 

similar to that of an R-tree
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C-tree



C-tree 
[He and Singh, ICDE’06]

 Pseudo subgraph isomorphism
 Given two graphs g1

 

and g2

 

, for each node in 
each graph, grow a tree by BFS for n-steps
 Approximate sub-Iso by matching the trees 

between the two graphs
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G1

 

is pseudo sub-isomorphic to G2

 

at Step 1G1

 

is pseudo sub-isomorphic to G2

 

at Step 2G1

 

is not pseudo sub-isomorphic to G2

 

at Step 3



C-tree 
[He and Singh, ICDE’06]

 Query processing
 Filtering: 
 Traverse the C-tree, filter out all nodes g if q is not 

pseudo sub-Iso to g 
 But if q is pseudo sub-Iso to g: 

 If g is not a data graph, visit all g’s children 
 If g is a data graph, add g to C 

 Verification: 
 Test sub-Iso between q and each g ∈ C
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C-tree 
[He and Singh, ICDE’06]

 Strengths 
 Support both subgraph and similarity queries
 R-tree like structure

 Limitations
 Verification always needed: |C| ≥

 
|ans|

4/3/2010 41DASFAA 10 Tutorial



Other Indexes using Closure

 FG-index [Cheng et al., SIGMOD’07]: 
 A node in the FG-index tree represents a cluster 

of frequent subgraphs and can be regarded as a 
closure
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Representative Work
 Feature-based approach
 Closure-based approach
 Verification-free approach
 FG-index/FG*-index [Cheng et al., 

SIGMOD’07/TODS’09]
 GDIndex [Williams et al., ICDE’07]

 Coding-based approach
 Fast sub-Iso approach
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FG-index 
[Cheng et al., SIGMOD’07]

 First work proposes the concept of 
verification-free
 Motivation: filtering-and-verification approach 

requires at least |C| ≥
 

|ans| sub-Iso tests
 Main idea:
 Answer an important subset of queries directly 

without verification
 Answer the remaining queries with minimal 

verification
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FG-index 
[Cheng et al., SIGMOD’07]

 Index construction 
 Mine the set of frequent subgraphs, F
 Cluster F and organize it as an index tree, each 

node is a cluster
 Recursively cluster a node (cluster) if it is too 

large => a multi-level index tree
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46

...

Root IGI built on
T={f1, ..., fi , ..., fn}

IGI built on
CLOS(f1)

IGI built on
TCLOS( fi)={..., fij , ...}

IGI built on
CLOS( fn)

...

... IGI built on
CLOS(fij)

...

FG-index

 FG-index is a multi-level index tree
 IGI: Inverted-Graph-Index

 
built on a cluster of 

FGs



FG-index 
[Cheng et al., SIGMOD’07]

Query processing
 If q is a frequent subgraph (FG)
 If q is not an FG
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...

Root IGI built on
T={f1, ..., fi , ..., fn}

IGI built on
CLOS(f1)

IGI built on
TCLOS( fi)={..., fij , ...}

IGI built on
CLOS( fn)

...

... IGI built on
CLOS(fij)

...

...

Root IGI built on
T={f1, ..., fi , ..., fn}

IGI built on
CLOS(f1)

IGI built on
TCLOS( fi)={..., fij , ...}

IGI built on
CLOS( fn)

...

... IGI built on
CLOS(fij)

...

...

Root IGI built on
T={f1, ..., fi , ..., fn}

IGI built on
CLOS(f1)

IGI built on
TCLOS( fi)={..., fij , ...}

IGI built on
CLOS( fn)

...

... IGI built on
CLOS(fij)

...

...

Root IGI built on
T={f1, ..., fi , ..., fn}

IGI built on
CLOS(f1)

IGI built on
TCLOS( fi)={..., fij , ...}

IGI built on
CLOS( fn)

...

... IGI built on
CLOS(fij)

...
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Query Processing


 

When q
 

is an FG


 

Return query answer directly without any 
verification



FG-index 
[Cheng et al., SIGMOD’07]

When q is not an FG
 Filtering-and-verification: 
 Find discriminative subgraphs, S, of q in FG-index
 Filter by inclusion logic: C = ∩f∈S

 

Df

 Verification: test sub-Iso between q and each g ∈ C
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FG-index 
[Cheng et al., SIGMOD’07]

 Strengths
 Verification-free for answering FG-queries (i.e., queries 

that have the largest verification cost)
 Limitations
 FG-index may have a high index-probing cost if F is too 

big
 Non-FG queries are still answered by the filtering-and-

 verification framework
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FG*-index 
[Cheng et al., TODS’09]

 A feature-index: to facilitate efficient index-
 probing in FG-index 

 An FAQ-index: to answer non-FG queries 
without verification in general
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GDIndex 
[Williams et al., ICDE’07]

 Motivation: graphs in many applications are 
small
 Main idea: 
 Hash all subgraphs of all graphs in the database
 Match a query by hashing 
 Focus on graphs with limited sizes
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GDIndex 
[Williams et al., ICDE’07]

 Strengths 
 No verification for any query

 Limitations
 Not suitable for applications with large graphs
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Representative Work
 Feature-based approach
 Closure-based approach
 Verification-free approach
 Coding-based approach
 GString [Jiang et al., ICDE’07]
 GCoding [Zou et al., EDBT’08]

 Fast sub-Iso approach
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GString 
[Jiang et al., ICDE’07]

 Motivation: existing feature-based 
approaches do not consider semantics of 
structures
 Main idea: 
 Encode graphs into strings, using semantics of 

sub-structures
 Transform subgraph query processing into string 

matching
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GString 
[Jiang et al., ICDE’07]

 Index construction
 Semantics of basic graph structures: line, cycle, 

star
 Use a grammar to convert a graph into a string 

consisting of its basic structures
 Construct a suffix tree for all graph strings

4/3/2010 56DASFAA 10 Tutorial



4/3/2010 57DASFAA 10 Tutorial

GString: Line 2 … Cycle 6 … Line 3 … Cycle 6 …



GString 
[Jiang et al., ICDE’07]

Query processing
 Encode q as a string 
 Filter out false results by matching q with the 

suffix tree
 Verify each matching string (of a graph g) by 

testing sub-Iso between q and g
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GString 
[Jiang et al., ICDE’07]

 Strengths 
 Index considers semantics of sub-structures

 Limitations
 Verification always needed: |C| ≥

 
|ans|
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GCoding 
[Zou et al., EDBT’08]

 Motivation: spectral graph theory pruning 
rules have shown to be effective for 
processing twig queries in XML
 Main idea: 
 Use spectral graph coding to encode the 

structure of a graph into a numerical space
 Encode q and match q by comparing graph 

codes
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GCoding 
[Zou et al., EDBT’08]

 Strengths 
 Graph codes easy to update => support frequent 

updates
 Limitations
 Verification always needed: |C| ≥

 
|ans|
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Representative Work
 Feature-based approach
 Closure-based approach
 Verification-free approach
 Coding-based approach
 Fast sub-Iso approach
 QuickSI [Shang et al., VLDB’08]
 Others: C-tree, TreePi

4/3/2010 62DASFAA 10 Tutorial



QuickSI 
[Shang et al., VLDB’08]

 Motivation: 
 All existing works, except FG-index and 

GDIndex, adopt the filtering-and-verification 
framework
 Verification cost dominates due to sub-Iso
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QuickSI 
[Shang et al., VLDB’08]

 Main idea: 
 Improve the sub-Iso test in the verification step
 Reduce branch-and-bound in Ullman’s sub-Iso 

algorithm, by an effective search order based on
 The frequencies of vertices/edges in the underneath 

graph database
 The topological info of the graphs
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QuickSI 
[Shang et al., VLDB’08]

 Strengths 
 Reduce verification cost by a fast sub-Iso 

algorithm
 Limitations
 Verification always needed: |C| ≥

 
|ans|
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Other Fast Sub-Iso Approach

 TreePi [Zhang et al., ICDE’07]: use tree 
center distance constraint
 C-tree [He and Singh, ICDE’06]: pseudo 

subgraph isomorphism
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Feature-
based

Closure-
based

Verification-
free

Coding-
based

Fast
sub-Iso

GraphGrep 
[Shasha et al., PODS’02]

X

gIndex 
[Yan et al., SIGMOD’04]

X

C-tree 
[He and Singh, ICDE’06]

X X

FG-index 
[Cheng et al., SIGMOD’07]

X X X

GString 
[Jiang et al., ICDE’07]

X

TreePi 
[Zhang et al., ICDE’07]

X X

GDIndex 
[Williams et al., ICDE’07]

X

Tree+∆
[Zhao

 

et al., VLDB’07]
X

GCoding 
[Zou et al., EDBT’08]

X

QuickSI 
[Shang et al., VLDB’08]

X X



Conclusions on 
Subgraph Query Processing

 Five different approaches (roughly)
 Feature-based approach: GraphGrep, gIndex, TreePi, 

Tree+∆, FG-index, QuickSI
 Closure-based approach: C-tree, FG-index
 Verification-free approach:

 
FG-index, GDIndex

 Coding-based approach: GString, GCoding
 Fast sub-Iso approach: QuickSI, C-tree, TreePi

 Overall performance
 Strengths and limitations of each work briefly discussed
 Performance depends on applications and individual 

focuses, no clear winner
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Tutorial Coverage
 Subgraph queries
 Supergraph queries
 Similarity queries
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Supergraph Query Processing
 Counterpart of subgraph query processing 
 Problem
Given a graph database D and a graph query q
Find all graphs g in D s.t. q is a supergraph

 
of g
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Many Applications
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Chemical Descriptor Identification
[Lameijer et al. 2006]

Object Recognition
(from SIFT project, Standford)



Challenges
Problem complexity: NP-complete 
 Same as subgraph query

Existing feature-based indexes for subgraph 
queries are not applicable 
 Inclusion logic for subgraph query
 If f ⊆

 
q and f ⊈

 
g, then q ⊈

 
g

 Exclusion logic
 

for supergraph query
 If f ⊈

 
q and f ⊆

 
g, then q ⊉

 
g

 Need to design different feature selection 
mechanisms
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Supergraph Query Processing

 Representative work
 cIndex [Chen et al., VLDB’07]
 Feature-based approach

 GPTree [Zhang et al., EDBT’09]
 Feature-based approach
 Fast sub-Iso approach
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cIndex [Chen et al., VLDB’07]


 
First work on supergraph query processing


 

Basic framework
1.

 
Off-line index construction


 
Generate and select a feature set F



 
For f 

 
F, store Df

 

= { g | f ⊆
 

g ∧
 

g ∈
 

D}
2.

 
Filtering


 
Check if f ⊆

 
q for each f 

 
F

 
(by sub-Iso test)



 
Compute a candidate set C by exclusion logic

C = D -
 

Uf

 

⊈

 

q ∧

 

f∈F

 

Df

3.
 

Verification


 
Verify if q ⊇

 
g, for

 
each g 

 
C (by sub-Iso test)
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Feature Selection

 Generate an initial feature set F0

 

by FG mining
 Select a subset F of F0

 

with the best filtering 
power (Df

 

is large and f ⊈
 

q)
 Use a query log to measure the feature filtering 

power
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Greedy Feature Selection
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Graph Database D Initial Feature Set

Feature and Df

Feature Filtering Power wrt. queries

No filtering power
(exclusion logic)

No filtering 
power

f1

 

⊆

 

q1

Same but considering 
queries

f3

 

⊆

 

q1

Greedy 
feature 
selection



GPTree [Zhang et al., EDBT’09]
 Main idea
 Improve query performance in two aspects
 Select significant features  feature-based 

approach
 Organize data graphs/features to reduce sub-

 Iso tests with q  Fast sub-Iso approach
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Feature Selection 
 Large subgraphs are preferred as features
 Less likely to be contained by q  apply exclusion logic
 If f 

 
f’

 
and Df

 

= Df’

 

, select f’
 

as a feature  prefer 
closed FGs

 Significance metric 
 

of a subgraph f

 Feature selection
 Mine CFGs from D; remove those with (f) <

 
min

 Proceed from large subgraphs to small ones
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data graphs already 
covered by current 
features

data graphs 
covered by f

How much more 
filtering power f 
can bring in



Organize Data Graphs / Features
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sub-Iso 
saved

sub-Iso 
shared

Combine 
common 
subgraphs

Query graphsCompact representation

Search with 
backtracking

Search 
through Search with 

backtracking



Tutorial Coverage
 Subgraph queries
 Supergraph queries
 Similarity queries
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Similarity Search
 Why similarity search?
 Data may not be error-free
 Application need 
 object recognition, protein-ligand docking, etc.

 Two categories 
 Structural similarity search
 Find graphs with structure similar to q

 Distribution similarity search
 Find graphs

 
with occurrence distribution similar to q
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Graph Database

Graph A Graph B Graph C

 Find graphs that have similar structure to q 
wrt. a similarity measure
 sim(g, q)  

Structural Similarity Search
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Query graph q



Structural Similarity Search
 Three types based on query characteristic
 q is a full structure

 
of data graphs

 q is a subgraph
 

of data graphs
 q is a supergraph

 
of data graphs 
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Query Type Full 
Structure

Subgraph 
Query

Supergraph 
Query

Exact
Match

gIndex
C-tree

FG-index
QuickSI 

…

cIndex
GPTree

Structural
Similarity

RASCAL Grafil SG-Enum



RASCAL [Raymond et al., CJ’02]

 Full structure similarity search 
 Similarity measure
Relative size of the maximum common edge subgraph

 (MCES)
 Main idea 
 Filtering
Remove very dissimilar data graphs
Two-tiered upper bound pruning

 Verification
Test whether sim(g, q)  
Compute MCES of for each remaining g and q
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RASCAL – Filtering
 First tier
Consider vertex label

 
and

 
vertex degree

Match vertex arbitrarily by the same label and degree
A loose upper bound of sim(g, q)

 Second tier
Further consider edge label
Instead of matching by vertex degree, match by 

compatible edges
A tighter upper bound but more costly
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Grafil [Yan et al., SIGMOD’05]
 Subgraph similarity search: q is smaller
 Main idea: transform edge misses k

 
to feature 

misses mmax
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Miss 1 edge

fa fb fc

e2 e3

e1

e2 e3

e1

e3

e1

e2
fa fb fc
1 2 4

Query

fa fb fc
1 0 3

fa fb fc
0 1 2

fa fb fc
0 1 2

Miss 4 features at most!Miss 4 features at most!
Feature Graphs

=7
=3

=3

=4



Feature-based Filtering

 How to use the feature misses mmax
mmax = 4
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fa fb fc
g1 0 0 2
g2 1 0 3
g3 0 1 4
g4 1 0 0
q 1 2 4

# feature misses =(1-0)+(2-0)+(4-2) = 5 > mmax

# feature misses =(1-1)+(2-0)+(4-3) = 3 < mmax

# feature misses =(1-0)+(2-1)+(4-4) = 2 < mmax

# feature misses =(1-1)+(2-0)+(4-0) = 6 > mmax



How to Calculate Feature Misses?
 Enumerating all relaxed queries is expensive
 Classic set k-cover problem

 k: the number of missing edges in q
 mmax

 

: max number of features covered by k edges
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fa fb fc

e1

e2 e3

fa fb1 fb2 fc1 fc2 fc3 fc4

e1 0 1 1 1 0 0 0
e2 1 1 0 0 1 0 1
e3 1 0 1 0 0 1 1

q

Until k edges are selected

Edge-Feature Matrix



SG-Enum [Shang et al., ICDE’10]
 Supergraph similarity search: q is larger
 Similarity measure
 Maximum common subgraph (MCS)
 Given query q and data graph g

dis(q, g) = |g| -
 

|mcs(q, g)|
 Problem Definition
 Find all data graphs g in D with dis(q, g)  
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-Missing Subgraphs
 Main idea: relax data graph g instead of q
 Allow g to miss 

 
edges
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miss 1 edge



Query Processing
 SG-Enum index
 Organize -missing subgraphs in a tree

 Search q on the index by testing sub-Iso 
 g is an answer graph iff at least one leaf node s 

 
q
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Tutorial Coverage
 Subgraph queries
 Supergraph queries
 Similarity queries
 Structural similarity queries
 Distribution similarity queries
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Distribution Similarity Search
Occurrence of a subgraph in a data graph: a 

boolean variable
Distribution similarity search
Find subgraphs

 
that have similar occurrence distribution 

to q wrt. a correlation measure

Fig. (a): Graph database

Fig. (b): Two subgraphs

Fig. (c): Subgraph occurrence distribution



Why Distribution Similarity?
 Subgraphs with similar distributions 
 Capture the underlying occurrence dependency
 May imply the same hidden property
 May be structurally similar / dissimilar
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Distribution Similarity Search
 Challenges
 Huge search space: not linear in # of data graphs, but 

linear in # of subgraphs of data graphs
 Representative work
 CGSearch [Ke et al., KDD’07]
 Threshold-based approach

 TopCor [Ke et al., SDM’09]
 Top-k

 FCP-Miner [Ke et al., ICDM’09]
 Discover all distribution-similar subgraph pairs
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CGSearch [Ke et al., KDD’07]
 Correlation measure: Pearson’s coefficient
 Measure the departure of two variables from independence
 supp(g) represents

 
the occurrence probability of a graph g

 Problem
 Given a database D, a query q, and a threshold 
 Find all subgraphs g in D with (q, g) ≥ 
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CGSearch
 Basic framework
 Candidate generation and filtering

 Transform the search space from D to Dq

 Use heuristic rules to further prune false-positive candidates

 Verification
 Compute (q, g) for each g in the candidate set
 Return those g with (q, g) ≥ 

 

as answers
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Candidate Generation
 Candidate generation
Derive a lower bound for the joint support in Dq

Generate candidates from Dq

 

by FG-mining 
with the above bound

 Advantages
Significant reduction in search space: Dq

 

<< D
Efficient candidate generation
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Candidate Filtering
 Heuristic 1
All supergraphs of q

 
in the candidate set are 

answers for sure
Include answers directly without verification

 Heuristic 2
If (q, g) < , all subgraphs of g with the same 

support can be safely pruned 
Remove false-positives and save unrewarding 

verification
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TopCor [Ke et al., SDM’09]
 Problem
Given a database D, a query q, and an integer k
Find top-k subgraphs g in D with the highest  (q, g)

 Why top-k?
Circumvent the need for a user-specified correlation 

threshold θ
Allow a user to directly control the number of patterns 

discovered
 Challenges
Inefficient to use CGSearch
Hard to find a connection between k and θ
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TopCor
 Main idea
 Mine subgraphs in Dq

 

by growing a search tree T in a 
depth-first manner

 Maintain a priority queue for current top-k results
 When exploring T, apply three key techniques

 
to direct 

the search to those highly correlated subgraphs
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Key Techniques
 T1: early correlation checking
 Identify an upper bound of (q, g) for a subgraph g
 min

 

: minimum  in the current priority queue
 If upper((q, g)) < min

 

, prune g

 T2: Branch pruning
 upper((q, g)) is anti-monotonic
 If upper((q, g)) < min

 

, prune all supergraphs of g

 T3: Heuristic rules
 Rule 1: skip verification for supergraphs of q
 Rule 2: first verify closed subgraphs
 Rules 3-5: prune subgraphs/supergraphs of a verified g 
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TopCor Search Process
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Depth-first exploration …
g3

 

is a closed subgraph
Verification on g3 by Rule 2
Pruning upward from g3

 

by Rule 3 
and downward by Rules 4-5

g5

 

is the query q
Skip verification in g5

 

’s branch by 
Rule 1

upper(g10

 

) < min

 

, prune g10

 

by T1
Prune branch of g10 by T2

root

g1

g2

g3

g4

g5

g6

g8g7

g9

g10

g12g11 g13

Search Tree T



FCP-Miner [Ke et al., ICDM’09]
 Problem
Given a database D, a support threshold , and a 

correlation threshold 
All pairs of subgraphs (f1

 

, f2
 

) such that
supp(f1

 

) ≥ , supp(f2
 

) ≥ , and (f1
 

, f2
 

)
 

≥ 

 Why all pairs?
A query graph may not be available
Applications need to investigate all possibilities (drug 

design)
 Challenges
Feeding every subgraph in D to CGSearch is infeasible
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FCP-Miner
 Answer set of a frequent subgraph f
Af = {f’

 
: supp(f’) ≥ , (f, f’)

 
≥ }

The set of subgraphs that form answer pairs with f
 Main idea
Compute exact answer sets for only a small number of 

FGs
Use these answer sets to approximate the answer sets

 of the remaining FGs
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Correlation Property
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 Correlation tends to be “transitive”
If f1

 

and f2
 

are both correlated to the same 
subgraph f, they are likely to be correlated as well

f2f1

f



How to Use the Property?
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All subgraphs correlated to f are in Af 

Consider a subgraph f1
 

in Af

By the transitive property, f1  is likely to be correlated 
with any other subgraph in Af

Approximate Af1

 

based on Af

Skip obtaining the exact Afx

 

, fx
 

Af

Af

f1

f2

f3
f4

f5

f

f6

…

fn
Af1

f2

f3

f5

f4
f

f6

…

fn
f1



Summary
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Query Type Full 
Structure

Subgraph 
Query

Supergraph 
Query

Exact

GraphGrep
gIndex
C-tree

FG-index
GString
GDIndex
Tree + △
GCoding
QuickSI 

cIndex
GPTree

Structural 
Similarity

RASCAL Grafil SG-Enum

Distribution 
Similarity

CGSearch
TopCor

FCP-Miner



Future Directions

Imbalanced development of subgraph queries vs. 
supergraph/similarity queries
The later two are relatively new
Many technical aspects remain unexplored

Scalability problem
Existing work evaluated on databases of < 1M graphs
Rapid growth in graph data (billions of graphs)
A hybrid approach that combines the strengths of 

existing work might be feasible
Disk-based index is another possible direction
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Future Directions

More sophisticated queries or knowledge 
discovery built upon these primitive queries
Aggregate query
Classification

Subgraph/supergraph/similarity queries on other 
types of graph data
Sequential graph data
Evolving graph data
Uncertain graph data
Probabilistic graph data
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