Querying Large Graph Databases

Yiping Ke Chinese Univ. of Hong Kong ypke@se.cuhk.edu.hk James Cheng Nanyang Technological Univ. jamescheng@ntu.edu.sg

Jeffrey Xu Yu Chinese Univ. of Hong Kong yu@se.cuhk.edu.hk

Graph Data

- Graph is a powerful modeling tool
- Graph data is everywhere (e.g. chemistry, biology, image, vision, social networks, the Web, etc.)

Chemical bonds

Internet

DNA

Daily-life objects

4/3/2010

DASFAA 10 Tutorial

Graph Data

- Volume of graph data grows rapidly in recent years
- SCI Finder report: 4000 new compound structures are added each day
- Demand for more efficient techniques for querying large graph databases

Graph Queries

- Graph queries in real applications
 - □ Chemical informatics and bio-informatics:
 - Graphs model compounds and proteins
 - Graph queries can be used for screening, drug design, motif discovery in 3D protein structures, protein interaction analysis, etc.
 - Computer vision:
 - Graphs represent organization of entities in images
 - Graph queries can be used to identify objects and scenes

Graph Queries

- Graph queries in real applications
 - Heterogeneous web-based data sources and e-commerce sites:
 - Graphs model schemas
 - Graph matching solves the problem of schema matching and integration
 - Others: program flows, software and data engineering, taxonomies, etc

Tutorial Coverage

- □ Transaction graph databases
 - Containing a set of relatively small graphs
 - Mostly in scientific domains, e.g., chemistry and bioinformatics
 - **Query types:**
 - □ Subgraph queries
 - □ Supergraph queries
 - □ Similarity queries
- Other graph data such as large networks, see [Faloutsos and Tong, ICDE'09]

Tutorial Coverage

- Subgraph queries
- Supergraph queries
- □ Similarity queries

Subgraph Query Processing

Problem definition

□Given a graph database D and a graph query q□Find all graphs g in D s.t. q is a subgraph of g

DASFAA 10 Tutorial

Applications

- Protein interaction analysis
- □ Motif discovery in 3D protein structures
- Drug design
- Schema matching
- Graph similarity search
- Correlation discovery in graph databases

Challenges

- Sub-problem: subgraph isomorphism (sublso) => NP-complete
- Sequential scan of D + pair-wise
 comparison between q and each g in D
 => |D| sub-lso tests
- Each g in D is relatively small but inefficient for large D or online applications

Existing Solution

□ Filtering and Verification

□ Filtering: filter false answers by an index and produce a candidate set C
 □ Verification: verify if q ⊆ g, for each g ∈ C

(by sub-lso test)

Query Processing Cost

Let C be the candidate set obtained by filtering using an index

Cost = Cost(index-probing) + Cost(disk I/O) x |C| + Cost(sub-Iso) x |C|

Objectives of existing indexes:
 Keep a low Cost(index-probing)
 Minimize |C|

- □ Feature-based approach
- Closure-based approach
- Verification-free approach
- Coding-based approach
- □ Fast sub-lso approach

□ Feature-based approach:

- □ Select a set of features, F
- □ Filtering by inclusion logic: for each g ∈ D, if ∃f∈F such that f ⊆ q and f ⊈ g, then q ⊈ g and we filter out g
- □ Closure-based approach:
 - □ Index database based on graph closure
- □ Verification-free approach:
 - □ Attempt to totally eliminate the candidate set => no verification
- □ Coding-based approach:

□ Encode the graphs/query for more efficient matching

□ Fast sub-lso approach:

□ Speed up sub-Iso in the verification/filtering steps

	Feature- based	Closure- based	Verification- free	Coding- based	Fast sub-Iso
GraphGrep [Shasha et al., PODS'02]	X				
gIndex [Yan et al., SIGMOD'04]	X				
C-tree [He and Singh, ICDE'06]		X			X
FG-index [Cheng et al., SIGMOD'07]	X	X	X		
GString [Jiang et al., ICDE'07]				X	
TreePi [Zhang et al., ICDE'07]	X				X
GDIndex [Williams et al., ICDE'07]			X		
Tree+∆ [Zhao et al., VLDB'07]	X				
GCoding [Zou et al., EDBT'08]				X	
QuickSI [Shang et al., VLDB'08]	X				X
4/3/2010	D	ASFAA 10 Tutoria	I		15

- □ Feature-based approach
 - GraphGrep [Shasha et al., PODS'02]
 - □ gIndex [Yan et al., SIGMOD'04]
 - □ TreePi [Zhang et al., ICDE'07]
 - □ Tree+∆ [Zhao et al., VLDB'07]
 - Others: FG-index, QuickSI
- Closure-based approach
- Verification-free approach
- Coding-based approach
- □ Fast sub-lso approach

GraphGrep [Shasha et al., PODS'02]

- First work adopts the filtering-and-verification framework for subgraph query processing
- Motivation: sequential scan too expensive => reduce candidate set size by filtering
 Main idea: filtering by paths

GraphGrep [Shasha et al., PODS'02]

- Index construction
 - Enumerate the set of all paths, of length up to L, of all graphs in the database
 - Keep these paths in a hashtable

Key	g ₁	g_2	g ₃
h(CA)	1	0	1
h(ABCB)	2	2	0

Index (hashtable of paths)

DASFAA 10 Tutorial

GraphGrep [Shasha et al., PODS'02]

Query processing

□ Filtering:

□ Hash all paths, of length up to L, of a query q

□ Filter out graphs that do not contain all paths in q

□ Filter by inclusion logic:

□ F: the set of features, i.e., paths

D_f: projected database of f, i.e., the set of graphs in D that are supergraphs of f

 $\Box C = \cap_{f \subseteq q \land f \in F} D_f$

□ Verification:

 $\hfill\square$ Test sub-Iso between q and each $g\in C$

Key	\mathbf{g}_1	g ₂	g ₃
h(CA)	1	0	1
•••••			
h(ABCB)	2	2	0

Index (hashtable of paths)

В 2 q

Filtering: • $D_{CA} = \{g_1, g_3\}$ $D_{BA} = \{g_1, g_2, g_3\}$ • $D_{CAB} = \{g_1, g_3\}$ • $C=D_{CA} \cap D_{BA} \cap D_{CAB}$ $= \{g_1, g_3\}$

Verification: Do sub-Iso for (q, g₁) and (q, g_3)

Answer: $\{g_1, g_3\}$

4/3/2010

DASFAA 10 Tutorial

GraphGrep [Shasha et al., PODS'02]

Strengths

- Indexing paths with length limit is fast
- Index size is small

Limitations

- □ Filtering power of paths is limited
- □ Large candidate set => high verification cost

- First work using pattern mining to do graph indexing
- Motivation: paths lose structural info => filtering not effective enough => use subgraphs to improve filtering
- Main idea: filtering by discriminative frequent subgraphs

- □ Discriminative frequent subgraph
 - □ F: the set of frequent subgraphs in D
 - □ g is a discriminative frequent subgraph wrt F if

 $g \in F \text{ and } |D_g| << | \cap_{f \in F \land f \subseteq g} D_f |$

Size-increasing support => reduce the size of F

- Index construction
 - □ Mine the set of discriminative frequent subgraphs, F, with a size-increasing support
- Query processing
 - □ Filtering:

□ Enumerate subgraphs of q, up to a size limit

□ Filter by inclusion logic: $C = \bigcap_{f \subseteq q \land f \in F} D_f$

□ Verification:

 $\hfill\square$ Test sub-Iso between q and each $g\in C$

Strengths

- Subgraph features achieve better filtering than path features
- Discriminative frequent subgraphs effectively eliminate redundancy in the feature set

Limitations

□ Verification always needed: $|C| \ge |ans|$

TreePi [Zhang et al., ICDE'07]

□ Motivation:

- □ Many real graph datasets are tree-like
- Trees are easier to manipulate than graphs
- Trees retain more structural info than paths

□ Main idea:

- □ Filtering by discriminative frequent subtrees
- Fast sub-lso testing by measuring distance between tree centers

Tree center: by repeatedly removing leaves in a tree until a center node/edge remains

DASFAA 10 Tutorial

TreePi [Zhang et al., ICDE'07]

Strengths

- Lower indexing cost than subgraph approach
- □ The use of tree center distance further reduces candidate set size and speeds up sub-lso test

Limitations

- □ Filtering power of trees may be limited
- □ Verification always needed: $|C| \ge |ans|$

Tree + ∆ [Zhao et al., VLDB'07]

□ Motivation:

- Trees alone are not enough => need the help of some subgraphs on demand
- Main idea:
 - Filtering by frequent subtrees + on-demand discriminative subgraphs
 - □ Select on-demand a small set of graph-features F_g , where the filtering power of a graph-feature $f \in F_g$ is estimated from f's subtree-features

Tree + \triangle [Zhao et al., VLDB'07]

Strengths

□Achieve similar filtering power of graph-features without costly graph mining => low indexing cost

Limitations

Low indexing cost but query performance is bounded by that of using graph-features

On-demand graph-feature selection incurs extra query cost

Other Indexes using Features

- FG-index [Cheng et al., SIGMOD'07]: frequent subgraphs
- QuickSI [Shang et al., VLDB'08]: frequent subtrees

- Feature-based approach
- Closure-based approach
 C-tree [He and Singh, ICDE'06]
 Others: FG-index
- Verification-free approach
- Coding-based approach
- □ Fast sub-lso approach

C-tree [He and Singh, ICDE'06]

- □ First closure-based graph index
- □ Motivation:
 - Sub-structure features may still lose information of the original graphs
 - Use information of original graphs instead (to build an index tree)
- Main idea: an R-tree like graph index built on graph closures

C-tree [He and Singh, ICDE'06]

Closures

- Vertex/edge closure: a set of vertices/edges => a single generalized vertex/edge
- Graph closure: a set of graphs => a structural union of the graphs into a supergraph by some mapping, where common vertices/edges defined by vertex/edge closure

 C_1 =closure(G_1 , G_2)

 C_2 =closure(G₃,G₄,G₅)

DASFAA 10 Tutorial

C-tree [He and Singh, ICDE'06]

- □ Index construction
 - □ Construct an R-tree like index tree, C-tree, where each node is a closure of its children
 - Operations (e.g., insert, delete) of a C-tree similar to that of an R-tree

C-tree [He and Singh, ICDE'06]

- Pseudo subgraph isomorphism
 - □ Given two graphs g₁ and g₂, for each node in each graph, grow a tree by BFS for n-steps
 - Approximate sub-lso by matching the trees between the two graphs

DASFAA 10 Tutorial

C-tree [He and Singh, ICDE'06]

Query processing

- □ Filtering:
 - Traverse the C-tree, filter out all nodes g if q is not pseudo sub-lso to g
 - □ But if q is pseudo sub-lso to g:
 - □ If g is not a data graph, visit all g's children
 - □ If g is a data graph, add g to C
- □ Verification:
 - $\hfill\square$ Test sub-Iso between q and each $g\in C$

C-tree [He and Singh, ICDE'06]

Strengths

- Support both subgraph and similarity queries
- R-tree like structure

Limitations

□ Verification always needed: $|C| \ge |ans|$

Other Indexes using Closure

□ FG-index [Cheng et al., SIGMOD'07]:

A node in the FG-index tree represents a cluster of frequent subgraphs and can be regarded as a closure

Representative Work

- Feature-based approach
- Closure-based approach
- Verification-free approach
 - □ FG-index/FG*-index [Cheng et al., SIGMOD'07/TODS'09]
 - GDIndex [Williams et al., ICDE'07]
- Coding-based approach
- □ Fast sub-lso approach

FG-index [Cheng et al., SIGMOD'07]

- First work proposes the concept of verification-free
- □ Motivation: filtering-and-verification approach requires at least |C| ≥ |ans| sub-lso tests
- □ Main idea:
 - Answer an important subset of queries directly without verification
 - Answer the remaining queries with minimal verification

FG-index [Cheng et al., SIGMOD'07]

- □ Index construction
 - □ Mine the set of frequent subgraphs, F
 - Cluster F and organize it as an index tree, each node is a cluster
 - Recursively cluster a node (cluster) if it is too large => a multi-level index tree

FG-index

- FG-index is a multi-level index tree
- IGI: Inverted-Graph-Index built on a cluster of FGs

FG-index [Cheng et al., SIGMOD'07]

Query processing If q is a frequent subgraph (FG) If q is not an FG

Query Processing

□ When q is an FG

Return query answer directly without any verification

FG-index [Cheng et al., SIGMOD'07]

- □ When q is not an FG
 - □ Filtering-and-verification:
 - □ Find discriminative subgraphs, S, of q in FG-index
 - □ Filter by inclusion logic: $C = \bigcap_{f \in S} D_f$
 - $\hfill\square$ Verification: test sub-Iso between q and each g $\in C$

FG-index [Cheng et al., SIGMOD'07]

Strengths

Verification-free for answering FG-queries (i.e., queries that have the largest verification cost)

Limitations

- FG-index may have a high index-probing cost if F is too big
- Non-FG queries are still answered by the filtering-andverification framework

FG*-index [Cheng et al., TODS'09]

- A feature-index: to facilitate efficient indexprobing in FG-index
- An FAQ-index: to answer non-FG queries without verification in general

GDIndex [Williams et al., ICDE'07]

- Motivation: graphs in many applications are small
- □ Main idea:
 - Hash all subgraphs of all graphs in the database
 - □ Match a query by hashing
 - □ Focus on graphs with limited sizes

GDIndex [Williams et al., ICDE'07]

□ Strengths

□ No verification for any query

Limitations

Not suitable for applications with large graphs

Representative Work

Feature-based approach Closure-based approach Verification-free approach Coding-based approach □ GString [Jiang et al., ICDE'07] □ GCoding [Zou et al., EDBT'08] Fast sub-lso approach

- Motivation: existing feature-based approaches do not consider semantics of structures
- □ Main idea:
 - Encode graphs into strings, using semantics of sub-structures
 - Transform subgraph query processing into string matching

□ Index construction

Semantics of basic graph structures: line, cycle, star

- □ Use a grammar to convert a graph into a string consisting of its basic structures
- □ Construct a suffix tree for all graph strings

- **Query processing**
 - Encode q as a string
 - Filter out false results by matching q with the suffix tree
 - Verify each matching string (of a graph g) by testing sub-lso between q and g

□ Strengths

□ Index considers semantics of sub-structures

Limitations

□ Verification always needed: $|C| \ge |ans|$

GCoding [Zou et al., EDBT'08]

- Motivation: spectral graph theory pruning rules have shown to be effective for processing twig queries in XML
- □ Main idea:
 - Use spectral graph coding to encode the structure of a graph into a numerical space
 - Encode q and match q by comparing graph codes

GCoding [Zou et al., EDBT'08]

□ Strengths

Graph codes easy to update => support frequent updates

Limitations

□ Verification always needed: $|C| \ge |ans|$

Representative Work

- Feature-based approach
- Closure-based approach
- □ Verification-free approach
- Coding-based approach
- Fast sub-lso approach
 - QuickSI [Shang et al., VLDB'08]
 - □ Others: C-tree, TreePi

QuickSI [Shang et al., VLDB'08]

□ Motivation:

- All existing works, except FG-index and GDIndex, adopt the filtering-and-verification framework
- Verification cost dominates due to sub-lso

QuickSI [Shang et al., VLDB'08]

Main idea:

- □ Improve the sub-Iso test in the verification step
- Reduce branch-and-bound in Ullman's sub-lso algorithm, by an effective search order based on
 - The frequencies of vertices/edges in the underneath graph database
 - □ The topological info of the graphs

QuickSI [Shang et al., VLDB'08]

□ Strengths

Reduce verification cost by a fast sub-lso algorithm

Limitations

□ Verification always needed: $|C| \ge |ans|$

Other Fast Sub-Iso Approach

TreePi [Zhang et al., ICDE'07]: use tree center distance constraint

C-tree [He and Singh, ICDE'06]: pseudo subgraph isomorphism

	Feature- based	Closure- based	Verification- free	Coding- based	Fast sub-Iso
GraphGrep [Shasha et al., PODS'02]	X				
gIndex [Yan et al., SIGMOD'04]	X				
C-tree [He and Singh, ICDE'06]		X			X
FG-index [Cheng et al., SIGMOD'07]	X	X	X		
GString [Jiang et al., ICDE'07]				X	
TreePi [Zhang et al., ICDE'07]	X				X
GDIndex [Williams et al., ICDE'07]			X		
Tree+∆ [Zhao et al., VLDB'07]	X				
GCoding [Zou et al., EDBT'08]				X	
QuickSI [Shang et al., VLDB'08]	X				X
4/3/2010	DASFAA 10 Tutorial				67

Conclusions on Subgraph Query Processing

□ Five different approaches (roughly)

- □ Feature-based approach: GraphGrep, gIndex, TreePi, Tree+∆, FG-index, QuickSI
- □ Closure-based approach: C-tree, FG-index
- □ Verification-free approach: FG-index, GDIndex
- □ Coding-based approach: GString, GCoding
- □ Fast sub-Iso approach: QuickSI, C-tree, TreePi
- Overall performance
 - □ Strengths and limitations of each work briefly discussed
 - Performance depends on applications and individual focuses, no clear winner

Tutorial Coverage

- Subgraph queries
- Supergraph queries
- □ Similarity queries

Supergraph Query Processing

- Counterpart of subgraph query processing
 Problem
 - Given a graph database D and a graph query q
 - □Find all graphs g in D s.t. q is a supergraph of g

model graph database D

Many Applications

Chemical Descriptor Identification [Lameijer et al. 2006] DASEAA 10 Tutorial

Object Recognition (from SIFT project, Standford)

2010-4-3

Challenges

□ Problem complexity: NP-complete

□ Same as subgraph query

Existing feature-based indexes for subgraph queries are not applicable

- □ Inclusion logic for subgraph query
 - $\Box \text{ If } f \subseteq q \text{ and } f \nsubseteq g, \text{ then } q \nsubseteq g$
- □ Exclusion logic for supergraph query □ If $f \nsubseteq q$ and $f \subseteq q$, then $q \clubsuit q$
- Need to design different feature selection mechanisms
Supergraph Query Processing

Representative work

- cIndex [Chen et al., VLDB'07]Feature-based approach
- GPTree [Zhang et al., EDBT'09]
 - Feature-based approach
 - □ Fast sub-Iso approach

cIndex [Chen et al., VLDB'07]

First work on supergraph query processing

Basic framework

1. Off-line index construction

Generate and select a feature set F

 $\Box \text{ For } f \in F \text{, store } D_f = \{ g \mid f \subseteq g \land g \in D \}$

2. Filtering

- □ Check if $f \subseteq q$ for each $f \in F$ (by sub-lso test)
- □ Compute a candidate set C by exclusion logic

$$C = D - U_{f \nsubseteq q \land f \in F} D_{f}$$

- 3. Verification

DASFAA 10 Tutorial

Feature Selection

- \Box Generate an initial feature set F_0 by FG mining
- □ Select a subset F of F_0 with the best filtering power (D_f is large and $f \nsubseteq q$)
- Use a query log to measure the feature filtering power

Greedy Feature Selection

DASFAA 10 Tutorial

GPTree [Zhang et al., EDBT'09]

Main idea

□ Improve query performance in two aspects
□ Select *significant* features → feature-based approach

 \square Organize data graphs/features to reduce sublso tests with q \rightarrow Fast sub-lso approach

Feature Selection

□ Large subgraphs are preferred as features

- \Box Less likely to be contained by $q \rightarrow$ apply exclusion logic
- $\hfill If f \subseteq f' \mbox{ and } D_f = D_{f'}, \mbox{ select } f' \mbox{ as a feature } \rightarrow \mbox{ prefer closed FGs}$
- \Box Significance metric δ of a subgraph f

Feature selection

- □ Mine CFGs from D; remove those with $\delta(f) < \delta_{min}$
- Proceed from large subgraphs to small ones

DASFAA 10 Tutorial

Organize Data Graphs / Features

Tutorial Coverage

- Subgraph queries
- Supergraph queries
- Similarity queries

Similarity Search

□ Why similarity search?

- □ Data may not be error-free
- Application need
 - □ object recognition, protein-ligand docking, etc.

Two categories

- □ Structural similarity search
 - □ Find graphs with structure similar to q
- Distribution similarity search
 - □ Find graphs with occurrence distribution similar to q

Structural Similarity Search

Find graphs that have similar structure to q wrt. a similarity measure

 $\Box sim(g, q) \geq \delta$

Structural Similarity Search

□ Three types based on query characteristic

- **q** is a <u>full structure</u> of data graphs
- **q** is a <u>subgraph</u> of data graphs
- **q** is a <u>supergraph</u> of data graphs

Query Type	Full Structure	Subgraph Query	Supergraph Query
Exact Match		gIndex C-tree FG-index QuickSI 	cIndex GPTree
Structural Similarity	RASCAL	Grafil	SG-Enum

RASCAL [Raymond et al., CJ'02]

- □ Full structure similarity search
- □ Similarity measure
 - Relative size of the maximum common edge subgraph (MCES)

Main idea

- □ Filtering
 - □Remove very dissimilar data graphs
 - Two-tiered upper bound pruning
- Verification
 - **Test whether sim(g, q)** $\geq \delta$
 - Compute MCES of for each remaining g and q

DASFAA 10 Tutorial

RASCAL – Filtering

First tier

- Consider vertex label and vertex degree
- □ Match vertex arbitrarily by the same label and degree
- \Box A loose upper bound of sim(g, q)

Second tier

- □ Further consider edge label
- Instead of matching by vertex degree, match by compatible edges
- □A tighter upper bound but more costly

Grafil [Yan et al., SIGMOD'05]

Subgraph similarity search: q is smaller
Main idea: transform edge misses k to feature misses m_{max}

DASFAA 10 Tutorial

Feature-based Filtering

□ How to use the feature misses m_{max} □ $m_{max} = 4$

feature misses =(1-0)+(2-0)+(4-2) = 5 > m_{max}

feature misses =(1-0)+(2-1)+(4-4) = $2 < m_{max}$

feature misses =(1-1)+(2-0)+(4-0) = 6 > m_{max}

How to Calculate Feature Misses?

□ Enumerating all relaxed queries is expensive

□ Classic set k-cover problem

 $\hfill\square$ k: the number of missing edges in q

□ m_{max}: max number of features covered by k edges

SG-Enum [Shang et al., ICDE'10]

- □ Supergraph similarity search: q is larger
- □ Similarity measure
 - □ Maximum common subgraph (MCS)
 - Given query q and data graph g

dis(q, g) = |g| - |mcs(q, g)|

Problem Definition

 \Box Find all data graphs g in D with $dis(q, g) \le \sigma$

σ-Missing Subgraphs

Main idea: relax data graph g instead of q
Allow g to miss σ edges

Query Processing

SG-Enum index

 $\hfill\square$ Organize $\sigma\text{-missing subgraphs in a tree}$

□ Search q on the index by testing sub-lso

 $\hfill\square$ g is an answer graph iff at least one leaf node s \subseteq q

Tutorial Coverage

- Subgraph queries
- Supergraph queries
- Similarity queries
 - □ Structural similarity queries
 - Distribution similarity queries

Distribution Similarity Search

- Occurrence of a subgraph in a data graph: a boolean variable
- Distribution similarity search
 - Find subgraphs that have similar occurrence distribution to q wrt. a correlation measure

Fig. (b): Two subgraphs

Why Distribution Similarity?

Subgraphs with similar distributions

Capture the underlying occurrence dependency
May imply the same hidden property
May be structurally similar / dissimilar

Distribution Similarity Search

□ Challenges

Huge search space: not linear in # of data graphs, but linear in # of subgraphs of data graphs

Representative work

- □ CGSearch [Ke et al., KDD'07]
 - Threshold-based approach
- TopCor [Ke et al., SDM'09]Top-k
- □ FCP-Miner [Ke et al., ICDM'09]

□ Discover all distribution-similar subgraph pairs

CGSearch [Ke et al., KDD'07]

Correlation measure: Pearson's coefficient

- Measure the departure of two variables from independence
- \Box supp(g) represents the occurrence probability of a graph g

$$\phi(g_1,g_2) = \frac{supp(g_1,g_2) - supp(g_1)supp(g_2)}{\sqrt{supp(g_1)supp(g_2)(1 - supp(g_1))(1 - supp(g_2))}}$$

Problem

- \Box Given a database D, a query q, and a threshold θ
- **\Box** Find all subgraphs g in D with $\phi(q, g) \ge \theta$

CGSearch

Basic framework

□ Candidate generation and filtering

 \Box Transform the search space from D to D_a

□ Use heuristic rules to further prune false-positive candidates

Verification

Compute $\phi(q, g)$ for each g in the candidate set

\Box Return those g with $\phi(q, g) \ge \theta$ as answers

Candidate Generation

□ Candidate generation

 \Box Derive a lower bound for the joint support in D_q

$$supp(q, g; \mathcal{D}_q) \geq rac{1}{\theta^{-2}(1 - supp(q)) + supp(q)}$$

□Generate candidates from D_q by FG-mining with the above bound

Advantages

Significant reduction in search space: D_q << D
Efficient candidate generation

Candidate Filtering

Heuristic 1

□All supergraphs of q in the candidate set are answers for sure

□Include answers directly without verification

Heuristic 2

□If ϕ (q, g) < θ, all subgraphs of g with the same support can be safely pruned

Remove false-positives and save unrewarding verification

TopCor [Ke et al., SDM'09]

Problem

- Given a database D, a query q, and an integer k
- \Box Find top-k subgraphs g in D with the highest ϕ (q, g)

Why top-k?

- Circumvent the need for a user-specified correlation threshold θ
- Allow a user to directly control the number of patterns discovered

Challenges

- □ Inefficient to use CGSearch
- \Box Hard to find a connection between k and θ

TopCor

Main idea

- Mine subgraphs in D_q by growing a search tree T in a depth-first manner
- □ Maintain a priority queue for current top-k results
- When exploring T, apply three key techniques to direct the search to those highly correlated subgraphs

Key Techniques

□ T1: early correlation checking

- \Box Identify an upper bound of $\phi(q, g)$ for a subgraph g
- $\Box \phi_{\min}$: minimum ϕ in the current priority queue
- □ If upper(ϕ (q, g)) < ϕ _{min}, prune g

T2: Branch pruning

- \Box upper(ϕ (q, g)) is anti-monotonic
- □ If upper(ϕ (q, g)) < ϕ _{min}, prune all supergraphs of g

T3: Heuristic rules

- □ Rule 1: skip verification for supergraphs of q
- □ Rule 2: first verify *closed* subgraphs
- □ Rules 3-5: prune subgraphs/supergraphs of a verified g

TopCor Search Process

- Depth-first exploration ...
- \Box g₃ is a closed subgraph
- \Box Verification on g₃ by Rule 2
- Pruning upward from g₃ by Rule 3 and downward by Rules 4-5
- \Box g₅ is the query q
- Skip verification in g₅'s branch by Rule 1
- \Box upper(g₁₀) < ϕ_{min} , prune g₁₀ by T1
- \Box Prune branch of g₁₀ by T2

Search Tree T

FCP-Miner [Ke et al., ICDM'09]

Problem

 \blacksquare Given a database D, a support threshold $\sigma,$ and a correlation threshold θ

 \Box All pairs of subgraphs (f₁, f₂) such that

 $supp(f_1) \ge \sigma$, $supp(f_2) \ge \sigma$, and $\phi(f_1, f_2) \ge \theta$

□ Why all pairs?

□A query graph may not be available

Applications need to investigate all possibilities (drug design)

□ Challenges

□ Feeding every subgraph in D to CGSearch is infeasible

FCP-Miner

□ Answer set of a frequent subgraph f

 $\Box A_{f} = \{f' : supp(f') \ge \sigma, \phi(f, f') \ge \theta\}$

The set of subgraphs that form answer pairs with f

Main idea

- Compute exact answer sets for only a small number of FGs
- □Use these answer sets to approximate the answer sets of the remaining FGs

Correlation Property

Correlation tends to be "transitive"

□ If f_1 and f_2 are both correlated to the same subgraph f, they are likely to be correlated as well

How to Use the Property?

- □ All subgraphs correlated to f are in A_f
- \Box Consider a subgraph f_1 in A_f
- □ By the transitive property, f₁ is likely to be correlated with any other subgraph in A_f
- \Box Approximate A_{f1} based on A_f

QSkip obtaining the exact A_{fx} , $\forall f_x \in A_f$

107

Query Type	Full Structure	Subgraph Query	Supergraph Query
Exact		GraphGrep gIndex C-tree FG-index GString GDIndex Tree + △ GCoding QuickSI	cindex GPTree
Structural Similarity	RASCAL	Grafil	SG-Enum
Distribution Similarity		CGSearch TopCor FCP-Miner	

Future Directions

- Imbalanced development of subgraph queries vs. supergraph/similarity queries
 - The later two are relatively new
 - □ Many technical aspects remain unexplored
- □ Scalability problem
 - □Existing work evaluated on databases of < 1M graphs
 - □ Rapid growth in graph data (billions of graphs)
 - A hybrid approach that combines the strengths of existing work might be feasible
 - Disk-based index is another possible direction

Future Directions

More sophisticated queries or knowledge discovery built upon these primitive queries

□Aggregate query

Classification

 Subgraph/supergraph/similarity queries on other types of graph data
Sequential graph data
Evolving graph data
Uncertain graph data

□ Probabilistic graph data

References

- □ [Shasha et al., PODS'02] Shasha, D., Wang, J.T.L., Giugno, R.: Algorithmics and applications of tree and graph searching. In: PODS. (2002) 39–52
- [Yan et al., SIGMOD'04] Yan, X., Yu, P.S., Han, J.: Graph indexing based on discriminative frequent structure analysis. In: SIGMOD. (2004) 335–346
- □ [He and Singh, ICDE'06] He, H., Singh, A.K.: Closure-tree: An index structure for graph queries. In: ICDE. (2006) 38
- [Cheng et al., SIGMOD'07] Cheng, J., Ke, Y., Ng, W., Lu, A.: Fg-index: towards verificationfree query processing on graph databases. In: SIGMOD. (2007) 857–872
- □ [Cheng et al., TODS'09] Cheng, J., Ke, Y., Ng, W.: Effective query processing on graph databases. ACM Trans. Database Syst. 34(1) (2009)
- □ [Jiang et al., ICDE'07] Jiang, H., Wang, H., Yu, P.S., Zhou, S.: Gstring: A novel approach for efficient search in graph databases. In: ICDE. (2007) 566–575
- [Zhang et al., ICDE'07] Zhang, S., Hu, M., Yang, J.: Treepi: A novel graph indexing method. In: ICDE. (2007) 966–975
- [Williams et al., ICDE'07] Williams, D.W., Huan, J., Wang, W.: Graph database indexing using structured graph decomposition. In: ICDE. (2007) 976–985

References

- [Zhao et al., VLDB'07] Zhao, P., Yu, J.X., Yu, P.S.: Graph indexing: Tree + delta >= graph. In: VLDB. (2007) 938–949
- [Zou et al., EDBT'08] Zou, L., Chen, L., Yu, J.X., Lu, Y.: A novel spectral coding in a large graph database. In: EDBT. (2008) 181–192
- [Shang et al., VLDB'08] Shang, H., Zhang, Y., Lin, X., Yu, J.X.: Taming verification hardness: An efficient algorithm for testing subgraph isomorphism. In: VLDB. (2008) 364– 375
- □ [Chen et al., VLDB'07] Chen, C., Yan, X., Yu, P.S., Han, J., Zhang, D.Q., Gu, X.: Towards graph containment search and indexing. In: VLDB. (2007) 926–937
- □ [Zhang et al., EDBT'09] Zhang, S., Li, J., Gao, H., Zou, Z.: A novel approach for efficient supergraph query processing on graph databases. In: EDBT. (2009) 204–215
- [Raymond et al., CJ'02] Raymond, J.W., Gardiner, E.J., Willett, P.: RASCAL: calculation of graph similarity using maximum common edge subgraphs. Comput. J. 45(6) (2002) 631– 644
- [Yan et al., SIGMOD'05] Yan, X., Yu, P.S., Han, J.: Substructure similarity search in graph databases. In: SIGMOD Conference. (2005) 766–777

References

- [Shang et al., ICDE'10] Shang, H., Zhu, K., Lin, X., Zhang, Y., Ichise, R.: Similarity Search on Supergraph Containment . In: ICDE. (2010)
- [Ke et al., KDD'07] Ke, Y., Cheng, J., Ng, W.: Correlation search in graph databases. In: KDD. (2007) 390–399
- [Ke et al., SDM'09] Ke, Y., Cheng, J., Yu, J.X.: Top-k correlative graph mining. In: SDM. (2009) 1038–1049
- □ [Ke et al. ICDM'09] Ke, Y., Cheng, J., Yu, J.X.: Efficient discovery of frequent correlated subgraph pairs. In: ICDM. (2009) 239–248
- □ [Faloutsos and Tong, ICDE'09] Faloutsos, C., Tong, H.: Large graph mining: patterns, tools and case studies. In: ICDE (2009) tutorial

Thank you!

Q&A

