
Efficient Algorithms for Generalized Subgraph Query
Processing

Wenqing Lin, Xiaokui Xiao, James Cheng, Sourav S. Bhowmick
School of Computer Engineering, Nanyang Technological University, Singapore

{wlin1, xkxiao, assourav}@ntu.edu.sg, j.cheng@acm.org

ABSTRACT
We study a new type of graph queries, which injectively
maps its edges to paths of the graphs in a given database,
where the length of each path is constrained by a given
threshold specified by the weight of the corresponding
matching edge. We give important applications of the new
graph query and identify new challenges of processing such
a query. Then, we devise the cost model of the branch-
and-bound algorithm framework for processing the graph
query, and propose an efficient algorithm to minimize the
cost overhead. We also develop three indexing techniques
to efficiently answer the queries online. Finally, we verify
the efficiency of our proposed indexes with extensive exper-
iments on large real and synthetic datasets.

Categories and Subject Descriptors
H.2.4 [Database Management]: System—Query process-
ing

Keywords
Graph Databases, Graph Matching Algorithm, Graph In-
dexing, Graph Querying

1. INTRODUCTION
Graph is a powerful data model that can naturally repre-

sent various entities and their relationships. Graph data
is ubiquitous today and being able to query such graph
data is beneficial to many applications. For example, in
bio-informatics and chemical informatics, graphs can model
compounds and proteins, and graph queries can be used
for screening, drug design, motif discovery in protein struc-
tures, and protein interaction analysis. In computer vision,
graphs represent organization of entities in images and graph
queries can be used to identify objects and scenes. In het-
erogeneous web-based data sources and e-commerce sites,
graphs model schemas and graph matching can be applied to
solve problems of schema matching and integration. There
are also many other applications, such as program flows,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’12, October 29–November 2, 2012, Maui, HI, USA.
Copyright 2012 ACM 978-1-4503-1156-4/12/10 ...$15.00.

software and data engineering, taxonomies, etc., where data
is modeled as graphs and it is essential to search and query
the graph data.

Existing research focuses on mainly two types of graph
datasets, one consisting of a single large graph (e.g., an on-
line social network or the entire citation graph in a certain
domain) and the other consisting of a large set of small or
medium-sized graphs. We focus on the later, which are also
very popular in real life (e.g., most of the examples we listed
earlier belong to this type).

To query a graph database, G, that consists of many small
graphs, there are three types of queries commonly studied
in the literature. Let q be a query graph. The first one is
subgraph query [4,9,13,15,18,21,23], which finds the subset
of graphs A of G such that q is a subgraph of any graph in
A. The second one is supergraph query [2, 3, 14, 22], which
finds the subset of graphs A of G such that q is a supergraph
of any graph in A. The third one is similarity query [12,19,
20, 24], which finds the subset of graphs A of G such that
q is a similar graph of any graph in A according to a given
similarity measure.

The three types of queries are useful in different appli-
cations. However, both subgraph queries and supergraph
queries are too rigid and therefore similarity queries are
proposed as an alternative. Existing similarity queries are
mostly measured by the edit distance [20, 24] or maximum
common subgraph [12,19], which is reasonable for some ap-
plications but often fails to capture meaningful patterns or
targets in applications where critical objects or entities may
have to be matched or they may be within a distance from
each other that is beyond the specified similarity distance
(i.e., the similarity threshold). We show such an applica-
tion, where both exact queries and similarity queries are
not applicable, by the following example.

Example 1. Consider a drug design system, which sup-
ports the inventive process of finding new medications based
on the knowledge of the biological target. Figure 1 shows
some compounds in the database, i.e., g1, g2, and g3. A
compound can be naturally modeled as a graph, where atoms
are vertices, the chemical name of the atom is the label of
the correspond vertex, and the chemical bonds between any
two atoms are modeled as edges in the graph. Among many
drug design methods, the pharmacophore model is the most
popular one whose goal is to find the substructures that are
closely matched to the objective. ALADDIN [17] is a com-
puter program for the design and recognition of compounds
that meet geometric, steric, and sub-structural criteria. AL-

325

C

2

2
N 3 H

O

q1

u3

u4

u1 u2

C

1

C
C N

C

OO

O H

C C

C

C g1

C
C C

O

NN

N

H
CC

O HH

O

HH
OO H

O
H

g2

N 1 C

q2

u5 u6
1 O
u7

OC N
H

O

Cv1

v7

v2 v3 v5

v4g3
OO

C
v6

Figure 1: A drug database, G = {g1, g2, g3}, and two
query graphs, q1 and q2

Table 1: A graph query in ALADDIN language
POINT N ; POINT H ; POINT O ; POINT C ;
DISTANCE (1, 2) 1 3 ; DISTANCE (1, 3) 1 2 ;
DISTANCE (1, 4) 1 2 ; DISTANCE (3, 4) 1 1 ;

ADDIN also uses a precise geometric description language
to define the properties of a designed molecule.

The query shown in Table 1 is written in the ALADDIN
language, which is to find a graph pattern where

1. there are four atoms: N, H, O, and C, whose positions
are at 1, 2, 3, and 4, respectively;

2. the distance between N and H is 1 to 3, and similarly
1 to 2 between N and O, 1 to 2 between N and C, and
exactly 1 between O and C.

Since the distance between all pairs of atoms can be esti-
mated [11], the distance can be further modeled as the num-
ber of bonds that connect the atoms. Thus, the query in
Table 1 can be converted to a graph query which finds all
graphs in the database such that

1. there exist four vertices u1 to u4 in the graph whose
labels are N, H, O, and C, respectively;

2. let P = 〈ui, . . . , uj〉 be a path that connects ui and uj

and |P | be the length of the path:

there exist paths P1 = 〈u1, . . . , u2〉, P2 = 〈u1, . . . , u3〉,
P3 = 〈u1, . . . , u4〉, and P4 = 〈u3, . . . , u4〉, respectively,
where 1 ≤ |P1| ≤ 3, 1 ≤ |P2| ≤ 2, 1 ≤ |P3| ≤ 2, and
|P4| = 1.

Such a query can be naturally represented as the query
graph1 q1 shown in Figure 1, and the answer to this query
is {g3}. In such a query, subgraph query cannot be applied,
while similarity query is also not suitable when the matching
paths are long.

In this paper, we study this new type of graph queries as
described in Example 1, which will be formally defined in
Section 2. But intuitively, the new query is a generalization
of the subgraph query, which generalizes exact edge match-
ing to path matching constrained by a path length; that is,
instead of matching each edge as in a subgraph query, we find
a path with two matching end vertices for each edge in the
query graph, where the length of the matching path must be
within the specified edge weight. Thus, the new query has
a much stronger expressive power than a subgraph query.

1We assume that path length cannot be negative.

Such a query is also useful in many other applications.
For example, in querying user online traversal graphs, one
may be only interested in whether users have visited certain
important sites within a certain number of clicks, while an
exact or a quality similar matching may not exist. In search-
ing pictures in an image database, it is often rare to find an
exact or even similar matching due to the huge amount of ir-
relevant information in the background (note that similarity
measure by edit distance or maximum common subgraph of-
ten counts all such irrelevant information in the matching);
in this case, we can specify a few features to be focused in
the matching while relaxing the links between the features
by some reasonable edge weight.

Processing the new query, however, is significantly more
challenging. For both subgraph and supergraph query pro-
cessing, it involves subgraph isomorphism which is NP-hard.
The relaxation in the new query from exact edge matching
to approximate path matching essentially further explodes
the already exponential search space. Existing pruning tech-
niques cannot be directly applied or they are simply not ad-
equate, since our generalized query graph is different from
the indexed features. Therefore, this paper proposes new
effective pruning techniques and efficient data structures to
solve this challenging problem.

Our contributions. The contributions of this paper
are four-fold. First, we propose the problem of generalized
subgraph query processing, which is useful in applications
where subgraph queries are too restrictive to apply while
similarity queries may return low quality answers due to
large edit distance arisen from abundant irrelevant informa-
tion. Second, we devise a fast algorithm for generalized sub-
graph matching, which is a significantly more complicated
matching problem than subgraph isomorphism. Third, we
develop three indexes for the efficient processing of gener-
alized subgraph queries, namely, a distance-based index, a
frequent-pattern-based index, and a star-structure-based in-
dex. We discuss in details the strengths and limitations of
the indexes. Fourth, we verify the efficiency of our matching
algorithm (for candidate verification) and our indexes (for
filtering) using both real and synthetic datasets.

Paper Organization. Section 2 gives the notations and
formally defines the problem. Section 3 presents the gener-
alized subgraph matching algorithm. Section 4 discusses in
details the three indexes. Section 5 reports the experimental
results. Section 6 discusses the related work and Section 7
concludes the paper.

2. PROBLEM STATEMENT
Let G be a database that contains a set of simple and

labeled graphs. We denote each graph g ∈ G as a triplet
g = (Vg, Eg, lg), where Vg and Eg are the sets of vertices
and edges in g, respectively, and lg is a labelling function
that maps each vertex in g to a label in a finite alphabet.
For ease of exposition, we assume that all edges in g are
undirected; our results can be easily extended for directed
graphs.

For any vertices u and v in a graph g ∈ G, we define the
distance between u and v, denoted as distg(u, v), as the num-
ber edges in the shortest path between u and v. For instance,
in the graph g3 in Figure 1, we have distg3(v1, v3) = 2,
since the shortest path between v1 and v3 contains two edges
(v1, v2) and (v2, v3).

326

We aim to support generalized subgraph queries on G. In
particular, a generalized subgraph q is a simple, undirected,
and labelled graph where each edge carries a positive integer
weight. We denote q as a quadruple (Vq, Eq, lq, t), where V
and E are the sets of vertices and edges in q, respectively, lq
is the labelling function for q, and t is a function that maps
each edge in q to its weight. We say that a graph g ∈ G
matches q, if there exists an injective function f from Vq to
Vg, such that for any edge (u, v) in q, (i) the labels of u and
f(u) are the same, (ii) the labels of v and f(v) are the same,
and (iii) the distance between f(u) and f(v) in g is no more
than the weight of (u, v).

For example, in Figure 1, the graph g3 matches the gen-
eralized subgraph q1. To explain this, let us consider an
injective function f that maps u1 to v3, u2 to v1, u3 to v6,
and u4 to v5. For the edge (u1, u2) in q1, we have f(u1) = v3
and f(u2) = v1, and the distance distg3 between v3 and v1
in g3 equals 2, which is no more than the weight associated
with (u1, u2). The cases for the other edges in q1 can be
verified in a similar manner.

Given a generalized subgraph q, a generalized subgraph
query on G returns the graphs in G that match q. For con-
venience, we refer to q as the query graph, and the graphs in
G as the data graphs. In addition, we say that a data graph
g contains q (denoted by q ⊆ g), if g matches q.

3. GENERALIZED SUBGRAPH MATCH-
ING ALGORITHM

To enable generalized subgraph queries on G, we need to
first address a crucial problem: How do we decide whether
a data graph g ∈ G matches the query graph q? We refer
to this problem as the generalized subgraph matching prob-
lem. It is not hard to see that this problem is NP-hard; in
particular, when the weights of all edges in q equal 1, test-
ing whether a data graph g matches q is equivalent to the
subgraph isomorphism problem, which has been shown to be
NP-complete [5].

Given that generalized subgraph matching is theoretically
intractable, we resort to heuristics and propose a solution
that provides practical efficiency. The core of our solution is
a cost-based matching approach that significantly extends
and improves the existing heuristic algorithms [13, 16] for
the subgraph isomorphism problem. In what follows, we
will first introduce the existing methods for subgraph iso-
morphism (in Section 3.1), and then present the details of
our solution (in Section 3.2).

3.1 Existing Algorithms for Subgraph Iso-
morphism

The classic solution for the subgraph isomorphism is Ull-
mann’s algorithm [16], which matches the vertices in the
query graph q to the vertices in the data graph g in an iter-
ative manner. Specifically, in each iteration, the algorithm
selects an unmatched vertex u in q, maps it to an unmatched
vertex in g with the same label, and then checks whether the
mapping is feasible, i.e., whether any two matched vertices
in q that induce an edge in q are mapped to two vertices in
g that induce an edge in g. If the mapping is feasible, the al-
gorithm will enter the next iteration to match the remaining
vertices in q. Otherwise, the algorithm will try matching u
to another unmatched vertex in g. If there is no vertex that
u can be matched to, the algorithm backtracks to the last

matched vertex u′ in q, re-maps u′ to an unmatched vertex
in g, and then re-starts the current iteration.

For example, in Figure 1, given the query graph q2 and
the data graph g3, Ullmann’s algorithm may first map u5 to
v3, and then map u6 to v5. In that case, u5 and u6 induce
an edge in q2, while v3 and v5 also induce an edge in g3, i.e.,
the matching is feasible. Assume that, in the next iteration,
the algorithm maps u7 to v4. Then, u6 and u7 induce an
edge in q2, but the vertices that they are mapped to (i.e.,
v5 and v4) do not induce any edge in g3. As a consequence,
the mapping is infeasible, and hence, the algorithm would
proceed to re-map u7 to another unmatched vertex in g3.

Intuitively, the efficiency of Ullmann’s algorithm depends
on the order in which the vertices in q are matched. For in-
stance, assume that q contains only two vertices u1 and u2,
such that u1 has the same label with only one vertex v1 in
the data graph g, whereas u2 has the same label with almost
all vertices in g. If we invoke Ullmann’s algorithm and map
u1 to v1 in the first iteration, then in the remaining itera-
tions, we only need to examine whether u2 can be mapped
to a vertex adjacent to v1. In contrast, if the first iteration
maps u2 (instead of u1) to some vertex v in g, then in the
remaining iterations, we not only need to try mapping u1

to the neighbors of v, but also need to consider other possi-
ble mappings that match u2 to other vertices in g, i.e., the
search space of the algorithm becomes significantly larger.

Despite the importance of vertex mapping order, it is not
taken into account in Ullmann’s algorithm. This motivates a
more advanced method called QuickSI [13], which improves
over Ullmann’s algorithm by heuristically choosing a map-
ping order that is likely to reduce computation cost. Specif-
ically, QuickSI decides the vertex mapping order based on
two sets of statistics pre-computed from the graph database
G. First, for any vertex u that can possibly appear in a
query graph, QuickSI pre-computes its frequency in G, i.e.,
the average number of vertices in each data graph (in G)
that have the same label with u. Second, for any edge e that
may appear in a query graph, QuickSI also pre-computes its
frequency in G, i.e., the average number of edges in each
data graph that have endpoints with labels matching those
of the endpoints of e. With these statistics, for any given
query graph q, QuickSI first generates a spanning tree of q,
such that vertices and edges closer to the root of tree tend
to have lower frequencies in G. After that, QuickSI gener-
ates an ordering of the vertices in q following a traversal
of the spanning tree that recursively visits the branch with
the least frequent edge. The resulting vertex order is then
used whenever QuickSI compares a data graph g with q. In-
tuitively, this vertex order improves efficiency, as it tends
to ensure that the search space of the matching algorithm
would be reduced significantly after each iteration.

3.2 A Cost-based Approach for Generalized
Subgraph Isomorphism

Both Ullmann’s algorithm and QuickSI can be extended
for generalized subgraph isomorphism, with a modified fea-
sibility check in each iteration. Specifically, each time after
we map a vertex u in the query graph q to a vertex v in
the data graph g, we would decide whether the mapping
is feasible by examining every edge e in q that is induced
by u and any vertex u′ in q that has been matched. Let
v′ be the vertex in g that u′ is mapped to. If for each e,
the distance distg(v, v

′) between v and v′ is no more than

327

the weight w(e) of e, then the mapping is feasible, and we
would proceed to the next iteration. Otherwise, we would
re-map u to other unmatched vertex in g; if there does not
exist any feasible mapping for u, we would backtrack to the
last matched vertex in q and re-map it (as with the case of
subgraph isomorphism).

The aforementioned extensions of Ullmann’s algorithm
and QuickSI, however, leave much room for improvements.
In particular, Ullmann’s algorithm does not exploit the order
of vertex mapping for efficiency; QuickSI heuristically tunes
the vertex mapping order, but its tuning method is rather
ah hoc and is without a formal model that justifies mapping
a vertex ahead of any other. To remedy this, we propose a
novel algorithm for generalized subgraph isomorphism that
incorporates a cost model for selecting a preferable order of
vertex mapping. In the following, we will first present the
rationale behind our method, and then provide the details
about our cost model and algorithm.

Assume that the query graph q and the data graph g
contain m and n vertices, respectively. Totally, there exist
P (n,m) = n!/(n−m)! different ways to map the vertices in
q to distinct vertices in g, and these P (n,m) possible match-
ings constitute the search space for the generalized subgraph
isomorphism algorithm. (P (m,n) denotes the number of m-
permutations of n.) To efficiently decide whether g matches
q, it is essential that the algorithm should traverse the search
space in a judicious order that enables it to pinpoint a so-
lution (if any) as quickly as possible. This motivates us to
match vertices in q in an order based on how likely they can
reduce the search space that we need to explore. Note that
we use the same node mapping order for all data graphs (as
in QuickSI), so as to avoid the overhead of re-computing the
node order for each data graph.

Specifically, to pick the first vertex in q to be matched, we
would inspect each edge e in q, and examine the frequency of
e (denoted as c(e)) in the data graphs in G. The frequency of
(u′, u∗) in q is defined as the average number of vertex pairs
(v′, v∗) in each data graph in G, such that (i) the labels of
u′ and v′ are the same, (ii) the labels of u∗ and v∗ are the
same, and (iii) the distance between v′ and v∗ is no more
than the weight of (u′, u∗). (To facilitate this step of the
algorithm, we pre-compute the frequency of any edge that
may appear in the query graph.)

For each e, we intuitively estimate that it can be matched
to c(e) vertex pairs in the data graph. Given this estimation,
if a vertex u is an endpoint of e and we choose to match
u first, then the search space size induced by mapping u
can be estimated as c(e) · P (n̄− 1,m− 1), where n̄ denotes
the average number of vertices in the data graphs. The
rationale here is that u is expected to be mapped to around
c(e) vertices in a data graph, and the other unmatched m−1
vertices in q are expected to be matched to around n̄ − 1
vertices in g in P (n̄ − 1, m − 1) different ways; therefore,
the number of possible matchings that remain to explored
can be estimated as c(e) · P (n̄ − 1,m − 1). Accordingly,
we pick a vertex u incident to the edge e with the smallest
c(e), and set u as the first vertex to be matched. The term
P (n̄− 1, m− 1) is ignored since its value is the same for all
vertices in q. (This helps us avoid the pathological case when
n̄ < m, in which case P (n̄− 1,m − 1) is undefined.) Given
that the edge e with the smallest c(e) has two endpoints, we
choose the endpoint u with the smaller frequency c(u).

The order of the remaining vertices is decided in a similar

manner. Assume that we have picked a set S of k vertices
and we are about to choose the next vertex to be matched.
Let u′ be any vertex that has not be selected. If u′ is not
connected to any vertex in S by an edge in q, then we esti-
mate the search space size induced by mapping u′ as

min
any edge e adjacent to u′ c(e) ·N(S) ·P (n̄−k−1,m−k−1), (1)

where N(S) denotes the number of ways to match the first
k vertices, and P (n̄−k−1,m−k−1) is the number of ways
to match the remaining m−k−1 vertices except u′. As will
be shown shortly, we do not need to compute the values of
N(S) and P (n̄− k − 1,m− k − 1).

On the other hand, if u′ has some edges that are incident
to the vertices in S, then our estimation of the search space
size would take those edges into account. Let E be the set of
edges in q that connect u′ to the vertices in S. For each e in
E that connects u′ to a vertex u∗, we examine the frequency
of u∗ (denoted as c(u∗)) in G, as well as the frequency of e
(denoted as c(e)). Given c(u∗) and c(e), we intuitively esti-
mate that the vertex u∗ is connected to around c(e)/c(u∗)
vertices that have the same label with u′. Therefore, the
search space size induced by mapping u′ is estimated as

c(e)/c(u∗) ·N(S) · P (n̄− k − 1, m− k − 1), (2)

where
∑

u∈S c(u) and P (n̄−k−1,m−k−1) are as explained
in Equation 1. We refer to c(e)/c(u∗) as the matching rate
of u′ implied by e, and we denote it as r(u′, e).

Observe that each edge e ∈ E may imply a different
matching rate of u′, leading to different estimations of the
search space size. We combine all estimations by taking the
smallest one, i.e., the size of the search space is estimated as

min
e∈E

r(u′, e) ·N(S) · P (n̄− k − 1,m− k − 1). (3)

For convenience, we let r(u′) = mine∈E r(u′, e) if u′ is
connected to the vertices in S by at least one edge in the data
graph, otherwise we let r(u′) be the minimum frequency of
an edge in q that is adjacent to u′. Given Equations 1 and
4, we choose the next vertex u′ to be matched as the one
that minimizes the estimated search space size, i.e.,

u′ = argmin
u

{
r(u)

}
. (4)

Note that Equation 4 does not involve the terms N(S) and
P (n̄ − k − 1,m − k − 1) (which appear in both Equations
1 and 4). This is because their values are the same for all
possible u′, and hence, they have no effect on the selection
of u′.

In summary, our algorithm optimizes the vertex matching
order by a qualitative prediction of how each vertex may help
reduce the search space size. As will be shown in Section 5,
our experimental results demonstrate the superiority of our
algorithm over both Ullmann’s algorithm and QuickSI on
both standard and generalized subgraph isomorphism tests.

4. INDEXING TECHNIQUES
Although in Section 3 we proposed a reasonably fast al-

gorithm for generalized subgraph matching, it is still im-
practical to answer a query by sequentially scanning the
input database and matching the query graph with each
data graph, especially if the database is large. We apply
the filtering-and-verification strategy to reduce the match-
ing cost, that is, we first filter out as many unmatching data

328

graphs as possible and then verify the remaining candidate
data graphs by matching them with the query graph one by
one. To do this, it is important to design an effective index-
ing technique to filter out the unmatching data graphs.

In this section, we propose three indexing techniques: D-
Index, FP-Index and S-Index. First, in Section 4.1 we
present D-Index, which can be easily constructed but its
pruning power is relatively weak. Then, we propose FP-
Index in Section 4.2, which has an expensive construction
cost but is partially verification-free. Lastly, in Section 4.3
we propose S-Index, which explores the star structures to
achieve effective pruning as well as a low construction cost.

4.1 Distance Index
We first present D-index, which is constructed based on

the distance among pairs of vertices in each data graph.
Given a data graph g = (Vg, Eg, lg) ∈ G, we obtain the dis-
tance set (DS) of all triplets of every two vertices consisting
of their ordered labels and the correspond distance in g as
follows.

DS(g) = {(lg(u), lg(v), distg(u, v)) : u, v ∈ Vg, lg(u) ≤ lg(v)}
A distance triplet (l1, l2, d) ∈ DS(g) is subsumed by an-

other distance triplet (l1, l2, d
′) ∈ DS(g) if d > d′. We say

that a subset DSmin(g) ⊆ DS(g) is minimal if each distance
triplet in DSmin(g) is not subsumed by any other distance
triplet, that is, for each (l1, l2, d) ∈ DSmin(g), there does
not exist (l1, l2, d

′) ∈ DSmin(g) such that d′ < d.

Example 2. Assume that vertex labels are ordered lexi-
cographically, i.e., O<N<H<C. Consider the data graph g3
in Figure 1, the distance set of g3 is DS(g3) = {(C,C,1),
(C,C,2), (C,C,3), (H,C,1), (H,C,2), (H,C,3), (N,C,1), (N,C,2),
(O,C,1), (O,C,2), (O,C,3), (O,C,4),(N,H,2), (O,H,3), (O,H,4),
(O,N,1), (O,N,2), (O,O,1)}, and DSmin(g3) = {(C,C,1),
(H,C,1), (N,C,1), (O,C,1), (N,H,2), (O,H,3), (O,N,1), (O,O,1)}.
Note that |DS(g3)| = 18 while |DSmin(g3)| = 8.

The minimal set of distinct distance triplets in the
database is then given by

DS = ∪g∈GDSmin(g).

For each distance triplet (l1, l2, d) ∈ DS , the set of data
graphs that contain (l1, l2, d) is given by

A(l1, l2, d) = {g : (l1, l2, d) ∈ DSmin(g)}.
The Distance Index (D-index) is constructed on DS and
A(l1, l2, d) for each (l1, l2, d) ∈ DS, which is to be detailed
as follows.

4.1.1 Index Construction
The structure of D-index consists of the following parts:

• A B+-tree index, called the Label Pair Index (LPI),
stores all pairs of labels of the triplets in DS.
• A sorted list of distance values for each label pair

(l1, l2) ∈ LPI , denoted by LPI(l1, l2).DV , that is,
LPI(l1, l2).DV = {d : (l1, l2, d) ∈ DS}.
• Each distance value d ∈ LPI(l1, l2).DV for

any (l1, l2) ∈ LPI is associated with a set of
data graphs A(l1, l2, d), we further denote it as
LPI(l1, l2).DV (d) = A(l1, l2, d).

Algorithm 1: Build-DIndex(G)
input : the graph database, G
output: the D-index, LPI

1 for g ∈ G do
2 Compute DSmin(g) ;
3 for (l1, l2, d) ∈ DSmin(g) do
4 LPI ← (l1, l2) ;
5 LPI(l1, l2).DV ← d ;
6 LPI(l1, l2).DV (d)← g ;

7 return LPI

Algorithm 2: Query-DIndex(q, LPI,G)
input : the query graph, q = (Vq, Eq, lq, t)

D-Index, LPI
the graph database, G

output: the candidate set of q, C(q)
1 C(q)← G ;
2 for (l1, l2, d) ∈ DSmin(q) do
3 C(l1, l2, d)← ∅ ;
4 for k ∈ LPI(l1, l2).DV and k ≤ d do
5 C(l1, l2, d)← C(l1, l2, d) ∪ LPI(l1, l2).DV (k) ;

6 C(q)← C(q) ∩ C(l1, l2, d) ;
7 return C(q)

The algorithm for D-index construction, Build-DIndex,
is shown in Algorithm 1. For each data graph g ∈ G, we
first compute its minimal distance set DSmin(g) (Line 2).
Then, for each distance triplet (l1, l2, d) ∈ DSmin(g), we
assign (l1, l2) to LPI and put the distance value d to the
sorted list LPI(l1, l2).DV (Line 4-5). Finally, g is included
in LPI(l1, l2).DV (d) (Line 6).

4.1.2 Query Processing
Given a query graph q = (Vq, Eq, lq , t), we first obtain its

minimal distance set DSmin(q) by all pairs shortest path
algorithm. For each distance triplet (l1, l2, d) ∈ DSmin(q),
the correspond candidate set C(l1, l2, d) can be obtained by
merging all the graph sets associated with LPI(l1, l2).DV (k)
for 1 ≤ k ≤ d. The final candidate set C(q) for verification
is the intersection of all the candidate sets of each distance
triplet (l1, l2, d) ∈ DSmin(q), that is

C(q) = ∩(l1,l2,d)∈DSmin(q)C(l1, l2, d).
As shown in Algorithm 2, processing the query graph q by

D-index obtains the candidate set for each distance triplet
(l1, l2, d) ∈ DSmin(q) (Lines 3-5), and then intersects them
to output the candidate set of q (Line 6).

Lemma 1. Given a query graph q = (Vq, Eq, lq, t), its an-
swer set A(q) is a subset of Build-DIndex(q, LPI,G).

Proof. Consider a data graph g = (Vg, Eg, lg) ∈
G that matches q. For each edge (v, u) ∈ Eq, we
can map it to a path P = 〈f(v), . . . , f(u)〉 such that
|P | ≤ t(v, u). Without the loss of generality, we assume
that lg(f(v)) ≤ lg(f(u)). Consider the distance triplet
(lg(f(v)), lg(f(u)), d) ∈ DSmin(g), we have d ≤ |P |, that
is d ≤ t(v, u), which completes the proof.

329

4.1.3 Complexity Analysis
Assume that α is the average number of vertices and β is

the average number of edges for the graphs in G, the space
complexity of D-index is O(α2|G|). Since the construction
time for each DSmin(g) is O(αβ) by starting a BFS from
each vertex in g, the time complexity of constructing D-
index is O(αβ|G|).

The generation of minimal distance set of query graph
q can be done in O(|Vq |3) time. For each distance triplet
in DSmin(q), the response time of D-index is O(log(md))
where m is the number of distinct labels in G and d is the
largest distance. Thus, the index response time for the graph
pattern is O(|Vq |3 + k2 log(md)), where k is the number of
distinct labels in q. Note that, in practice, both |Vq| and k
are very small.

4.2 Frequent Pattern Index
The shortcoming of D-index is that it loses the structural

information of data graphs. As a result, the filtering is not
effective enough, leading to a lot of unmatched candidate
graphs. Although there are graph indexing approaches that
retain structural information of data graphs [4,9,15,18,23],
they cannot be directly applied to answer generalized sub-
graph queries.

In order to employ structural information for answering
generalized subgraph queries, we propose the concept of fre-
quent generalized subgraph (FGG) patterns and apply FGGs
to design a structural index called Frequent Pattern Index
(FP-index). The challenges, however, are 1) how to effi-
ciently mine the FGGs, 2) how to apply and index FGGs
for filtering. We address the two challenges as follows.

The first challenge can be addressed by the pattern-growth
approach [1]. The difference is that in an FGG, edges are
weighted. To obtain weighted edges for FGGs, we grow the
frequent patterns from weighted edges. We initialize the
set of weighted edges by taking the set of distinct distance
triplets E = ∪g∈GDS(g) introduced in Section 4.1, where
each distance triplet (l1, l2, d) ∈ E is considered as an edge
(l1, l2) with weight d, while |C(l1, l2, d)| is the frequency of
the edge.

A subgraph pattern f is frequent if its frequency is greater
than a pre-defined threshold σ. Since the number of FGGs
can be too large and indexing a large number of FGGs will
increase the index size and hence the search time, we apply
a maximum pattern size threshold, γ, and a maximum edge
weight threshold, ρ, to obtain only FGGs with size at most
γ and any edge weight at most ρ. In our experiments, we
set these thresholds as the best possible values such that the
FGGs can fit in the machine memory.

4.2.1 Index Construction
The FP-index consists of two parts: frequent pattern graph

index (FPG-index) and edge index (E-index). FPG-index
stores the FGGs in a B+-tree, with the key as an FGG
and the data value as the set of data graphs containing the
FGG. To answer queries that may contain infrequent edges,
we also construct E-index that builds a B+-tree on the set
of infrequent edges and frequent large-weight edges whose
weights are larger than ρ, with the key as an edge and the
data value as the set of data graphs containing the edge.

4.2.2 Query Processing
Given a query graph q, we process the query with FP-

index as follows:

O

2

3
H

C
N
v3

v4

v7v2

H

1

H
2

4
O

C

v6
v1

O

1

1
N

H
C

v2

v3

v1

N

2

N
2

2
O

C

v6
v3

v7

sg3(v1) sg3(v3)
Cv5

3

Cv5 C
1

Figure 2: Two star structures: sg3(v1) and sg3(v3)

• Case 1: q is an FGG indexed by FPG-index. In this
case, we obtain q’s answer set from the index directly
without verification.

• Case 2: q is not an FGG indexed by FPG-index. If q
contains infrequent edges, then the candidate set of q is
relatively small (at most σ|G|), which can be retrieved
from E-index. Otherwise, we reduce the weight of some
edges in q to obtain an FGG q′, then we have a partial
answer, A(q′), of q, without verification. And then,
we obtain the rest of the answer, i.e., A(q) \ A(q′), as
follows. We decompose q into several FGGs in FPG-
index and frequent large-weight edges in E-index, as
f1, f2, . . . , fk, and compute the candidate set by in-
tersecting the answer sets of these frequent patterns:
∩1≤i≤kA(fi).

4.2.3 Complexity Analysis
Similar to other structural graph indexes such as FG-index

[4], the construction cost of FP-index is dominated by the
cost of mining FGGs and the index size is dominated by
the overall size of FGGs. Likewise, the query processing
complexity also heavily depends on the number of FGGs
indexed as well as the value of σ|G|. However, the complexity
of mining FGGs, as well as the size and number of FGGs,
may vary significantly from database to database and we
are not aware of any formal analysis for these factors in the
literature.

4.3 Star Index
Since the number of FGGs can be large, FP-index can only

be used to process queries of small size efficiently. Moreover,
mining FGGs may also be too expensive. Thus, we propose
another index, called Star Index (S-index), which uses only
star structures (instead of subgraph structures) to reduce
both the index construction and storage overhead, while still
capturing much of the structural information for effective
filtering in query processing.

For a vertex v in a data graph g = (Vg, Eg, lg) ∈ G, we
define the star structure of v as sg(v) = (Vg, E

v
g , lg , w), where

(1) v is the center of the star structure; (2) Ev
g consists of the

edges from v to other vertices in Vg, that is E
v
g = {v}×(Vg \

{v}); (3) w is a function that assigns the distance distg(v, u)
to each edge (v, u) ∈ Ev

g , i.e., w(v, u) = distg(v, u). For
example, Figure 2 shows the star structures of v1 and v3 of
the graph g3 in Figure 1.

We group the weights of the edges in a star structure by
the label of the non-center end vertex. Let L = {lg(u) : u ∈
Vg \ {v}}. We obtain a multiset of weights (called weight
multiset) for each label as follows

Wg(v, l) = {w(u, v) : lg(u) = l, l ∈ L, and u ∈ Vg \ {v}}.
The weight values in the weight multiset are sorted in

ascending order. Table 2 lists all the weight multisets for

330

Table 2: Weight multisets of g3
Vertex v lg3(v) N C O H

v1 H 2 1,2,3 3,4
v2 C 1 1,2 2,3 1
v3 N 1,1,2 1,2 2
v4 O 1 2,2,3 1 3
v5 C 1 2,3 1,2 3
v6 O 2 1,3,4 1 4
v7 C 2 1,3 3,4 2

Table 3: Compressed weight multisets of g3
Label N C O H

N 1,1,2 1,2 2
C 1 1,2 1,2 1
O 1 1,2,3 1 3
H 2 1,2,3 3,4

each label and each star structure of g3. For example, for the
star structure sg3(v1), Wg3(v1, C) = {1, 2, 3}, Wg3(v1, O) =
{3, 4}, and Wg3(v1, N) = {2}.

Given two weight multisetsW1 = {w1, . . . , wk} andW2 =
{w′

1, . . . , w
′
t}, where k ≤ t. We define the merge of W1 and

W2 as follows.

W1 ∩W2 = {min(w1, w
′
1), . . . ,min(wk, w

′
k), w

′
k+1, . . . , w

′
t}.

For some vertices in a graph, they may share the same la-
bel. So, we further compress the weight multisets as follows.

Wg(l1, l2) = ∩lg(v)=l1,v∈VgWg(v, l2).

Table 3 lists the compressed weight multisets. For exam-
ple, v2 and v5 share the same label C, so Wg3(v2, H) = {1}
and Wg3(v5, H) = {3} are merged into one Wg3(C, H) =
{min(1, 3)} = {1}.

The set of distinct compressed weight multisets of each la-
bel pair (l1, l2) in the database G can be obtained as follows.

W(l1, l2) = ∪g∈GWg(l1, l2).

For each compressed weight multiset w ∈ W(l1, l2), the
set of data graphs whose corresponding compressed weight
multiset is w is defined as follows.

A(w) = {g :Wg(l1, l2) = w and g ∈ G}.

4.3.1 Index Structure
S-index is constructed based onW(l1, l2) for each distinct

label pair (l1, l2) and A(w) for each w ∈ W(l1, l2). The
index structure of S-index consists of the following parts:

• A B+-tree on the set of distinct label pairs with each
pair (l1, l2) as the key and W(l1, l2) as the data value.
We name this B+-tree as SI .

• A nested B+-tree on the set of distinct compressed
weight multisets W(l1, l2) for each pair (l1, l2), where
each compressed weight multiset w ∈ W(l1, l2) is the
key and A(w) is the data value. We name this nested
B+-tree as SI(l1, l2).

Algorithm 3 outlines the construction of S-index. For each
data graph g ∈ G, for each distinct label pair (l1, l2) in g, we
obtain the compressed weight multiset Wg(l1, l2), and store
it in the record with the key (l1, l2) in SI . Then, we access
the record with the key Wg(l1, l2) in the nested B+-tree
SI(l1, l2) and add g to the corresponding record.

Algorithm 3: Build-SIndex(G)
input : the graph database, G
output: the S-index, SI

1 for g ∈ G do
2 Let L(g) = {(lg(u), lg(v)) : u, v ∈ Vg and u �= v} ;
3 for (l1, l2) ∈ L(g) do
4 Compute w =Wg(l1, l2) ;
5 Add w to the record in SI with key (l1, l2) ;
6 Add g to the record in SI(l1, l2) with key w ;

7 return SI

Algorithm 4: Query-SIndex(q, SI,G)
input : the query graph, q = (Vq, Eq, lq, t)

S-Index, SI
the graph database G

output: the candidate set of q, C(q)
1 C(q)← G ;
2 Let L(q) = {(lg(u), lg(v)) : u, v ∈ Vg and u �= v} ;
3 for (l1, l2) ∈ L(q) do
4 Compute Wq(l1, l2) ;
5 C(l1, l2)← ∅ ;
6 for w ∈ SI(l1, l2) and w ≤ Wq(l1, l2) do
7 C(l1, l2)← C(l1, l2) ∪ A(w) ;

8 C(q)← C(q) ∩ C(l1, l2) ;
9 return C(q)

4.3.2 Query Processing
We now discuss query processing by S-index. Given two

compressed weight multisets W1 = {w1, . . . , wk} and W2 =
{w′

1, . . . , w
′
t}, we say that W1 ≤ W2 if and only if 1) k ≥ t,

and 2) wr ≤ w′
r for 1 ≤ r ≤ t.

Lemma 2. Let sg(u) and sq(v) be two star structures,
such that u and v are vertices in graphs g = (Vg, Eg, lg)
and q = (Vq, Eq, lq, t), respectively. If sg(u) matches sq(v),
then we have Wg(l1, l2) ≤ Wq(l1, l2) for all distinct label
pairs (l1, l2) of q.

Proof. Consider a label pair (l1, l2) of q, l1 is the label
of the center vertex of a star structure of q and l2 is the
label of a non-center vertex. Since g matches q, the number
of vertices in Vg with label l2 is no smaller than the number
of vertices in Vq with the same label. Therefore, we have
|Wg(l1, l2)| ≥ |Wq(l1, l2)|. Moreover, for each vertex v′ ∈
Vq of label l2, there exists a vertex u′ ∈ Vg such that u′

maps to v′ and distg(u, u
′) ≤ distq(v, v

′). Thus, the proof
is complete.

According to Lemma 2, we process a query by S-index as
shown in Algorithm 4. For each distinct label pair (l1, l2)
of q, we merge all the candidate sets associated with (l1, l2)
that are smaller than Wq(l1, l2), which gives C(l1, l2). The
candidate set of q is then obtained by intersecting C(l1, l2)
for all distinct pairs (l1, l2) of q.

4.3.3 Complexity Analysis
Let m be the average number of distinct labels in a

data graph. Thus, the number of distinct label pairs is
O(m2), and the number of compressed weight multisets in

331

QuickSI CBAUllmann

0

5

10

15

20

25

Q4 Q8 Q12 Q16 Q20 Q24

Computation Time (sec)

0

0.2

0.4

0.6

0.8

1.0

1.2

Q4 Q8 Q12 Q16 Q20 Q24

Computation Time (sec)

(a) Average Edge Weight = 1.5 (b) Average Edge Weight = 1

Figure 3: Efficiency of Generalized Subgraph Iso-
morphism Algorithms

the database G is O(m2|G|). Assume that the average num-
ber of vertices in a data graph is α, then the average size
of a compressed weight multiset is α/m. Thus, the space
complexity of S-index is O(αm|G|).

Assume that the number of distinct labels in a query graph
q is t. The index response time is the summation of the time
for searching the compressed weight multisets of q, thus the
running time complexity is O(t2 log(m2|G|)). Note that, in
real life queries, the number of distinct labels is often small.

5. EXPERIMENTAL RESULTS
This section experimentally evaluates our indices and al-

gorithms for generalized subgraph matching. Section 5.1
describes the experimental settings. Section 5.2 evaluates
our algorithms for the generalized subgraph isomorphism
problem, and Section 5.3 tunes the parameters for the pro-
posed FP-Index. After that, Sections 5.4 and 5.5 demon-
strate the efficiency of our indexing methods on real and
synthetic datasets, respectively.

5.1 Experimental Settings
Datasets. We use two benchmark datasets commonly
adopted in the literature [8, 18]. Both datasets contain
graphs that represent chemical molecules. The first one
is the AIDS Antiviral Screen Dataset [18], which consists
of 10, 000 graphs. The second dataset is referred to as
PubChem [18], and it contains 100, 000 graphs. We use
PubChem.mK to denote a sample set of PubChem with
m thousands of graphs. In addition, we use synthetic
datasets produced from GraphGen2, a public available syn-
thetic graph generator.

Query sets. For the AIDS dataset, we adopt the query
sets from [18], but we ignore the label on each edge and
add a weight on the edge (since we target at query graphs
where the edges are unlabelled and weighted). For the other
datasets, we generate the query sets by first extracting gen-
eralized subgraphs from the graphs in the datasets, such
that the number of data graphs matching each extracted
generalized subgraph is at most 10% of the total number of
data graphs. In other words, we avoid generating general-
ized subgraph matching queries that would return excessive
numbers of results.

All of our experiments are conducted on a machine with
a Intel Xeon 2.4GHz CPU with 48GB RAM.

5.2 Generalized Subgraph Isomorphism
Our first set of experiments compares three algorithms

for generalized subgraph isomorphism: our cost-based ap-

2http://www.cse.ust.hk/graphgen/

102

103

104

105

1 2 3 4

Maximum Edge Weight

Number of FGGs

103

104

105

1 2 3 4

Maximum Edge Weight

Computation Time (sec)

(a) σ = 0.05, γ = 4 (b) σ = 0.05, γ = 4

104

105

0.01 0.02 0.03 0.04 0.05

frequency threshold σ

Number of FGGs

104

105

0.01 0.02 0.03 0.04 0.05

frequency threshold σ

Computation Time (sec)

(c) ρ = 3, γ = 4 (d) ρ = 3, γ = 4

Figure 4: Space and Pre-computation Costs of the
FP-index

proach (denoted as CBA), as well as the extensions of Ull-
mann’s algorithm and QuickSI. Figure 3 illustrates the aver-
age running time required by each algorithm to match each
query graphs in query set Qi to all data graphs in the AIDS
dataset. In particular, each query set Qi contains 1000 query
graphs, and each query graph in Qi contains i vertices. Fig-
ure 3a shows the results when the edges in the query graph
have average weight 1.5. Observe that CBA considerably
outperforms the extension of QuickSI, which in turn is su-
perior than the extension of Ullman’s algorithm. Figure 3b
shows the results when the average edge weight in the query
graph equals 1, i.e., when the generalized subgraph isomor-
phism problem degenerates to the standard subgraph iso-
morphism problem. Even in this degenerated case, CBA still
consistently outperforms QuickSI and Ullmann’s algorithm.
This demonstrates the superiority of our cost-based method
for optimizing vertex matching order. We have conducted
a similar set of experiments on the PubChem datasets, and
we found that the results are qualitative similar; we omit
those results for the interests of space.

5.3 Tuning the FP-index
The second set of our experiments evaluation the space

and pre-computation costs of the FP-index (presented in
Section 4.2) on a set of 40 thousands data graphs sampled
from the PubChem dataset. Figure 4a illustrates the num-
ber of Frequent Generalized subGraphs (FGG) that need
to be stored in the FP-index, varying the maximum edge
weight ρ in the graph patterns from 1 to 4, with the fre-
quency threshold set to σ = 0.05 and the maximum number
of vertices in the FGGs set to γ = 4. Note that the num-
ber of FGGs increases exponentially with maximum edge
weight ρ. Figure 4b shows the time required to mine the
FGGs, which also exhibits an exponential growth with the
increase of ρ. These results indicate that maximum edge
weight adopted in the construction in the FP-index have to
be carefully selected and has to be reasonably small.

Figures 4c and 4d illustrate the number of FGGs and pre-
computation time required by FP-index, respectively, vary-
ing the frequency threshold σ from 0.01 to 0.05, with the
maximum edge weight set to ρ = 3 and the maximum num-
ber of vertices in the FGGs set to γ = 4. Observe that

332

D-index S-index FP-index

0

10

20

30

40

50

60

10K 20K 40K 60K 80K 100K

Computation Time (ms)

0
2000
4000
6000
8000

10000
12000

10K 20K 40K 60K 80K 100K

Size of Candidate Set

(a) Query Time (b) Size of Candidate Set

100

101

102

103

10K 20K 40K 60K 80K 100K

Index Size (MB)

100

101

102

103

104

10K 20K 40K 60K 80K 100K

Construction Time (sec)

(c) Index Size (d) Construction Time

Figure 5: Index Performance v.s. Dataset Size

both the number of FGGs and the pre-computation time
decreases exponentially when the frequency threshold σ in-
creases. Hence, we may use a large σ to reduce the space
and pre-computation cost of the FP-index. One may be
tempted to set σ to be even larger than 0.05, which, how-
ever, may significantly reduce the effectiveness of FP-index,
as an excessively large σ would make it difficult for FP-index
to answer a query without invoking the verification process.

Based on the results in Figure 4, we set ρ = 3, σ = 0.05,
and γ = 4 for the FP-index in all following experiments.

5.4 Performance of Indices
Our next set of experiments compares the performance

of the three proposed indices (i.e., D-index, S-index, and
FP-index) in terms of query processing performance, space
overhead, and construction time. For these experiments, we
use sample sets of PubChem dataset with sizes varying from
10K to 100K. We do not use the AIDS dataset as it contains
only a small number of data graphs.

Figure 5a illustrates average query processing time of each
index for a query set with 1000 graphs, such that on aver-
age each graph has 5 vertices and 7 edges, and the average
edge weight equals 2.5. Both the S-index and the FP-index
significantly outperforms the D-index, and the FP-index is
slightly better than the S-index. This is consistent with the
results in Figure 5b, which shows the average size of the
candidate set induced by each index during query process-
ing. As shown in Figures 5c and 5d, however, the space and
construction overheads of FP-index are significantly higher
than those of the S-index, which in turn are higher than
those of the D-index.

Figure 6a shows the average query time of each index for
query sets ViEj on the dataset with 40K data graphs, such
that each query set ViEj contains 1000 query graphs, each
of which has i vertices and j edges, and the average weight
of the edges equals 2.5. The FP-index achieves the smallest
query time when the numbers of vertices and edges in the
query graphs are small, but it is outperformed by the S-
index on large query graphs. In addition, the D-index is
consistently slower than both the FP-index and the S-index.

Figure 6b illustrates the average query time of each index
for query set V5E7, with the average edge weight varying

D-index S-index FP-index

0

10

20

30

40

50

60

V3E2 V4E4 V5E7 V6E9 V7E13 V8E17

Computation Time (ms)

0

10

20

30

1 2 3 4 5

Average Edge Weight

Computation Time (ms)

(a) Varying Query Graph Size (b) Varying Max. Edge Weight

Figure 6: Index Performance v.s. Parameters of the
Query Graphs

D-index S-index FP-index

0
0.5

1
1.5

2
2.5

3

0.3 0.5 0.7

graph density

Computation Time (ms)

50
100

200

300

400

500

0.3 0.5 0.7

graph density

Size of Candidate Set

(a) Query Time (b) Size of Candidate Size

10-1

100

101

102

0.3 0.5 0.7

graph density

Index Size (MB)

10-1
100
101
102
103
104
105
106

0.3 0.5 0.7

graph density

Construction Time (sec)

(c) Index Size (d) Construction Time

Figure 7: Index Performance v.s. Graph Density

from 1 to 5. The FP-index performs the best when the av-
erage edge weight is no more than 3, which is the maximum
edge weight handled in its preprocessing step. When the
average edge weight is larger than 3, however, the perfor-
mance of the FP-index degrades, and the S-index becomes
the most efficient one.

5.5 Performance on Synthetic Dataset
The experiments use synthetic datasets to evaluate the

performance of our indices with respect to a parameter that
has not been investigated in the previous experiments, i.e.,
the densities of the data graphs. In particular, the density
of a data graph with n vertices and m edges equals m/

(
n
2

)
.

We generate synthetic graphs with densities varying from
0.3 to 0.7, and we use them to construct datasets, such that
each dataset contains 10K data graphs, each of which has 30
edges and a fixed density. The query graphs for each dataset
is constructed in a manner similar to previous experiments,
such that each query graph on average has 5 vertices, 7
edges, with an average edge weight 2.5.

Figure 7 illustrates the performance of each index as a
function of the data graph density. As with our previous
experiments, the FP-index achieves the best query perfor-
mance, but it incurs the highest space and pre-computation
overheads. The D-index requires the smallest space and pre-
processing time, but its query time is the largest. The S-
index consistently lands on the middle ground between the
FP-index and the D-index.

333

Summary. Our experiments show that the FP-index offers
superior query performance at the cost of space and pre-
computation time. Therefore, it is suitable for the applica-
tions where (i) efficient query processing is crucial, and (ii)
space and pre-computation overheads are not a major con-
cern. In contrast, the D-index entails relatively high query
cost, but it incurs minimal space and preprocessing over-
head. This renders it preferable in the scenarios with strin-
gent requirements on space consumption or pre-computation
time. Finally, the S-index’s space and pre-computation costs
are only slightly higher than that of the D-index, but its
query efficiency is almost comparable to that of FP-index.
Hence, it offers user a choice to strike a good balance be-
tween query processing and space (preprocessing) overheads.

6. RELATED WORK
There are some existing studies of graph matching prob-

lem by allowing edges to map to paths for graphs [6,7,10,25].
However, their queries are too rigid by fixing the length of
all the mapping paths [25], or too relax by allowing node
similarity matching [7]. Besides, all these works are tailored
to query a single large graph making them unsuitable for
querying a large set of small or medium-sized graphs.

On the other hand, various types of graph query process-
ing on a large set of small or medium-sized graphs have
been studied in the literature in recent years and we restrict
our discussion on the closely related ones, namely subgraph
query processing [4, 9, 13, 15, 18, 21, 23], supergraph query
processing [2, 3, 14, 22], and similarity graph query process-
ing [12, 19, 20, 24]. All these works proposed some indexing
techniques to filter out as many unmatching data graphs
as possible. Although many different types of graph index-
ing techniques have been proposed, none of them is simi-
lar to our indexes except FG-index [4], which is similar to
FP-index. However, the only similarity lies on the use of
frequent patterns to avoid verification and the use of infre-
quent edges to reduce the candidate set size, while the index
structure of FP-index (which builds on B+-trees) is totally
different from that of FG-index (which is an unbalanced tree
built on the clusters of frequent patterns). Apart from that,
both D-index and S-index are entirely different from all ex-
isting indexes. In addition, our work is the first to propose
indexes for processing generalized subgraph queries.

7. CONCLUSIONS
We studied a new type of graph queries, generalized sub-

graph queries. We proposed a succinct and effective cost
model to minimize the cost of generalized subgraph isomor-
phism. We also developed three indexes that can effectively
filter out unmatching data graphs, which significantly re-
duces the total query response time. We evaluated our al-
gorithms with experiments on both real datasets and syn-
thetic datasets. The results show that our matching algo-
rithm is efficient in candidate verification as it considerably
outperforms the direct extension of existing graph matching
algorithms, while our indexes are also effective in filtering.
Thus, the results verify that our method is efficient in query
processing (in both filtering and candidate verification). Al-
though some of the indexes have weaknesses, we show how
the weaknesses are addressed by another index; in particu-
lar, our results show that S-index achieves both a low index
construction cost and a short query response time.

8. ACKNOWLEDGMENTS
Xiaokui Xiao was supported by Nanyang Technological

University under SUG Grant M58020016 and AcRF Tier
1 Grant RG 35/09, and by the A*STAR SERG Grants
1021580074. James Cheng was supported in part by the
A*STAR TSRP Grants 1021580034 and 1121720013.

9. REFERENCES
[1] C. C. Aggarwal and H. Wang, editors. Managing and Mining

Graph Data, volume 40 of Advances in Database Systems.
Springer, 2010.

[2] C. Chen, X. Yan, P. S. Yu, J. Han, D.-Q. Zhang, and X. Gu.
Towards graph containment search and indexing. In VLDB,
pages 926–937, 2007.

[3] J. Cheng, Y. Ke, A. W.-C. Fu, and J. X. Yu. Fast graph query
processing with a low-cost index. VLDB J., 20(4):521–539,
2011.

[4] J. Cheng, Y. Ke, W. Ng, and A. Lu. Fg-index: towards
verification-free query processing on graph databases. In
SIGMOD, pages 857–872, 2007.

[5] S. A. Cook. The complexity of theorem-proving procedures. In
STOC, pages 151–158, 1971.

[6] W. Fan, J. Li, S. Ma, N. Tang, and Y. Wu. Adding regular
expressions to graph reachability and pattern queries. In ICDE,
pages 39–50, 2011.

[7] W. Fan, J. Li, S. Ma, H. Wang, and Y. Wu. Graph
homomorphism revisited for graph matching. PVLDB,
3(1):1161–1172, 2010.

[8] W.-S. Han, J. Lee, M.-D. Pham, and J. X. Yu. igraph: A
framework for comparisons of disk-based graph indexing
techniques. PVLDB, 3(1):449–459, 2010.

[9] H. He and A. K. Singh. Closure-tree: An index structure for
graph queries. In ICDE, page 38, 2006.

[10] W. Jin and J. Yang. A flexible graph pattern matching
framework via indexing. In SSDBM, pages 293–311, 2011.

[11] C. L. S. John W. Moore and P. C. Jurs. Chemistry: The
Molecular Science, volume 2. Brooks Cole, 2007.

[12] H. Shang, X. Lin, Y. Zhang, J. X. Yu, and W. Wang.
Connected substructure similarity search. In SIGMOD, pages
903–914, 2010.

[13] H. Shang, Y. Zhang, X. Lin, and J. X. Yu. Taming verification
hardness: An efficient algorithm for testing subgraph
isomorphism. In VLDB, 2008.

[14] H. Shang, K. Zhu, X. Lin, Y. Zhang, and R. Ichise. Similarity
search on supergraph containment. In ICDE, pages 637–648,
2010.

[15] D. Shasha, J. T.-L. Wang, and R. Giugno. Algorithmics and
applications of tree and graph searching. In PODS, pages
39–52, 2002.

[16] J. R. Ullmann. An algorithm for subgraph isomorphism. J.
ACM, 23(1):31–42, 1976.

[17] J. H. Van Drie, D. Weininger, and Y. C. Martin. Aladdin: An
integrated tool for computer-assisted molecular design and
pharmacophore recognition from geometric, steric, and
substructure searching of three-dimensional molecular
structures. Journal of Computer-Aided Molecular Design,
3:225–251, 1989.

[18] X. Yan, P. S. Yu, and J. Han. Graph indexing: A frequent
structure-based approach. In SIGMOD, pages 335–346, 2004.

[19] X. Yan, P. S. Yu, and J. Han. Substructure similarity search in
graph databases. In SIGMOD, pages 766–777, 2005.

[20] Z. Zeng, A. K. H. Tung, J. Wang, J. Feng, and L. Zhou.
Comparing stars: On approximating graph edit distance.
PVLDB, 2(1):25–36, 2009.

[21] S. Zhang, M. Hu, and J. Yang. Treepi: A novel graph indexing
method. In ICDE, pages 966–975, 2007.

[22] S. Zhang, J. Li, H. Gao, and Z. Zou. A novel approach for
efficient supergraph query processing on graph databases. In
EDBT, pages 204–215, 2009.

[23] P. Zhao, J. X. Yu, and P. S. Yu. Graph indexing: Tree + delta
>= graph. In VLDB, pages 938–949, 2007.

[24] X. Zhao, C. Xiao, X. Lin, and W. Wang. Efficient graph
similarity joins with edit distance constraints. In ICDE, pages
834–845, 2012.

[25] L. Zou, L. Chen, and M. T. Özsu. Distancejoin: Pattern match
query in a large graph database. PVLDB, 2(1):886–897, 2009.

334

