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Generalized Higher Order Orthogonal Iteration for
Tensor Learning and Decomposition
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Abstract— Low-rank tensor completion (LRTC) has
successfully been applied to a wide range of real-world
problems. Despite the broad, successful applications, existing
LRTC methods may become very slow or even not applicable
for large-scale problems. To address this issue, a novel core
tensor trace-norm minimization (CTNM) method is proposed
for simultaneous tensor learning and decomposition, and has
a much lower computational complexity. In our solution, first,
the equivalence relation of trace norm of a low-rank tensor and
its core tensor is induced. Second, the trace norm of the core
tensor is used to replace that of the whole tensor, which leads
to two much smaller scale matrix TNM problems. Finally, an
efficient alternating direction augmented Lagrangian method is
developed to solve our problems. Our CTNM formulation needs
only O((RN + N R I) log(

√
I N )) observations to reliably recover

an Nth-order I × I × · · · × I tensor of n-rank (r, r, . . . , r),
compared with O(r I N−1) observations required by those tensor
TNM methods (I � R ≥ r). Extensive experimental results
show that CTNM is usually more accurate than them, and is
orders of magnitude faster.

Index Terms— Alternating direction augmented
Lagrangian (ADAL), low-rank tensor, tensor completion,
trace-norm minimization (TNM), transductive learning, Tucker
decomposition.

I. INTRODUCTION

TENSORS are the higher order generalizations of vectors
and matrices. In particular, with the rapid development

of modern computing technology in recent years, tensor data
are becoming ubiquitous, such as multichannel images and
videos, and have become increasingly popular [1], [2]. There
are numerous practical applications of tensors in machine
learning [3]–[6], signal processing [2], [7]–[9], computer
vision [10]–[12], data mining [13]–[16], numerical linear
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algebra [17], [18], and so on. Due to the problems in the
acquisition process, loss of information or costly experi-
ments [19], some entries of observed tensors may be missing.
This class of transductive learning problems for low-rank
tensor completion (LRTC) has successfully been applied to
a wide range of real-world problems, such as multichannel
images and videos [10], [12], EEG data [7], retail sales
data [20] and hyperspectral data recovery [7], link predic-
tion [4], and multirelational learning [15], [21], [22].

Recently, sparse vector recovery and low-rank matrix
completion (LRMC) have intensively been studied [23], [24].
Compared with matrices and vectors, tensors can be used to
express more complicated intrinsic structures in higher order
data [15], [25]. Liu et al. [10] and Goldfarb and Qin [2]
indicated that tensor-based methods utilize all information
along all dimensions, and are capable of taking full advantage
of the high-order structure to provide better understanding and
higher precision, while matrix-based methods only consider
the constraints along two particular dimensions. Thus, in this
paper, we are particularly interested in the simultaneous tensor
learning and decomposition (STLD) problem, which is to infer
the missing entries in the tensor of the lowest rank just like
predicting the missing labels, and simultaneously find its factor
components from incomplete observations. To address tensors
with missing data, some weighted tensor decomposition (TD)
methods, such as the weighted Tucker (WTucker) [26] and
weighted CP (WCP) decompositions [19], have successfully
been applied to EEG data analysis, nature and hyperspectral
images inpainting. However, they are usually sensitive to the
given ranks due to their least-squares formulations [6], [12].

Liu et al. [10] first extended the trace norm (also called the
nuclear norm [27] and Schatten one-norm [28]) regularization
for learning of partially observed low-rank tensors. In [12],
they presented a more general model, and proposed three effi-
cient algorithms to solve the LRTC problem. In other words,
the LRTC problem is converted into a convex combination
of the trace-norm minimization (TNM) of all unfoldings
along different modes. Some similar algorithms can be found
in [7], [9], [29], and [30]. Besides these approaches described
above, a number of variations [31] and alternatives [32] have
been discussed in the literature. In addition, there are some
theoretical developments that guarantee the reconstruction of
a low-rank tensor from partial measurements by solving the
TNM problem under some reasonable conditions [33]–[35].
Although those TNM methods have successfully been applied
in many real-world applications, their algorithms suffer from
high computational cost of multiple SVDs using O(N I N+1)
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time per iteration, where the assumed size of an N th-order
tensor is I × I × · · · × I .

In this paper, we propose a scalable and robust core ten-
sor TNM (CTNM) method for the STLD problems, which
has a much lower computational complexity than existing
LRTC methods. We first induce the equivalence relation of
the trace norm of a low-rank tensor and its core tensor. Then,
we formulate two tractable smaller scale matrix TNM models,
in which we use the trace norm of the core tensor
G ∈ R

R1×R2×···×RN to replace that of the whole tensor of size
I1 × I2 × · · · × IN . In other words, our noisy and noiseless
CTNM models only involve several much smaller unfoldings
of G (Rn � In , n = 1, . . . , N). Finally, we design an efficient
generalized higher order orthogonal iteration (gHOI) algorithm
with a convergence guarantee to solve our problems.

Preliminary results have been reported in [6]. Besides pro-
viding a more thorough literature review, this paper: 1) extends
the partial observation theorem for matrices in [36] and [37]
to the higher order cases; 2) further improves the recovery
bound in [6], and shows that only O((RN + N RI ) log(

√
I N ))

observations are sufficient for the noisy CTNM model with
(R, R, . . . , R) to recover an N th-order I × I × · · · × I tensor
of n-rank (r, r, . . . , r) with high probability (I � R ≥ r ),
compared with O(r I N−1) observations required by the convex
TNM model [31], [34]; 3) presents a graph Laplacian regu-
larized method using auxiliary information induced from the
relationships; and 4) provides convincing experimental results
to demonstrate the merits of our CTNM method, especially
on a large data set (i.e., YouTube).

The rest of this paper is organized as follows. We review
some preliminaries in Section II. In Section III, we propose
two novel CTNM models for the STLD problems and develop
an efficient gHOI algorithm in Section IV. We provide recov-
ery guarantees in Section V. We report empirical results
in Section VI. Finally, the conclusion is drawn in Section VII.

II. NOTATION AND BACKGROUND

As in [1], we denote tensors by calligraphic letters,
e.g., X , and matrices by upper case letters, e.g., X . A fiber
of X is a column vector defined by fixing every index
of X but one. The mode-n unfolding (matricization) of an
N th-order tensor X ∈ R

I1×I2×···×IN is the matrix, denoted by
X(n) ∈ R

In×� j �=n I j , that is obtained by arranging the mode-n
fibers to be the columns of X(n). The inner product of two
tensors X ,Y ∈ R

I1×I2×···×IN is defined as the sum of the
product of their entries, i.e., 〈X ,Y〉 =∑

i1,...,iN
xi1···iN yi1···iN ,

and the Frobenius norm of X is defined as ‖X‖F =
(〈X ,X 〉)1/2.

Let A and B be two matrices of size m × n and p × q ,
respectively. The Kronecker product of two matrices A and B ,
denoted by A ⊗ B , is an mp × nq matrix given by:
A ⊗ B = [ai j B]mp×nq . The mode-n product of a tensor
A ∈ R

I1×I2×···×IN with a matrix C ∈ R
J×In , denoted by

A×n C ∈ R
I1×···×In−1×J×In+1×···×IN , is defined as

(A×n C)i1 ···in−1 j in+1···iN =
In∑

in=1

ai1i2···iN c j in .

Table I lists the symbols commonly used in this paper.

TABLE I

COMMONLY USED NOTATIONS

A. Tensor Decompositions and Ranks

The CP decomposition approximates X by
∑R

i=1 a1
i ◦ a2

i ◦· · · ◦ aN
i , where R > 0 is a given integer, an

i ∈ R
In , and

◦ denotes the outer product of vectors. The tensor rank of X ,
denoted by rank(X ), is defined as the smallest value of R
such that the approximation holds with equality. Computing
the tensor rank of a specific given tensor is NP-hard in
general [1], [38], [39]. Fortunately, the multilinear rank (also
known as the Tucker rank in [2] and [31]) of X , denoted as
n-rank(X ), is efficient to compute, and consists of the ranks
of all unfoldings as follows.

Definition 1: The n-rank of an Nth-order tensor
X ∈ R

I1×I2×···×IN is the tuple of the ranks of all unfoldings

n-rank(X ) = (rank(X(1)), rank(X(2)), . . . , rank(X(N))).
Given the n-rank(X ), the WTucker model proposed in [26]

for LRTC problems is formulated as follows:
min
{Un},G

‖W 
 (T − �G;U1, . . . ,UN �)‖2F (1)

where T is a given partially observed N th-order tensor (that
is, the entries of T in � are given, while the remaining
entries are missing, where � denotes the index set of all
observed entries), �G;U1, . . . ,UN � := G×1 U1×2 · · ·×N UN ,
Un ∈ R

In×Rn (n = 1, . . . , N), and G ∈ R
R1×R2×···×RN are

called the factor matrices and the core tensor, 
 denotes
the Hadamard (elementwise) product, and W is the indicator
tensor: wi1 i2 ...iN = 1 if (i1, i2, . . . , iN ) ∈ �, and wi1i2 ...iN = 0
otherwise. Since Rn is in general much smaller than In for
n = 1, . . . , N , the storage of the Tucker decomposition form
can be significantly smaller than that of the original tensor.

B. LRTC

Recently, Liu et al. [12] proposed the following model for
LRTC problems:

min
X

N∑

n=1

αn‖X(n)‖∗, s.t., P�(X ) = P�(T ) (2)

where ‖X(n)‖∗ denotes the trace norm of the unfolding X(n),
i.e., the sum of its singular values, αns, are prespecified
weights, and P� is the orthogonal projection operator onto
the space spanned by the tensors vanishing outside of �
so that the (i1, i2, . . . , iN )th entry of P�(X ) equals to
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xi1i2,...,iN for (i1, i2, . . . , iN ) ∈ � and zero otherwise. In the
presence of noise, we obtain the following formulation:

min
X

N∑

n=1

αn‖X(n)‖∗ + λ2 ‖P�(X )− P�(T )‖2F (3)

where λ > 0 is a regularization parameter. Moreover,
Tomioka and Suzuki [33] proposed a latent Schatten one-norm
model

min
{Xn }

N∑

n=1

‖Xn,(n)‖∗ + λ2

∥
∥
∥
∥
∥
P�

(
N∑

n=1

Xn

)

− P�(T )
∥
∥
∥
∥
∥

2

F

. (4)

Note that each unfolding X(n) in (2) and (3) shares the same
entries, and accordingly cannot be optimized independently.
Therefore, we need to apply variable splitting and introduce
an auxiliary variable to each unfolding of X . In other words,
many auxiliary variables are introduced to split the interde-
pendent terms such that they can be solved independently.
Moreover, all existing TNM algorithms for (2)–(4) involve
multiple SVDs of very large unfoldings in each iteration, and
thus suffer from high computational cost.

More recently, it has been shown that the sum of trace-
norms models mentioned above may substantially be subopti-
mal [31], [32], especially for higher order tensors. To address
this issue, a more square convex model in [31] is given by

min
X
‖X[ j ]‖∗, s.t., P�(X ) = P�(T ) (5)

where X[ j ] is defined by X[ j ] := reshape(X(1), �n≤ j In,
�n> j In), and j is chosen from {1, 2, . . . , N} to make

∏
n≤ j In

as close to
∏

n> j In as possible. If the order of the tensor
is more than three, Mu et al. [31] showed that model (5)
can exactly recover the true low-rank tensor from far fewer
observed entries than those required by (2)–(4). However,
for the third-order tensors, model (5) is the same as the
TNM method for one unfolding, and therefore, its algorithm
may not perform as well as those methods for (2)–(4).

III. CORE TENSOR TRACE-NORM MINIMIZATION

All existing TNM algorithms for solving (2)–(4) have
high computational cost, which limits their applicability to
large-scale problems. Moreover, current weighted TD methods
require explicit knowledge of the tensor rank or multilinear
rank to gain a reliable performance. Motivated by these
challenges, we propose two scalable, robust CTNM models,
and then achieve two smaller scale matrix TNM problems.

A. CTNM Models

Definition 2: The trace norm of an Nth-order tensor
X ∈ R

I1×I2×···×IN is the average of the trace norms of its
all unfoldings along different modes

‖X‖∗ = 1

N

N∑

n=1

‖X(n)‖∗

where ‖X(n)‖∗ denotes the trace norm of the mode-n unfolding
X(n) for n = 1, 2, . . . , N .

For the imbalance STLD problem (e.g., the multirelational
prediction problem in Section VI), some prespecified weights
as in [12], αn ≥ 0, n = 1, 2, . . . , N (which satisfy

∑
nαn = 1)

can be incorporated into the definition of the tensor trace norm
by replacing (1/N). Furthermore, we have Theorem 1 [6].

Theorem 1: Let X ∈ R
I1×I2×···×IN with n-rank =

(r1, r2, . . . , rN ) and G ∈ R
R1×R2×···×RN satisfy X =

�G;U1, . . . ,UN � and Rn ≥ rn, n = 1, 2, . . . , N , then

‖X‖∗ = ‖G‖∗
where ‖X‖∗ and ‖G‖∗ are the trace norms of X and its
core tensor G, respectively, and Un ∈ St(In, Rn) := {U |U T

U = IRn }, which denotes the Stiefel manifold [40], i.e., the
set of columnwise orthonormal matrices of size In × Rn .

The core tensor G of size (R1, R2, . . . , RN ) has much
smaller size than the whole tensor X (i.e., Rn � In ,
n = 1, 2, . . . , N). If the desired low-rank tensor X of (2) or (3)
has the Tucker decomposition form X = �G;U1, . . . ,UN �,
then according to Theorem 1, the LRTC problems (2) and (3)
are reformulated into the following forms:

min
G,{Un}

‖G‖∗
s.t., P�(�G;U1, . . . ,UN �) = P�(T ), Un ∈ St(In, Rn) (6)

min
G,{Un}

‖G‖∗ + λ
2
‖P�(�G;U1, . . . ,UN �)− P�(T )‖2F

s.t., Un ∈ St(In, Rn). (7)

Our CTNM models (6) and (7) for STLD problems alleviate
the SVD computation burden of much larger unfoldings
in (2)–(4). In addition, we use the tensor trace-norm regulariza-
tion terms in (6) and (7) to increase the robustness of the mul-
tilinear rank selection, while the WTucker model (1) is usually
sensitive to the given ranks (R1, R2, . . . , RN ) [6], [12], [41].
Several matrix rank estimation strategies in [42] and [43] can
be used to compute some good values (r1, r2, . . . , rN ) for
the multilinear rank of the involved tensor. Therefore, we can
set some relatively large integers (R1, R2, . . . , RN ) such that
Rn ≥ rn, n = 1, . . . , N .

B. Graph Regularization Extension

As our CTNM models are also higher order TD problems,
and inspired by the work [44]–[46], we exploit the auxiliary
information given as similarity matrices in a regularization
model for STLD problems, such as multirelational prediction

min
G,{Un∈St(In ,Rn)}

‖G‖∗ + η
N∑

n=1

Tr
(
U T

n LnUn
)

+ λ

2
‖P�(�G;U1, . . . ,UN �)− P�(T )‖2F (8)

where η ≥ 0 is a regularization constant, Tr(·) denotes the
matrix trace, Ln is the graph Laplacian matrix, i.e., Ln =
Dn − Wn , Wn is the weight matrix for the object set, and
Dn is the diagonal matrix, whose entries are column sums
of Wn , i.e., (Dn)ii =∑

j (Wn)i j .
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IV. OPTIMIZATION ALGORITHMS

In this section, we will propose an alternating direction
augmented Lagrangian (ADAL) method1 to solve the noisy
CTNM problem (7), and then extend it to solve the graph
regularized CTNM (RCTNM) problem (8). ADAL decom-
poses a large problem into a series of smaller subproblems,
and coordinates the solutions of subproblems to compute
the optimal solution. In recent years, it has been shown
in [12], [43], [47], and [48] that ADAL is very efficient for
some convex or nonconvex optimization problems in various
applications.

A. gHOI Algorithm With Rank-Increasing Scheme

Different from existing TNM algorithms in [7], [12],
and [33], only several much smaller matrices,
Vn ∈ R

Rn×� j �=n R j , are introduced into (7) as the auxiliary
variables as well as Z , thus (7) is reformulated into the
following equivalent form (see Appendix A for the detailed
analysis):

min
G,{Un},{Vn },Z

1

N

N∑

n=1

‖Vn‖∗ + λ
2
‖Z − �G;U1, . . . ,UN �‖2F

s.t., G(n) = Vn, Un ∈ St(In, Rn), P�(Z) = P�(T ). (9)

The STLD problem (9) can be solved by ADAL, and its
partial augmented Lagrangian function is

Lμ(G, {Un}, {Vn},Z, {Yn})

=
N∑

n=1

(‖Vn‖∗
N
+ 〈Yn,G(n) − Vn〉

)

+
N∑

n=1

μ

2
‖G(n) − Vn‖2F

+ λ
2
‖Z − �G;U1, . . . ,UN �‖2F

where Yn, n = 1, . . . , N are the matrices of Lagrange
multipliers, and μ > 0 is a penalty parameter. ADAL solves
the STLD problem (9) by successively minimizing the
Lagrange function Lμ over {G,U1, . . . ,UN , V1, . . . , VN ,Z},
and then updating {Y1, . . . ,YN }.

Updating {Gk+1,Uk+1
1 , . . . ,Uk+1

N }: The subproblem with
respect to {U1, . . . ,UN } and G is given by

min
G,{Un∈St(In ,R′n)}

N∑

n=1

μk

2

∥
∥G(n) − V k

n + Y k
n /μ

k
∥
∥2

F

+ λ

2
‖Zk − �G;U1, . . . ,UN �‖2F (10)

where R′n is an underestimated rank (R′n ≤ Rn), and is
dynamically adjusted using the rank-increasing scheme in
the following. Different from the traditional higher order
orthogonal iteration (HOOI) algorithm proposed in [17] for
solving the Tucker decomposition problem, we will propose
a generalized HOOI (GHOOI) scheme to solve problem (10)
in Section IV-B.

1This class of algorithms is also known as the alternating direction method
of multipliers.

Updating {V k+1
1 , . . . , V k+1

N }: With keeping the other
variables fixed, we update V k+1

n by solving the following
problem:

min
Vn
‖Vn‖∗/N + μ

k

2

∥
∥Gk+1

(n) − Vn + Y k
n /μ

k
∥
∥2

F . (11)

Problem (11) is known to have a closed-form solution given
by the following so-called matrix shrinkage operator [49]:

V k+1
n =prox1/τ k

(
Gk

n

) :=Udiag

(

max

{

σ− 1

τ k
, 0

})

V T (12)

where τ k = Nμk , max{·, ·} should be understood elementwise,
and Gk

n = Udiag(σ )V T is the SVD of Gk
n = Gk+1

(n) + Y k
n /μ

k .

Remark 1: Here, only some matrices Gk
n ∈ R

R′n×� j �=n R′j of
smaller sizes in (12) need to perform SVD. Thus, this step of
our gHOI algorithm has a significantly lower computational
complexity O(

∑
n R2

n×� j �=n R j ) in the worst case, while the
computational complexity of existing convex TNM algorithms
for (2)–(4) is O(

∑
n I 2

n ×� j �=n I j ) at each iteration.
Updating Zk+1: The optimization problem with respect

to Z is formulated as follows:
min
Z

∥
∥Z − �Gk+1;Uk+1

1 , . . . ,Uk+1
N �

∥
∥2

F

s.t., P�(Z) = P�(T ). (13)

By introducing a Lagrangian multiplier Y for
P�(Z) = P�(T ), we write the Lagrangian function of (13)
as follows:

F(Z,Y) = ∥
∥Z − �Gk+1;Uk+1

1 , . . . ,Uk+1
N �

∥
∥2

F

+〈Y, P�(Z)− P�(T )〉.
Letting ∇(Z,Y)F = 0, the Karush–Kuhn–Tucker (KKT)
optimality conditions for (13) are given as follows:

2
(
Z − �Gk+1;Uk+1

1 , . . . ,Uk+1
N �

)+ P�(Y) = 0

P�(Z)− P�(T ) = 0. (14)

By deriving simply the KKT conditions (14), we have the
optimal solution of (13) given by

Zk+1 = P�(T )+ P⊥�
(
�Gk+1;Uk+1

1 , . . . ,Uk+1
N �

)
(15)

where P⊥� is the complementary operator of P�.
Rank-Increasing Scheme: The idea of interlacing fixed-

rank optimization with adaptive rank-adjusting schemes has
appeared recently in the particular context of LRMC [43], [50].
Thus, it is here extended to our algorithm for solving the noisy
CTNM problem (7). Considering the fact Lμk (Gk+1, {Uk+1

n },
{V k+1

n },Zk+1, {Y k
n }) + ψk ≤ Lμk (Gk, {Uk

n }, {V k
n },Zk ,

{Y k
n }) + ψk and ψk = ∑N

n=1 ‖Y k
n ‖2F/(2μk), our rank-

increasing scheme starts R′n , such that R′n ≤ Rn . We increase
R′n to min(R′n +�R′n, Rn) at iteration (k + 1) if
∣
∣
∣
∣
∣
1− Lμk

(
Gk+1,

{
Uk+1

n

}
,
{

V k+1
n

}
,Zk+1,

{
Y k

n

})+ ψk

Lμk

(
Gk,

{
Uk

n

}
,
{

V k
n

}
,Zk,

{
Y k

n

})+ ψk

∣
∣
∣
∣
∣
≤ ε

which �R′n is a positive integer and ε is a small constant.
Moreover, we augment Uk+1

n ← [Uk
n , Ûn] where Ĥn has

�R′n randomly generated columns, Ûn = (I − Uk
n (U

k
n )

T )Ĥn,
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Algorithm 1 Solving CTNM Problem (9) via gHOI
Input: P�(T ), (R1, . . . , RN ), λand tol.
Initialize: Y 0

n = 0,U0
n = eye(In, R′n), V 0

n = 0, n = 1, . . . , N ,
G0 = 0, μ0 = 10−4, and μmax = 1010.

1: while not converged do
2: Update Uk+1

n and Gk+1 by (18) and (20).
3: Update V k+1

n and Zk+1 by (12) and (15).
4: Apply the rank-increasing scheme.
5: Update the multiplier Y k+1

n by
Y k+1

n = Y k
n + μk(Gk+1

(n) − V k+1
n ), n = 1, . . . , N .

6: Update μk+1 by μk+1 = min(ρμk, μmax).
7: Check the convergence condition,

max(‖Gk+1
(n) − V k+1

n ‖2F , n = 1, . . . , N) < tol.
8: end while

Output: �Gk+1;Uk+1
1 , . . . ,Uk+1

N �.

and then orthonormalize Ûn . Let Vn = refold(V k
n ) ∈

R
R′1×···×R′N , where refold(·) denotes the refolding of the given

matrix into a tensor, and Wn ∈ R
(R′1+�R′1)×···×(R′N+�R′N ) be

augmented as follows: (Wn)i1 ···iN = (Vn)i1···iN for all it ≤ R′t
and t ∈ [1, N], and (Wn)i1···iN = 0 otherwise. Hence,
we set V k

n = Wn,(n) and augment Y k
n by the same way.

We then update Gk+1, V k+1
n , and Zk+1 by (20), (12),

and (15), respectively.
Summarizing the analysis above, we develop an efficient

ADAL algorithm for solving the STLD problem (9),
as outlined in Algorithm 1. Algorithm 1 can be accelerated
by adaptively changing μ [51]: let μ = μ0 (the initialization
in Algorithm 1) and increase μk iteratively by μk+1 = ρμk ,
where ρ ∈ (1.0, 1.1] in general and μ0 is a small constant.
The convergence analysis of our algorithm is provided
in Section IV-D. In addition, Algorithm 1 can be used to solve
the noiseless STLD problem (6).

B. Generalized HOOI

We propose a GHOOI scheme to solve problem (10), while
the HOOI problem in [17] can be seen as a special case of (10)
when μk = 0. Therefore, we extend [17, Th. 4.2] to solve
problem (10) as follows.

Theorem 2: Assume a real N th-order tensor Zk , then the
minimization of (10) is equivalent to the maximization, over
the matrices U1,U2, . . . ,UN having orthonormal columns,
of the function

g(U1,U2, . . . ,UN ) =
∥
∥λM+ μkN

∥
∥2

F (16)

where N = ∑N
n=1 refold(V k

n − Y k
n /μ

k) and M = �Zk ;

(U1)
T , . . . , (UN )

T �.
The detailed proof of the theorem can be found in [6].

Updating {Uk+1
1 , . . . ,Uk+1

N }: According to Theorem 2, our
scheme successively solves Un (n = 1, . . . , N) with fixing
other variables U j , j �= n. Imagine that the matrices
U1, . . . ,Un−1,Un+1, . . . ,UN are fixed and that the optimiza-
tion problem (16) is thought of as a quadratic expression in
the components of the matrix Un that is being optimized.

Considering that the matrix has orthonormal columns, we have

max
Un∈St(In ,R′n)

∥
∥λMn ×n U T

n + μkN
∥
∥2

F (17)

where Mn = Zk ×1 (U
k+1
1 )T ×2 · · · ×n−1 (U

k+1
n−1 )

T ×n+1

(Uk
n+1)

T · · · ×N (Uk
N )

T . This is actually the well-known
orthogonal procrustes problem [52], whose optimal solution
is given by the SVD of Mn,(n)N T

(n)

Uk+1
n = Oth

(
Mn,(n)N T

(n)

)
(18)

where Oth(Zn) := U (n)(V (n))T , and U (n) and V (n) are
obtained by the skinny SVD of Zn . Repeating the pro-
cedure above for different modes leads to an alternating
orthogonal procrustes scheme for solving the maximization of
problem (17). For any estimate of these factor matrices Un ,
n = 1, . . . , N , the optimal solution to problem (10) with
respect to G is updated as follows.

Updating Gk+1: The optimization problem (10) with respect
to G can be rewritten as

min
G

N∑

n=1

μk

2

∥
∥G(n) − V k

n + Y k
n /μ

k
∥
∥2

F

+ λ

2

∥
∥Zk − �G;Uk+1

1 , . . . ,Uk+1
N �

∥
∥2

F . (19)

Problem (19) is a smooth convex optimization problem, thus
we can obtain a closed-form solution given by

Gk+1 = λ�Zk; (Uk+1
1

)T
, . . . ,

(
Uk+1

N

)T
�+ μkN

λ+ Nμk
. (20)

C. Extension to RCTNM

Algorithm 1 can be extended to solve our RCTNM
problem (8), where the main difference is that the subproblem
with respect to {U1, . . . ,UN } is formulated as follows:

min
G,{Un∈St(In ,R′n )}

N∑

n=1

μk

2

∥
∥G(n) − V k

n + Y k
n /μ

k
∥
∥2

F

+ λ
2
‖Zk−�G;U1, . . . ,UN �‖2F+η

N∑

n=1

Tr
(
U T

n LnUn
)
. (21)

Similar to the derivation of [6, Th. 2], Un can be solved by
minimizing the following cost function:

F(U1, . . . ,UN ) = −g(U1, . . . ,UN )

λ+ Nμk
+ η

N∑

n=1

Tr
(
U T

n LnUn
)
.

To update Uk+1
n , the approximate procedure is given by

−
∥
∥λMn ×n U T

n + μkN
∥
∥2

F

λ+ Nμk
+ ηTr

(
U T

n LnUn
)

= − 1

λ+ Nμk
(〈Un, P(Un)〉 + 2〈Un, Qn〉)+ c

≈ − 1

λ+ Nμk
〈Un, P

(
Uk

n

)+ 2Qn〉 + c
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TABLE II

COMPLEXITIES PER ITERATION OF MAJOR
COMPUTATIONS IN LRTC ALGORITHMS

where c is a constant, Qn = λμkMn,(n)N T
(n), and P(Un) =

[λ2Mn,(n)MT
n,(n)−(λ+Nμk)ηLn]Un . Therefore, we consider

the following maximization problem to update Uk+1
n :

max
Un∈St(In ,R′n )

〈Un, P(Uk
n )+ 2Qn〉.

Following [52], we have:
Uk+1

n = Oth
(
P

(
Uk

n

)+ 2Qn
)
. (22)

Furthermore, by repeating the procedure above for different
modes, we can update the other factor matrices.

D. Convergence and Complexity Analysis

In this part, we first provide the convergence analysis of
Algorithm 1 for solving the STLD problem (7).

Theorem 3: Let {(Gk,Uk
1 , . . . ,U

k
N , V k

1 , . . . , V k
N ,Zk)} be a

sequence generated by Algorithm 1, then we have the follow-
ing conclusions.

1) {Gk}, {(Uk
1 , . . . ,U

k
N )}, {(V k

1 , . . . , V k
N )}, {Zk} are all

Cauchy sequences.
2) If limk→∞ μk(V k+1

n −V k
n ) = 0, n = 1, . . . , N , then the

accumulation point of {(Gk,Uk
1 , . . . ,U

k
N )} satisfies the

KKT conditions for problem (7).
The proof of Theorem 3 may refer to [6]. Theorem 3 ensures

that the feasibility of each solution produced by Algorithm 1
has been assessed.

Moreover, we compare the computational complexity of our
CTNM method to some related methods. In this comparison,
we assume that the input tensor is of size I×I×· · ·×I , and the
given ranks are R1 = · · · = RN = R. The time complexity
of performing operator (12) is O(N RN+1). The time com-
plexities of some multiplication operators in (15) and (18) are
O(RI N ) and O(N RI N ), respectively. Hence, the total time
complexity of CTNM is O((N+1)RI N ). Table II summarizes
complexities of the two weighted TD algorithms [19], [26] and
the three convex tensor TNM algorithms [12], [30], [33].

V. RECOVERY GUARANTEES

In this section, we extend the partial observation theorem
for matrices in [36] and [37] to higher order tensors, which
involves a tensor covering number argument and the Hoeffding
inequality for sampling without replacement [53]. Moreover,
we also analyze the statistical performance of our model (7).
For simplicity of discussion, we assume that the true
N th-order tensor D is of size I×I×· · ·×I , and has multilinear
rank (r, r, . . . , r) throughout this section, even though our
analysis can easily be extended to the more general case, i.e.,
D ∈ R

I1×I2×···×IN with n-rank (r1, r2, . . . , rN ).

A. Covering Number of Low-Rank Tensors

To provide the recovery guarantee for higher order tensors,
we need to extend the covering number argument for low-rank
matrices in [36] and [37] to higher order tensors, as stated
in Theorem 4 and Lemma 1.

Theorem 4 (Covering Number for Low-Rank Tensors of
Bounded Size): Let SR = {X ∈ R

I×I×···×I | n-rank(X ) �
(R, R, . . . , R), ‖X‖F ≤ γ }. Then, there exists an ε-net SR

with the covering number |SR | for the Frobenius norm obeying

|SR | ≤ (3γ (N + 1)/ε)RN+N RI . (23)

To prove Theorem 4, we first give Lemma 1, which uses
the triangle inequality to characterize the combined effects
of perturbations in the factors of the generalized Tucker
decomposition in (7).

Lemma 1: Let G, G ∈ R
R1×R2×···×RN and Un, Un ∈

R
In×Rn with U T

n Un = IRn , U
T
n Un = IRn , ‖G‖F ≤ γ and

‖G‖F ≤ γ . Then

‖�G;U1, . . . ,UN �− �G;U1, . . . ,U N �‖F

≤ ‖G − G‖F + γ
∑

n

‖Un −Un‖2. (24)

The lemma is in essence the same as [31, Lemma 2], and has
the only difference of the ranges of ‖G‖F and ‖G‖F : instead
of having ‖G‖F = 1 and ‖G‖F = 1, we have ‖G‖F ≤ γ and
‖G‖F ≤ γ . Using Lemma 1, we construct an ε-net for SR by
building ε/(N + 1)-nets for each of the (N + 1) factors {Un}
and G, and give the proof of Theorem 4 in the following.

Proof: Following [36, Lemma 3.1] and [31, Lemma 3],
we construct an ε-net SR by building ε/(N +1)-nets for each
of the (N + 1) factors to approximate SR to within distance ε
with respect to the Frobenius norm.

Let W = {G ∈ R
R×R×···×R | ‖G‖F ≤ γ } and O = {U ∈

R
I×R |U T U = IR}. Clearly, for any G ∈ W , ‖G‖F ≤ γ ,

as shown in [36, Sec. III], there exists an ε/(N + 1)-net W
covering W with respect to the Frobenius norm, such that

|W| ≤ Vol
(
W + D

2

)

Vol
(D

2

)

where (D/2) is an ε/2(N + 1) ball (with the Frobenius norm)
and W + (D/2) = {G + B|G ∈ W, B ∈ D}. By ‖G‖F ≤ γ,
then W + (D/2) is contained in the γ + (ε/2(N + 1)) ball,
and thus

|W|≤
(
γ + ε

2(N+1)
ε

2(N+1)

)RN

≤
(
γ + γ

2
ε

2(N+1)

)RN

=
(

3γ (N + 1)

ε

)RN

.

The second inequality is due to the fact that (ε/N + 1) <
γ [29]. Similarly, for any Un ∈ O, ‖Un‖2 = 1, there exists an
ε/(γ (N + 1))-net O covering O with respect to the spectral
norm, such that |O| ≤ (3γ (N + 1)/ε)RI .

Let S R = {�G;U1, . . . ,U N �|G ∈ W, Un ∈ O}. Clearly,
|SR | ≤ (3γ (N + 1)/ε)RN+N RI . It remains to show that S R is
indeed an ε-net covering SR with respect to the Frobenius
norm. For any given X = �G;U1, . . . ,UN � ∈ SR , where
G ∈ W and Un ∈ O, there exist G ∈ W and Un ∈ O,
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such that ‖G − G‖F ≤ ε/(N + 1) and ‖Un − Un‖2 ≤
ε/(γ (N + 1)). By Lemma 1, we have

‖X − X ‖F = ‖�G;U1, . . . ,UN �− �G;U1, . . . ,U N �‖F

≤ ‖G − G‖F +
∑

n

γ ‖Un − Un‖2 ≤ ε.

In other words, X = �G;U1, . . . ,U N � ∈ S R is within
ε-distance from X .

B. Partial Observation Theorem

We give the partial observation theorem for higher order
tensor recovery, which involves the covering number argument
in Theorem 4 and the Hoeffding inequality for sampling
without replacement [53], as stated in Theorem 4.

Theorem 5: Let L(X ) = (1/
√

I N )‖X − X̂‖F and
L̂(X ) = (1/√|�|)‖P�(X − X̂ )‖F be the actual and empirical
loss function, respectively, where X , X̂ ∈ R

I×I×···×I .
Furthermore, assume entrywise constraint maxn1,n2,...,nN

|Xn1n2···nN | ≤ β. Then, for all tensors X with n-rank(X ) �
(R, R, . . . , R), with probability greater than 1 − 2 exp(−I ),
there exists a fixed constant C , such that

sup
X∈SR

|L̂(X )− L(X )| ≤ Cβ

(
(RN + N RI ) log(

√
I N )

|�|

)1/4

.

Indeed, the proof sketch for Theorem 5 follows that
of [37, Th. 2], and their main difference is that the covering
number argument in Theorem 4 for higher order tensors is used
to replace that of [37, Lemma A2] for low-rank matrices.

Proof: Following the proof procedure of [37, Th. 2]
and using the Hoeffding inequality theorem and Theorem 4,
we have:

sup
X∈SR

|L̂(X )− L(X )|

≤ 2ε√|�|+
(

M2

2

(2RN + 2N RI ) log(3β
√

I N (N + 1)/ε)

|�|

)1/4

≤ 6β(N + 1)√|�| + 2β

(
(RN + N RI ) log(

√
I N )

|�|

)1/4

=
(

2+ 6(N + 1)

[|�|(RN + N RI ) log(
√

I N )]1/4

)

β

×
(
(RN + N RI ) log(

√
I N )

|�|

)1/4

where γ = √I Nβ ≥ ‖X‖F , M := maxn1,...,nN (Xn1...nN −
X̂n1...nN )

2 ≤ (2β)2, and ε = 3β(N + 1). Hence, C can be set
to 2+ 6(N + 1)/[|�|(RN + N RI ) log(

√
I N )]1/4.

C. Recovery Bound

In this part, we will show that when sufficiently many
entries are sampled, the KKT point of Algorithm 1 is
stable, i.e., it recovers a tensor close to the ground-truth one.
We assume that the observed tensor T ∈ R

I×I×···×I can be
decomposed as a true tensor D with n-rank (r, . . . , r) and
a random gaussian noise E , whose entries are independently

drawn from N (0, σ 2), i.e., T = D+E . The root mean square
error (RMSE) is a frequently used measure of the difference
between the tensor X = �G;U1, . . . ,UN � recovered by gHOI
and the true one

RMSE := 1√
I N
‖D − �G;U1, . . . ,UN �‖F . (25)

Definition 3: The operator PS is defined as follows:
PS(X ) = PUN . . . PU1(X ), where PUn (X ) = X ×n (UnU T

n ).
Using the partial observation theorem for higher order

tensors, we further improve [6, Th. 4] as follows.
Theorem 6: Let (G,U1,U2, . . . ,UN ) satisfy the KKT con-

ditions for problem (7) with regularization constant λ = √R/
‖P�(E)‖F and given multilinear rank R1 = · · · = RN = R.
Then, there exists an absolute constant C , such that with
probability at least 1− 2 exp(−I )

RMSE ≤ ‖E‖F√
I N
+ Cβ

(
(RN + N RI ) log(

√
I N )

|�|

) 1
4

+ ‖P�(E)‖F

C1
√|�| (26)

where β = maxi1,...,iN |Ti1...iN |, and C1 = (‖PSP�(T − X )
‖F/‖P�(T − X )‖F ).

Remark 2: The detailed proof of the theorem can be found
in Appendix B. Moreover, the analysis of lower boundedness
of C1 can be found in [6]. When the samples size |�| �
(RN + N RI ) log(

√
I N ), the second term diminishes, and the

RMSE is essentially bounded by the average magnitude of
entries of the noise tensor E , that is, our CTNM method
is stable. In addition, when E = 0, X can be obtained
using the noiseless model (6). Our formulation (6) needs only
O(RN + N RI ) observations to exactly recover all D ∈ Sr

(r ≤ R. The conclusion is a routine extension of [31, Th. 1]),
while O(r I N−1) observations are required for recovering
the true tensor by those convex TNM methods [7], [12], [29],
[30], [34] (as stated in [31, Th. 3]), which will be confirmed
by the experimental results in Section VI.

VI. EXPERIMENTS

In this section, we evaluate the effectiveness and efficiency
of our CTNM method on synthetic and real-world data for
face reconstruction, medical image inpainting, and multirela-
tional prediction, where our algorithm was implemented in
MATLAB 7.11, using the Tensor Toolbox version 2.6 [54] for
handling some of the tensor operations. Except for multire-
lational prediction, all the other experiments were performed
on an Intel(R) Core (TM) i5-4570 (3.20 GHz) PC running
Windows 7 with 8-GB main memory.

A. Synthetic Tensor Completion

Following [12], we generated some low-rank tensors
D ∈ R

I1×I2×···×IN , which we used as the ground-truth data.
The synthetic tensors follow the Tucker model, i.e., D = G×1
U1 ×2 · · · ×N UN , where the order of the tensors varies
from three to five, and r is usually set to 10. The subset
of observed entries of the input tensors should be uniformly
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TABLE III

RSE AND RUNNING TIME (SECONDS) COMPARISON ON SYNTHETIC TENSORS. (a) TENSOR SIZE: 30 × 30 × 30 × 30 × 30.
(b) TENSOR SIZE: 60 × 60 × 60 × 60

Fig. 1. Phase transition plots on the third-order tensors. White region: 100% success in all experiments. Black region: 0% success. Gray region: some
intermediate value. (a) WTucker. (b) Hard. (c) FaLRTC. (d) Latent. (e) CTNM.

and randomly chosen, and they are recovered with various
sampling ratios (SRs) by our noiseless CTNM model (6), two
weighted TD algorithms: WTucker2 [26] and WCP3 [19], and
three convex LRTC algorithms: FaLRTC4 [12], Latent5 [33],
and Hard6 [30]. We set the multilinear rank R1 = · · · =
RN = �1.2r� for WTucker and CTNM, and the tensor rank
R = 40 for WCP. For FaLRTC, the weights αn are set
to be αn = 1/N , and the smoothing parameters are set to
be 5αn/In , n = 1, . . . , N . For Hard, we let τ = 102 and
λ1 = λ2 = λ3 = 1. We set the tolerance value to tol = 10−4

for all these algorithms, and the maximal number of iterations
to maxiter = 50 for WTucker and WCP, and maxiter = 500
for the other methods. The relative square error (RSE) of the
recovered tensor X is defined by RSE := ‖X − D‖F/‖D‖F .

Table III shows the average recovery accuracy (RSE) and
running time (seconds) of ten independent runs, where the
order of tensors varies from four to five. In the table,
CTNM can consistently yield much more accurate solutions,
and outperform the other algorithms in terms of both RSE and
efficiency. The empirical performance of all these LRTC meth-
ods can be charted using phase transition plots, which use
gray-scale colors to depict how likely a certain kind of
low-rank tensors can be recovered by those algorithms for
a range of different ranks and SRs. If the relative error
RSE ≤ 10−2, we declare the incomplete tensor T to be
recovered. Fig. 1 shows the phase transition plots of all
those algorithms, except WCP, on the third-order tensors

2http://www.lair.irb.hr/ikopriva/marko-filipovi.html
3http://www.sandia.gov/~tgkolda/TensorToolbox/index-2.6.html
4http://www.cs.rochester.edu/u/jliu/publications.html
5http://ttic.uchicago.edu/~ryotat/softwares/tensor/
6https://sites.google.com/site/marcosignoretto/codes

Fig. 2. Comparison of all these methods in terms of RSE and computational
time (in seconds and in logarithmic scale) on the third-order tensors by varying
given (a) ranks or (b) tensor sizes.

of size 100 × 100 × 100, where the x-axis denotes the
SR varying from 5% to 50% with increment 5%, and the
y-axis corresponds to the multilinear rank rn, n = 1, 2, 3
varying from 6 to 24 with increment 2. For each setting,
ten independent trials were run. In the figure, we can
observe that CTNM performs significantly better than the other
methods.

To further evaluate the robustness of our CTNM method
with respect to the given tensor rank changes, we con-
duct some experiments on the synthetic data of size
100 × 100 × 100, and illustrate the recovery results of all
these methods with 20% SR, where the rank parameter of
CTNM, WTucker, and WCP is chosen from {10, 15, . . . , 40}.
The average RSE results of ten independent runs are shown
in Fig. 2(a), from which we can see that CTNM performs
much more robust with respect to multilinear ranks than both
WTucker and WCP. This confirms that our CTNM model
with trace-norm regularization can provide a good low-rank
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Fig. 3. Face reconstruction results with 20% SR. From left column to right
column: original images, input images (black pixels denote missing entries),
and reconstruction results by ALM, WTucker, Hard, FaLRTC, and CTNM.

estimation of the observed tensor in the presence of missing
data.

Moreover, we report the running time of our CTNM method
and the other methods on the third-order tensors with varying
sizes, as shown in Fig. 2(b). We can see that the running
time of WTcuker, WCP, Hard, Latent, and FaLRTC dramat-
ically grows with the increase of tensor sizes, whereas the
running time of CTNM only increases slightly. Furthermore,
WTcuker, WCP, Hard, Latent, and FaLRTC could not yield
experimental results on the two largest problems with the
sizes of 800 and 1000, because they ran out of memory. This
shows that CTNM has a very good scalability and can address
large-scale problems. Notice that because Latent has similar
recovery accuracy to FaLRTC and Hard, and converges too
slowly, we do not consider it in the following.

B. Face Reconstruction

In this part, we apply various LRTC methods to face
reconstruction problems and compare their performance. In the
experiments, we use a part of extended Yale face data-
base B [55], which consists of 320 frontal face images of
the first five classes, and each subset contains 64 images
with varying illumination conditions and heavily shadows. The
resolution of all images is 192×168, and the intensity of each
pixel was normalized to [0, 1], then the pixel values were
used to form a third-order tensor of size 192×168×320. The
input tensors are generated by setting 90% or 80% of randomly
selected pixels of each image as missing entries. The tolerance
value of these methods is set to tol = 10−4. For WTucker and
CTNM, we set the multilinear rank R1 = R2 = R3 = 30.
We could not apply WCP and Latent to the problem, because
they have long computational time (more than an hour).

Fig. 3 shows some examples of face images, input images
with missing entries and their reconstruction faces by the aug-
mented Lagrange multiplier (ALM) method [51], WTucker,
Hard, FaLRTC, and CTNM, respectively. Note that ALM
is a well-known LRMC method for solving the problem,
where the pixel values of each image are converted to a
vector of dimension 32 256. Moreover, we report the average
reconstruction results, including the recovery accuracy (RSE)
and running time (seconds), with 10% or 20% SR in Table IV.
From the results, we can observe that all those LRTC methods

TABLE IV

RSE AND TIME COST (SECONDS) COMPARISON
FOR FACE RECONSTRUCTION

Fig. 4. Comparison of WTucker, Hard, FaLRTC, and CTNM in terms of
RSE (left) and computational time (right) in seconds and in logarithmic scale.

perform significantly better than ALM in terms of RSE.
This further confirms that those LRTC methods can utilize
much more information contained in higher order tensors than
the LRMC method, as stated in [12]. In addition, CTNM
outperforms the other methods in terms of both RSE and
efficiency. In particular, the lower SR, the more obvious
the improvement is. Except ALM, which gives the poorest
recovery accuracy, all the compared methods are ∼8–30 times
slower than CTNM.

C. Medical Images Inpainting

In this part, we apply our CTNM method for the medical
image inpainting and decomposition problem, and compare
CTNM against WTucker, FaLRTC, and Hard on the BRAINIX
date set. This data set is from the OsirX repository,7 and
consists of 100 images of size 256 × 256. Thus, it is
represented as a third-order tensor. The tolerance value of these
methods is fixed at tol = 10−4. For WTucker and CTNM, we
set the multilinear rank R1 = R2 = R3 = 40.

We report the recovery accuracy (RSE) and running
time (seconds) on the BRAINIX data set with various SRs,
as shown in Fig. 4. It is clear that CTNM consistently performs
better than the other methods in terms of both RSE and
efficiency. In particular, when the SR is low (e.g., 10%),
CTNM reaches significantly smaller RSE results than FaLRTC
and Hard. Moreover, it is ∼20 times faster than WTucker
and FaLRTC, and >50 times faster than Hard. By increas-
ing the SR, the RSE results of three trace-norm regularized
methods: 1) FaLRTC; 2) Hard; and 3) CTNM, dramati-
cally reduce, whereas that of WTucker decreases slightly.
This can be explained as follows: the former three methods
can be viewed as the trace-norm regularized method,
in which the trace-norm term can effectively avoid over-fitting

7http://www.osirix-viewer.com/datasets/
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Fig. 5. Recovery results of CTNM against its parameters on the BRAINIX
data set with 30% SR. Left: RSE versus the given ranks. Right: RSE versus
the regularization parameter λ.

phenomenon, while WTucker is a least-square method, which
inevitably suffers from overfitting.

Moreover, we also evaluate the robustness of our
CTNM method with respect to its parameters: the given
multilinear ranks and the regularization parameter λ on the
BRAINIX data set, as shown in Fig. 5, from which we can
see that CTNM is very robust against its parameter variations,
and consistently outperforms the other method in terms of
RSE in all these parameter settings. Note that the regulariza-
tion parameter λ is chosen from {0.1, 0.5, 1, . . . , 103}. These
results further confirm that our TD model with trace-norm
regularization is much more robust with respect to the given
multilinear rank than WTucker.

D. Multirelational Prediction

Finally, we apply our CTNM method to incorporate
auxiliary information induced from the relationships, and
examine our graph RCTNM method for multirelational
prediction problems on a real-world network data set,
YouTube8 [56]. YouTube is currently the most popular video
sharing Web site, which allows users to interact with each
other in various forms, such as contacts, subscriptions, sharing
favorite videos, and so on. In total, this data set contains
848 003 users, with 15 088 users sharing all of the information
types, and includes five-dimensions of interactions: contact
network, cocontact network, cosubscription network, cosub-
scribed network, and favorite network. Additional information
about the data can be found in [56]. We ran these experiments
on a machine with 6-core Intel Xeon 2.4 GHz CPU and 64 GB
memory. For graph regularized WTucker (RWTucker) and
regularized WCP (RWCP) [44], and our RCTNM method,
we set the multilinear rank R1 = R2 = 40 and R3 = 5.
For FaLRTC and RCTNM, the weights αn are set to be
{0.4998, 0.4998, 0.0004}. The tolerance value of all these
methods is fixed at tol = 10−4.

We use the 15 088 users who share all of the informa-
tion types and have five-dimensions of interactions in our
experiments, thus the data size is 15 088 × 15 088 × 5.
We first report the average running time (seconds) of all
these algorithms in Fig. 6(a), where the number of users is
gradually increased. RCTNM is much faster than the other
methods, and its running time increases only slightly when the

8http://leitang.net/

Fig. 6. (a) Time cost and (b) prediction accuracy comparison on the YouTube
data set. For each data set, we use 20% for training. Note that RWTucker,
RWCP, FaLRTC, and Hard could not run for sizes {8, 000, 15, 088} due to
run-time exceptions.

Fig. 7. Average ROC curves showing the performance of multirelational
prediction methods with 10% (left) and 20% (right) training data, respectively.

number of users increases. On the contrary, the running time of
RWTucker, RWCP, FaLRTC, and Hard increases dramatically.
They could not yield experimental results within 48 h when
the number of users is 8000 or 15 088. This shows that
RCTNM has a very good scalability and can address large-
scale problems. Moreover, we illustrates the prediction accu-
racy (the score area under the receiver operating characteristic
curve, AUC) of RWTucker, RWCP, and RCTNM against their
rank parameter in Fig. 6(b), from which we can observe that
RCTNM consistently outperforms than the other methods in
all those settings.

As the other methods cannot finish running when the
problem size is large, we choose 4117 users who have more
than ten interactions to form a subset of size 4117×4117×5.
We randomly select 10% and 20% of the entries, respec-
tively, as the training set, and the remainder as the testing
data. We report the average prediction accuracy (AUC) over
ten independent runs in Fig. 7 for both of the SRs,
10% and 20% of the entries, respectively. The results show that
RCTNM performs significantly better than the other methods
in terms of prediction accuracy. Moreover, RCTNM based on
20% of the entries further improves the prediction accuracy
compared with RCTNM based on 10% of the entries.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed an efficient and scalable CTNM
method for STLD problems. First, we induced the equivalence
relation of the trace norm of a low-rank tensor and its core
tensor. Then, we used the trace norm of the involved core
tensor to replace that of the whole tensor, and then attained
two much smaller scale matrix TNM problems. Therefore, our
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CTNM method has a much lower computational complexity.
Finally, we developed an efficient ADAL algorithm with a con-
vergence guarantee. Moreover, we also established the theoret-
ical recovery bound for our noisy CTNM model using random
Gaussian measurements. Compared with O(r I N−1) observa-
tions required by existing convex tensor TNM methods, our
significantly improved sampling complexity, O((RN + N RI )
log(
√

I N )), is sufficient to recover a low-rank tensor with
high probability, which has been confirmed by the convincing
experimental results of our CTNM method.

Our CTNM method is significantly faster than the
state-of-the-art LRTC methods. In the future, we will explore
discriminant information as in [57]–[59] or incorporate active
learning techniques [60] to further improve classification
accuracy for pattern recognition problems. In addition, we will
apply our CTNM models to address a variety of robust TD
and representation learning problems, e.g., higher order robust
PCA [2] and K-SVD [61].

APPENDIX A

Assume that (G∗, {U∗n }, {V ∗n },Z∗) is a critical point of (9).
Since Z∗ satisfies the KKT condition of (9), and according to
the similar derivation for (14) and (15), the following holds:

Z∗ = P�(T )+ P⊥�(�G∗;U∗1 , . . . ,U∗N �).

Thus, we have

�G∗;U∗1 , . . . ,U∗N �− Z∗

= P�(�G∗;U∗1 , . . . ,U∗N �)− P�(Z∗)
+P⊥�(�G∗;U∗1 , . . . ,U∗N �)− P⊥�(Z∗)

= P�(�G∗;U∗1 , . . . ,U∗N �)− P�(T ). (27)

Let Q∗ = �G∗;U∗1 , . . . ,U∗N �−Z∗ and B∗n = G∗(n)(U∗N ⊗· · ·⊗
U∗n+1 ⊗ U∗n−1 ⊗ · · · ⊗ U∗1 )T (n = 1, 2, . . . , N), then the
following holds:

‖Q∗‖2F = ‖U∗n B∗n − Z∗(n)‖2F . (28)

Thus, the critical point (G∗, {U∗n }, {V ∗n },Z∗) of problem (9)
satisfies the following KKT conditions:

0 ∈ 1

N
∂‖V ∗n ‖∗ −�n, n = 1, 2, . . . , N

λ�Q∗; (U∗1 )T , . . . , (U∗N )T �+
N∑

n=1

refold(�n) = 0

Q∗(n)(B∗n )T +U∗n�n = 0, n = 1, 2, . . . , N

Z∗ = P�(T )+ P⊥�(�G∗;U∗1 , . . . ,U∗N �) (29)

where U∗n ∈ St(In, Rn), �n ∈ R
Rn×� j �=n R j and �n ∈ R

Rn×Rn

denote the Lagrange multipliers for all n ∈ {1, 2, . . . , N}, and
the derivation of (3) in (29) is similar to [62]. By (27) and
V ∗n = G∗(n), (29) is reformulated as follows:

0 ∈
∑N

n=1 refold(∂‖G∗(n)‖∗)
N

+ λ�R∗; (U∗1 )T , . . . , (U∗N )T �

R∗(n)(B∗n )T +U∗n�n = 0, n = 1, 2, . . . , N (30)

where R∗ = P�(�G∗;U∗1 , . . . ,U∗N �) − P�(T ) = Q∗. It is
easy to see that (30) is the KKT conditions for problem (7),
that is, (G∗, {U∗n }) is also the critical point of (7).

On the other hand, if (G∗, {U∗n }) is a critical point
of (7), and let Z∗ = P�(T ) + P⊥�(�G∗;U∗1 , . . . ,U∗N �) and
V ∗n = G∗(n), then we can know that (G∗, {U∗n }, {V ∗n },Z∗) is
also the critical point of problem (9). Hence, problem (7) is
equivalent to problem (9).

APPENDIX B
PROOF OF THEOREM 6

To prove Theorem 6, we first give Lemma 2 [51].
Lemma 2: Let H be a real Hilbert space endowed with

an inner product 〈·, ·〉 and a corresponding norm ‖ · ‖
(e.g., the trace norm), and y ∈ ∂‖x‖, where ∂‖ · ‖ denotes
the subgradient of the norm. Then, ‖y‖∗ = 1 if x �= 0, and
‖y‖∗ ≤ 1 if x = 0, where ‖ · ‖∗ is the dual norm of ‖ · ‖.

Proof of Theorem 6:

Proof: Let X = �G; U1, . . . ,UN �, we first need to bound
‖T − X‖F . By C1 = (‖PSP�(T − X )‖F/‖P�(T − X )‖F ),
then we have
‖T − X‖F√

I N

≤
∣
∣
∣
∣
‖T −X‖F√

I N
− ‖PSP�(T − X )‖F

C1
√|�|

∣
∣
∣
∣+
‖PSP�(T − X )‖F

C1
√|�|

=
∣
∣
∣
∣
‖T − X‖F√

I N
− ‖P�(T − X )‖F√|�|

∣
∣
∣
∣+
‖PSP�(T − X )‖F

C1
√|�| .

Let ϕ(�) = |(1/√I N )‖T − X‖F − (1/
√|�|)‖P�(T −

X )‖F |, then we need to bound ϕ(�). Since n-rank(X ) �
(R, R, . . . , R), X ∈ SR , and by Theorem 5, then with
probability greater than 1 − 2 exp(−I ), there exists a fixed
constant C , such that

sup
X∈SR

ϕ(�) =
∣
∣
∣
∣
‖X − T ‖F√

I N
− ‖P�(X )− P�(T )‖F√|�|

∣
∣
∣
∣

≤ Cβ

(
(RN + N RI ) log(

√
I N )

|�|

) 1
4

. (31)

To bound the gap ‖T − X‖F , we next need to bound
‖PSP�(T −X )‖F . Since (G,U1, . . . ,UN ) is a KKT point of
problem (7), the first-order optimal condition for problem (7)
with respect to G is written as follows:

λ�P�(T − X ); U T
1 , . . . ,U

T
N � ∈

N∑

n=1

refold(∂‖G(n)‖∗)/N

where �P�(T −X ); U T
1 , . . . ,U

T
N � := P�(T −X )×1 U T

1 ×2
· · · ×N U T

N .
In other words, there exist {Pn ∈ R

R×RN−1
, n = 1, . . . , N},

such that

λPn ∈ ∂‖G(n)‖∗/N, n = 1, 2, . . . , N (32a)

�P�(T − X ); U T
1 , . . . ,U

T
N � =

N∑

n=1

refold(Pn). (32b)
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Using Lemma 2 and (32a), we obtain

λ‖Pn‖2 ≤ 1/N

where ‖ · ‖2 is the spectral norm and the dual norm of the
trace norm. According to rank(Pn) ≤ R, we have

‖Pn‖F ≤
√

R‖Pn‖2 ≤
√

R

Nλ
. (33)

By (32b) and (33), we obtain

‖PSP�(T − X )‖F =
∥
∥�P�(T − X ); U T

1 , . . . ,U
T
N �

∥
∥

F

≤
N∑

n=1

‖refold(Pn)‖F =
N∑

n=1

‖Pn‖F ≤
√

R

λ
. (34)

By (31) and (34), we have

RMSE = ‖D − X‖F√
I N

≤ ‖E‖F√
I N
+ ‖T − X‖F√

I N

≤ ‖E‖F√
I N
+ ϕ(�)+ ‖PSP�(T − X )‖F

C1
√|�|

≤ ‖E‖F√
I N
+ Cβ

(
(RN + N RI ) log(

√
I N )

|�|

) 1
4

+ ‖P�(E)‖F

C1
√|�| .

This completes the proof.

REFERENCES

[1] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM Rev., vol. 51, no. 3, pp. 455–500, 2009.

[2] D. Goldfarb and Z. Qin, “Robust low-rank tensor recovery: Models and
algorithms,” SIAM J. Matrix Anal. Appl., vol. 35, no. 1, pp. 225–253,
2014.

[3] D. Tao, X. Li, X. Wu, and S. Maybank, “General tensor discriminant
analysis and Gabor features for gait recognition,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 29, no. 10, pp. 1700–1715, Oct. 2007.

[4] Y. K. Yılmaz, A. T. Cemgil, and U. Şimşekli, “Generalised coupled
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