
DGCL: An Efficient Communication Library for
Distributed GNN Training

Zhenkun Cai
The Chinese University of Hong Kong

zkcai@cse.cuhk.edu.hk

Xiao Yan∗

Southern University of Science and
Technology

yanx@sustech.edu.cn

Yidi Wu
The Chinese University of Hong Kong

ydwu@cse.cuhk.edu.hk

Kaihao Ma
The Chinese University of Hong Kong

khma@cse.cuhk.edu.hk

James Cheng
The Chinese University of Hong Kong

jcheng@cse.cuhk.edu.hk

Fan Yu
Huawei Technologies Co. Ltd

fan.yu@huawei.com

Abstract

Graph neural networks (GNNs) have gained increasing pop-
ularity in many areas such as e-commerce, social networks
and bio-informatics. Distributed GNN training is essential for
handling large graphs and reducing the execution time. How-
ever, for distributed GNN training, a peer-to-peer communi-
cation strategy suffers from high communication overheads.
Also, different GPUs require different remote vertex embed-
dings, which leads to an irregular communication pattern
and renders existing communication planning solutions un-
suitable. We propose the distributed graph communication
library (DGCL) for efficient GNN training on multiple GPUs.
At the heart of DGCL is a communication planning algorithm
tailored for GNN training, which jointly considers fully uti-
lizing fast links, fusing communication, avoiding contention
and balancing loads on different links. DGCL can be easily
adopted to extend existing single-GPU GNN systems to dis-
tributed training. We conducted extensive experiments on
different datasets and network configurations to compare
DGCL with alternative communication schemes. In our ex-
periments, DGCL reduces the communication time of the
peer-to-peer communication by 77.5% on average and the
training time for an epoch by up to 47%.

Keywords Graph Neural Networks, Distributed and Paral-
lel Training, Network Communication

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

EuroSys ’21, April 26ś29, 2021, Online, United Kingdom

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8334-9/21/04. . . $15.00

https://doi.org/10.1145/3447786.3456233

ACM Reference Format:

Zhenkun Cai, Xiao Yan, Yidi Wu, Kaihao Ma, James Cheng, and Fan

Yu. 2021. DGCL: An Efficient Communication Library for Dis-

tributed GNN Training. In Sixteenth European Conference on Com-

puter Systems (EuroSys ’21), April 26ś29, 2021, Online, United King-

dom. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/

3447786.3456233

1 Introduction

Graph neural networks (GNNs) are a special kind of deep
neural network, in which each vertex aggregates the embed-
dings of its neighbors in the graph to compute its own embed-
ding. Many GNNmodels have been proposed, e.g., GCN [17],
GAT [33], CommNet [32], GraphSAGE [8], GIN [39] and
GGNN [20]. These GNN models achieve excellent perfor-
mance for graph related tasks such as node classification,
link prediction and graph clustering. To support the effi-
cient training of GNN models, a number of GNN systems
such as DGL [35], PyG [7], NeuGraph [21], RoC [13] and
AliGraph [40], have been developed for CPU or GPU. As real
graphs can be very large, e.g., containing millions of vertices
and billions of edges, it is essential to conduct distributed
GNN training using many GPUs for efficiency and scalabil-
ity. However, most existing GNN systems are designed for
a single worker (e.g., DGL and PyG) or a small number of
workers on the same machine (e.g., NeuGraph).

To conduct distributed GNN training, a graph is usually
partitioned [4, 14, 15, 30] to assign its vertices to multiple
workers, and the workers compute the vertex embedding in
parallel. As vertices need to access the embeddings of their
neighbors that reside on other workers, it is necessary to
conduct embedding passing during training. However, using
direct peer-to-peer communication (i.e., each worker fetches
the required embeddings directly from other workers) [12]
for embedding passing results in high communication over-
heads. The communication time can easily take up over 50%
of the total training time and even exceeds 90% in some cases
according to our measurements in ğ3.
Our profiling and analysis show that peer-to-peer com-

munication has poor efficiency for two main reasons (ğ3):

(1) It fails to fully utilize fast links. Modern GPU servers (e.g.,
NVIDIA DGX systems [22]) contain heterogeneous physical
connections such as NVLink [25], PCIe, QPI, IB [36] and
Ethernet, and the bandwidth of the fastest link can be an
order of magnitude of the slowest link. Peer-to-peer commu-
nication simply uses the direct links between workers and
does not fully exploit the fast links. (2) It does not consider
the communications between different worker pairs jointly.
With peer-to-peer communication, all workers communicate
with each other concurrently for embedding passing. This
results in severe network contention and load imbalance
given the complex connections among GPUs in a modern
GPU cluster. To eliminate embedding passing, we considered
an alternative that replicates the remote neighbors of the
vertices to the local worker but found that replication results
in high memory and computation costs.

To optimize communication efficiency of distributed GNN
training, we formulate a communication planning problem,
which is to find a plan that minimizes the time to pass the
required vertex embeddings among the workers. The prob-
lem is challenging for two reasons: (1) The communication
pattern is irregular as different workers require different re-
mote embeddings. This is in contrast to training normal deep
neural networks (e.g., VGG [31] and ResNet [9] variants),
for which each worker sends/receives the same set of model
parameters and communication planning has been solved
by NCCL [24]. (2) The physical connections are complex in
modern GPU servers and the communications of all worker
pairs need to be jointly considered to avoid contention and
balance the loads among different links.
To solve the communication planning problem, we first

show that the optimal strategy to transmit a vertex embed-
ding from its source worker (i.e., the worker that computes
it) to its destination workers (i.e., the workers that use it as
input) is a tree that has the source worker as its root and
contains all the destination workers. Then, a communication
plan is defined as the union of the communication trees of
all vertices, which provides the maximum flexibility as each
vertex is allowed to choose its own communication strategy.
We also build a cost model to predict the execution time of
a communication plan, which divides the communications
into stages and considers contention, load balancing and
parallelization. Finally, we propose a shortest path spanning

tree (SPST) algorithm to minimize the cost model in a greedy
manner. The vertices are considered sequentially and the
communication tree for each vertex is solved by minimizing
the cost blow-up considering the processed vertices.

Based on the SPST algorithm, we develop a package called
the distributed graph communication library (DGCL). DGCL
handles tasks related to distributed GNN training includ-
ing graph partitioning, communication planning, and ac-
tual communication execution. Existing GNN systems can
easily invoke DGCL with user-friendly APIs for efficient
distributed communication. The GNN system only needs to

a
c
b

f d

eh

ig

j
l k

(a) Graph

a
c
b

f d

eh

ig

j
l k

0

GPU 3

GPU 1

GPU 2

GPU 4

(b) Partition to 4 GPUs

Figure 1. An example graph and its partitioning

work in a single-worker mode and does not need to know the
details about distributed execution. In addition to the SPST
algorithm, we introduce several system designs in DGCL
to improve communication efficiency, including decentral-
ized communication coordination, automatic communica-
tion method selection and non-atomic aggregation.
To evaluate the performance of DGCL, we conducted ex-

tensive experiments on four graphs and three GNN mod-
els under different network configurations. We compared
with three alternative communication schemes, i.e., peer-
to-peer communication, swap (which uses main memory for
embedding exchange among GPUs as in NeuGraph [21]) and
replication (which replicates cross-partition vertices to elimi-
nate communication as in Medusa [43]). The results show
that DGCL consistently achieves shorter communication
time and hence shorter per-epoch time than the baselines
for distributed GNN training. Compared with peer-to-peer
communication, DGCL reduces the communication time by
at most 85.8% and 77.5% on average. The per-epoch time
of peer-to-peer is reduced by up to 47% in some cases. We
also found that replication has poor performance in process-
ing dense graphs and runs out of memory for large graphs.
Swap often has the worst performance as it needs to dump
all vertex embeddings to main memory.

Paper outline. We give the background on GNN training
in ğ2. We analyze existing strategies for distributed GNN
training in ğ3 to show their limitations and hence motivate
our work. We present the architecture and the API of DGCL
in ğ4. We discuss the details of communication planning and
the SPST algorithm in ğ5. We discuss the system designs
and some implementation details in ğ6. We report the per-
formance evaluation results in ğ7. We discuss related work
in ğ8 and conclude our work in ğ9.

2 Background on GNN Training

Given a graph G = (V , E), GNN models (e.g., GCN [17],
CommNet [32] and GIN [39]) learn an embedding for each
vertex v ∈ V by stacking multiple graph propagation layers.

In each layer, GNN models generally follow an aggregate-

update computation pattern:

a
(k)
v = AGGREGATE(k)({h

(k−1)
u |u ∈ N(v)})

h
(k)
v = UPDATE(k)(a

(k)
v ,h

(k−1)
v)

, (1)

where h
(k)
v is the embedding of vertexv in the k-th layer and

h
(0)
v is the input features of vertex v . The AGGREGATE(k)

function collects the embeddings of v’s neighbors in (k −

1)-th layer, i.e., {h
(k−1)
u |u ∈ N(v)}, to compute a

(k)
v . The

UPDATE(k) function uses the neighborhood aggregation

result a
(k)
v and v’s embedding in the (k − 1)-th layer, i.e.,

h
(k−1)
v , to calculate v’s embedding in the k-th layer. Both
the AGGREGATE and UPDATE functions can be neural net-
works, which are updated during training. Although K =2
layers are most popular, recent works suggest that 3 or more
layers provides better performance for some tasks [10, 13].
GNN training is conducted by alternating between for-

ward passes and backward passes. In a forward pass, each
vertex aggregates the embeddings of its neighbors to com-
pute its final output (i.e., the K-th layer embedding). In a
backward pass, each vertex sends gradients to its neigh-
bors to update the AGGREGATE and UPDATE functions.
We complete an epoch of training when all vertices have
gone through a forward and backward pass. Beside the full
graph training method, some works use sampling [8], which
only computes the final output for some vertices in a pass.
As sampling has potential accuracy loss [13], we consider
full graph training in this paper. For a K-layer GNN, the
computation of a vertex needs to access the embedding of its
K-hop neighbors. Consider a 2-layer GNN and take vertex a

in Figure 1a for example. Computing h
(1)
a requires the 0-th

layer embeddings of a’s direct neighborsN(a)= {b, c,d, f , j},

and h
(2)
a requires the 1st layer embeddings of the vertices in

N(a), which in turn depends on the 0-th layer embeddings
of their direct neighbors. As a result, training a involves all
the vertices in the example graph except vertex д, which is 3
hops away from a.

3 An Analysis on Strategies for Distributed
GNN Training

In this section, we give an analysis on various strategies for
distributed GNN training to show the limitations of existing
methods and the challenges of distributed GNN training.

Graph partitioning without replication. A straightfor-
ward scheme for distributed GNN training is graph partition-

ing as illustrated in Figure 1b. The graph is partitioned into
non-overlapping partitions (i.e., without vertex replication
on different workers), and each GPU conducts computation
for a partition. Execution follows a transfer-compute sched-
ule for each layer, in which the embeddings of the required

0

50

100

150

200

250

300

350

0

100

200

300

400

500

600

700

800

2 4 8 16

V
o
lu

m
e

(M
B

)

T
im

e
(m

s)

GPU Count

Commu. Overhead

Compu. Time

Commu. Volume

(a) Web-Google

0

100

200

300

400

500

600

0

100

200

300

400

500

600

700

800

2 4 8 16

V
o

lu
m

e
(M

B
)

T
im

e
(m

s)

GPU Count

Commu. Overhead

Compu. Time

Commu. Volume

(b) Reddit

Figure 2. The computation time and communication over-
head for training a 2-layer GCN with peer-to-peer commu-
nication (the average communication volume of each GPU
during an epoch is plotted as dashed lines)

Table 1. The speed (GBps) of common communication links
(NV2 and NV1 mean 2 and 1 NVLinks between two GPUs)

Type NV2 NV1 PCIe QPI IB Ethernet

Speed 48.35 24.22 11.13 9.56 6.37 3.12

non-local vertices are fetched from remote GPUs before con-
ducting computation. The cost for embedding passing can be
high as the vertex embeddings are high-dimensional vectors
and many vertex embeddings need to be transferred.
We plot the computation time, communication overhead

and average communication volume of each GPU for train-
ing a 2-layer GCN in Figure 2. 1 The graph is partitioned
using the METIS library [14] to minimize the number of
cross-partition edges for communication reduction, and the
GPUs transfer the vertex embeddings to each other via peer-
to-peer communication. Figure 2 shows that the communi-
cation time grows rapidly with the number of GPUs, taking
up more than 50% of the per-epoch time for both graphs
with 8 GPUs. With 16 GPUs on two machines, the commu-
nication time takes up more than 90% of the per-epoch time
due to slow cross-machine connection. The communication
time increases with the number of GPUs even though the
per-GPU communication volume decreases, because the ag-
gregated communication volume of all GPUs increases with
the number of GPUs and different GPUs may contend for
communication, which severely impairs efficiency as we will
show shortly.

The communication topology inside one of the machines
used in our experiments is plotted in Figure 3, which shows
there are a few types of connection between GPUs, e.g.,
NVlink, PCIe, PCIe-QPI-PCIe. Different types of connections
vary significantly in speed according to our measurements

1The detailed experiment configurations, e.g., the connections among the

GPUs, dataset statistics and mode structures can be found in ğ7.

Table 2. The time (ms) peer-to-peer communication spends
on different links for training a GCN layer with 8 GPUs

Web-Google Reddit Wiki-Talk

NVLink 0.99 1.70 1.39

Others 6.20 18.1 6.13

Table 3. Attainable bandwidth (Gbps) of a GPU when there
are different number of GPUs using the QPI link

Number of GPUs 1 2 3

Attainable bandwidth 9.50 5.12 3.34

GPU 1 GPU 2

GPU 3 GPU 4

GPU 5 GPU 6

GPU 7 GPU 8

PCIe Switches PCIe Switches

CPU CPU

NIC NIC NIC NIC

NVLink PCIe QPI

Figure 3. The connections among the GPUs of the NVIDIA
DGX-1 system, as an example of the complex communication
connections in modern GPU servers

in Table 1. We also profile the time that peer-to-peer com-
munication spends on NVLink and other relatively slow con-
nections when training a GNN layer. As shown in Table 2,
the GPU pairs with NVLink connections (e.g., GPU1-GPU2,
GPU4-GPU7) have much shorter communication time than
those with slow connections (e.g., GUP1-GPU5 via PCIe-QPI-
PCIe). As all GPU pairs in Figure 3 can be connected within
two hops of NVLink, we can reduce communication time
by eliminating data transfer on the slow links and using
NVLink-based relay, e.g., assigning GPU2 to forward the
communication between GPU1 and GPU5. Therefore, a key
reason behind the long communication time of peer-to-peer is

that it simply utilizes the direct links and fails to fully utilize

the fast links.

In Figure 3, the direct communication links from GPU1,
GPU3 and GPU4 to GPU5 all go through the QPI, and these
GPUs will contend for the QPI bandwidth if they communi-
cate with GPU5 concurrently in peer-to-peer communication.
We report the attainable bandwidth for a GPUwhen there are

0

0.5

1

1.5

2

2.5

3

3.5

2 4 8 16

R
ep

li
ca

ti
o
n

 F
ac

to
r

GPU Count

1-hop

2-hop

3-hop

(a) Web-Google

0

5

10

15

20

2 4 8 16

R
ep

li
ca

ti
o
n

 F
ac

to
r

GPU Count

1-hop

2-hop

3-hop

(b) Reddit

Figure 4. The replication factor for training GNNs with
different number of layers

different numbers of concurrent GPUs using the QPI link in
Table 3. The results show that contention severely degrades
communication speed. Thus, another limitation of peer-to-

peer communication is that it does not consider concurrent

communications jointly and may result in contention.

Graph partition with replication. The communication
overhead for embedding passing can be completely removed
using replication. Beside the vertices in the local partition,
each GPU also stores theK-hop neighbors of its local vertices
and computes the intermediate embeddings of the replicated
vertices when necessary. In this case, each GPU can com-
pute the final outputs for the vertices in its local partition
without communication but needs to pay additional storage
and computation costs.
We define replication factor as the total number of (as-

signed and replicated) vertices kept by all GPUs divided by
the number of vertices in the original graph. Replication
factor is an indicator of the computation and storage over-
heads needed to eliminate embedding passing. Figure 4 plots
the replication factor for GNNs with different number of
layers (i.e., hops). The results show that the replication fac-
tor increases with the number of GPU and GNN layers. For
the denser Reddit graph, each GPU almost stores the en-
tire graph for GNNs with more than 1 layers, i.e., the 2-hop
neighbors already cover almost the entire graph, and thus
the replication factor of 2-hop and that of 3-hop are almost
the same in Figure 4b. For the sparser Web-Google graph, the
replication factor is also large for a 3-layer GNN (more than
3 when 16 GPUs are used). The reason is that large graphs
usually have a small diameter and a vertex can reach many
vertices in a few hops. This renders replication inapplicable
for deeper GNN models with more layers, which is shown to
achieve good performance recently [13]. We will also verify
in our experiments in ğ7 that using replication results in a
long per-epoch time due to the repetitive computation of
vertex embeddings on different GPUs.

Other options for distributedGNN training.Besides non-
overlapping graph partitioning and replication, there are

many other strategies for distributed GNN training that show
different interplay among communication, memory and com-
putation overheads. We list some examples: (1) When GPU
memory is sufficient, the 0-th layer embeddings of the adja-
cent vertices can be cached to eliminate embedding passing
for the 1st GNN layer. (2) When GPU memory is insufficient
(e.g., for large graphs or a small number of GPUs), embed-
dings need to be offloaded to and reloaded fromCPUmemory
dynamically. (3)When cross-machine bandwidth is low, repli-
cation may be adopted across different machines to reduce
cross-machine communication, while the GPUs inside the
same machine use non-overlapping graph partitioning.
In all these strategies, GNN training still needs to find

efficient methods to transfer the required embedding to
each GPU, which we call a communication planning problem.
For example, embedding passing is required for layer-2 and
higher layers in (1) above, while the GPUs inside the same
machine need to exchange embeddings for (3). For (2), the
embedding swap between GPU memory and CPU memory
can also be regarded as a special form of communication via
PCIe. Although we focus on non-overlapping graph parti-
tioning in our presentation, our communication planning
algorithm can be easily generalized to more diverse GNN
training strategies.

Properties of GNN communication planing. Communi-
cation is irregular for distributed DNN training as different
GPUs need to send/receive different vertex embeddings from
other GPUs according to graph partitioning. In comparison,
communication in the data-parallel training of usual neural
networks (e.g., those for computer vision) are regular and all
GPUs send/receive the same set of model parameters, and ex-
isting libraries such as NCCL are well-designed for planning
this type of regular communication. Motivated by the limita-
tions of peer-to-peer communication, we should consider all
concurrent communications jointly and fully utilize fast links
while avoiding contention at the same time. As embedding
passing is largely independent from the deep learning part
of GNN training (e.g., neural network inference and back
propagation), a general communication planning algorithm
and execution framework can be reused for different GNN
systems.

4 The Architecture and API of DGCL

In this section, we first introduce the architecture and work-
flow of DGCL, and then present its API and discuss how to
connect DGCL with existing GNN systems with the API.

4.1 Architecture and Workflow

The architecture of DGCL is shown in Figure 5. DGCL ac-
cepts an input graph and partitions the graph. The number
of graph partitions is the same as the number of GPUs as
each partition is assigned to one GPU. For graph partitioning,
we use the METIS library [14] to minimize the number of

GNN Model Input Graph

Graph Partitioning

Communication Planner

DGCL Master

DGCL Client

Device 2

Graph Patch 2

GNN System

DGCL Client

Device k

Graph Patch k

GNN System

DGCL Client

Device 1

Graph Patch 1

GNN System

Communication

Topology

…
Figure 5. Architecture of DGCL

cross-partition edges for communication reduction and also
ensure that each partition has a similar number of vertices for
load balancing. There are usually hierarchies in the commu-
nication topology, for example, intra-machine connections
can be faster than inter-machine connections, and inside the
same machine, GPUs on the same NUMA node may have
faster connections than those on different NUMA nodes. In
these cases, we use hierarchical graph partitioning to priori-
tize communication reduction on slow links. Currently, we
assume that the graph partitioning is non-overlapping, and
the GPU memory is sufficient for the graph data and vertex
embeddings in each partition.
For each graph partition, the vertices are re-indexed to

make distributed training transparent to the underlying GNN
system, i.e., the GNN system only sees an input graph instead
of a partition. For a GPU d , we use V l

d
to denote its local

vertices (i.e., vertices in its partition), V r
d
to denote its remote

vertices (i.e., direct neighbors of its local vertices that reside
in other partitions), and Ed to denote its local edges. For
example, in the graph partitioning in Figure 1b, we have
V l
1 = {a,b, c} and V r

1 = {d, f , j,k} for GPU 1. For a GPU

d , DGCL constructs a graph Gd (V
l
d
∪V r

d
, Ed) and the GNN

system can conduct training on Gd in the single-GPU mode
when the embeddings of vertices inV l

d
∪V r

d
are available. The

communication relation among the GPUs is also constructed
according to the graph partitioning result. We record a tuple
(di ,dj ,Vi j) for each pair of GPUs, where Vi j is the vertex
embeddings that GPU di needs to send to GPU dj .
We associate a DGCL client with each GPU, which is

responsible for conducting communication for distributed
training, e.g., sending/receiving vertex embeddings to/from
remote GPUs and forwarding embeddings for other GPUs.
A centralized DGCL master monitors the DGCL clients and
notifies them to start the communication for a layer or when
all communications for a layer finish. The communication
planner lies at the heart of DGCL, which takes as input the
communication relation among the GPUs and the commu-
nication topology, and generates a communication plan for

1 impor t dgl , d g c l

2

3 c l a s s d i s t r i b u t e d _ g cn_mode l (o b j e c t) :

4 de f forward (s e l f , embeddings) :

5 f o r l i n l a y e r s :

6 embeddings = dg c l . g r a p h _ a l l g a t h e r (

embeddings)

7 embeddings = dg l . GraphConv (embeddings)

8

9 dg c l . i n i t ()

10 graph , f e a t u r e s = . . . # Load da t a

11 dg c l . bu i ld_comm_info (graph , t opo logy)

12 f e a t u r e s = dg c l . d i s p a t c h _ f e a t u r e s (f e a t u r e s)

13 model = d i s t r i b u t e d _ g cn_mode l (. . .)

14 l o s s _ f u n c = . . .

15

16 f o r i i n epoch :

17 l o s s = l o s s _ f u n c (model (f e a t u r e s))

18 l o s s . backward ()

Listing 1. Integrate DGCL with DGL for GCN training

each GNN layer. The objective is to minimize the end-to-end
communication time for the layer and the communication
plan describes how the messages between each pair of GPUs
will be transmitted. Communication plans are constructed
before training starts and issued to the DGCL clients. When
training starts, the clients coordinate with each other using
progress flags to carry out the communication plan.

4.2 API

DGCL exposes a user-friendly API to extend a single-GPU
GNN system to distributed training. We highlight the func-
tions in the API that are tailored for GNN training as follows:

• init() initializes the distributed communication envi-
ronment, and sets up the connections between DGCL
master and clients.

• buildCommInfo(graph, topology) partitions a graph to a
set of GPUs, builds the communication relation among
the GPUs and runs the communication planning algo-
rithm to obtain the communication strategy.

• embeddings graphAllgather(localEmbeddings) fetches
the embeddings of the remote vertices of a GPU and
sends the embeddings required by other GPUs accord-
ing to the communication relation. The returned value
embeddinдs contains all the embeddings (i.e., both lo-
cal and remote) for executing a GNN layer on the GPU.

We call the operation that passes vertex embeddings among
GPUs graph Allgather as its semantics is similar to Allgather

operation in collective communication, i.e., after applying the
operation, every worker gets its required data. For example,
in the graph partitioning in Figure 1b, after graph Allgather,
GPU 1 will have the embeddings of vertex {a,b, c,d, f , j}.
graph Allgather is a synchronous operation, DGCL blocks a
client until it receives all the remote vertex embeddings.

d1 d2 d3 d4

NVLink PCIe

PCIe SwitchPCIe Switch

CPU CPU

QPI

𝑑3 𝑑4𝑑1 𝑎, 𝑏, 𝑐, 𝑑 𝑎, 𝑏, 𝑒, 𝑓𝑑2 𝑔, ℎ, 𝑖 𝑔, 𝑖, 𝑘, 𝑙

Figure 6. An example of communication topology and com-
munication relation, in which d1 and d2 are senders

DGCL can be easily combined with existing GNN systems
with the API presented above and we show an example in
List 1, which uses DGCL in DGL [35] to train a GCN model
using our Python API. Lines 9-12 initialize the communi-
cation environment, conduct communication planning and
dispatch the graph partitions to their corresponding GPUs.
Line 6 invokes graph Allgather to collect the remote embed-
dings and Line 7 conducts DGL graph convolution in the
single-GPU mode.

5 Communication Planning

In this section, we first formulate the communication plan-
ning problem by introducing the communication strategies
for each vertex and the cost model. Then we present the
shortest path spanning tree (SPST) algorithm, which solves
the communication planning problem in a greedy manner.

5.1 Problem Formulation

Communication planning takes the communication relation

and communication topology as input, and tries to minimize
the communication time for a GNN layer. As introduced in ğ4,
the communication relation is modeled by the (di ,dj ,Vi j) tu-
ples, where Vi j is the vertex embeddings GPU di needs to
send to GPU dj . The communication topology D describes
the connections among the GPUs and each physical connec-
tion lj ∈ D is associated with a bandwidth bj . We provide
an example of communication relation and communication
topology in Figure 6, and discuss some considerations in
GNN communication planning using Figure 6 as follows.

• Utilize fast links: To send data from d1 to d3, we may
either (1) go through the slow PCIe-QPI-PCIe direct
link, or (2) transfer the data tod2 first and then forward
to d3 via fast NVLink. According to our analysis in ğ3,
(2) may be a better choice and thus planning should
allow multi-hop forwarding to fully utilize the fast
links.

• Fuse communication: Vertices {a,b} on d1 are re-
quired by both d3 and d4, and thus sending {a,b} to d3
and d4 separately may be less efficient than sending
{a,b} to d3 first and allowing d3 to forward to d4. Thus,

for vertices required by more than one remote GPUs,
communication fusion should be supported.

• Avoid contention: d1 sending data to d3 and d2 send-
ing data to d4 may happen concurrently on the same
direct PCIe-QPI-PCIe link, causing contention and re-
ducing the attainable bandwidth of each other as dis-
cussed in ğ3. Planning should avoid or consider the
influence of these contentions.

• Balance loads on different links:d1 may send some
of the vertices to d3 via direct PCIe-QPI-PCIe link and
some are forwarded byd2. As putting toomuch load on
one link may create stragglers, it is crucial to balance
the loads on different links.

Feasible communication strategies. For a vertex u, de-
note its source GPU as su (i.e., u belongs to the partition of
su) and the set of remote GPUs that need u’s embedding as
Du . Among the different strategies to transferu’s embedding
from su to each GPU in Du , we discuss which strategies need
to be considered in our communication planning algorithm.
Apparently, the optimal communication strategy for a vertex
u is a tree computed from the communication topology D,
which is rooted at su and contains all GPUs inDu . This can be
trivially proved by contradiction: if the optimal communica-
tion strategy for u is not a tree, we can construct a spanning
tree of the optimal strategy by removing some edges (i.e.,
eliminating some communication) and the spanning tree
will not have larger communication cost than the optimal
strategy. Thus, for each u ∈ V , we only need to consider
communication strategies that are trees rooted at su . We call
these strategies the set of feasible communication strategies.

Note that we define the communication strategy for each
vertex u ∈ V individually. This means that we allow vertices
from the same source GPU to use different communication
strategies, which has the following benefits. First, it provides
flexibility for load balancing, e.g., d1 can send some vertices
via NVLink and the others via PCIe. Second, it allows multi-

hop forwarding for a single vertex. For example, in Figure 6,
Ta : d1 − d2 − d3 − d4 uses d2 to forward the embedding of a
to d3 and d4, and uses fast NVLink all the way.

Cost model. Let Tu be a feasible communication strategy
of a vertex u ∈ V . We define a communication plan S for
a GNN layer as S = ∪u ∈VTu . We also define a cost model

t(S) for a plan S , which measures the communication time

needed using S for distributed GNN training. We use t(S)
to guide the search for the optimal strategies. We assume
that the communications in S happen in stages and the stage
of a communication is determined by the number of links
from the source GPU. Given the communication trees of all
vertices (i.e., a communication plan), calculating the cost
takes three steps: (1) calculating the amount of data transfer
on each link in each stage; (2) calculating the communication
time of each stage by taking the maximum communication

time of the active links in the stage; (3) calculating the total
communication time as the sum of the stages. For example,
in Figure 6, for vertex a and Ta : d1 − d2 − d3 − d4, we have
d1 − d2, d2 − d3 and d3 − d4 conducted in stage 1, 2 and 3,
respectively. We also assume that the communications in
the same stage happen concurrently and a stage finishes
only when all its communications complete. For example, if
Ta : d1 − d2 − d3 − d4 and Tд : d2 − d3 − d4, then d1 sends a
to d2 and d2 sends д to d3 concurrently as they are both in
stage 1.

Dividing the communications into stages allows to batch
the transfer of different vertices to fully utilize the band-
width. For example, if Ta = Tb : d1 − d2 − d3 − d4, then a

and b are sent from d1 to d2 together on NVLink via one
communication operation. In addition, communications in
the same stage are parallelized on different links. Note that
we call the connection between two computing GPUs (or
workers) a link. The link may have only one physical con-
nection, e.g., the NVLink between d1 and d2 in Figure 6, or
multiple physical connections, the PCIe-QPI-PCIe link from
d1 to d3. We use L to denote the set of all links in the topology
D.

We apply the following rules to calculate t(S):

• For a direct link Li ∈ L between the GPUs, e.g., an
NVLink, its communication time in stage k is tki =

cki (S)/bi , in which cki (S) is the amount of data transfer
in S that happens on link Li at stage k , and bi is the
bandwidth of link Li .

• For a link Li ∈ L that contains multiple physical con-
nections, e.g., the PCIe-QPI-PCIe link between d1 and
d3, we decompose it into multiple physical hops Li j ,

and have tki = maxj t
k
i j , in which tki j = cki j (S)/bi j and

cki j (S) is the aggregate data transfer that goes through

physical hop Li j at stage k .

• The communication time of a stage k is tk = maxi t
k
i .

The total communication time of a plan S is t(S) =
∑m−1

k=1 tk , where we assume that D containsm GPUs

and hence there are at mostm − 1 stages. 2

In our cost function, using the maximum communication
time of the physical connections as the communication time
for a link allows to account for contention. For example,
when d1 sends {a,b} to d3, and d2 sends {д,h} to d3 via the
PCIe-QPI-PCIe link in Figure 6 in the same stage, the com-
munication time will be decided by transferring {a,b,д,h}

(i.e., the aggregate data) over the QPI connection between
the CPUs. This assumption is also reasonable as the com-
munications on multiple physical connections are pipelined
and thus the communication time depends on the slowest
connection. Defining the stage communication time as the
maximum among the links allows us to balance the load

2This is because the communication strategy of each vertex is a tree.

Algorithm 1 Shortest Path Spanning Tree (SPST)

1: Input: The communication topology graph D(V ′
, E ′),

the source GPU su and the destination GPUs Du for
each vertex u ∈ V .

2: Output: The communication strategies for all vertices
in V .

3: for u ∈ V do

4: Nsrc = {su }

5: for i from 1 to |Du | do

6: C = incrmentalLinkCost(D, S) ▷ Use Algorithm 2
7: Run dijkstra(Nsrc ,D,C,Du\Nsrc)

8: Let p be the shortest path among the set of shortest
paths from each d ∈ Nsrc to each d ′ ∈ Du\Nsrc

computed in Dijkstra algorithm
9: Nsrc = Nsrc ∪ { vertices on p}
10: S = S ∪ { edges on p}
11: end for

12: end for

13: Return: S

among different links because putting too much load on one
link will result in a long stage communication time.
We define the communication planning problem as fol-

lows:

min t(∪u ∈VTu)

s.t. Tu ∈ D and is a tree that contains su and Du .
(2)

An interesting property of our communication planning
problem is that the optimal plan is irrelevant to the feature

dimension of the vertex embeddings. Adjusting the feature
dimension creates a common linear scaling on the communi-
cation time on all links and stages, and thus an optimal plan
for a feature dimension f is also optimal for another fea-
ture dimension f ′. A corollary from this property is that the
same optimal communication plan applies for different GNN
layers and models as they share the same communication
relation and may differ only in embedding dimension.

5.2 The SPST Algorithm

For each vertexu ∈ V , communication planning needs to find
a rooted spanning tree Tu of the communication topology D
as its communication strategy.Tu should use the source GPU
of u (i.e., su) as root and contain all destination GPUs in Du .
We use a shortest path spanning tree (SPST) algorithm for
communication planning, which is presented in Algorithm 1.
SPST computes the communication strategy for the ver-

tices one by one, and we randomly shuffle the vertices of
G = (V , E) before execution. When processing a vertex u,
SPST considers the communication strategies of the pro-
cessed vertices as fixed, and minimizes the increase in the
overall communication time brought by u. For a vertex u,
SPST keeps a set of source GPUs Nsrc , which is initialized
as su and records the GPUs that have received u. In each

Algorithm 2 incrementalLinkCost

1: Input: The communication topology graph D(V ′
, E ′),

and a set of communication strategies S .
2: Output: Two dimensional array with shape (|V ′ |, |E ′ |)

modeling the cost of using different links at different
stages.

3: C = array2D(|V ′ |, |E ′ |)

4: for ej ∈ |E ′ | do

5: for i from 0 to |V ′ | − 1 do
6: C(i, ej) = costFunc(S ∪ {(i, ej)}) − costFunc(S)

7: end for

8: end for

9: Return: C

iteration (Lines 5-11), SPST invokes a multi-source shortest
path algorithm (Line 7) to find the shortest path from each
GPU in Nsrc to each GPU in Du\Nsrc . Then it picks the path
p that has the shortest cost distance among all the paths
found in Line 8, and adds the GPUs on p to Nsrc (Line 9)
and the links on p to the cumulative communication plan S

(Line 10). As one destination GPU is added to Nsrc in each
iteration, SPST includes all GPUs in Du in the spanning tree
after |Du | iterations and thus finishes processing vertex u.

Line 6 of Algorithm 1 invokes Algorithm 2 to calculate the
edge weight matrix C for path finding, where costFunc(·) is
the cost model discussed in ğ5.1 andC(i, ej) is the increase in
the overall communication time when transferring a vertex
embedding on link ej at stage i . The cost matrix C has |V ′ |

rows as for a communication topology with |V ′ | nodes, a
spanning tree (i.e., Tu) has at most |V ′ | stages (otherwise
there will be at least one circle). Algorithm 1 uses C(i, ej)
as the edge weight for link ej if ej is i-hops away from the
source GPU su in the communication spanning tree Tu for
vertex u. In each iteration of the SPST algorithm, the costs
of the edges on the same path p can be added because these
edges belong to different stages.
There are several intuitions behind our SPST algorithm:

• Load balancing: SPST minimizes the blow-up in the
overall communication time when propagating a ver-
tex to a destination GPU. This automatically balances
the load on different links because for an under-loaded
link Li with t

k
i < tk (i.e., the link communication time

is smaller than the stage time), adding communication
on it will not increase the overall communication time.

• Prioritizing fast links and forwarding: SPST ex-
pands the spanning tree to the łnearest" destination
GPU with the smallest time cost in each step. Thus,
SPST prefers fast links (e.g., NVLink) over slow links
(e.g., QPI) as fast links have a small communication
cost. The sequential tree expansion also encourages
using intermediate GPU to forward vertices to multi-
ple destinations, i.e., transferring to one destination
GPU first and forwarding to the others via fast links.

• Avoiding contention and parallelizing communi-

cation: SPST finds the shortest path from Nsrc to one
destination GPU each time and hence the links on
the path are in different stages. 3 As we conduct the
stages sequentially, the communications in a path are
contention-free and their costs are addable. The cost
function of SPST assumes that the communications
on different links can happen in parallel in the same
stage. Using other algorithms may require more so-
phisticated handling of contention and parallelization.

Readers may wonder whether finding the optimal commu-
nication rooted tree for a vertex can be modeled as a steiner
tree problem [37], which is NP-hard but there are known
approximate solutions. The answer is negative because the
communication costs for the same vertex are not addable
as different links (for different paths) in the rooted tree can
be activated in the same stage. This is also why we need to
update the cost matrix C in each of the |Du | iterations of
Algorithm 1 when processing a vertex u.

Complexity analysis. Each vertex u in G = (V , E) needs
to run the multi-source shortest path algorithm at most
O(|Du |) = O(|V

′ |) times, where |V ′ | is the number of GPUs.
The shortest path algorithmhas a complexity ofO(|E ′ | log |E ′ |),
where |E ′ | is the number of links in the communication topol-
ogy graph D(V ′

, E ′). Therefore, the overall complexity of
SPST for all vertices is O(|V | |V ′ | |E ′ | log |E ′ |). The complex-
ity is linear w.r.t. the number of vertices in the data graph G
and not high because both |V ′ | and |E ′ | are small (e.g., < 100)
for typical distributed training scenarios.

Readers may notice that if we use Algorithm 2 to calculate
the cost of all links and stages, the complexity of the shortest
path algorithm is at least O(|E ′ | |V ′ |), which may be larger
than O(|E ′ | log |E ′ |). In this case, we can still maintain the
O(|E ′ | log |E ′ |) complexity by calculating the costs of the
links in an on-demand fashion. However, this optimization
will make the algorithm more complex but the main idea
remains the same, and thus we omit it in the paper.

6 System Design and Implementation

In this section, we discuss the system designs in DGCL and
give some implementation details.

6.1 Decentralized Communication Coordination

The communication plan S produced by the SPST algorithm
is organized into (di ,dj ,k,T

s
i j ,T

r
i j) tuples for execution. In a

tuple, dj is a GPU that has link with di , k is the stage number,
T s
i j and T

r
i j (called the send/receive table) contain the vertex

ids of the embeddings di needs to send to and receive from dj
at stage k , respectively. This organization batches the com-
munication of different vertices passing through the same
pair of GPUs and helps fully utilize the network bandwidth.

3This is because the edges on the path have different tree depths

In the backward pass, stages are executed in a reverse order,
and T s

i j and T
r
i j are switched as gradient flow in the opposite

direction of embeddings. The (di ,dj ,k,T
s
i j ,T

r
i j) tuples are is-

sued to the GPUs before training starts and do not take too
much memory as T s

i j and T
r
i j contain vertex ids instead of

high-dimensional vertex embeddings. Moreover, the same
communication tuples are reused for all GNN layers.
To execute the communication plan, a natural solution

is centralized coordination, in which each GPU notifies the
DGCL master when it finishes a stage and blocks until the
master tells it to start the next stage. However, centralized
coordination may have a high overhead for communicating
with the DGCL master and waiting for stragglers. Therefore,
we use a decentralized communication coordination protocol
based on ready and done flags. When a GPU is ready for
communication in a stage, it sets its ready flag to be true and
waits for the ready flags of its peer GPUs. When one of its
peers becomes ready, the GPU starts to send data to that peer.
Once all data have been sent to the buffer of the peer GPU, it
sets its done flag for that peer to be true so that the peer GPU
can retrieve data from the buffer. After sending and retrieving
all required data, a GPU becomes ready for the next stage.
The flags of a GPU can be accessed by its peer GPUs directly,
which alleviates the communication bottleneck on themaster.
In addition, transient stragglers in communication will not
block the other GPUs.

6.2 Efficient Communication Kernel

Automatic communicationmethod selection forGPUs.

DGCL uses different peer-to-peer communication strategies
when two GPUs have different connections. (1) For a pair
of GPU under the same CPU socket, DGCL conducts com-
munication using the CUDA virtual memory technique. The
sender gets the addresses of the data buffer and the ready
flag on the receiver from the driver, and the receiver gets
the address of the done flag of the sender. The sender and
receiver coordinate by setting the flags. (2) For GPUs un-
der different CPU sockets, DGCL conducts communication
through pinned CPU memory as it has better performance
than CUDA virtual memory in this case. A shared memory
buffer is allocated on the CPU, and the sender and receiver ac-
cess the memory address using direct memory access (DMA).
(3) For a pair of GPUs that reside on different machines, an
extra thread is assigned to help data send/receive through
NIC (e.g., Ethernet or IB). The sender moves the data to a
local buffer first and the helping thread sends the data to
the remote machine. Once the data has been sent, the help-
ing thread sets the flag on the local machine as ready. GPU
RDMA is utilized if IB and the CUDA version supports it.
Non-atomic update in back-propagation. In the back-
ward pass, a vertex embedding will receive gradients from
multiple GPUs if the vertex is used as a remote vertex by
these GPUs. As the gradients from different GPUs are re-
ceived by different CUDA threads, atomic reduction is needed

due to potential data conflict, which incurs performance
overhead. To remove the overhead, DGCL divides a stage
into several sub-stages such that a vertex receives gradients
from only one GPU in each sub-stage. We support sub-stage
communication without changing the planning algorithm.
A planned communication tuple (di ,dj ,k,T

s
i j ,T

r
i j) is divided

into |D | − 1 smaller tuples (di ,dj ,k, l,T
s
i j (l),T

r
i j (l)), and the

receive tableT r
i j is partitioned into |D | −1 parts (i.e., theT s

i j (l)

sub-tables) such that gradients for the same vertex from dif-
ferent GPUs are in different sub-stages. The send table is
adjusted according to the receive table.
Data packing. DGCL packs the vertex embeddings into 16
bytes to improve efficiency. 16 bytes is the maximum data
size that one CUDA thread can fetch in one instruction and
packing reduces the number of memory accesses.

6.3 Implementation Details

In DGCL , we use multiple processes for computation and
maps one computation process to each GPU. A master pro-
cess is utilized for coordination. The initialization of the
distributed communication environment depends on the par-
allel execution framework, e.g., MPI or PyTorch distributed
package. For MPI, the master process generates a communi-
cation address and broadcasts it to the other processes. For
PyTorch distributed package, multiple processes are spawn
from one process and the processes can read the address of
the master from the environment variables. After all pro-
cesses have connected with the master process, the master
uses gather and scatter for distributed training, e.g., assign
the partitioned sub-graphs, dispatch vertex features and ex-
change GPU connection information. DGCL leverages exist-
ing data parallel frameworks such as Horovod and PyTorch
distributed data parallel package for distributed model syn-
chronization. As the model size is usually small for GNNs,
we do not conduct optimizations for it.

In existing GNN systems, execution is decomposed into
two parts, i.e., graph relevant operations such as graph ag-
gregation and standard DNN operations such as matrix mul-
tiplication. On a single machine, the graph relevant oper-
ations need to involve the remote vertices while the DNN
operations do not need to compute the embeddings for the
remote vertices. Therefore, we use graphAllgather to collect
the remote vertices before the single machine GNN system
conducts the graph operations. After the graph operations,
we remove the embeddings of the remote vertices before
the single machine GNN system conducts the normal DNN
operations. As a result, we do not incur extra computation
overhead for distributed training.

7 Experimental Evaluation

We evaluated our method with two hardware configura-
tions. The default configuration contains two servers, each
equipped with 8 V100 GPUs with 16 GB memory and the

Table 4. Dataset statistics and model configurations

Reddit Com-Orkut Web-Google Wiki-Talk

Vertices 0.23M 3.07M 0.87M 2.39M

Edges 110M 117M 5.1M 5.0M

Avg. Degree 478 38.1 5.86 2.09

Feature Size 602 128 256 256

Hidden Size 256 128 256 256

connections among the GPUs on the same machine follows
Figure 3. The GPUs on one machine communicate with peers
on the other machine using the same IB NIC card and GPU
RDMA [23] is enabled for GPUs under the same PCIe switch
with the IB NIC card. The second configuration is a server
that contains 8 1080-Ti GPUs with 12 GB memory. The GPUs
are connected using PCIe instead of NVLink.

Datasets. Table 4 lists the statistics of the graphs used in
the experiments. Reddit [8] is a post-to-post graph, where
vertices are posts and an edge connects two posts if there
is a user that comments on both of them. Com-Orkut [41]
models a social network, in which vertices are users and
edges represent the friendship relation between users. In
Web-Google [19], the vertices are web pages and the edges
are the hyperlinks between the web pages. Wiki-Talk [18]
records user interactions on Wikipedia, in which vertices
are Wikipdia users and an edge from user u to user v means
that u edited the talk pages of v at least once. Among the 4
graphs, Reddit and Com-Orkut are relatively dense, while
Web-Google and Wiki-Talk are sparse. Com-Orkut and Wiki-
Talk contain more than 2 million vertices, while Reddit and
Web-Google are smaller. We choose graphs with different
properties to validate DGCL under different settings.

GNNmodels.Weused three popular GNNmodels.GCN [17]
is widely used for semi-supervised learning on graphs and
aggregates neighbor embeddings using simple weighted sum.
CommNet [32] models multiple cooperating agents, which
learn to communicate among themselves before taking ac-
tions.GIN [39] usesmulti-layer perceptions (MLPs) to update
the vertex embedding and is shown to match the powerful
Weisfeiler-Lehman graph isomorphism test. From GCN to
CommNet and GIN, the models have an increasing computa-
tion complexity, and we used them to explore the interplay
between the computation and communication costs. We used
2 layers for all GNN models as 2-layer GNNs are the most
popular. The dimensions of the input feature and hidden
feature can be found in Table 4. For graphs that do not come
with vertex features, we randomly generate the 0-th layer
vertex embeddings.

Baselines and evaluation methodology. A direct com-
parison with NeuGraph [21] and ROC [13] is not feasible be-
cause they are not yet open-source.We comparedDGCLwith

96.4
84.4

60.5

131 122

70.8

175

149

73.2

375

579

256

0

100

200

300

400

500

600

700

GCN CommNet GIN

P
e
r-

e
p
o
c
h
 t
im

e
 (
m

s)

Model

Communication Time

DGCL

Swap

Peer-to-peer

Replication

(a) Reddit

164 179 165

1030 1023

343
313 323

192

412

OOM

1160

0

200

400

600

800

1000

1200

1400

1600

GCN CommNet GIN

P
e
r-

e
p

o
c
h

 t
im

e
 (

m
s)

Model

Communication Time

DGCL

Swap

Peer-to-peer

Replication

(b) Com-Orkut

33.9
43

169

554
571

274

60
69

174

34
45.9

184

0

100

200

300

400

500

600

GCN CommNet GIN

P
e
r-

e
p

o
c
h

 t
im

e
 (

m
s)

Model

Communication Time

DGCL

Swap

Peer-to-peer

Replication

(c) Web-Google

70
91.4

248

1490 1510

548

90
111

252

OOM OOM OOM

0

100

200

300

400

500

600

700

800

900

GCN CommNet GIN

P
e
r-

e
p

o
c
h

 t
im

e
 (

m
s)

Model

Communication Time

DGCL

Swap

Peer-to-peer

Replication

(d)Wiki-Talk

Figure 7. The per-epoch time and communication time for training the 3 GNN models on 4 datasets with 8 GPUs

three baselines, Swap, Peer-to-peer and Replication. DGCL,
Swap and Peer-to-peer use the same non-overlapping graph
partitioning to assign vertices in a graph to the GPUs. DGCL
uses the DGCL library for embedding passing. Following
ROC, Peer-to-Peer uses direct peer-to-peer communication.
Swap follows NeuGraph [21] by dumping vertex embeddings
to main memory after each layer for communication, and
we also implemented the chain-transfer optimization in Neu-
Graph for high efficiency. Replication eliminates embedding
passing by replicating vertices as discussed in ğ3. For fair
comparison, all methods used DGL for single-GPU execution.
Our main performance metrics are per-epoch time and

communication time. Per-epoch time is the time to conduct a
forward and backward pass for all vertices in the graph. As
all our baselines are equivalent in single-GPU training from
the algorithm perspective, shorter per-epoch time means
better time-to-accuracy performance. Communication time
is the time used to conduct embedding passing in an epoch.
All reported timing results are measured after warm-up and
averaged over 10 repetitions.

7.1 Main Results

We report the per-epoch time and communication time for
training the three GNN models on the four datasets with 8
GPUs in Figure 7. We decompose the per-epoch time into
communication time and computation time, and plot the com-
munication time at the top of each bar. Note that Replication
has zero communication time as it does not need to conduct
communication. We can make the following observations:
(1) Replication has severe performance penalty. Its per-epoch
time is significantly longer than the other methods for the
dense Reddit graph (see Figure 7a) and it goes OOM for the
larger Com-Orkut and Wiki-Talk graphs. However, for the
small and sparseWeb-Google graph, Replication outperforms
Peer-to-peer and Swap because a relatively small number of
vertices are replicated. (2) Swap has the worst performance
on the three larger graphs, Com-Orkut, Web-Google and
Wiki-Talk, as it needs to swap all vertex embeddings to main
memory. However, Swap performs well for the small and
dense Reddit graph because a large portion of the vertices
swapped to main memory are required by remote GPUs.

(3) Peer-to-peer has a better overall performance than Repli-

cation and Swap.
We also have the following observations for DGCL. (1) It

has significantly shorter communication time than Peer-to-

peer and Swap. The communication time of Peer-to-peer is
up to 7.04x and on average 4.45x of DGCL’s time, while
that of Swap is up to 230x and on average 60.7x of DGCL’s
time. (2) As a result of its short communication time, DGCL
achieves the shortest per-epoch time among the four meth-
ods in all cases. Averaged across all graphs and models, the
per-epoch time of Peer-to-peer and Swap are 1.47x and 7.43x
ofDGCL’s time. This result is remarkable as for sparse graphs
(i.e., Web-Google and Wiki-Talk) or complex models (e.g.,
GIN), computation dominates the execution time and DGCL

needs to spend the same computation time as Peer-to-peer
and Swap as they all use DGL for single-GPU execution.
(3) DGCL has the most significant performance gain for train-
ing GCN on Com-Orkut, in which case the per-epoch time
of the baselines is reduced by at least 47.7%. Overall, DGCL
is most efficient for dense graphs and simple models, for
which the communication time takes up a large portion of
the per-epoch time.
To show the generality of DGCL when using different

number of GPUs, we report the results of training GCN on
Reddit in Figure 8 and GIN on Web-Google in Figure 9. We
choose the two smaller graphs as a small number of GPUs
do not have enough memory to process the larger graphs.
For the same reason, we do not report GIN on Web-Google
using 1 GPU. Also, as Swap is designed for a single machine
in NeuGraph, we do not use it for 16 GPUs with two servers.
The results show that DGCL consistently achieves the

shortest per-epoch time among all methods and has shorter
communication time than both Swap and Peer-to-peer. The
methods have similar per-epoch time for training GIN on
Web-Google because the computation time dominates the
per-epoch time due to the complex model. The communi-
cation time of Swap drops when increasing from 2 GPUs
to 8 GPUs because there are more GPUs to dump/load the
vertex embeddings from/to main memory in parallel. Peer-
to-peer and DGCL have identical communication time when

0

100

200

300

400

500

600

700

800

1 2 4 8 16

P
er

-e
p
o
ch

 T
im

e
(m

s)

GPU Count

DGCL

Swap

Peer-to-peer

Replication

(a) Per-epoch time

0

100

200

300

400

500

600

1 2 4 8 16

C
o

m
m

u
.

ti
m

e
(m

s)

GPU Count

DGCL

Swap

Peer-to-peer

(b) Communication time

Figure 8. Per-epoch time and communication time for train-
ing GCN on Reddit with different number of GPUs

0

100

200

300

400

500

600

700

800

900

1000

1 2 4 8 16

P
er

-e
p

o
ch

 T
im

e
(m

s)

GPU Count

DGCL

Swap

Peer-to-peer

Replication

(a) Per-epoch time

0

50

100

150

200

250

300

350

400

1 2 4 8 16

C
o
m

m
u
.

ti
m

e
(m

s)

GPU Count

DGCL

Swap

Peer-to-peer

(b) Communication time

Figure 9. Per-epoch time and communication time for train-
ing GIN on Web-Google with different number of GPUs

Table 5. Per-epoch time (ms) for training GIN and GCN
on 16 GPUs, where DGCL-R used replication to eliminate
cross-machine communication

Web-Google Reddit

DGCL DGCL-R DGCL DGCL-R

GCN 54.0 26.7 88.4 86.4
GIN 94.8 107 53.1 71.9

there are 4 or fewer GPUs because these GPUs have direct
NVLink connections among each other, and both methods
use NVLink. When the connections are more complex, e.g.,
with 8 or 16 GPUs, DGCL has significantly shorter commu-
nication time than Swap and Peer-to-peer. For training GCN
on Reddit with 16 GPUs, the per-epoch time of Peer-to-peer
and Replication are 3.94x and 6.31x of DGCL’s time.

Figure 8 and Figure 9 show that distributed GNN training
does not scale well with 16 GPUs due to slow inter-machine
communication with IB. Thus, we introduce an alternative
scheme, i.e., DGCL-R, which replicates vertices to eliminate
inter-machine communication as in Replication and uses
DGCL to plan communication for GPUs in the same machine.
Table 5 reports the per-epoch time of DGCL-R and DGCL

for training GCN and GIN on Web-Google and Reddit. The
results show that DGCL-R has longer per-epoch time than

Table 6. Time (ms) for one graphAllgather operation in a
hardware configuration without NVLink

Reddit Com-Orkut Web-Google Wiki-Talk

DGCL 14.3 128 7.84 5.86

Swap 14.5 1220 116 317

Peer-to-peer 17.9 179 8.72 8.51

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

250 450 650 850

R
u

n
n

in
g

 T
im

e
(m

s)

Estimated Cost

(a)Web-Google

0.9

1.1

1.3

1.5

1.7

1.9

2.1

450 650 850 1050 1250 1450

R
u

n
n

in
g

 T
im

e
(m

s)

Estimated Cost

(b) Reddit

Figure 10. Relation between the model estimated commu-
nication cost and the actual communication time for one
graphAllgather operation with 8 GPUs

DGCL when training GIN because GIN is computation inten-
sive and replication introduces extra computation. DGCL-R
also does not perform well for Reddit, a more dense graph, as
it replicates almost the entire graph on each machine. How-
ever, DGCL-R significantly outperforms DGCL for training
GCN on Web-Google because the graph is sparse and inter-
machine communication dominates per-epoch time for the
simple GCN model.

To show that DGCL can cope with different hardware con-
nections, we report the time taken by one graphAllgather
operation in our second hardware configuration without
NVLink. Recall that graphAllgather collects the remote ver-
tex embeddings for each GPU for training a GNN layer and
hence reflects the communication time. The feature size is
128 and there are 8 GPUs. Table 6 shows that graphAllgather
uses less time with DGCL than with both Swap and Peer-to-

peer. Swap takes a long time for the large graphs (i.e., Web-
Goggle, Com-Orkut andWiki-Talk), which is consistent with
its poor performance for these graphs in Figure 7. DGCL’s
advantage over Peer-to-peer is less significant compared with
Figure 7 as this configuration does not have NVLink. DGCL
outperforms Peer-to-peer in this case mainly because it con-
siders contention and load balancing.

7.2 Micro Benchmarks

As we use the cost model in ğ5.1 to guide communication
planing, it is crucial that the model estimated communica-
tion cost is an accurate estimate of the actual communication
time. To test the accuracy of our cost model, we plot the esti-
mated cost and actual communication time of one graphAll-
gather operation on Reddit and Web-Google in Figure 10.

Table 7. The breakdown of the communication time (ms) of
one graphAllgather operation for DGCL with 8 GPUs

NVLink Others Relative difference

Web-Google 0.787 0.821 4.32%

Reddit 1.16 1.07 7.41%

Com-Orkut 7.43 7.30 1.78%

Wiki-Talk 0.783 0.882 12.6%

Table 8. Running time (s) of SPST (s)

Reddit Com-Orkut Web-Google Wiki-Talk

2 GPU 0.74 4.61 0.78 0.37

4 GPU 1.52 16.2 1.56 0.65

8 GPU 4.19 43.5 3.42 1.45

16 GPU 9.91 110 6.76 3.14

0.935

0.096

1.880

0.350

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R
at

io
 o

v
er

 T
ra

in
in

g
 M

em
o

ry
 （
‰
）

(a) 8 GPU

0.782

0.089

1.297

0.344

0

0.2

0.4

0.6

0.8

1

1.2

1.4

R
at

io
 o

v
er

 T
ra

in
in

g
 M

em
o

ry
 （
‰
）

(b) 16 GPU

Figure 11. The ratio between the memory used for the
send/receive tables and normal GNN training

The communication volume (hence communication time) is
controlled by communicating only some vertices in the orig-
inal graph. The results show that the actual communication
time has a linear relation with the estimated communica-
tion cost. We fitted a line between them and found that the
divergence from the line is below 5% in most cases.

One important goal of the SPST algorithm is to balance the
communication time of different links to avoid communica-
tion straggler. We give the breakdown of the communication
time that DGCL spends on different links in Table 7. To avoid
interference, the communication time of NVLink is measured
after removing the communication on other links and vice
versa. The results show that DGCL can effectively balance
the communication time spent on different links.
We report the running time of the SPST algorithm for

different graphs and number of GPUs in Table 8, which is
measured on a machine with a 48-core Platinum 8160 CPU
and 256G main memory in the single-thread mode. The re-
sults show that the SPST algorithm can finish communication
planning in several seconds in most cases. The trend is that
SPST takes more time when the graph is large (i.e., more

Table 9. Time (ms) for graphAllgather in the backward pass

Reddit Com-Orkut Web-Google Wiki-Talk

Atomic 1.72 14.3 1.11 0.99

Non-atomic 1.28 9.16 0.83 0.71

vertices to process) or dense (i.e., more multi-source shortest-
path iterations for each vertex). In addition, the running time
grows approximately linearly with the number of GPUs.

We report the ratio between the memory used to store the
send/receive tables (i.e.,T s

i j ,T
r
i j) for decentralized communica-

tion coordination and the peak memory consumption during
normal GNN training in Figure 11. The results show that the
ratio is below 0.002 in all cases, indicating that decentralized
communication coordination has a low memory overhead.
This is because we store only vertex ids instead of high-
dimensional vertex embeddings and the same send/receive
tables are reused for different GNN layers. To validate the
effectiveness of non-atomic aggregation in back propagation,
we report the time of one graphAllgather operation in the
backward pass in Table 9. We used 8 GPUs in the default
configuration with NVLink and the dimension of the hidden
layer is 128. The results show that non-atomic aggregation
effectively reduces the running time of atomic aggregation.

8 Related Work

In this section, we review related works on GNN systems
and communication planning.

8.1 Existing GNN Systems

DGL [35] and PyG [7] integrate with existing deep learning
frameworks (e.g., Tensorflow [1] and PyTorch [27]) and pro-
vide sparse tensor operations tailored for graph data. They
consider training on a single GPU and currently do not sup-
port full graph training on multiple GPUs. Due to the heavy
computation workload of GNN training, using a single GPU
may result in a long per-epoch time for large graphs. More-
over, a single GPU may run out-of-memory (OOM) as each
vertex needs to keep the high dimensional embedding during
training.

NeuGraph [21] supports GNN training on multiple GPUs
in a single machine by partitioning a graph into partitions
and assigning each GPU to handle some partitions. The CPU
memory is used for data exchange: the GPUs fetch the re-
quired vertex embeddings from CPU memory for computa-
tion and write the embeddings back to CPU memory after
finishing a layer. As the GPUs access CPU memory via rel-
atively slow PCIe links, the I/O overhead is reported to be
high, taking up about 90% of the per-epoch time in some
cases. In addition, it is unclear how to extend NeuGraph to
multiple machines due to the high I/O overhead.

ROC [13] also uses graph partitioning to divide the work-
load among the GPUs but supports training with multiple

machines. A linear regression model is learned to predict
the execution time of each GPU and graph partitioning is
adjusted accordingly to balance the workload of the GPUs.
When GPU memory is insufficient (e.g., for large graphs),
ROC uses a dynamic programming algorithm to choose the
tensors to swap to CPU memory such that the data transfer
is minimized. However, ROC is based on Lux [12], which
uses peer-to-peer communication for vertex state exchange.
We have shown that peer-to-peer communication has high
overheads for distributed GNN training in ğ3.
Seastar [38] allows users to program GNN models easily

with a vertex-centric programming model in native Python
syntax. GNN models implemented with Seastar’s API are
intuitive to understand as the vertex-centric programming
model provides a direct one-to-one mapping from the GNN
formula to the implementation code. Seastar achieves excel-
lent performance by just-in-time compiling and optimizing
the vertex-centric function with Seastar operator fusion and
kernel-level optimizations such as feature-adaptive comput-
ing, locality-centric execution and dynamic load balancing.
However, Seastar currently only supports single-GPU GNN
training. In this regard, DGCL can integrate with Seastar
for scalable GNN training, where DGCL handles commu-
nication planning and execution (also other tasks such as
graph partitioning) while Seastar handles the single-GPU
GNN training. DGCL and Seastar can further integrate with
MindSpore [11], a deep learning backend framework, to ac-
celerate distributed training using MindSpore’s features such
as auto-parallel training and tensor-compilation techniques.

8.2 Communication Planning

GPU-based graph processing systems usually target at graph
workloads such as PageRank, BFS and connected compo-
nents. Some of them build a ring topology for cross-GPU
communication [2, 42], some conduct communication via
CPU memory [16], some use replication to eliminate cross-
GPU communication [43], and some use direct peer-to-peer
communication [26]. However, these works do not conduct
fine-grained communication scheduling for multi-gpu graph
processing by considering the underlying communication
topology.

There are some works [6, 24] that use collective communi-
cation (e.g., allreduce and allgather operations [3, 28, 29]) for
GPUs when training regular deep neural networks (DNNs).
Allreduce aggregates the data of the same size across the
GPUs and writes the result back to each GPU. Allgather con-
catenates the data from different GPUs and writes the results
to each GPU. These works assume that each GPU needs to
send/receive the same amount of data and the data sent by
one GPU is needed by all other GPUs. These assumptions no
longer hold for distributed GNN training as different GPUs
need the embeddings of different vertices.

The fine-grained graph communication problem can also
be formulated as a multi-source multicast routing problem

(MMRP). Given the communication topology and the band-
width of each link, the goal of MMRP is to ensure that the
traffic on all links does not exceed their capacities [34], or
to minimize the total traffic on all links or maximize the
minimum residual bandwidth of the links [5]. However, in
the GNN communication planning problem (GNN-CPP), we
need to minimize the total communication time of all multi-
cast tasks, i.e., one task for each vertex to transfer it to remote
GPUs. GNN-CPP is different from MRP as we do not need
to consider the bandwidth constraints of the links (thus the
bandwidth limits and residual bandwidth do not apply) and
the time costs of different multicast tasks are not additive
due to concurrent communication (this makes it different
from minimizing the total traffic).

9 Conclusions

We presented DGCL Ð a general and efficient communica-
tion library for distributed GNN training. By considering the
properties of the embedding passing operation in distributed
GNN training, DGCL designs a tailored SPST algorithm for
communication planning, which jointly considers fully uti-
lizing fast links, avoiding contention and balancing loads
on different links. DGCL can be used to easily extend exist-
ing single-GPU GNN systems to distributed training with
user-friendly APIs. Experimental results show that DGCL
effectively reduces the time used for communication and
hence improves the efficiency and scalability of distributed
GNN training. We think DGCL may also benefit other dis-
tributed applications (e.g., PageRank on GPU) that has an
irregular communication pattern similar to GNN training.

Acknowledgments. We thank the reviewers and the shep-
herd of our paper, Junfeng Yang, for their constructive com-
ments that have helped greatly improve the quality of the
paper. This work was supported by GRF 14208318 from the
RGC of HKSAR.

References
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,

Michael Isard, et al. 2016. Tensorflow: A system for large-scale machine

learning. In 12th USENIX symposium on operating systems design and

implementation (OSDI 16). 265ś283.

[2] Tal Ben-Nun, Michael Sutton, Sreepathi Pai, and Keshav Pingali. 2017.

Groute: An asynchronousmulti-GPU programmingmodel for irregular

computations. ACM SIGPLAN Notices 52, 8 (2017), 235ś248.

[3] Jehoshua Bruck and Ching-Tien Ho. 1993. Efficient global combine

operations in multi-port message-passing systems. Parallel Processing

Letters 3, 04 (1993), 335ś346.

[4] Rong Chen, Jiaxin Shi, Binyu Zang, and Haibing Guan. 2014. Bipartite-

oriented distributed graph partitioning for big learning. In Proceedings

of 5th Asia-Pacific Workshop on Systems. 1ś7.

[5] Yuh-Rong Chen, Sridhar Radhakrishnan, Sudarshan Dhall, and Suley-

man Karabuk. 2013. On multi-stream multi-source multicast routing.

Computer Networks 57, 15 (2013), 2916ś2930.

[6] Minsik Cho, Ulrich Finkler, and David Kung. 2019. BlueConnect: Novel

Hierarchical All-Reduce on Multi-tired Network for Deep Learning.

In Proceedings of the Conference on Systems and Machine Learning

(SysML).

[7] Matthias Fey and Jan Eric Lenssen. 2019. Fast graph representation

learning with PyTorch Geometric. arXiv preprint arXiv:1903.02428

(2019).

[8] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive repre-

sentation learning on large graphs. In Advances in neural information

processing systems. 1024ś1034.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep

residual learning for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition. 770ś778.

[10] Mikael Henaff, Joan Bruna, and Yann LeCun. 2015. Deep convolutional

networks on graph-structured data. arXiv preprint arXiv:1506.05163

(2015).

[11] Huawei. 2020. MindSpore. https://e.huawei.com/us/products/

cloud-computing-dc/atlas/mindspore.

[12] Zhihao Jia, Yongkee Kwon, Galen Shipman, Pat McCormick, Mattan

Erez, and Alex Aiken. 2017. A distributed multi-gpu system for fast

graph processing. Proceedings of the VLDB Endowment 11, 3 (2017),

297ś310.

[13] Zhihao Jia, Sina Lin, Mingyu Gao, Matei Zaharia, and Alex Aiken.

2020. Improving the accuracy, scalability, and performance of graph

neural networks with roc. Proceedings of Machine Learning and Systems

(MLSys) (2020), 187ś198.

[14] George Karypis. 1997. METIS: Unstructured graph partitioning and

sparse matrix ordering system. Technical report (1997).

[15] George Karypis and Vipin Kumar. 1998. A fast and high quality mul-

tilevel scheme for partitioning irregular graphs. SIAM Journal on

scientific Computing 20, 1 (1998), 359ś392.

[16] Min-Soo Kim, Kyuhyeon An, Himchan Park, Hyunseok Seo, and Jin-

wook Kim. 2016. Gts: A fast and scalable graph processing method

based on streaming topology to gpus. In Proceedings of the 2016 Inter-

national Conference on Management of Data. 447ś461.

[17] Thomas N Kipf and Max Welling. 2016. Semi-supervised classification

with graph convolutional networks. arXiv preprint arXiv:1609.02907

(2016).

[18] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. 2010. Signed

networks in social media. In Proceedings of the SIGCHI conference on

human factors in computing systems. 1361ś1370.

[19] Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Ma-

honey. 2009. Community structure in large networks: Natural cluster

sizes and the absence of large well-defined clusters. Internet Mathe-

matics 6, 1 (2009), 29ś123.

[20] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. 2015.

Gated graph sequence neural networks. arXiv preprint arXiv:1511.05493

(2015).

[21] Lingxiao Ma, Zhi Yang, Youshan Miao, Jilong Xue, Ming Wu, Lidong

Zhou, and Yafei Dai. 2019. Neugraph: parallel deep neural network

computation on large graphs. In 2019 USENIX Annual Technical Con-

ference (USENIX ATC 19). 443ś458.

[22] NVIDIA. 2020. DGX Systems. https://www.nvidia.com/en-sg/data-

center/dgx-systems. [Online; accessed 8-Oct-2020].

[23] NVIDIA. 2020. GPUDirect RDMA.

https://docs.nvidia.com/cuda/gpudirect-rdma. [Online; accessed

8-Oct-2020].

[24] NVIDIA. 2020. NVIDIA Collective communications library (NCCL).

https://https://developer.nvidia.com/nccl. [Online; accessed 8-Oct-

2020].

[25] NVIDIA. 2020. NVLink and NVSwitch. https://www.nvidia.com/en-

sg/data-center/nvlink. [Online; accessed 8-Oct-2020].

[26] Yuechao Pan, Yangzihao Wang, Yuduo Wu, Carl Yang, and John D

Owens. 2017. Multi-GPU graph analytics. In 2017 IEEE International

Parallel and Distributed Processing Symposium (IPDPS). IEEE, 479ś490.

[27] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James

Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia

Gimelshein, Luca Antiga, et al. 2019. Pytorch: An imperative style,

high-performance deep learning library. In Advances in neural infor-

mation processing systems. 8026ś8037.

[28] Pitch Patarasuk and Xin Yuan. 2007. Bandwidth efficient all-reduce

operation on tree topologies. In 2007 IEEE International Parallel and

Distributed Processing Symposium. IEEE, 1ś8.

[29] Pitch Patarasuk and Xin Yuan. 2009. Bandwidth optimal all-reduce

algorithms for clusters of workstations. J. Parallel and Distrib. Comput.

69, 2 (2009), 117ś124.

[30] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. 2013. X-stream:

Edge-centric graph processing using streaming partitions. In Proceed-

ings of the Twenty-Fourth ACM Symposium on Operating Systems Prin-

ciples. 472ś488.

[31] Karen Simonyan and Andrew Zisserman. 2014. Very deep convo-

lutional networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556 (2014).

[32] Sainbayar Sukhbaatar, Arthur Szlam, and Rob Fergus. 2016.

Learning Multiagent Communication with Backpropagation. In

Advances in Neural Information Processing Systems 29: Annual

Conference on Neural Information Processing Systems 2016, De-

cember 5-10, 2016, Barcelona, Spain, Daniel D. Lee, Masashi

Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett

(Eds.). 2244ś2252. https://proceedings.neurips.cc/paper/2016/hash/

55b1927fdafef39c48e5b73b5d61ea60-Abstract.html

[33] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana

Romero, Pietro Lio, and Yoshua Bengio. 2017. Graph attention net-

works. arXiv preprint arXiv:1710.10903 (2017).

[34] Chu-Fu Wang, Chun-Teng Liang, and Rong-Hong Jan. 2002. Heuristic

algorithms for packing of multiple-group multicasting. Computers &

Operations Research 29, 7 (2002), 905ś924.

[35] Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye,

Mufei Li, Jinjing Zhou, Qi Huang, Chao Ma, et al. 2019. Deep graph

library: Towards efficient and scalable deep learning on graphs. arXiv

preprint arXiv:1909.01315 (2019).

[36] Wikipedia. 2020. InfiniBand. https://en.wikipedia.org/wiki/InfiniBand.

[Online; accessed 8-Oct-2020].

[37] Wikipedia. 2020. Steiner tree problem.

https://en.wikipedia.org/wiki/Steiner_tree_problem. [Online;

accessed 8-Oct-2020].

[38] Yidi Wu, Kaihao Ma, Zhenkun Cai, Tatiana Jin, Boyang Li, Chenguang

Zheng, James Cheng, and Fan Yu. 2021. Seastar: Vertex-Centric Pro-

gramming for Graph Neural Networks. In Proceedings of the Fourteenth

EuroSys Conference 2021, April 26-28, 2021. ACM.

[39] Keyulu Xu,Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How

powerful are graph neural networks? arXiv preprint arXiv:1810.00826

(2018).

[40] Hongxia Yang. 2019. Aligraph: A comprehensive graph neural net-

work platform. In Proceedings of the 25th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining. 3165ś3166.

[41] Jaewon Yang and Jure Leskovec. 2015. Defining and evaluating net-

work communities based on ground-truth. Knowledge and Information

Systems 42, 1 (2015), 181ś213.

[42] Yu Zhang, Xiaofei Liao, Hai Jin, Bingsheng He, Haikun Liu, and Lin Gu.

2019. DiGraph: An efficient path-based iterative directed graph pro-

cessing system on multiple GPUs. In Proceedings of the Twenty-Fourth

International Conference on Architectural Support for Programming

Languages and Operating Systems. 601ś614.

[43] Jianlong Zhong and Bingsheng He. 2013. Medusa: Simplified graph

processing on GPUs. IEEE Transactions on Parallel and Distributed

Systems 25, 6 (2013), 1543ś1552.

	Abstract
	1 Introduction
	2 Background on GNN Training
	3 An Analysis on Strategies for Distributed GNN Training
	4 The Architecture and API of DGCL
	4.1 Architecture and Workflow
	4.2 API

	5 Communication Planning
	5.1 Problem Formulation
	5.2 The SPST Algorithm

	6 System Design and Implementation
	6.1 Decentralized Communication Coordination
	6.2 Efficient Communication Kernel
	6.3 Implementation Details

	7 Experimental Evaluation
	7.1 Main Results
	7.2 Micro Benchmarks

	8 Related Work
	8.1 Existing GNN Systems
	8.2 Communication Planning

	9 Conclusions
	References

