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ABSTRACT

Recent research efforts have made notable progress invingro
the performance of (exhaustive) maximal clique enumendtidéCE).
However, existing algorithms still suffer from explorinket huge
search space of MCE. Furthermore, their results are oftdesin
able as many of the returned maximal cliques have large aperl
ping parts. This redundancy leads to problems in both coaput
tional efficiency and usefulness of MCE.

In this paper, we aim at providing a concise and complete sum-
mary of the set of maximal cliques, which is useful to many ap-
plications. We propose the notion efvisible MCE to achieve
this goal and design algorithms to realize the notion. Based
the refined output space, we further consider applicatioolsid-
ing an efficient computation of the tdpresults with diversity and
an interactive clique exploration process. Our experilesults
demonstrate that our approach is capable of producing bofpu
high usability and our algorithms achieve superior efficienver
classic MCE algorithms.

Categories and Subject Descriptors

H.2.8 DATABASE MANAGEMENT ]: Database Applications—
Data mining G.2.2 DISCRETE MATHEMATICS ]: Graph The-
ory—Graph algorithms

General Terms
Algorithms, Performance

Keywords

Maximal clique enumeration, clique summarization, cligoacise
representation

1. INTRODUCTION

Let G = (V, E) be a simple undirected graph. A subset of ver-
tices,C C V, is called ecliqueif the subgraph of7 induced byC'
is a complete subgraph, addis called amaximal cliqueif there
exists no cliqu&’’ in G such thatC” > C. The process dflaximal
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cligue enumeratiofMCE) is to enumerate the set of all maximal
cliques inG.

MCE is a fundamental problem in graph theory and has been
extensively studied [5, 6, 21]. Existing works have beeruing
on improving the efficiency of MCE in real world graphs and in
recent years, a number of new algorithms [8, 9, 10, 13] haea be
proposed for MCE in large graphs. However, an importanteissu
of MCE has been largely ignored so far, that is, the outp efz
MCE, i.e., the number of maximal cliques (especially in aéar
graph), is often exceedingly large so that it has severeiptted
the applications of MCE in practice.

We give a number of problems arisen from the large output size
of MCE as follows. First, it is often very expensive to outpuid
store the result set since the set of maximal cliques is togela
to be kept in memory and sometimes even on disk. Second, even
though the output of MCE may be pipelined to another appboat
program, it is still difficult to process and analyze the &armimber
of maximal cliques. Third, there exists a high level of rediamcy
in the set of maximal cliques since vertices are often dafgid in
multiple maximal cliques.

To address the problem caused by the sheer output size sitclas
MCE, we propose to compute summaryof the set of maximal
cliques. In particular, we require a summary to be smallze,sable
to represent the whole set of maximal cliques with a miniree¢l
of redundancy, and quick to compute (therefore post-peicgss
not acceptable).

A concise yet complete summary of all maximal cliques in a
graph can be useful in a wide range of applications. For el@mp

e Maximal cliques are widely employed f@nomaly detec-
tion in complex networks [4]. The problem is usually to find
a set of large cliques as signals of rare events. To this end, a
complete enumeration of large maximal cliques, which can
be significantly overlapping with each other, may not be as
effective as a summary in which a similar maximal clique is
present for each large maximal clique in the whole set.

e Maximal cliques are used tasualize a large graphwhere
the cliques are grouped together in the display [15]. Fora se
lected clique, its overlapping cliques are not likely to be
sen. Thus, an exhaustive maximal clique enumeration may
again be wasteful, while a smaller set of distinct maximal
cliques can be readily applied.

e Top-k computationsare important and useful in information
systems, as well in graph databases. One may query the top-
k cliques in a graph by a certain quality measure. It is also
desirable for the answers to be diverse with minimal redun-
dancy. However, computing such an answer set is often hard,



and in fact NP-hard for many quality measures such as max-
imum coverage. The situation becomes worse when quick

response is required or the graph is massive. Fast approxi-

mation algorithms, which compute tdpresults from the set
of maximal cliqgues with guaranteed quality, are availabte f
certain class of quality measures. However, computingitop-
results from a large redundant set is clearly not so efficsnt
from a good summary.

In clique exploration one wants to flexiblyexplore a graph
without fixed objectives. For example, a user may be inter-
ested in the groups that involve a particular object. Altitou

an MCE provides the most complete answer, the large num-
ber of outputs can easily overwhelm the user. Alternatj\aely
summary of small size yet containing essential information
from which other information can be (recursively) derivisd,
often more useful to the user.

We make the following main contributions in this paper.

o We identify the problem of large output size with high redun-
dancy in classic MCE. To address the problem, we introduce
the notion ofr-visible MCE, which computes a-visible
summary that ensures that every maximal clique in the graph
is well represented by a maximal clique in the summary.

pling. The algorithm utilizes important properties of clas
sic backtracking MCE algorithms for efficient redundancy
identification and effective search space pruning. We show
that the algorithm guarantees to output a summary that well
represents the whole set of maximal cliques in expectation,
with significantly improved efficiency compared with classi
MCE algorithms. We explain intuitively why the method is
effective by drawing an analogy to importance sampling.

We devise a deterministic version of the randomized algo-
rithm, which achieves stronger guarantee of the summary
quality. We also introduce an efficient technique that fur-

ther removes redundant cliques left in the summary to give a
more concise--visible summary.

We demonstrate how a-visible summary lends solid sup-
port to important real world applications, including disiy-
aware topk maximal clique retrieval and a user-friendly clique
exploration.

Paper organization. The rest of the paper is organized as follows.
Section 2 surveys related work. Section 3 further motivates
problem with an analysis of classic backtracking MCE alionis
and then defines the problemoivisible MCE. Section 4 presents
the algorithms for-visible MCE. Section 5 discusses applications
of r-visible summary. Section 6 reports the experimental tesul
Section 7 concludes the paper.

2. RELATED WORK

The classical maximal clique enumeration algorithm thafdely
in use was proposed in [5] by Bron and Kerbosch. It is a depth-
first search algorithm with the property that consecutivgiyer-
ated maximal cliques are likely to be similar. Tomita et atra-
duced a variant of the Bron-Kerbosch algorithm which is ropti
in the maximum possible number of maximal cliques in [21]isTh
number was shown to be exponential in [18]. Eppstein et &] [1
introduced a method for listing all maximal cliques in spegsaphs
in near-optimal time. For massive graphs, 10-efficient thms

We propose a randomized algorithm based on adaptive sam-

were studied by Cheng et al. in [10] and [8, 9]. The smallestme
ingful clique in a graph is a triangle and the problem of figtall
triangles was studied by Chu et al. in [11, 12] for massivelsa

There are related works on returning meaningful subgramdus t
are close to cliques. A quasi-cliqug is almost a clique in the
sense that each vertex @ is connected to at least a portion of
v (0 < v < 1) of the other vertices i). Matsuda et al. [17]
proposed an approximation algorithm to find a minimum nunalfer
quasi-cliques to cover all vertices in the given graph. Fimimg all
quasi-cliques with given size andhresholds, the fastest algorithm
isdue to Liu et al. [16]. Pei et al. [20] studied the problenciafss-
graph quasi-cliques. Abello et al. considergdliques in a graph
G, where ay-clique S is a set of vertices such that the induced
subgraph inZ is connected and contains at leask (‘g‘) edges,

a randomized adaptive search algorithm was proposed to find a
cligue with the maximum size [1]. Note that the objective loé t
above methods is to generate maximal cliques as well as apitgr
that are not cliques but close to cliques. Our objective @laviate
the problem of returning too many maximal cliques to the user
the case where the cliques are highly overlapping and masteof
results do not add values for the user. Our returned resafibset
of the set of all maximal cliques.

The problem of result diversification has been well studied f
information retrieval. Without system support, a user magdto
submit multiple queries to retrieve results of differentunas. Vee
et al. [22] formally defined diversity and introduced tecjues
that guarantee diversity. In [3], the problem of DIVERSIRYY
is to return the topK results that can best cover different possible
categorizations of the query. A greedy algorithm is proposéh
an approximation guarantee @f — 1/e). Another way to select
meaningful results is based on typical instances whicheemt a
category of interest [14].

A similar problem of finding diverse results arises in data-mi
ing for discovering frequent patterns. In many applicatitme re-
turned set of frequent patterns from data mining is verydagd
contains much redundancy. Similar to the problem in infaroma
retrieval, the mining result becomes unmanageable fordke Un
[2], the aim is to find a small number of item sets which can best
approximate a collection of sets. Yan et al. [25] considérad to
summarize a large set of patterns usikigrepresentatives. Xin et
al. [24] considered the mining of redundancy-aware kqyatterns.

Our r-visible summary may be applied to visualize a large graph
[15] using local substructures, visualizing a large graghalso use
global structures such &strusses [23] ané&-cores [7].

3. MOTIVATION AND PROBLEM DEFINI-
TION

We first briefly review the classic recursive backtrackingoa-
dure that exhaustively enumerates all maximal cliques inrati-
rected graplG. We identify the drawbacks of the traditional MCE
computation and then propose a new typerafundancy-aware
maximal cliques

3.1 Classic MCE and Its Drawbacks

We denote byV/(v) the set of neighbors of a vertexin G, and
by M(G) the set of all maximal cliques ig&". A classic MCE
algorithm relies on recursive calls to Procediit@cM CE, which
is outlined in Procedure 1. The algorithm takes a gr&pds input
and initially invokesProcMCE (0, V, 0). The recursive procedure
finally returnsM(G).

In Procedure 1, the basic idea is to recursively backtracdtb
a vertex from the set of candidate verticeglito grow the current



Procedure 1:ProcMCE(, T', D)

if =@ andD = ( then
OutputC' as a maximal clique;
‘ return ;
end

A WN PP

Choose aivot vertexv,, from (T" U D);

T+ T\ N(vp);

foreachv € T” do

T+ T\ {v}

Call ProcMCE(C U {v}, T NN (v), D NN (v));
D «+ DU {v};

O ©O©Wow~NOO U

=

end

[N
[N

cliqueC. A vertexv is a candidate t¢’ if and only if v is a neigh-
bor of all vertices inC'. Each time wheit” is augmented by a vertex
v, we refineT” by keeping only the vertices that are also neighbors
of v. WhenT becomes empty,' cannot be further grown. At this
point, we need to check whethéris indeed maximal. To do this,
we maintain a seD which keeps the set of vertices that are neigh-
bors of all vertices inC' and have been outputted as part of some
maximal clique earlier, i.e., the recursive procedure hapuited
some maximal cliqu€’ 2 (C'U{v}) earlier, wherey € D. Thus,

if D is not emptyC is not a maximal clique; otherwise, we output
C as a maximal clique.

The pivot vertex,, is used for pruning such that we do not need
to start growing a maximal clique from any neighhoof v, be-
cause a maximal clique containingan be enumerated from either
v, Or some neighbou of v wherew is not a neighbor of,,.

Drawbacks. The above algorithm achieves the optimal worst-
case time complexity [21], which i©(3!V!/%). For d-degenerate
graphs, the complexity is reduced @&(|V|3%/3) [13]. In either
case, however, the number of maximal cliques is exponeimtial
either|V| ord, which is not practical for large graphs. For most real
world graphs, the number of maximal cliques can be signifigan
larger than the size of the input graph.

The time taken to compute and output the set of all maximal
cliques is generally large in practice. In fact, even if wa taler-
ate the prolonged running time, the storage space requareften
large and the sheer number of maximal cliques also makes it im
practical to use them in real applications.

Another problem with the set of maximal cliques is that tremes
a significant level of redundancy as many maximal cliquesesha
large portion of common vertices. Thus, it is not very usédule-
port all these cliques since they deliver a large amount pficiate
information. Such redundancy also slows down the compmrtati
significantly without delivering much more new informatidnr-
ing the MCE process. Therefore, it is questionable that weayzd
follow the classic exhaustive search approach for maxiriglie
reporting.

3.2 Redundancy-Aware Maximal Cliques

Figure 1: lllustration of visibility and 7-visible summary

cligueC € M(G) with respect taS, denoted bys(C), to be the

maximum ratio of coverage @ by anyC’ € S, i.e.,Vs(C) =
|cne’|

maXcres Lol

When the context is clear regardisgwe writeV(C') instead of
Vs (C) for short. On the basis of visibility, we define the problem
of -visible MCE as follows.

DEFINITION2 (7-VISIBLE MCE). The problem ofr-visible
MCE is to compute a-visible summaryS C M(G), such that
the visibility of eachC' € M (G) with respect taS is at leastr,
e, V(C)>r.

The notion ofr-visible MCE provides us with the flexibility
of trading the completeness ##((G) for a r-visible summary of
M(G) that is more usable and more efficient to compute, in a con-
trollable manner by adjusting the valuenf

EXAMPLE 1. In Figure 1(a), we show a graph with 3 maxi-
mal cliques, namely; = {a,b,c,d,f}, C> = {a,b,d,e,f}, andCs =
{b,d.,f,g}. It can be seen that the three cliques overlap irstad
the vertices. If we se§ = {C.} as shown in bold in Figure 1(b),
then the visibility ofC4, Vs(C1), is 0.8, and that of”; is 0.75.
Hence{C,} is a 0.75-visible summary. SimilarlyC>,Cs} is a
0.8-visible summary. [J

In the rest of the paper, we will discuss (1) efficient compata
of r-visible MCE, for which we show that our algorithms drasti-
cally outperform that for classic MCE, and (2) retrieval bé&
best (topk) maximal cliques based artvisible MCE.

4. T-VISIBLE MCE

To reduce the redundancy in the result set returned by classi
MCE, we first propose a randomized algorithm to obtain a sampl
summary of M(G) with an expected visibility of at least. We
then devise a method with similar powerful pruning techeidol
derandomize the randomized algorithm. The new algorithm-co
putes an exact-visible summary.

4.1 A Sampling Approach

A common approach to reducing the output size is to use a sam-
ple of smaller size to summarize the whole output space. Merve

To address the drawbacks of the classic MCE approach, we pro-in the case of maximal cliques, a simple uniform samplingroés

pose to computeedundancy-aware maximal cliquasd we show
that the computation process is efficient and the resultssablie
to convey information possessed by the set of all maximglels
effectively.

We first introduce the notion ofisibility that measures how well
each maximal clique is revealed by a subSeff the setM (G).

DEFINITION1 (VISIBILITY). LetS C M(G) be any subset
of maximal cliques of7. We define thevisibility of a maximal

important details while the redundancy may not be effebtive-
duced. To obtain a quality sample, we investigate the oytatiérn
of classic MCE algorithms.

Our randomized algorithm is based on the important observa-
tion that although the maximal cliques can be huge in nundrer,
MCE algorithm (based on backtracking) typically outputsimor-
der such that two cliques tend to be similar if they are nedhén
output sequence. This is because the searching processdall
depth-first order. This property allows us to (1) avoid rejpora



Algorithm 2: Summarization by Sampling

Input: GraphG, probability functions, visibility thresholdr
Output: A summaryS of M(G)

18+ 0

2 LetC’ be the maximal clique previously includeddh

30«0

4 Call ProcM CE (0, V, ), during the process when entering each

recursion ofProcMCE(C, T, D), process Lines 5-9:

5 Letd be an upper bound of the depth of the search subffreebe
grown by a complete recursive evaluation of the current
ProcMCE(C, T, D) procedure; letP? be any maximal clique to be
found during the recursive process, ang |P\ C|;letY =T \ C’;
and assume thay; vertices inY and (¢ — y;) vertices inT' N C’ are
used to gronC' to P; lety; be an upper bound af;;

6 1+ |C|+d;

7 7+ min (|]CNC’| +max{t —7z,0})/(|C| + t);

1<t<d

8 PruneT with probability 1-/s(7);

9 ExecuteProcMCE(C, T, D) if T is not pruned, for eact
computed to be a maximal clique, do: includen S with probability

I%/s(r), wherer = |C’ N C|/|C|, and in cas& is included,
C'«C

clique largely overlapping with the previously reporteijae and
(2) effectively prune the search space. Both (1) and (2) egpel-
formed with only the local knowledge of the search tree witho
examining all the previous outputs.

As outlined in Algorithm 2, the processes of sampling andhpru
ing are embedded in a backtracking-based MCE algorithmcifspe
cally, pruning is performed when the MCE process is stadingw
search subtre@ (Lines 5-8), while sampling is executed when a
maximal clique is found by the MCE algorithm (on a non-pruned
branch of the search tree) (Line 9).

First, we discuss sampling (Line 9). Let us consider whether
found maximal clique” should be reported. Lét’ be the maximal
clique previously added t8. We retainC' with a probability that is
adaptive to its similarity t&’. Formally, we add” to S with prob-
ability '4/s(r), wherer = |C' N C'|/|C|, ands : [0,1) — [0, 1]
is the sampling probability function. We requiggo be monoton-
ically decreasing. We will show later in Theorem 1 that thelpr
ability of eachC chosen inS is at leasts(r). In other words, the
larger portion ofC' is covered by its predecessgf, the lower prob-
ability we addC to S. We remark that without the local similarity
between maximal cliques in the output sequence of classiEMC
we will need a costly computation ¢€' N C’| forall C’ € S.

Next, we discuss how we employ pruning to speedup the search
whenever the MCE process is going to start a new search subtre

T (Lines 5-8). Letd be the depth of, andd be an upper bound
of d (we will discuss how we compuigshortly). Then, the size of
each cliqueP to be generated froff is at most = |C| + d.

On the other hand, we want to ha\& N P| lower-bounded. Let
Y =T\ andt = |P\ C| (i.e.,t vertices are used to gro@
to P). Part of thet vertices are taken fro and the rest are from
T N C’. Assume thay, out of ¢ vertices are taken frorir, and
let 77 be an upper bound af; (7; will be estimated similarly as).
First, C is known and we knoWC’ n P| > |C’ N C|. Second, we
know thaty; (out oft) vertices inP (or precisely inP \ C) are not
in C’ N P since these; vertices are taken frol = 7'\ C’. Thus,
we havelC’ N P| > |C N C’| + max{t — ¥, 0}.

Finally, by enumerating, we can lower bound the ratio @?
covered byC’ by

. |[CNC'| +max{t — ¥, 0}
IO+t '

Sampling

Level _Of Search tree probability of
recursion
. branch T;
""" b AT
Level-1/ (\’\J} '\T,I/\ s(r™(1/1)
{/\\ (”\\. £ A
Level-2 L O U s(ra)N(1/15)
""" N AT AT AT

Levell | () (O O @ O  seyrun

Figure 2: lllustration of summarization by sampling with ma x-
imal clique C' contained in7;, wherel = |C|, and r; (resp. ;) is
r (resp. () in Algorithm 2 associated with 7;.

The search space represented by the search sgbisenly ex-
panded with probability/s(7). This probability is devised based
on the idea as illustrated in Figure 2, which can be viewedwt-m
layer sampling over levels of the search tree, where the l&smp
from an upper level are cascaded downwards to the next lower
level.

(a) (b)

Figure 3: Local similarity in running ProcMCE on a graph: (a)
input graph G, (b) search tree forG

ExAMPLE 2. Consider the execution dProcMCE(¢,V, ¢)
on the graph in Figure 3(a), whefé = {1,2,3,4,5,6,7}. AtLine
5 of ProcMCE, we choose a pivat, to maximizel’ N N (vp),
whereN (v,) is the set of neighbors af, excludingv,. Hence we
choosey, = 3. T" = {3}. AtLine 9, we callProcMCE({3}, V'\
{3}, ¢). We can visualize this as the top level in Figure 3(b). In the
next recursion, let us choosg = 6. Then we havé” = {6,2, 7}.
The for loop at Line 7 is shown as the second level in the search
tree in Figure 3(b). We first calProcM CE({3, 6}, {5,1,4}, ¢).
4 will be chosen as our next pivot, so the next recursive call i
ProcMCE( {3,6,4},{1,5}, ¢), and further recursively we call
ProcMCE({3,6,4,1}, ¢, ¢), at which point a maximal clique is
generated. The next clique generated{3s6,4,5}. The redun-
dancy with the previously generated clique is 0.751]

Before a detailed discussion of haliWand similarlyz;) is esti-
mated, we first present the nice properties of our algorithrhné
following theorem.

THEOREM 1. Let0 < 7 < 1 be a constant specified by users.
By choosings to be
1-r)(2-7)

2—r—1T1

s(r) =



Algorithm 2 samples a maximal clique with probability atdea
s(r), and returns a sample summasysuch that the expected visi-
bility E[V(C)] of eachC € M(G) is at leastr.

PrROOF Consider the event whether or not a maximal clique
C is sampled. Sinc& is sampled only when the search sub-
tree growing to the leaf that represerisis pruned. Let the se-
quence of nodes from the root to the leaf in the search tree be
v1,02,...,Vk, Wherek |C|, and particularlyv,, is the leaf
node that represents. Referring to Algorithm 2, let the corre-
sponding sequences bfand 7 defined for the subtrees rooted at
V1,02, ...,0, bely, la, ..., Iy andry, 72, . . ., 7%, respectively. Let
r* = max{ri,...,7}. As the sampling probability functionis
monotonically decreasingi(r*) < s(r;) for 1 < ¢ < k, and
s(r*) < s(r). Sincel is an upper bound of the depth of some
search subtre@; rooted aw;, we haved < k < I;. It follows that

Pr[Ce8] = [ Pr[7 notpruned
1<i<k
- (11 v v
1<i<k
> [T Vst ) - /s0)
1<i<k

s(r")
If C is discarded, then there exist¥ € S such that|/C N
C’'l/|C| > r*. Then
E[V(C)] > 1-Pr[C €S|+ Pr[C ¢S]
> s(r) + (1= s(r7))
In case that™ > 7,
EVC)] >7-s(r")+7(1—s(r")) =71

Otherwise0 < r* < 7,

o (1=r)2-7) T—r"+(1-71) T—1*
s(r') = 2—7r*—17T >1—r*+(1—7’) 1—r*
and
T—7" " T—r"
EV(C) > 1t 47" (- =) =7
O

As shown by Theorem 1, the sampling algorithm is capable of
not only reducing the output size, but also providing a sumnsa
with guaranteed quality by selecting a proper sampling giodty
function s. Note that in Theorem I; < 1 because by definition
a maximal cliqueC' cannot be contained in any other clique. The
function s chosen in Theorem 1 is monotonically decreasing and
has the property that

str) = {

as illustrated in Figure 4. It implies that a maximal cliqeeimost
always discarded when it is nearly identical to a maximajusi
previously added to the summasy

Now we provide the details of computingandz;. Recalld
is the depth of the search subtrgeto be grown by a complete
recursive evaluation of the curreRtoc M CE (C, T, D) procedure.
In other wordsg is the size of the maximum set of vertic&sC T’
that can be added t6' to obtain a maximal clique. Lefr

1 whenr =0
0 whenr=1

0 0102030405060.70809 1
r

Figure 4: Sampling probability s(r) for 0.5 < 7 < 0.9

(Var, Eq,) be the subgraph off induced byT'. Thus, X is a
maximum clique inGr and hence to comput¥ exactly is NP-
hard (withGr as input). Therefore, we devise heuristics to upper
bound| X |. We discuss three heuristics as follows.

Letdynum be the maximum degree of any vertex in the subgraph
G, dy, be the maximum value df so that there ark vertices with
degree at least in Gz, andd..... be the maximum core number
of Gr (i.e., the maximum value of such that every vertex in a
subgraphF' of Gr has degree at leastwithin F' and F is the
largest such subgraph ¢7). It is easy to see thal,num, dn,
andd... are all upper bounds df¥| since X forms a complete
subgraph irGr. By their definition, we can order the upper bounds
as follows.

avnum Z Eh 2 acov“e 2 |X|

The smaller the value of the upper bound, the greater is the pr
ing power. On the other hand, it requires

0(1) <O(|Var|) < O(|Ear|)

time to compute the bounds, respectively. Thus, there iacetff
between pruning power and efficiency. The effect of the ahoic
the upper bound is evaluated later in our experiments.

ExAMPLE 3. Here we consider how the lower boufds de-
termined in Algorithm 2 and Algorithm 3 for grapf in Figure
3(a). WhenProcMCE({3,2},{1,7}, ¢) is processed, the cur-
rent subtre€/” contains 2 candidate vertice§: = {1, 7}. Thus we
estimated = 2. At this point,C = {3,2}. Hence the size of any
clique to be generated frof is at most|C| + 2=4. If we do not
consider future intersection with existing cliques, thiee turrent
overlap with existing clique is onlg'N C’ whereC’ = {3, 6,4, 1}
and 7 is given byl/4 = 0.25. To tighten the lower bound, we
consider possible future intersection Bfwith existing cliques. If
we let| P| = 4, thent = 2. Consider the previous maximal clique
C'=1{3,6,4,1}inS.Y =T\C' = {1,7}—{3,6,4,1} = {7}.
Hencey: = 1. To determine a lower bound we choosé to be
the next vertex in the potentid@ before we choose 1. Hence the
ratio (|C' NC’'| +max{t —7,0})/(|C| +t) = XL = 0.5. If we
let|P| = 3, thent = 1, for the worst case, we choose 7 to be the
final vertex inP, and (|C' N C’| + max{t — 7z,0})/(|C] +t) =

! e
10 —0.33. 7 = min [0SRm0 — 933, O
1<t<d

3

To estimatey;, we may also us€’| similarly, or the number of
vertices inY” with degree at least or the number of vertices if.



Algorithm 3: Deterministic Summarization

Algorithm 4: Summarization with Global Filtering

Input: GraphG, maximum redundancy
Output: A 7-visible summarys of M(G)

18«0

2 Let C’ be the maximal clique previously includeddh

3C «0;

4 Call ProcMCE (0, V, ), during the process when entering each

recursion ofProcMCE (C, T, D), process Lines 5-9:

Computer by applying Lines 5-7 of Algorithm 2 here ;
if # > 7 then
[l prune T
return ;
end
ExecuteProcMCE(C, T, D) if T is not pruned, for eacti
computed to be a maximal clique, d8:=SUC,C’ «+ C

[62]
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A perspective of Algorithm 2. To get an intuition of our algo-
rithm, recall the notion of importance sampling as used aap-
proximation of integral of a (unknown) continuous functidor
exampleyy = f(z). The idea is to draw more samples in regions
wherey changes rapidly and less where the curve is relatively flat.
Analogously, we can imaginevalue being a maximal cliqué'
and the correspondingvalue being the time-stamp whéhis out-
putted. By our observation, the output sequence of maxilitales
appears “continuous” where sharp changes are infrequent: O
putting maximal cliques with probabilities adaptive to tenges
(large coverage ratio indicating a small change) then aqpmates
the entire space of maximal cliques.

Derandomization.  We now describe a method to derandom-
ize Algorithm 2 in order to compute an exactvisible summary.
The algorithm also leverages the local similarity betweeximal
cliques in the output sequence of classic MCE to achievetafée
pruning, as outlined in Algorithm 3.
Each time when the recursive proceditecMCE(C, T, D) is

starting a new search subtrge we first examine if the search ih

is capable of leading us to any maximal clique that is suffitye
different from the maximal clique previously included ireteum-

mary S so far. We use the techniques similar to those used for the

randomized algorithm to compufe Then,7 is always discarded
when7 > 7 and always retained when< .

The deterministic algorithm always summarize$(G) with a
guarantee in terms of visibility, since a maximal cliqUeis not
included inS only when a fraction of at leastof C' is covered by
C’ € 8. In this case, the visibility of is ensured by the presence
of C'. The result is summarized in Theorem 2 as follows.

THEOREM 2. Algorithm 3 computes a-visible summary.

4.2 Global Filtering

Although the redundancy removal using local similarity e&n
ready significantly reduce the output size of classic MCE cene
further remove redundancy with a global view of all maximajwees
in the summary.

In Algorithm 4, when a maximal cliqué€’ is found by proce-
dure ProcMCE, C is first tested for redundancy with the existing
maximal cliques in the currer8. It is costly to compare” with
everyC’ € S. We devise the following method to allow efficient
redundancy testing for every newly found maximal cliquehvtite
maximal cliques irS.

Let fx andbx be the smallest and greatest id of any vertex in
a cligue X. Then, the vertex ids oKX lie in the range[fx, bx].
Instead of comparing’ with everyC’ € S, we retrieveC’ only

Input: GraphG, maximum redundancy
Output: A 7-visible summaryS of M(G)

S+ 0

Let £ be a binary-search tree containing maximal cliques in otie
that may potentially be compared with future generated maki
cliques;

L+ 0;

/1l iis the vertex id of wv;

4 Let vertices inV in ascending order of their id ba , va, ..., vn;
5 T=V,D=0
6 for i + 1ton do

/] Let b denote the greatest id of any

vertex in a clique C

7 Update£ by removing evenC’ from L if b < 4;
8 T+ T\ {v}
9 Call ProcMCE ({v; }, T NN (v;), DNN (v;));

10 D «+ DU {v};

11 In the recursive calls aProcM CE, search subtrees are pruned
by techniques in Algorithm 2 or 3, and Lines 13-19 below are
executed whenever a maximal cliq@eis found;

12 end

13 foreach maximal cliqueC' found byProcMCE do

14 CompareC' to each clique inC;

15 if noC’ € L exists such thatC’ N C|/|C| > T then

16 S+ SucC;

17 InsertC into £ with b as the key and” as the value;

18 end

19 end

when[fc,bc] N [feor, ber] is nonempty. To find such” quickly,
we maintain a binary-search tréawith b as the key and”’ € S
as the value. Then, each relevatitcan be retrieved i (log |S|)
time.

In addition, we devise a method so that we do not keep every
C’ € Sin L as follows. Assume in the first level recursion of
ProcMCE, we pick a vertex in ascending order of the vertex id.
Thus, a new cliqu€ is generated in ascending orderfef. In this
way, it is safe to remove a maximal cliq@® from L if bor < fc,
sinceC’ cannot overlap with any maximal cliques found later.

To show the correctness of the algorithm we use the following
lemma [21].

LEMMA 1 ([21]). ProcMCE(C,T, D) return all and only
maximal cliques containing all vertices i@, some vertices iff’,
and no vertex inD, without duplication.

THEOREM 3. Algorithm 4 returns ar-visible summans.

PROOF Let C be a maximal clique and. be the vertex with
the smallest id irC'. When ProcMCE ({v.}, T, D.) is called in
Algorithm 4, by Lemma 1 all and only the maximal cliques con-
tainingv. and no vertex ifv1, ..., v.—1 } will be generated. Since
ProcMCE(C, T, D) is called by the algorithm fo€ = {v;} for
eachv; € V, each maximal cliqgue off will be generated exactly
once or pruned by Algorithm 2 or 3 for being found redundant.
Thus,S is ar-visible summary since Lines 15-18 make sure that
C'is not included intaS only when|C’ N C|/|C| > 7 for an exist-
ing C’ in the currentS. [

A heuristic can be applied to shorten the intefyal, bc] so that
C can be discarded earlier. Initiallg is clustered and the vertices
are assigned id’s in a way that vertices in the same clustes ha
close id’s. Since vertices in a clique is highly intercorteeg their
id’s also tend to cluster and fall in a relatively small irat



5. APPLICATIONS

The results of--visible summary can be used for different appli-
cations. Here we consider two possible refinement procesges
enumeration based on diversity and interactive cliqueagafibn.
Both processes can help end users to further sharpen tiseit re
sets and will be valuable in the investigation of differeypds of
graph data.

5.1 Top-k Maximal Cliques with Diversity

Top-k computation is a useful and important operation in database

systems and related applications, especially when thesiesults
is massive making it difficult to use the results. We considen-
puting the topk results, A, of M(G). To ensure the quality ofl,
we should not rely only on the quality of any individual resnl.A,
but also be aware of the relationship between them. In peatic
we desire results in the topanswers to beliverse

While quality measures ol C M(G) with diversity considera-
tion depend on applications, most of these measures areaktdn
compute. However, an interesting family of evaluation tiorts,
called submodular functions, allow efficient approximatif the
top-k results.

A set functionf : 2¥ — R is submodular if and only if for all
setsS,T C N such thatS C T, andd € N\T, f(S +d) —
f(S) > f(T' +d) — f(T) [19]. For example, in the NP-hard
problem of maximunk-set coverage problem (M), the function
that evaluates the coverage of a collection of sets can herstm
be submodular.

We discuss efficient tog-clique computation with any submod-
ular measure, using the objective function irk®! as an exam-
ple. That is, we compute a collectioA of k¥ maximal cliques
that covers the maximum number of verticesGh With some
M’ C M(G) as the input, the algorithm each time greedily se-
lects a maximal cliqu€ € M’ that adds maximum marginal cov-
erage to the currentl and includeC in A. From the result by
Nemhauser, Wolsey, and Fisher [19], the resulting cobbectias
a coverage that is not smaller théh — 1/e) times the optimal
solution. Thus, our algorithm i€l — 1/e)-approximate and has
complexityO(ka|M’|), wherea is the average clique size itt’.

However, even if we can compui# efficiently by taking advan-
tage of a submodular measure, the computation can still pesitn
tically expensive with the input(G) from a classic MCE algo-
rithm, due to the explosion in the number of maximal cliqu&ith
T-visible MCE, however, the problem can be readily solvedait
significantly smallerr-visible summaryS as the input, while the
quality of A given S is still comparable to that byM (G) as veri-
fied by our experiments.

5.2 Interactive Clique Exploration

We proposdnteractive Clique Exploratiorfl CE) that is natural
and efficient for a user to incrementally approach the tattigtie.
On the contrary, a classic MCE algorithm can overwhelm tiegais
with too many results, thus severely hindering the appboat of
maximal cliques. The workflow ofde is depicted in Figure 5.

Initially we select a set of seed verticEsfrom V', which means
that we are to grow cliques containing at least a vertex frarhet
GY; be theextended subgrapbf %, i.e., G4, is the subgraph of;
induced by the set of vertices containifigand all neighbors oE.
We then applyr-visible MCE toGY; to compute ar-visible sum-
mary S of M(GY). The list of topk answersA(S) in S is then
computed by the greedy algorithm described in Section Shictw
is efficient with a submodular quality measure ahds input.

Next, A is presented to the user. When the user finds some
C* € A to be the target,dE terminates withC* as the answer.

Initialize X =V, specify t

Compute a summarysS of
maximal cliques in
extended subgraph ofX

Compute list4 of top-k
answers in S

Any C’ in 4

interesting? b 5=5-4
Yes
C*in 4 the NG SetX=C",
target? increase t
Yes
Finish with C*

Figure 5: Workflow of | ce

Otherwise, if the user finds sont€ € A interesting and it worths
a further exploration o, we sett = C’ and increase to zoom

in the vicinity of C’, and start from Step 2 for a new iteration now
with G{,. In caseA(S) is unsatisfactoryA(S) is removed fromS
and we re-compute the tdpanswers in the new summas; and
the new.A is again presented to the user as shown in Figure 5.

6. EXPERIMENTAL EVALUATION

In this section, we evaluate the efficiency and effectiverafs
our method, compared with the classic MCE algorithm. Fortsho
we denote byMCE the classic backtracking MCE algorithm [21]
that has been proved to achieve optimal worst-case contyleyi
7-RMCE the randomized algorithm that computes an expected
visible summary, and by-DMCE the deterministic algorithm that
computes an exaet-visible MCE. The experiments were run on a
machine with Intel Core i5 3.30GHz CPU and 4GB main memory.

Datasets. We use four real world graphs to evaluate the algorithms.
Some statistics about the datasets are given in TalBéd).is from
the blogs network and has vertices as blogs and an edge tieslica
that two blogs appear in the same search result of the toma5 p
ular queries published by TechnoraSkitterdescribes an internet
topology constructed from several sources to about a mitlies-
tinations. Wiki represents Wikipedia users as vertices and an edge
indicates that a user once edited a talk page of another Restemt
is a graph with U.S. patents as vertices and citations betesn
as edges.

The default setting in our experimentsris= 0.8 and usingdy,
as the estimation heuristic far(see details in Section 4.1).

6.1 Classic MCE v.s.7-Visible MCE

We demonstrate the advantagerefisible MCE algorithms;-
RMCE andr-DMCE, over the classic MCE algorithm, MCE, by
comparing their running time and output size. We varjrom
0.5 to 1 (note that we choose >= 0.5 for practical visibility
insurance).

The running time of-RMCE andr-DMCE is reported in Figure
6, where the running time for MCE is equivalent to the time at
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Figure 6: Running time (in seconds) ofr-RMCE and 7-DMCE with varying 7, and of MCE (at 7 = 1)
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Figure 7: Size of ther-visible summary by 7-RMCE and 7-DMCE with varying 7, and the total number of maximal cliques outputted

by MCE (at 7 = 1)

Table 1: Statistics of datasets (K= 10%, M = 10°): the number
of vertices and edges|{’| and |E|), the size of maximum clique
and average size of maximal cliquesct.qa and cq.g), and total

number of maximal cliques with size at least 3|(M|) in graph

G

Blog | Skitter | Wiki Patent
Vv 990K | 1.7M | 2.39M [ 3.7M
E 6.62M | 11.1M | 41.7M | 33M
Cmaz 49 67 26 11
Cavg 15 21 13 6
M] | 11.2M | 183M | 82.7M | 6.1M

7 = 1. The result shows that, for all the datasets, the running tim
drops sharply when changes fromr = 1 tor~ = 0.9, which
indicates a significant reduction in time with only a smaldmf
completeness. The result also shows a clear trend of daggeas
running time as ranges fron0.9 t0 0.5.

Figure 7 reports the size of thevisible summary computed by
7-RMCE andr-DMCE, respectively, where we also report the total
number of maximal cliques returned by MCE (i.e.;at 1) as a
reference. The result verifies our claim in the significamelef
redundancy in the set of maximal cliqgues. The number of makim
cligues decreases exponentially wherchanges fromr = 1 to
7 = 0.9, and the number continues to decrease significantly when
7 changes fron.9 to 0.5. In other words, the redundancy already
begins to drop dramatically as we start to introducethasible
summary with a small change in the visibility thresheld

6.2 Choice of Estimation Heuristics

The estimation of] can affect the performance ofRMCE and
7-DMCE considerably, as shown by the result usin@MCE in
Table 2 (the result for-DMCE is similar as the same principle is
applied). While the core number can provide the tightesindou
deore, it results in much longer running time. On the contrary,

the heuristicgl,.... andd), result in significantly better efficiency.
These two heuristics are no more costly than the set intiiosec
operations in theProcM CFE procedure, thus giving the same time
complexity and incurring only little time overhead. Thus tighter
boundd;,, though having slightly higher overhead than computing
the simple heuristi@, .., turns out to improve the efficiency of
7-RMCE more than the low-overheatd,.m.

Table 2: Running time (in seconds) ofr-RMCE with d esti-
mated by dynum, dn, and deore

Blog | Skitter | Wiki Patent
donum 71.4 151.1 | 459.8 43.9
dp, 66.7 140.2 | 405.4 | 37.9
deore >3600 [ >3600 | >3600 | >3600

Table 3: Running time (in seconds)tiocai/tgiobar, Of T-RMCE
and the number of maximal cliques in ther-visible summary,
[Stocat|l|Sqiovat|, With/without global filtering

Blog | Skitter | Wiki Patent
tiocal 67.6 | 140.3 | 4015 | 383
Lglobal 72.8 | 1426 | 1132 38.9
[Siocai] | 650K | 1.40M | 3.98M | 665.8K
|Sgiobat] | 601K [ 1.37M | 3.31M | 666.5K

6.3 Refinement with Global Filter

The global filter described in Section 4.2 further refinesthe
visible summans computed by--RMCE andr-DMCE. lts effect
in producing a smaller summary and the additional time ceadh
are evaluated by the results usinrgRMCE in Table 3 (the results
using7-DMCE are similar).

As reported in Table 3, the running time for the datasets Blog
Skitter and Patent is only marginally increased with thetémidof
global filter, but it takes 3 times more time to finish on Wiki.



As for the size of the--visible summaryS, we observe that the
reduction in the number of maximal cliques by a global filr i
not as obvious as compared with those filtered locally (a&/shio
Figure 7). This agrees with our observation of local sinityape-
tween maximal cliques in the output sequence of classiasaeu
backtracking MCE algorithms.

6.4 Performance of Top-k Computation

Finally, we use top: maximal clique retrieval as an example to
demonstrate how-visible MCE can be useful in practice. The
objective function in M:C (maximumk-set coverage) as discussed
in Section 5.1 is used as the quality measure. In our expatime
setk = 20, as atypical setting in information retrieval applicagon
We report in Table 4 the comparison of the quality of fopesults
and the time taken to compute them from-aisible summary and
from the set of all maximal cliques in the graph.

Table 4: Quality of and running time (in seconds) to compute
top-20 results from ther-visible summary by 7-RMCE ( Q a4,

Tyana) and 7-DMCE(Qget, Tae:), and from the set of all maxi-

mal cliques Qaui, Tuir)

Blog | Skitter | Wiki Patent
Orana | 822 | 1205 | 462 173
Quet | 826 | 1214 | 464 174
Quil 907 | 1255 | 485 195
Trand | 1.38 | 4.02 | 859 | 0.70
Taet 241 | 497 | 2025 | 1.00
Tou | 2742 | 4751 | 196.95| 8.87

As shown in Table 4, the quality (i.e., the number of vertices
the graph being covered by the top-20 results) of the tope20lts
computed from a-visible summary is very close to that computed
from the set of all maximal cliques. However, computing fpre-
sults from ar-visible summary is approximately an order of mag-
nitude faster than from the set of all maximal cliques.

The results thus support the use of-&isible summary for top-

k computation for its much smaller size (resulting in highti- e
ciency) without sacrificing the quality.

7. CONCLUSIONS

In this paper, we highlighted the problem of excessive simk a
redundancy in classic maximal clique enumeration (MCE).ilwe
troduced the notion of-visible MCE to reduce the redundancy
while capturing the major information in the result. We pepd
efficient algorithms for the computation of7avisible summary,
and introduced tof-cligue computation on top of the summary to
further enhance the result usability. Our empirical stsdieowed
significant improvements in both the result size and contjmuta
time over classic MCE, and demonstrated the usefulnessref a
visible summary.
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