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Abstract—The recent proliferation of graph data in a wide
spectrum of applications has led to an increasing demand
for advanced data analysis techniques. In view of this, many
graph mining techniques, such asfrequent subgraph mining
and correlated subgraph mining, have been proposed. In many
applications, both frequency and correlation play an important
role. Thus, this paper studies a new problem of mining the set
of frequent correlated subgraph pairs. A simple algorithm that
combines existing algorithms for mining frequent subgraphs
and correlated subgraphs results in a multiplication of the
mining operations, the majority of which are redundant. We
discover that most of the graphs correlated to a common
graph are also highly correlated. We establish theoretical
foundations for this finding and derive a tight lower bound
on the correlation of any two graphs that are correlated to a
common graph. This theoretical result leads to the design of
a very effective skipping mechanism, by which we skip the
processing of a majority of graphs in the mining process.
Our algorithm, FCP-Miner, is a fast approximate algorithm,
but we show that the missing pairs are only a small set of
marginally correlated pairs. Extensive experiments verify both
the efficiency and effectiveness of FCP-Miner.

Keywords-graph mining; Pearson’s correlation coefficient;
frequent correlated subgraph pairs
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the existence of an interesting subgraph to be served as the
query graph. In practice, however, such apriori knowledge
may not always be available.

In this paper, we study a new problem of discovering all
frequent correlated subgraph pairs. Unlike the existingkwo
the new problem does not require the specification of a query
graph. Instead, it aims to discover all correlations, which
is a more general setting and more practical. The problem
is formulated as followsGiven a graph databas® that
contains a set of graphs, a minimum correlation threshold
#, and a minimum support threshold, find all pairs of
frequent subgraphs whose correlation is at leéstThe
usage ot allows a user to control the occurrence probability
(also calledsuppor} of an interesting subgraph, whileis
used to specify how similar the occurrence distribution of
a pair of correlated subgraphs is wanted. Thus, a frequent
correlated subgraph pair is also called(a 6)-subgraph
pair. The correlation between two graphs is measured by
a function of the individual support of the two graphs and
their joint support. In this paper, we use the well-known
Pearson’s correlation coefficient [24] as the correlation
measure.

The (7, #)-subgraph pairs are very useful in a wide range

The use of graph-based representation has gained increas-applications. The following gives a concrete example in

ing popularity in various application domains, including-b
informatics [1], [2], chemistry [3], [4], drug design [5]6],

social network analysis [7], and many more. As a result,
graph pattern mining has become an important researc?lt
problem. Existing studies on graph pattern mining mainly

focus on findingrequent subgraphgg], [9], [10], [11], [12]

and its closed or maximal variations [13], [14], [15], while
little attention has been paid to finding other types of usefu

graph patterns.

In traditional pattern mining, correlated patterns hawo al
been recognized as an important type of patterns. Corcelat
pattern mining has been extensively studied in marketdtask

data [16], [17], [18], [19], [20], [21] and recently introded

to the context of graph data [22], [23]. A pair of subgraphs

are correlated if their occurrence distributions are smil

e

medicinal chemistry.

Example 1. Fig. 1(a) and (b) show a pair of correlated
ubmolecules discovered from a real chemical compound
structure database in the National Cancer Institute. Each
vertex in the figure represents a carbon atom and each
edge represents a single bond. Beingr g)-subgraph pair,

it means that these two submolecules often accompany
with each other in a specific set of compounds in the
database. Interestingly, we find that these two submolecule
represent a class of biologically active compounds, wisch i
depicted in Fig. 1(c). This class contains Dihydrocholedte
analogues, which are cholesterol derivatives found in huma
feces, gallstones, eggs, and other biological matter. O

Example 1 shows several usages @ftA)-subgraph pairs

which means that they are often co-present and co-absenty medicinal chemistry. First, as(6)-subgraph pair is able
and thus have mutual implication on their occurrencesto indicate the existence of a class of interesting compsund
Given aquery graph existing work CGSearch [22] (or its of which may be unaware by the chemist. Therefore, it can
top-k version [23]) returns all (or top-k) correlated graph direct the attention of the chemist to these hidden classes,
with respect to the query grapBoth of the studies assume which may lead to the discovery of new substances or



There are two straightforward solutions to the problem
based on the existing work of frequent subgraph mining [8],
[9], [20], [11], [12] and query-based correlation minin@]2

The first one is a naive solution, which is a frequent-
subgraph-mining-based approach. The idea is to first mine
the set of all frequent subgraplfsusing an existing mining
algorithm and then check the correlation values among all
pairs of frequent subgraphs. However, this approach has
several drawbacks. First, mining all frequent subgrapims ca
be expensive. Second, checking pairwise correlations gmon
all frequent subgraphs is usually infeasible since the rermb
Figure 1. A pair of correlated submolecules and its represecompound of all p0§SIble pairs can be pI’OthIt.Ierly large, espeyiall
class when o is small. Furthermore, the joint support of each

pair of subgraphs needs to be computed during correlation

checking, which takes at least (|D]) number of intersec-
drugs. Second, thes(f)-subgraph pair captures the active tions on the projected databases of the two subgraphs. Here,
structures of its represented compound class and thus cahe projected database of a subgraph is defined to be the
serve as building blocks (representative / functional subset of graphs inD that contain the subgraph. Therefore,
molecules) of the compound class, which is particularlythe computational complexity of this naive approach is
useful in compound synthesis. Third, the set of allf)-  extremely high.
subgraph pairs can automatically form clusters of biologi- Another more feasible solution, which is a CGSearch-
cally active or well-investigated structures. This can bedi  based approach, is to explore the subgraph space and feed
as a summarization of the database so that the chemighch frequent subgraph into the query-based correlation mi
can gain a biological insight of how the compounds areing algorithm, CGSearch [22]. This approach is inefficient
medically connected. Furthermore, the whole setagb)-  as well since each invocation of CGSearch involves an
subgraph pairs can also guide chemists about their choicespensive operation to mine the projected database of the
of submolecules when synthesizing new compounds. Thgquery graph. Moreover, every correlated subgraph pair is
co-occurrences of correlated submolecules indicate fegt t computed twice by this approach since each of the subgraph
are relatively easy to synthesize. Therefore, chemistdean in the pair is feeded as a query once.
saved from a tremendous number of laboratorial tests by In this paper, we propose an approximate but efficient
using correlated submolecules. solution to the problem. Given a frequent subgraphwe

Being aware of the usefulness of graph correlations, redefine its answer set denoted asAy, to be the set of
searchers in medicinal chemistry have tried to discover corsubgraphs that forms( #)-subgraph pairs wittf. The main
related submolecules from compound databases [25]. Howeea of our approach is to compute the exact answer sets
ever, the lack of efficient mining techniques hinders themof only a small number of frequent subgraphs by CGSearch
from investigating more general structured submoleculesand use these exact answer sets to approximate the answer
which inspires our work of discovering alb(f)-subgraph sets of the remaining frequent subgraphs. In this way, our
pairs. approach is able to skip invoking CGSearch for most of the

However, finding all &, 6)-subgraph pairs is a challenging frequent subgraphs, which saves tremendous computational
problem. First, the number of frequent subgraphPican be  costs compared with the above-mentioned CGSearch-based
large due to the high diversity in the structure of graph dataapproach. Furthermore, our approach significantly reduces
Second, for a specific subgragh every frequent subgraph the size of the candidate sets from the whole/Séb a much
is a candidate to form as(#)-subgraph pair withf. Thatis, = smaller set, which is far superior to the frequent-subgraph
the candidate set of, C;, is equal to the set of all frequent mining-based approach.
subgraphs,F. This results in an explosion in the number The mechanism of skipping the processing of most fre-
of candidates for subgraph pairs, whichf3| x |F|. Third,  quent subgraphs has its theoretical foundations. We inves-
unlike the support measure, the correlation measure dodiate the characteristics of correlated subgraphs and find
not have the anti-monotone property. That means if a grapthat correlativeness tends to have thearisitiveé’ property.

g is found to be uncorrelated witli, we cannot prune all More specifically, if two subgraphg, and f, are found to
supergraphs of as does in frequent subgraph mining, sincebe correlated with the same subgrafyhithey are likely to be
they may still be correlated withi. As a result, the size of correlated as well. This observation is verified theordltica
the candidate se{(;|, cannot be effectively reduced. The by deriving a tight lower bound of the correlatian f1, f2).

lack of this powerful pruning property makes the design ofThe lower bound guarantees that an arbitrary pair of graphs
an efficient algorithm very difficult. f1 and f> has a high correlation as long as they are both

(a) Submolecule A (b) Submolecule B

(c) Dihydrocholesterol



correlated with a third grapty, i.e., they appear in the solution and its theoretical foundations. Section V evasa
answer set of the same graphTherefore, it is theoretically the performance of our approach. Section VI reviews some
sound to approximate the answer setg'pfnd f> using the related work. Finally, Section VII concludes the paper.
answer set off.

Based on the theoretical results, we develop an effi- Il. PRELIMINARIES
cient algorithm to mine Frequent Correlated subgraph Pairs Graphs studied in this paper are undirected, labeled and
namely FCP-Miner. The algorithm traverses the subgraph connected. Ayraphg is defined as a triplel{, £, [), whereV’
space in a depth-first manner. It processes a new subgrajthe set of vertices? is the set of edges arids a labeling
f by CGSearch to obtain its exact answer sgt. Then, function that assigns a label to each vertex and edge.
all graphs inAy are marked to beskipped. Thus, FCP- Given two graphsy = (V, E,l) andg’ = (V', E',l'), g is
Miner processes only those new frequent subgraphs that atalled asubgraphof ¢’ (or ¢’ is asupergraphof g), denoted
not marked as skipped, while for each newly processed asgCg’ (or ¢’ Dg), if there exists an injective functiof:
frequent subgraph FCP-Miner adds a bunch of graphs t& — V', such thatv(u,v) € E, (f(u), f(v)) € E', l(u) =
the skip list. For each skipped gragh € Ay, FCP-Miner  [’(f(u)), I(v) =U'(f(v)), andl(u,v) = I'(f(u), f(v)). The
usesA; as the candidate set ¢f. Its approximated answer injective functionf is called asubgraph isomorphisrfrom
set is then computed from this much smaller candidate sef; to ¢’. Testing subgraph isomorphism between two graphs
In this way, FCP-Miner is able to skip most of the graphsis known to beNP-completg26].
from processing CGSearch and thus significantly improves A graph databaseD is a collection of graphs, denoted as
the mining efficiency. However, it is possible for FCP-Miner D = {g;,g.,...,gnx}. Given D and a graply, we define
to miss some subgraph pairs due to the approximation othe projected databasef g as the set of graphs iR that are
the answer sets of the skipped graphs. supergraphs of, denoted adD, ={¢' : ¢ € D, ¢’ 2 g}.

Our extensive experiments show that the number of missThe size of the projected database is called fteguency
ing pairs by FCP-Miner is very small. More importantly, of g in D, denoted asfreq(g) = |D,|. The supportof g
we find that the correlation values of the missing pairs aren D is further defined asupp(g) = f?'tl'f%(‘g), which is the
close to¢, which means that they are just boundary pairs.probability of a graph inD being the supergraph af. A
This result indicates a high-quality of the approximatioia graph ¢ is called aFrequent subGraphFG) [8] in D if
the effectiveness of FCP-Miner. Furthermore, compareH wit supp(g) > o, whereo (0 < o < 1) is a user-specified

the CGSearch-based approach that processes every frequeilhimum support threshaldVe useF to denote the set of
subgraph, FCP-Miner is over an order of magnitude fasteg|| FGs inD with respect tas.

because of the effective Sklpplng mechanism: On average, Given two graph@ andg/, we define the|[0|nt frequency
about 80% of the frequent subgraphs can be skipped by FCRs the number of graphs i that are common supergraphs
Miner and the average candidate set size of the subgraphsdg ; and ¢/, denoted agreq(g, ¢') = |D, N Dy|. The joint

reduced b_y over 98%. This result demonstrates the efficiencgupportof g and ¢ is defined assupp(g,q’) = freq\gl’g/)‘
of FCP-Miner. The support measure Enti-monotongthat is,g C ¢’ im-
The contributions of the paper are as follows. plies thatsupp(g) > supp(g’). We also have the following

« We propose a new problem of discovering all frequentproperties of the joint supportupp(g, g') < supp(g) and
correlated subgraph pairs from graph databases, whickupp(g,9’) < supp(g’).
is important and demanding in a wide range of appli-
cations.

« We derive a tight lower bound for an arbitrary pair of In this paper, we adopPearson’s correlation coefficient
subgraphs in the same answer set, which provides thi24] as the correlation measure, defined as follows.

theoretical guarantee for performing the high'qu"’l”tyDefinition 1. (Pearson’s Correlation CoefficienGiven a

\a/l\s)p(rjox[rnatlon.ﬁ. , g _ worithm. Fcp P2 Of graphsg; and g, the Pearson's correlation coeff
« VVedevise an ef |_C|ent an app_roxmfa\te.agont m, L ient of g1 and go, denoted as(g, g2), is defined as
Miner, which utilizes an effective skipping mechanism

to reduce the search space. (91, 92) = supp(g1,92)—supp(g1) supp(gz) )

« We conduct extensive experiments that verify the effi- V/supp(g1) supp(92) (1 —supp (91)) (1= supp(92))
ciency of our algorithm, as well as the high quality of Whensupp(g1) or supp(g=) is equal to0 or 1, ¢(g1, g2) IS
the approximation. defined to be.

I1l. PROBLEM DEFINITION

The rest of the paper is organized as follows. Section Il Itis easy to see that is symmetric. The value af(g1, g2)
gives some preliminaries on graph database and frequeit in the range of—1, 1]. When supp(g1, g2) = supp(g1) -
subgraphs. Section Il defines the problem of frequent corsupp(gz2), #(g1, g2) takes the value di, which indicates that
related subgraph pair discovery. Section IV presents outhe occurrences af; andg. are independent to each other.



The positive value of(g1, g2) indicates that the occurrences
of g; andg, are positively correlated, i.e., they are often co-

a

UPPETsupn(1) = GET — ) a’ ®)

present and co-absent. On the other hand, the negative value

shows negative correlation, i.g; often occurs withougs,

Lemma 2. Given a graphf’ € Ay, the following lower

and vice versa. In this paper, we focus on finding positivednd upper bounds of the joint supporipp(/f, /'), denoted

correlations.
We now present two useful properties of the€unction,
which can be proved easily by taking the derivativegof

Property 1. If both supp(g1) and supp(g2) are fixed,
&(g1, g2) is monotonically increasing withupp (g1, g2).

Property 2. If both supp(g1) and supp(g1,g2) are fixed,
#(g1, g2) is monotonically decreasing withupp(gs).

The problem of finding frequent correlated subgraph pair§espect to a single grapff

can be formalized as follows.

Frequent Correlated Subgraph Pair Discovery Given a
graph databas® = {gi,92,...,95}, @ minimum corre-
lation thresholdd (0 < 6 < 1), and a minimum support
thresholdo (0 < ¢ < 1), find all pairs of subgraphg;
and f> in D such thatsupp(f1) > o, supp(f2) > o, and
é(f1, f2) = 0.

We call such a pair of subgraphs(a, §)-subgraph pair.
Given a frequent subgraph, we call the set of subgraphs
that form (o, )-subgraph pairs wittf the answer sebof f,
denoted asdy = {f’: supp(f') > o, ¢(f, f') > 0}. Thus,

respectively asgower gy, ) and upper g, (s, 1), hold:

a

oW supp (5. = 3T — gy ¥ a0 (4)

®)

UPPET supp(f,f1) = @-

The above two lemmas specify only the bounds with
€ Ay, while the relationship
between two graphs i, is still lacking, which is exactly
what we try to get.

Given an arbitrary pair of graph§ and f> in Ay, by the
definition of ¢, we need to know the values of their indi-
vidual supportsupp(f1), supp(f2), and their joint support
supp(f1, f2), in order to obtain the value af(f1, f2). Ac-
cording to Property 1¢(f1, f2) is monotonically increasing
with supp(f1, f2). Therefore, in order to get the lower bound
of ¢(f1, f2), we first derive a lower bound ofupp(f1, f2),
which is stated in the following theorem.

Theorem 1. Given a graphf and two graphsfi, f> in Ay,

the problem of frequent correlated subgraph pair discoveryhe following lower bound ofupp(fi, f2) holds:

is essentially to find thed; for each frequent subgraph

We also useC; to denote the set of candidate graphs that

may potentially form(e, #)-subgraph pairs witty.

IV. OUR SOLUTION

supp(f1, fa) > supp(f, f1) + supp(f, f2) — supp(f). (6)

The equality holds whe(Dy, N Dy,) € Dy C (Dy, U
Dy,).

In this section, we first derive the lower bound of the J2

correlation among all subgraph pairs in the same answer set

and then present our mining algorithm, FCP-Miner.

A. Correlation Lower Bound of Subgraph Pairs

Given a frequent subgraph, we aim to derive a corre-
lation lower bound of an arbitrary pair of graplfs and fo
in Ay, denoted asower s, 1. In order to be computable

Proof: By the definitions of the support and the joint
support, (6) holds if and only if the following inequality
holds.

and useful, the lower bound should be a function of the

two known variablessupp(f) and the minimum correlation
thresholdd. For clarity of presentation, we let= supp(f).

We first review two useful lemmas proposed in CGSearch
[22]. One lemma gives the bounds on the support of a graph
f' € Ay, while the other gives the bounds on the joint

support of f and f’ € Ay.

Lemma 1. Given a graphf’ € Ay, the following lower
and upper bounds okupp(f’), denoted respectively as

lower supp(yy and upper .y, hold:

a

-t a @

lowersupp(f/) =

Dy, NDy,| = [Dy N Dy |+ Dy N Dy | = Dyl (7)

To prove (7), we decompos$P;| as follows.
Dyl = Dy N (Dy, UDy,)| (8)
=|(DyNDy,) U (DyNDy,)| ©)

= |Dy N Dy, |+ Dy NDy,| — Dy N Dy, N Dy, | (10)
> [Dy NDy, |+ Dy N Dy, | — [Dy, N Dy, |. (11)

Equation (8) holds since the intersection®} with any
set is a subset dD;. Equation (9) is by the distributive law
of the set intersection over the set union. Equation (10yis b
the inclusion-exclusion principle. Equation (11) holdecs
(DyNDy, NDy,) is a subset of Dy, NDy,), by which (7)
follows.



The equality holds whe(Dy, U Dy,) 2 Dy for (8) and The equality holds whe(Dy, NDy,) C Dy C (Dy,UDy,)
Dy 2 (Dy, N Dy,) for (11). Therefore, the equality holds and¢(f, fi) = ¢(f, f2) = 6.
when(Dy, N Dy,) € Dy C (D, UDy,). [ The right hand side of (14) is a function aof and y,

denoted a%i(x, y). More importantly, the variables andy

Theorem 1 serves as a bridge betweepp(f1, f-) and  can take independent values in the functianin order to
the two joint supportsupp(f, f1) and supp(f, f2), whose utilize the bounds in Lemma 1 to obtain a tight lower bound
bounds are known in Lemma 2. of ¢(f1, f2), we need to know the monotonicity af and

By Property 1 and the definition af, we can replace y in h(z,y). Sincex andy are symmetric inh(x,y), we
supp(f1, f2) with the results in Theorem 1 intd(f1, f2)  only consider the monotonicity of, which is given in the
and obtain the following inequality. following lemma.

o(f1, f2) > supp(f,f1)+supp(f,f2)—a—supp(f1)supp(fa) Lemma 3. Lett = ,/“(1 y) . The following two statements

a
Vsupp(Fu)supp (£2)(1—supp (7)) (1~ pr(fz))(lz) about the monotonicity of: in h(z,y) are true:

f (1) The functionh is monotonlcally increasing witk in

Although (12) already specifies a lower bound o [lower

o(f1, f2), itis not a useful one since all the variables except
a in this lower bound are unknown. Therefore, we need to (2) The functionk is monotonically decreasing with in

—9
Supp(f1)7t+t T 29]

. . t—0
make further derivations. . _ _ . (T3 UPPET supp(f1))-
The right side of (12) is monotonically increasing with
supp(f, f1) and supp(f, f2) and is monotonically decreas- Proof: In order to determine the monotonicity of we

ing with supp(f1) and supp(fs) if other variables are apply the differentiation to the functiol with respect tar
fixed. Therefore, we can simply replace these variablesind obtain the following equality.

in (12) respectively withlower gy, (1, 1,)s 1OWET supp (. £2)s

UPPET gupp( £,y AN upper ., 5,y, Which are given in Lem-

mas 1 and 2. However, the lower bound off, f2) W (x) =
derived in this way is not tight. This is because the joint

supportsupp(f, f1) is dependent on the individual support ¢ sign oft’(z) is the same as the sign of the numerator

supp(f1). AS a result, lower supp(s,g) @Nd WPDErsupp (1) i (15), denoted as
cannot be achieved simultaneously. The case is the same for

lower supp (1.1, @Nd upper g, (5, Thus, the lower bound
of ¢(f1, f2) derived in this simple way is a loose one and A7 = (a—y)++/a(1 — y)(0+/(1 — a)y—/a(l — y))(2—z ).
has no guarantee.

Based on the above analysis, we need to resolve the
dependency of the joint support and the individual support i i
(12) so as to obtain a tight bound. This can be accomplisheé
as follows. Recall that botff; and f, are in A, which
implies thaty(f, f1) > 0 andé(f, f2) > 6. By the definition
of ¢, we have the following inequality:

(a—y)++y/a(1—y)(0y/(A—a)y—/a(1—y))(2—z ") (15)
2¢/y(1—y)z(v/I=z)3 '

We first show tha(f/(1 — a)y — v/a(l —y)) < 0. It
easy to see that the left hand side of this inequality
onotonically increases with. The inequality follows when
we replacey with its upper boundupper as given
in Lemma 1.

In order to haveM > 0, it is equivalent to have the
following inequalities.

supp(f2)

supp(f, f1) > 0y/a(1 — a)supp(f1)(1 — supp(f1))

+ a- supp(fy). (13) M=0
& Vall-9)(0y/(1-a)y—/a(l-y))(2-2"") > (y—a)
The right hand side of (13) is a function efipp(fi), & o rl>24 4o

which can be used to resolve the dependency problem. The a(l=y)=0y/a(l-a)y(-y)

equality holds whens(f, f1) = 6. We have similar results — 14 (=9y=byael-ayl-y)

for supp(f, f2). By replacingsupp(f, f1) and supp(f, f2) “fll_y)_g‘/“(l_“)y(l_y)

with (13) in (12), we obtain the following inequality of =1+2 (16)
o(f1, f2). For clarity, we letz = supp(f;) andy =

supp(fa)- By taking the derivative of the functidn= /<=2 we

(1-a)y
find thatt is monotonically decreasing with By Lemma 1,

S(f1, f2) > 0+/a(1—a)(\/z(1=2)+/y(1—y))+a(z+y)—a—zy (14) we havelower supp(f,) < Y < upper g, 1,y BY replacing
= Var(l-a)y(1-y) the bounds of; in ¢, we haved <t < #—!. Therefore, (16)
= h(x,y). is always positive.




By (16), it follows thatM > 0 or equivalentlyh/(x) > 0
if and only if
< t—0
R NI T

Following the similar derivation, we can get thaf < 0 or
equivalentlyh’(z) < 0 if and only if

< t—46

r> —

Tttt —20

By Lemma 1, we havlwer gy,,(r,) < * < upper

0 . supp(f1)?
the monotonicity ofc in h thus follows. [ |

According to Lemma 3, whem is fixed, the minimum
value of(z,y) can be achieved at either= lower s,y (1)
Or T = UPPET gypp(f,

points, which are combinations ofandy taking their lower

and upper bounds. Sinceandy are symmetric, there are

)- Since the variable is independent
of x, the minimum value ofi(z,y) can only occur at four

Since the second terg@ ! — 0)%(1 — a) in (17) is non-
negative, we haveéd? — (6=1 — 0)%(1 — a)) < 62, which
indicates that (18) does not specify a minimum valué.of

We now consider (17) and (19) and have the following
derivations.

6% — (0_1 —9)2(1 —a) > 6% — (9_1 —
& 1—a < a
& a > %

6)%a

Thus, whenag > (19) serves as the lower bound of
h. By (14), ¢(f1, f2) is equal toh if and only if (Df, N
sz) € Dy C (Dfl Usz) and ¢(fafl) = ¢(f7f2) = 0.
The condition of (19), i.ex =y = upper,,,(s,),» implies
that ¢(f, f1) = &(f, f2) = 0 holds. By replacing the values
of x andy in (6), we havesupp(f1, f2) = a, which ensures
that (Dfl ﬂ'DfQ) - Df - ('Df1 U'ng) holds.

Accordingly, whena < (17) is the lower bound of

) i

2 l

essentially three possible points. We summarize the lowep(f1,.f2). BY (6), this lower bound is achieved when=

bound of¢(f1, f2) in the following theorem.

Theorem 2. Given a graphf and two graphsf,, f> in its

y = lower gupp(f,) @nd supp(f1, f2) = 2- lower gypp(f,) —a
|

Theorem 2 provides a tight lower bound of the correlation

answer setAy, the following two statements of the lower petween two arbitrary graphg and f» in the same answer

bound of¢(f1, f2), denoted adower 4, 7., hold:

(1) If a > 1, then

l0w€7“¢(f17f2) =6 - (0_1 - 9)20“’
which is achieved whesupp(fi) = supp(f2) =
UPPET supp(f1) and SuPp(fl’ f2) -

(2) If a < i, then

lower g s, 7,y = 0> — (07" = 0)*(1 — a),

which is achieved whesupp(f1) = supp(fz) =
lower gupp 7,y @aNdsupp(f1, f2) = 2-lower gpp(5,)—a

set A, of a graphf. It indicates that all the graphs id;
have a correlation guarantee, which is not very far away
from the threshold). For example, if! = 0.9 anda = 0.5,

the lower bound computed by Theorem 20i§89, which is

still pretty high.

B. Our Algorithm

We first describe an exact algorithm that utilizes
CGSearch for all FGs to mine the set of @i, #)-subgraph
pairs. Then, we make use of the theoretical results we obtain
in the previous section to design an efficient approximate
algorithm.

The exact algorithm has the following two components:
(1) FG-Enumerator the algorithm for enumerating all FGs;
and (2)CGSearcH22]: an existing algorithm for mining the

Proof: We first check the minimum value of the functionset of all correlated subgraphs of a given query grapFhe
h(z,y), which can only be achieved in either of the following exact algorithm operates as follows. For each F&turned

three cases as discussed above.
Whenz = lowerg,,r,) and y = lowergyppy(s,), by
Lemma 1 and (14), we have

h(z,y) = 6% — (971 - 9)2(1 —a). (17)

Whenz = lower supp(f,) @NAd Yy = upper ,,.s,)»
h(z,y) = 2. (18)

Whenz = upper g,y andy = upper 1,3,
h(z,y) = 0% — (07" - 0)%a. (19)

by FG-Enumerator, find the set of all correlated subgraphs
of f using CGSearch, and return those correlated subgraphs
that have support at least

The FG-Enumerator in the exact algorithm is used to
enumerate the subgraphs in the pattern space in a depth-
first manner similar to an FG mining algorithm such as
gSpan [11]. However, it is different from an FG mining
algorithm in the sense that it does not count the support of
every FG, which is a very costly operation since it involves
many subgraph isomorphism tests. FG-Enumerator works
with CGSearch closely as follows. When the correlated
subgraphs off are returned by CGSearch, their support is
obtained as well. Therefore, FG-enumerator does not need



Algorithm 1 FCP-Miner In other words, in Algorithm 1, we apply a heuristic

Input: D, o and®. implied by Theorem 2 which approximates the answer set
Output: A set of(a, §)-subgraph pairs. of a skipped FG by the union of all its correlated subgraphs

1. Initialize an empty hashtabld’; found in the answer sets of those processed FGs (Line 14).

2. Invoke FG-Enumerator (with input and D); Therefore, if the FGs in the answer set of an FG indeed share

3. for each FG f returned by FG-Enumeratato high mutual correlation, then a huge amount of redundant

4. if(f is not in H) o processing can be avoided. For example, in the example of

5 ggvﬁ]ffeﬁgessg{%ﬁ gvglﬁglgzlgt’sﬁbzr;gﬁsfoﬁﬂ the k mut_ually correlated FGs mentioned_earlier, we only

6. Ap — {fi+ f: €Cy,supp(fi) > o); need to quke CGSearch once to obtain all tfae6)-

7. Outputf and Ay; subgraph pairs among thekesubgraphs.

g: force:mi&i Ag do Complexity Analysis. We analyze the complexity of FCP-
10. if (f; is not in H) Miner with comparison to the exact algorithm. For the exact
11. Ap, = {fYU{fi: f; €Cy0(fi f5) > 0,0 # 3} algorithm, the complexity i€ (hy (F) + |F|ha(n)), where
12. Pushf; and Ay, into H; hi(F) is the complexity of exploring the set of FGSusing
ii: elsﬁpdateAf./: ﬁf’sdjn H x/ FG-Enumerator, and,(n) is the complexity for obtaining

(i f €Ch 0(fir f5) = 0,0 # 5} n correlated subgraphs using CGSearch, assumingitit
15. Outputf and Ay for all f in H; the average number of correlated subgraphs of an F&.in

For FCP-Miner, due to the use of the skipping mechanism,
the complexity is reduced t@(h,(F) + mha(n)), where
m is the number of those FGs that are not skipped. In
to re-calculate the support of these subgraphs when they ageneral,m is significantly smaller than#| and therefore
explored later. Thus, FG-enumerator is more efficient thartremendous saving is obtained, since the dominant factor
an FG mining algorithm to be incorporated with CGSearchin the complexity of the exact algorithm isF|ha(n). As
for the purpose of miningo( 6)-subgraph pairs. we show in the following sectiony is only a very small
Since pairwise correlation is symmetric, the exact al-percentage ofF| in our experiments.
gorithm at least processes each safmgl)-subgraph pair
twice. In fact, a careful investigation will find that such V. PERFORMANCEEVALUATION

redundant processing extends to sets of mutually cortelate \ye evaluate the performance of our FCP-Miner algorithm
FGs. For example, if FGs are mutually correlated, the exact o various metrics. The algorithm was implemented in C++.
algorithm needs to procedgk — 1) pairs. If duplicate pairs  \yg ran all experiments on an AMD Opteron 248 with 8GB
are processed (_)nly once, _then we only pro_de@sf 1)_/2 RAM, running Linux 64-bit.
pairs, but we still need to invoke CGSearkchimes, which
is still very expensive. Baseline of Comparison. Since this is the first proposal
According to our finding in Theorem 2, given an FG to mine (o, #)-subgraph pairs, we compare with the exact
# and the set of its correlated subgrapds computed algorithm described in Section IV-B, denotedbyactin our
by CGSearch, the correlated subgraphs.Ap have high experimerjts. By comparing Wi'th Exact, we can demonst_rate
correlation with each other. Thus, we can utilize the answefhe effectiveness of the skipping mechanism in FCP-Miner
set.A; of a discovered FG as the candidate sets of all the 3S well as the approximation quality of FCP-Miner. We note
subgfaphs ind,. That is, we make,, = Ay, Vf; € As. In that we do not compare with the frequent-subgraph-mining-
this way, we reduce the candidatel sets of many subgraprﬁased approach 2described in Sectionll because its c.onyplexit
from the whole set of all FG§ to a much smaller seti;. 1S O(ha(F) +[F[°a|D|), wherehs(F) is the complexity of

We describe our algorithnECP-Miner, as follows mining F using an FG mining algorithm. This computational

FCP-Miner operates in a similar way to the exact algo__complexny is higher than that &xactsince FG-Enumerator

rithm except that we apply akippingmechanism in Line is faster than an FG mining algorithm for the purpose of
4 of Algorithm 1. That is, for all FGs returned by FG- pattern enumeration in miningo, 0)-subgraph pairs, and

Enumerator, we skip those FGs that already appear in the is significantly smaller thar|. The frequent-subgraph-

: . nH'ning-based algorithm runs extremely slow for some of the
answer set of some previously processed FGs. These Sk'ppgatasets we test, especially whe| is large and/orD) is
FGs are kept in a hashtable once they are discovered to be » €SP y g

. . - .~ Targe.
correlated with some FG during the mining process (Lines
10-12), and they are skipped in Line 4 by checking theGraph Databases.We test two real datasets most popularly
hashtable. The FGs are hashed into the hashtable by theised in the literature for evaluating FG and correlated-
canonical label (we use the minimum DFS code in gSparsubgraph mining algorithmsAIDS and NCI. AIDS is the
[11)). AIDS antiviral screen datasewhich contains 10K graphs.




Table | Table Il

CHARACTERISTICS OFDATASETS THE EFFECTIVENESS OFFCP-MINER AT VARYING o (FROMO0.1TO
Range of | Average Range of | Average 0.005)
graph size| graph size| density density \ [ 01 [ 005 [ 0025 ] 0.01 [ 0.005 |
AIDS | 1 - 217 27.40 0.009- 1.0 0.10 % of skip 67% 2% 78% 82% 85%
NCI 1 _ 252 19.95 0.008— 1.0 0.14 % of miss 5.9% 4.4% 3.0% 4.4% 4.4%
avg ¢ of miss| 0.81 0.82 0.82 0.82 0.82
avg ¢ of all 0.91 0.91 0.91 0.91 0.90
& &80 cand reduced| 98.65% | 99.35% | 99.75% | 99.92% | 99.96%
- Eéapcfwner § Bt iner avg ans size 7.63 9.73 18.10 54.75 | 119.56
glo" "éeoo
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The NCI dataset contains 100K graphs, which we obtain
from the National Cancer Institute database. Table | lists
some characteristics of the datasets and more details can be

found in their webpagés We now analyze the effectiveness of FCP-Miner by the
A. Effect ofo results report«_ad ir! Table IlI. First, the pe_rformance im_ppov
ment shown in Fig. 2(a) can be explained %y of skip

) which shows that on average about 80% of the FGs are
test the effect of the first parameteron the performance skipped by the skipping mechanism of FCP-Miner. It also
of FCP-Miner. We decrease from 0.1 down to 0.005, by = ghows that the percentage of FGs being skipped is higher for

fixing ¢ at 0.8. We use the AIDS dataset for this experiment.qmajier,, which is due to the fact that the average size of the

Fig. 2 rgports thg tPta' running time and 'Fhe pe.ak MEMON,nswer set of an F@yvg ans sizds also larger for smaller.
consumption of mining(c, ¢)-subgraph pairs using FCP- |, 4qgition, cand reducedndicates that FCP-Miner is very
Miner and Exact, r.espc.ectlvely. The result clearly showsggtactive in reducing the correlation search space. Ovét 98
that FCP-Miner is significantly faster than Exact and moreyt the FGs are pruned from the candidate set so that a large
scalable as we lower the value of FCP-Miner is almost  ,mper of correlation checking are successfully avoided.
an order of magnitude faster than Exact at a moderabé Although the percentage of FGs being skipped is high,

0.025 and the improvement incre_ases to 17.6 time§ wher missshows that the percentage 6f, §)-subgraph pairs
o = 0.005. The memory consumption of the two algorithms missed by FCP-Miner is small, which is about 4% in most

is.comparable, which is proportional to the number of FGS.ases. Importantlyavg ¢ of missshows that the missing

mined. . o, 0)-subgraph pairs have the lowegtvalues, which is
We further analyz_e the effe_ct|venes§ of our approach by, ca 10 — 0.8, while avg ¢ shows that the average

recordmg the foIIowmg_expenmentaI findings, as re.portedva|ue of all (o, 6)-subgraph pairs is much higher thén

in Table II: (1) % of skip the percentage of FGs skipped |, summary, these results reveal that FCP-Miner is effi-

E}{a' ﬂ]ﬁbg‘f}!’ggg‘gkigg‘eedc“a”gsm In ECP-Mmer, calculated as;ient gince most of the FGs are skipped, and effective since
(2) % of miss the percentage of the percentage of missing, #)-subgraph pairs is small and

total number of FGs ? .
(0, 0)-subgraph pairs not found by FCP-Miner, calculated 3%he missing pairs are barely correlated with respect to the
minimum correlation threshold.

Figure 3. Performance on varyirfy

For the two parameters in (@, #)-subgraph pair, we first

__ total number of pairs obtained BCP-Minery. ;
(1 total number of pairs obtained by Exact)' (3) avg (z) of miss

the averagep value of the missing pairs; (4avg ¢ of
all: the averagep value of all (o, 6)-subgraph pairs; (5) B. Effect off
cand reduced the percentage of the candidates reduced

; We now test the effect of the second parameter (0, &)-
by FCP-Miner from the whole set of FGs, computed as . -
(ili average number of candidates in FCP—Miyer(G) avg ans sigzethe SUbgraph pa”ﬂ, on the performance of FCP-Miner. We

. totﬁ}' ?ﬁmbef of FGs t of an FG lower 6 from 0.9 down to 0.6, by fixingr at 0.025. We
average size of the answer set of an . use the AIDS dataset for this experiment.
1AIDS  http:/dtp.nci.nih.gov/ Fig. 3 reports the total running time and the peak memory
NCI: http://cactus.nci.nih. gov/ncidb2/download.html consumption of FCP-Miner and Exact for the different




Table Il Table IV

THE EFFECTIVENESS OFFCP-MINER AT VARYING 6 (FROM 0.970 0.6) THE EFFECTIVENESS OFFCP-MINER AT VARYING DATABASE SIZES
FROM 10K TO 100K
| 09 [ 08 | 07 | 06 | ( )
% of Skip 65% 73% 34% 39% \ _ [ 10K [ 20K [ 40K | 60K [ 80K [ 100K |
0 - 5 5 5 ) % of skip 81% 79% 79% 79% 79% 78%
% of miss 1.6% 3.0% 5.6% 4.9% % of miss 25% | 24% | 1.7% | 2.1% | 3.3% | 4.9%
avg ¢ of miss| 0.91 0.82 0.73 0.65 avg $ of miss| 0.82 0.82 0.82 0.82 0.82 0.82
avg é 0.95 0.91 0.86 0.80 avg ¢ 0.93 0.92 0.92 0.92 0.90 0.90
0 0 0 0 cand reduced| 99.29% | 99.38% | 99.42% | 99.43% | 99.35% | 99.41%
cand redu.ced 99.87% | 99.75% | 99.57% | 99.25% avg ans size | 18.66 19.49 19.11 19.27 22.62 19.69
avg ans size 11.02 18.10 26.74 38.17

by . . .
' * B shows that in all cases, FCP-Miner is almost an order
1 5299 of magnitude faster than Exact, though the memory con-

sumption is comparable. The speed-up ratio of FCP-Miner
over Exact remains rather stable when the database size
increases, which is due to the fact that the number of all

Running Time (sec)
=
\%\
Peak Memory Consumption (MB)
&
o

’W‘ 50 (o, 8)-subgraph pairs does not vary significantly for different
el & g, database sizes (this is also true with the number of FGs).
Database Size (in K) Database Size (in K) This is further confirmed by the stable valuesadfg ans
(a) Running time (b) Peak memory consumption sizeover the different database sizes as shown in Table IV.
Figure 4. Performance on different database sizes The results in Table IV show that FCP-Miner is able

to skip most of the FGs during the mining process, while
keeping a low percentage of missifg, §)-subgraph pairs.
values of . Again, the result shows that FCP-Miner is The ¢ values of the missing pairs are also low as compared
significantly faster than Exact, and also more scalabledo thwith the average value of all pairs. Therefore, we conclude
change o, especially wherd is smaller. The improvement that FCP-Miner is also both efficient and effective for mnin
of FCP-Miner over Exact is about an order of magnitude(s, §)-subgraph pairs with varying database sizes.
faster atd = 0.8, and the difference doubles whehis
lowered to 0.6. The memory consumption of FCP-Miner is VI. RELATED WORK

also lower. In the literature, correlated pattern mining has been widel
The effectiveness of FCP-Miner is assessed in Table lllstydied in various types of databases. For market-basket
When# is high, the number of correlated subgraphs of eactyata, a correlated pattern [16], [17], [18], [19], [20], [2&
FG is small, as confirmed bgvg ans sizeSince FCP-  composed of two or more basket items. Efficient algorithms
Miner skips those FGs that appear in the answer set Qfyere proposed to discover all correlated itemsets defined
the non-skipped FGs, the percentage of skipped FGs is al§g; various correlation measures such as {fietest [16],
relatively smaller at higher values éf as shown by of [17], the m-pattern measure [18], h-confidence [19], Pear-
skip. However, this does not indicate that FCP-Miner is notsgn’s correlation coefficient [20], [21], etc. For streantada
effective for high values of). In fact, the percentage of [27] [28], lagged correlation based on Pearson’s coiicedat
candidates reduced by FCP-Miner is high for a higlof  coefficient was proposed to study the lead-lag relationship
0.9. between two time series. For multimedia data [29], corre-
Table Ill also verifies that the percentage of the missingation between multimedia objects was investigated for the
pairs remains to be low for afl values. The missingo,6)-  task of automatic captioning of media data. Our work is
subgraph pairs are minimally correlated since theiralues  jncomparable to these studies due to different natures of
are merely above the minimum correlation threstibltlote  data types.
that the average value of all (o, 6)-subgraph pairs is much |y the context of graph databases, there are only three
greater than the respective existing studies on correlation discovery, the stepwise co
: related pattern mining [30], CGSearch [22], and the top-k
C. Effect of Database Size version of CGSearch [23]. The work of [30] discovered top-
We also test the effect of database size on the performandesubgraphs that are correlated to a class attribute and used
of FCP-Miner. We create six NCI datasets, with sizesthem as features for graph classification. CGSearch and its
ranging from 10K to 100K graphs. The values @fand  top-k version studied the correlation between a subgragh an
6 are fixed at 0.05 and 0.8, respectively. a given query graph. Our work, on the other hand, does not
Fig. 4 shows that both the running time and the peakequire the user to specify a class attribute or a query graph
memory consumption of FCP-Miner and Exact increasebut aims to discover all frequent correlated subgraph pairs
linearly when the size of the database increases. The resuthich is a more general and harder problem.



VIl. CONCLUSIONS

In this paper, we study the new problem of mining the
set of frequent correlated subgraph pairs from a graph
database, which finds potential usage in many importants]
applications. We propose an efficient algorithm, FCP-Miner
to solve the problem. The algorithm employs a very effective

skipping mechanism, which is devised based on a tigh
theoretical bound established on the minimum correlatio
between any two subgraphs in the answer set of a graph.

We conduct extensive experiments, which verify that FCP-
Miner is able to skip the processing of about 80% of thell7]
frequent subgraphs. Our algorithm is approximate, but it
achieves a high quality of approximation, since the rate of
missing results is very low (around 2-4% in most cases) angg]
the missing pairs are shown to be marginally correlated.
However, the efficiency gained from the approximation is
that FCP-Miner is over an order of magnitude faster than thélg]
exact algorithm in most cases and it is also more scalable

for various metrics.
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