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Abstract—The recent proliferation of graph data in a wide
spectrum of applications has led to an increasing demand
for advanced data analysis techniques. In view of this, many
graph mining techniques, such asfrequent subgraph mining
and correlated subgraph mining, have been proposed. In many
applications, both frequency and correlation play an important
role. Thus, this paper studies a new problem of mining the set
of frequent correlated subgraph pairs. A simple algorithm that
combines existing algorithms for mining frequent subgraphs
and correlated subgraphs results in a multiplication of the
mining operations, the majority of which are redundant. We
discover that most of the graphs correlated to a common
graph are also highly correlated. We establish theoretical
foundations for this finding and derive a tight lower bound
on the correlation of any two graphs that are correlated to a
common graph. This theoretical result leads to the design of
a very effective skipping mechanism, by which we skip the
processing of a majority of graphs in the mining process.
Our algorithm, FCP-Miner, is a fast approximate algorithm,
but we show that the missing pairs are only a small set of
marginally correlated pairs. Extensive experiments verify both
the efficiency and effectiveness of FCP-Miner.

Keywords-graph mining; Pearson’s correlation coefficient;
frequent correlated subgraph pairs

I. I NTRODUCTION

The use of graph-based representation has gained increas-
ing popularity in various application domains, including bio-
informatics [1], [2], chemistry [3], [4], drug design [5], [6],
social network analysis [7], and many more. As a result,
graph pattern mining has become an important research
problem. Existing studies on graph pattern mining mainly
focus on findingfrequent subgraphs[8], [9], [10], [11], [12]
and its closed or maximal variations [13], [14], [15], while
little attention has been paid to finding other types of useful
graph patterns.

In traditional pattern mining, correlated patterns have also
been recognized as an important type of patterns. Correlated
pattern mining has been extensively studied in market-basket
data [16], [17], [18], [19], [20], [21] and recently introduced
to the context of graph data [22], [23]. A pair of subgraphs
are correlated if their occurrence distributions are similar,
which means that they are often co-present and co-absent,
and thus have mutual implication on their occurrences.
Given aquery graph, existing work CGSearch [22] (or its
top-k version [23]) returns all (or top-k) correlated graphs
with respect to the query graph. Both of the studies assume

the existence of an interesting subgraph to be served as the
query graph. In practice, however, such apriori knowledge
may not always be available.

In this paper, we study a new problem of discovering all
frequent correlated subgraph pairs. Unlike the existing work,
the new problem does not require the specification of a query
graph. Instead, it aims to discover all correlations, which
is a more general setting and more practical. The problem
is formulated as follows:Given a graph databaseD that
contains a set of graphs, a minimum correlation threshold
θ, and a minimum support thresholdσ, find all pairs of
frequent subgraphs whose correlation is at leastθ. The
usage ofσ allows a user to control the occurrence probability
(also calledsupport) of an interesting subgraph, whileθ is
used to specify how similar the occurrence distribution of
a pair of correlated subgraphs is wanted. Thus, a frequent
correlated subgraph pair is also called a(σ, θ)-subgraph
pair. The correlation between two graphs is measured by
a function of the individual support of the two graphs and
their joint support. In this paper, we use the well-known
Pearson’s correlation coefficientφ [24] as the correlation
measure.

The (σ, θ)-subgraph pairs are very useful in a wide range
of applications. The following gives a concrete example in
medicinal chemistry.

Example 1. Fig. 1(a) and (b) show a pair of correlated
submolecules discovered from a real chemical compound
structure database in the National Cancer Institute. Each
vertex in the figure represents a carbon atom and each
edge represents a single bond. Being a (σ, θ)-subgraph pair,
it means that these two submolecules often accompany
with each other in a specific set of compounds in the
database. Interestingly, we find that these two submolecules
represent a class of biologically active compounds, which is
depicted in Fig. 1(c). This class contains Dihydrocholesterol
analogues, which are cholesterol derivatives found in human
feces, gallstones, eggs, and other biological matter. 2

Example 1 shows several usages of (σ, θ)-subgraph pairs
in medicinal chemistry. First, a (σ, θ)-subgraph pair is able
to indicate the existence of a class of interesting compounds,
of which may be unaware by the chemist. Therefore, it can
direct the attention of the chemist to these hidden classes,
which may lead to the discovery of new substances or



(a) Submolecule A (b) Submolecule B

HO
(c) Dihydrocholesterol

Figure 1. A pair of correlated submolecules and its represented compound
class

drugs. Second, the (σ, θ)-subgraph pair captures the active
structures of its represented compound class and thus can
serve as building blocks (representative / functional sub-
molecules) of the compound class, which is particularly
useful in compound synthesis. Third, the set of all (σ, θ)-
subgraph pairs can automatically form clusters of biologi-
cally active or well-investigated structures. This can be used
as a summarization of the database so that the chemist
can gain a biological insight of how the compounds are
medically connected. Furthermore, the whole set of (σ, θ)-
subgraph pairs can also guide chemists about their choices
of submolecules when synthesizing new compounds. The
co-occurrences of correlated submolecules indicate that they
are relatively easy to synthesize. Therefore, chemists canbe
saved from a tremendous number of laboratorial tests by
using correlated submolecules.

Being aware of the usefulness of graph correlations, re-
searchers in medicinal chemistry have tried to discover cor-
related submolecules from compound databases [25]. How-
ever, the lack of efficient mining techniques hinders them
from investigating more general structured submolecules,
which inspires our work of discovering all (σ, θ)-subgraph
pairs.

However, finding all (σ, θ)-subgraph pairs is a challenging
problem. First, the number of frequent subgraphs inD can be
large due to the high diversity in the structure of graph data.
Second, for a specific subgraphf , every frequent subgraph
is a candidate to form a (σ, θ)-subgraph pair withf . That is,
the candidate set off , Cf , is equal to the set of all frequent
subgraphs,F . This results in an explosion in the number
of candidates for subgraph pairs, which is|F| × |F|. Third,
unlike the support measure, the correlation measure does
not have the anti-monotone property. That means if a graph
g is found to be uncorrelated withf , we cannot prune all
supergraphs ofg as does in frequent subgraph mining, since
they may still be correlated withf . As a result, the size of
the candidate set,|Cf |, cannot be effectively reduced. The
lack of this powerful pruning property makes the design of
an efficient algorithm very difficult.

There are two straightforward solutions to the problem
based on the existing work of frequent subgraph mining [8],
[9], [10], [11], [12] and query-based correlation mining [22].

The first one is a naive solution, which is a frequent-
subgraph-mining-based approach. The idea is to first mine
the set of all frequent subgraphsF using an existing mining
algorithm and then check the correlation values among all
pairs of frequent subgraphs. However, this approach has
several drawbacks. First, mining all frequent subgraphs can
be expensive. Second, checking pairwise correlations among
all frequent subgraphs is usually infeasible since the number
of all possible pairs can be prohibitively large, especially
when σ is small. Furthermore, the joint support of each
pair of subgraphs needs to be computed during correlation
checking, which takes at least (σ · |D|) number of intersec-
tions on the projected databases of the two subgraphs. Here,
the projected database of a subgraph is defined to be the
set of graphs inD that contain the subgraph. Therefore,
the computational complexity of this naive approach is
extremely high.

Another more feasible solution, which is a CGSearch-
based approach, is to explore the subgraph space and feed
each frequent subgraph into the query-based correlation min-
ing algorithm, CGSearch [22]. This approach is inefficient
as well since each invocation of CGSearch involves an
expensive operation to mine the projected database of the
query graph. Moreover, every correlated subgraph pair is
computed twice by this approach since each of the subgraph
in the pair is feeded as a query once.

In this paper, we propose an approximate but efficient
solution to the problem. Given a frequent subgraphf , we
define its answer set, denoted asAf , to be the set of
subgraphs that form (σ, θ)-subgraph pairs withf . The main
idea of our approach is to compute the exact answer sets
of only a small number of frequent subgraphs by CGSearch
and use these exact answer sets to approximate the answer
sets of the remaining frequent subgraphs. In this way, our
approach is able to skip invoking CGSearch for most of the
frequent subgraphs, which saves tremendous computational
costs compared with the above-mentioned CGSearch-based
approach. Furthermore, our approach significantly reduces
the size of the candidate sets from the whole setF to a much
smaller set, which is far superior to the frequent-subgraph-
mining-based approach.

The mechanism of skipping the processing of most fre-
quent subgraphs has its theoretical foundations. We inves-
tigate the characteristics of correlated subgraphs and find
that correlativeness tends to have the “transitive” property.
More specifically, if two subgraphsf1 andf2 are found to
be correlated with the same subgraphf , they are likely to be
correlated as well. This observation is verified theoretically
by deriving a tight lower bound of the correlationφ(f1, f2).
The lower bound guarantees that an arbitrary pair of graphs
f1 and f2 has a high correlation as long as they are both



correlated with a third graphf , i.e., they appear in the
answer set of the same graphf . Therefore, it is theoretically
sound to approximate the answer sets off1 andf2 using the
answer set off .

Based on the theoretical results, we develop an effi-
cient algorithm to mine Frequent Correlated subgraph Pairs,
namely FCP-Miner. The algorithm traverses the subgraph
space in a depth-first manner. It processes a new subgraph
f by CGSearch to obtain its exact answer setAf . Then,
all graphs inAf are marked to be “skipped”. Thus, FCP-
Miner processes only those new frequent subgraphs that are
not marked as “skipped”, while for each newly processed
frequent subgraph FCP-Miner adds a bunch of graphs to
the skip list. For each skipped graphfi ∈ Af , FCP-Miner
usesAf as the candidate set offi. Its approximated answer
set is then computed from this much smaller candidate set.
In this way, FCP-Miner is able to skip most of the graphs
from processing CGSearch and thus significantly improves
the mining efficiency. However, it is possible for FCP-Miner
to miss some subgraph pairs due to the approximation on
the answer sets of the skipped graphs.

Our extensive experiments show that the number of miss-
ing pairs by FCP-Miner is very small. More importantly,
we find that the correlation values of the missing pairs are
close toθ, which means that they are just boundary pairs.
This result indicates a high-quality of the approximation and
the effectiveness of FCP-Miner. Furthermore, compared with
the CGSearch-based approach that processes every frequent
subgraph, FCP-Miner is over an order of magnitude faster
because of the effective skipping mechanism. On average,
about 80% of the frequent subgraphs can be skipped by FCP-
Miner and the average candidate set size of the subgraphs is
reduced by over 98%. This result demonstrates the efficiency
of FCP-Miner.

The contributions of the paper are as follows.
• We propose a new problem of discovering all frequent

correlated subgraph pairs from graph databases, which
is important and demanding in a wide range of appli-
cations.

• We derive a tight lower bound for an arbitrary pair of
subgraphs in the same answer set, which provides the
theoretical guarantee for performing the high-quality
approximation.

• We devise an efficient and approximate algorithm, FCP-
Miner, which utilizes an effective skipping mechanism
to reduce the search space.

• We conduct extensive experiments that verify the effi-
ciency of our algorithm, as well as the high quality of
the approximation.

The rest of the paper is organized as follows. Section II
gives some preliminaries on graph database and frequent
subgraphs. Section III defines the problem of frequent cor-
related subgraph pair discovery. Section IV presents our

solution and its theoretical foundations. Section V evaluates
the performance of our approach. Section VI reviews some
related work. Finally, Section VII concludes the paper.

II. PRELIMINARIES

Graphs studied in this paper are undirected, labeled and
connected. Agraphg is defined as a triple (V,E, l), whereV
is the set of vertices,E is the set of edges andl is a labeling
function that assigns a label to each vertex and edge.

Given two graphs,g = (V,E, l) andg′ = (V ′, E′, l′), g is
called asubgraphof g′ (or g′ is asupergraphof g), denoted
as g⊆g′ (or g′⊇g), if there exists an injective functionf :
V → V ′, such that∀(u, v) ∈ E, (f(u), f(v)) ∈ E′, l(u) =
l′(f(u)), l(v) = l′(f(v)), and l(u, v) = l′(f(u), f(v)). The
injective functionf is called asubgraph isomorphismfrom
g to g′. Testing subgraph isomorphism between two graphs
is known to beNP-complete[26].

A graph databaseD is a collection of graphs, denoted as
D = {g1, g2, . . . , gN}. Given D and a graphg, we define
theprojected databaseof g as the set of graphs inD that are
supergraphs ofg, denoted asDg = {g′ : g′ ∈ D, g′ ⊇ g}.
The size of the projected database is called thefrequency
of g in D, denoted asfreq(g) = |Dg|. The support of g

in D is further defined assupp(g) = freq(g)
|D| , which is the

probability of a graph inD being the supergraph ofg. A
graph g is called aFrequent subGraph(FG) [8] in D if
supp(g) ≥ σ, where σ (0 ≤ σ ≤ 1) is a user-specified
minimum support threshold. We useF to denote the set of
all FGs inD with respect toσ.

Given two graphsg andg′, we define theirjoint frequency
as the number of graphs inD that are common supergraphs
of g andg′, denoted asfreq(g, g′) = |Dg ∩ Dg′ |. The joint
support of g and g′ is defined assupp(g, g′) = freq(g,g′)

|D| .
The support measure isanti-monotone, that is,g ⊆ g′ im-
plies thatsupp(g) ≥ supp(g′). We also have the following
properties of the joint support:supp(g, g′) ≤ supp(g) and
supp(g, g′) ≤ supp(g′).

III. PROBLEM DEFINITION

In this paper, we adoptPearson’s correlation coefficient
[24] as the correlation measure, defined as follows.

Definition 1. (Pearson’s Correlation Coefficient)Given a
pair of graphsg1 and g2, the Pearson’s correlation coeffi-
cient of g1 and g2, denoted asφ(g1, g2), is defined as

φ(g1, g2) = supp(g1,g2)−supp(g1)supp(g2)√
supp(g1)supp(g2)(1−supp(g1))(1−supp(g2))

. (1)

Whensupp(g1) or supp(g2) is equal to0 or 1, φ(g1, g2) is
defined to be0.

It is easy to see thatφ is symmetric. The value ofφ(g1, g2)
is in the range of[−1, 1]. Whensupp(g1, g2) = supp(g1) ·
supp(g2), φ(g1, g2) takes the value of0, which indicates that
the occurrences ofg1 andg2 are independent to each other.



The positive value ofφ(g1, g2) indicates that the occurrences
of g1 andg2 are positively correlated, i.e., they are often co-
present and co-absent. On the other hand, the negative value
shows negative correlation, i.e.,g1 often occurs withoutg2,
and vice versa. In this paper, we focus on finding positive
correlations.

We now present two useful properties of theφ function,
which can be proved easily by taking the derivative ofφ.

Property 1. If both supp(g1) and supp(g2) are fixed,
φ(g1, g2) is monotonically increasing withsupp(g1, g2).

Property 2. If both supp(g1) and supp(g1, g2) are fixed,
φ(g1, g2) is monotonically decreasing withsupp(g2).

The problem of finding frequent correlated subgraph pairs
can be formalized as follows.

Frequent Correlated Subgraph Pair Discovery Given a
graph databaseD = {g1, g2, . . . , gN}, a minimum corre-
lation thresholdθ (0 ≤ θ ≤ 1), and a minimum support
thresholdσ (0 ≤ σ ≤ 1), find all pairs of subgraphsf1

and f2 in D such thatsupp(f1) ≥ σ, supp(f2) ≥ σ, and
φ(f1, f2) ≥ θ.

We call such a pair of subgraphs a(σ, θ)-subgraph pair.
Given a frequent subgraphf , we call the set of subgraphs
that form (σ, θ)-subgraph pairs withf the answer setof f ,
denoted asAf = {f ′: supp(f ′) ≥ σ, φ(f, f ′) ≥ θ}. Thus,
the problem of frequent correlated subgraph pair discovery
is essentially to find theAf for each frequent subgraphf .
We also useCf to denote the set of candidate graphs that
may potentially form(σ, θ)-subgraph pairs withf .

IV. OUR SOLUTION

In this section, we first derive the lower bound of the
correlation among all subgraph pairs in the same answer set
and then present our mining algorithm, FCP-Miner.

A. Correlation Lower Bound of Subgraph Pairs

Given a frequent subgraphf , we aim to derive a corre-
lation lower bound of an arbitrary pair of graphsf1 andf2

in Af , denoted aslowerφ(f1,f2). In order to be computable
and useful, the lower bound should be a function of the
two known variables,supp(f) and the minimum correlation
thresholdθ. For clarity of presentation, we leta = supp(f).

We first review two useful lemmas proposed in CGSearch
[22]. One lemma gives the bounds on the support of a graph
f ′ ∈ Af , while the other gives the bounds on the joint
support off andf ′ ∈ Af .

Lemma 1. Given a graphf ′ ∈ Af , the following lower
and upper bounds ofsupp(f ′), denoted respectively as
lower supp(f ′) and upper supp(f ′), hold:

lower supp(f ′) =
a

θ−2(1 − a) + a
, (2)

upper supp(f ′) =
a

θ2(1 − a) + a
. (3)

Lemma 2. Given a graphf ′ ∈ Af , the following lower
and upper bounds of the joint supportsupp(f, f ′), denoted
respectively aslower supp(f,f ′) and upper supp(f,f ′), hold:

lower supp(f,f ′) =
a

θ−2(1 − a) + a
, (4)

upper supp(f,f ′) = a. (5)

The above two lemmas specify only the bounds with
respect to a single graphf ′ ∈ Af , while the relationship
between two graphs inAf is still lacking, which is exactly
what we try to get.

Given an arbitrary pair of graphsf1 andf2 in Af , by the
definition of φ, we need to know the values of their indi-
vidual supportsupp(f1), supp(f2), and their joint support
supp(f1, f2), in order to obtain the value ofφ(f1, f2). Ac-
cording to Property 1,φ(f1, f2) is monotonically increasing
with supp(f1, f2). Therefore, in order to get the lower bound
of φ(f1, f2), we first derive a lower bound ofsupp(f1, f2),
which is stated in the following theorem.

Theorem 1. Given a graphf and two graphsf1, f2 in Af ,
the following lower bound ofsupp(f1, f2) holds:

supp(f1, f2) ≥ supp(f, f1) + supp(f, f2) − supp(f). (6)

The equality holds when(Df1
∩ Df2

) ⊆ Df ⊆ (Df1
∪

Df2
).

Proof: By the definitions of the support and the joint
support, (6) holds if and only if the following inequality
holds.

|Df1
∩ Df2

| ≥ |Df ∩ Df1
| + |Df ∩ Df2

| − |Df |. (7)

To prove (7), we decompose|Df | as follows.

|Df | ≥ |Df ∩ (Df1
∪ Df2

)| (8)

= |(Df ∩ Df1
) ∪ (Df ∩ Df2

)| (9)

= |Df ∩ Df1
| + |Df ∩ Df2

| − |Df ∩ Df1
∩ Df2

| (10)

≥ |Df ∩ Df1
| + |Df ∩ Df2

| − |Df1
∩ Df2

|. (11)

Equation (8) holds since the intersection ofDf with any
set is a subset ofDf . Equation (9) is by the distributive law
of the set intersection over the set union. Equation (10) is by
the inclusion-exclusion principle. Equation (11) holds since
(Df ∩Df1

∩Df2
) is a subset of(Df1

∩Df2
), by which (7)

follows.



The equality holds when(Df1
∪ Df2

) ⊇ Df for (8) and
Df ⊇ (Df1

∩ Df2
) for (11). Therefore, the equality holds

when(Df1
∩ Df2

) ⊆ Df ⊆ (Df1
∪ Df2

).

Theorem 1 serves as a bridge betweensupp(f1, f2) and
the two joint supportsupp(f, f1) and supp(f, f2), whose
bounds are known in Lemma 2.

By Property 1 and the definition ofφ, we can replace
supp(f1, f2) with the results in Theorem 1 intoφ(f1, f2)
and obtain the following inequality.

φ(f1, f2) ≥ supp(f,f1)+supp(f,f2)−a−supp(f1)supp(f2)√
supp(f1)supp(f2)(1−supp(f1))(1−supp(f2))

.

(12)

Although (12) already specifies a lower bound of
φ(f1, f2), it is not a useful one since all the variables except
a in this lower bound are unknown. Therefore, we need to
make further derivations.

The right side of (12) is monotonically increasing with
supp(f, f1) and supp(f, f2) and is monotonically decreas-
ing with supp(f1) and supp(f2) if other variables are
fixed. Therefore, we can simply replace these variables
in (12) respectively withlower supp(f,f1), lower supp(f,f2),
upper supp(f1) andupper supp(f2), which are given in Lem-
mas 1 and 2. However, the lower bound ofφ(f1, f2)
derived in this way is not tight. This is because the joint
supportsupp(f, f1) is dependent on the individual support
supp(f1). As a result,lower supp(f,f1) and upper supp(f1)

cannot be achieved simultaneously. The case is the same for
lower supp(f,f2) and upper supp(f2). Thus, the lower bound
of φ(f1, f2) derived in this simple way is a loose one and
has no guarantee.

Based on the above analysis, we need to resolve the
dependency of the joint support and the individual support in
(12) so as to obtain a tight bound. This can be accomplished
as follows. Recall that bothf1 and f2 are in Af , which
implies thatφ(f, f1) ≥ θ andφ(f, f2) ≥ θ. By the definition
of φ, we have the following inequality:

supp(f, f1) ≥ θ
√

a(1 − a)supp(f1)(1 − supp(f1))

+ a · supp(f1). (13)

The right hand side of (13) is a function ofsupp(f1),
which can be used to resolve the dependency problem. The
equality holds whenφ(f, f1) = θ. We have similar results
for supp(f, f2). By replacingsupp(f, f1) and supp(f, f2)
with (13) in (12), we obtain the following inequality of
φ(f1, f2). For clarity, we let x = supp(f1) and y =
supp(f2).

φ(f1, f2) ≥ θ
√

a(1−a)(
√

x(1−x)+
√

y(1−y))+a(x+y)−a−xy√
x(1−x)y(1−y)

(14)

= h(x, y).

The equality holds when(Df1
∩Df2

) ⊆ Df ⊆ (Df1
∪Df2

)
andφ(f, f1) = φ(f, f2) = θ.

The right hand side of (14) is a function ofx and y,
denoted ash(x, y). More importantly, the variablesx andy
can take independent values in the functionh. In order to
utilize the bounds in Lemma 1 to obtain a tight lower bound
of φ(f1, f2), we need to know the monotonicity ofx and
y in h(x, y). Sincex and y are symmetric inh(x, y), we
only consider the monotonicity ofx, which is given in the
following lemma.

Lemma 3. Let t =
√

a(1−y)
(1−a)y . The following two statements

about the monotonicity ofx in h(x, y) are true:

(1) The functionh is monotonically increasing withx in
[lower supp(f1),

t−θ
t+t−1−2θ

];

(2) The functionh is monotonically decreasing withx in
[ t−θ
t+t−1−2θ

, upper supp(f1)].

Proof: In order to determine the monotonicity ofx, we
apply the differentiation to the functionh with respect tox
and obtain the following equality.

h′(x) =
(a−y)+

√
a(1−y)(θ

√
(1−a)y−

√
a(1−y))(2−x−1)

2
√

y(1−y)x(
√

1−x)3
. (15)

The sign ofh′(x) is the same as the sign of the numerator
in (15), denoted as

M = (a−y)+
√

a(1 − y)(θ
√

(1 − a)y−
√

a(1 − y))(2−x−1).

We first show that(θ
√

(1 − a)y −
√

a(1 − y)) ≤ 0. It
is easy to see that the left hand side of this inequality
monotonically increases withy. The inequality follows when
we replacey with its upper boundupper supp(f2) as given
in Lemma 1.

In order to haveM ≥ 0, it is equivalent to have the
following inequalities.

M ≥ 0

⇔ √
a(1−y)(θ

√
(1−a)y−

√
a(1−y))(2−x−1) ≥ (y−a)

⇔ x−1 ≥ 2 + y−a

a(1−y)−θ
√

a(1−a)y(1−y)

= 1 +
(1−a)y−θ

√
a(1−a)y(1−y)

a(1−y)−θ
√

a(1−a)y(1−y)

= 1 + t−1−θ
t−θ

. (16)

By taking the derivative of the functiont =
√

a(1−y)
(1−a)y , we

find thatt is monotonically decreasing withy. By Lemma 1,
we havelower supp(f2) ≤ y ≤ upper supp(f2). By replacing
the bounds ofy in t, we haveθ ≤ t ≤ θ−1. Therefore, (16)
is always positive.



By (16), it follows thatM ≥ 0 or equivalentlyh′(x) ≥ 0
if and only if

x ≤ t − θ

t + t−1 − 2θ
.

Following the similar derivation, we can get thatM ≤ 0 or
equivalentlyh′(x) ≤ 0 if and only if

x ≥ t − θ

t + t−1 − 2θ
.

By Lemma 1, we havelower supp(f1) ≤ x ≤ upper supp(f1),
the monotonicity ofx in h thus follows.

According to Lemma 3, wheny is fixed, the minimum
value ofh(x, y) can be achieved at eitherx = lower supp(f1)

or x = upper supp(f1). Since the variabley is independent
of x, the minimum value ofh(x, y) can only occur at four
points, which are combinations ofx andy taking their lower
and upper bounds. Sincex and y are symmetric, there are
essentially three possible points. We summarize the lower
bound ofφ(f1, f2) in the following theorem.

Theorem 2. Given a graphf and two graphsf1, f2 in its
answer setAf , the following two statements of the lower
bound ofφ(f1, f2), denoted aslowerφ(f1,f2), hold:

(1) If a ≥ 1
2 , then

lowerφ(f1,f2) = θ2 − (θ−1 − θ)2a,

which is achieved whensupp(f1) = supp(f2) =
upper supp(f1) and supp(f1, f2) = a.

(2) If a < 1
2 , then

lowerφ(f1,f2) = θ2 − (θ−1 − θ)2(1 − a),

which is achieved whensupp(f1) = supp(f2) =
lower supp(f1) andsupp(f1, f2) = 2·lower supp(f1)−a.

Proof: We first check the minimum value of the function
h(x, y), which can only be achieved in either of the following
three cases as discussed above.

When x = lower supp(f1) and y = lower supp(f2), by
Lemma 1 and (14), we have

h(x, y) = θ2 − (θ−1 − θ)2(1 − a). (17)

Whenx = lower supp(f1) and y = upper supp(f2),

h(x, y) = θ2. (18)

Whenx = upper supp(f1) and y = upper supp(f2),

h(x, y) = θ2 − (θ−1 − θ)2a. (19)

Since the second term(θ−1 − θ)2(1 − a) in (17) is non-
negative, we have(θ2 − (θ−1 − θ)2(1 − a)) ≤ θ2, which
indicates that (18) does not specify a minimum value ofh.

We now consider (17) and (19) and have the following
derivations.

θ2 − (θ−1 − θ)2(1 − a) ≥ θ2 − (θ−1 − θ)2a

⇔ 1 − a ≤ a

⇔ a ≥ 1
2 .

Thus, whena ≥ 1
2 , (19) serves as the lower bound of

h. By (14), φ(f1, f2) is equal toh if and only if (Df1
∩

Df2
) ⊆ Df ⊆ (Df1

∪ Df2
) and φ(f, f1) = φ(f, f2) = θ.

The condition of (19), i.e.,x = y = upper supp(f1), implies
that φ(f, f1) = φ(f, f2) = θ holds. By replacing the values
of x and y in (6), we havesupp(f1, f2) = a, which ensures
that (Df1

∩ Df2
) ⊆ Df ⊆ (Df1

∪ Df2
) holds.

Accordingly, whena < 1
2 , (17) is the lower bound of

φ(f1, f2). By (6), this lower bound is achieved whenx =
y = lower supp(f1) and supp(f1, f2) = 2 · lower supp(f1)−a.

Theorem 2 provides a tight lower bound of the correlation
between two arbitrary graphsf1 andf2 in the same answer
setAf of a graphf . It indicates that all the graphs inAf

have a correlation guarantee, which is not very far away
from the thresholdθ. For example, ifθ = 0.9 anda = 0.5,
the lower bound computed by Theorem 2 is0.79, which is
still pretty high.

B. Our Algorithm

We first describe an exact algorithm that utilizes
CGSearch for all FGs to mine the set of all(σ, θ)-subgraph
pairs. Then, we make use of the theoretical results we obtain
in the previous section to design an efficient approximate
algorithm.

The exact algorithm has the following two components:
(1) FG-Enumerator: the algorithm for enumerating all FGs;
and (2)CGSearch[22]: an existing algorithm for mining the
set of all correlated subgraphs of a given query graphf . The
exact algorithm operates as follows. For each FGf returned
by FG-Enumerator, find the set of all correlated subgraphs
of f using CGSearch, and return those correlated subgraphs
that have support at leastσ.

The FG-Enumerator in the exact algorithm is used to
enumerate the subgraphs in the pattern space in a depth-
first manner similar to an FG mining algorithm such as
gSpan [11]. However, it is different from an FG mining
algorithm in the sense that it does not count the support of
every FG, which is a very costly operation since it involves
many subgraph isomorphism tests. FG-Enumerator works
with CGSearch closely as follows. When the correlated
subgraphs off are returned by CGSearch, their support is
obtained as well. Therefore, FG-enumerator does not need



Algorithm 1 FCP-Miner
Input: D, σ andθ.
Output: A set of(σ, θ)-subgraph pairs.

1. Initialize an empty hashtableH;
2. Invoke FG-Enumerator (with inputσ andD);
3. for each FG f returned by FG-Enumeratordo
4. if (f is not in H)
5. Invoke CGSearch (with inputf , θ andD)

to mine the set of correlated subgraphs off , Cf ;
6. Af ← {fi : fi ∈ Cf , supp(fi) ≥ σ};
7. Outputf andAf ;
8. for each fi ∈ Af do
9. Cfi

← Af ;
10. if (fi is not in H)
11. Afi

← {f} ∪ {fj : fj ∈ Cfi
, φ(fi, fj) ≥ θ, i 6= j};

12. Pushfi andAfi
into H;

13. else /∗ fi is in H ∗/
14. UpdateAfi

← Afi
∪

{fj : fj ∈ Cfi
, φ(fi, fj) ≥ θ, i 6= j};

15. Outputf andAf for all f in H;

to re-calculate the support of these subgraphs when they are
explored later. Thus, FG-enumerator is more efficient than
an FG mining algorithm to be incorporated with CGSearch
for the purpose of mining (σ, θ)-subgraph pairs.

Since pairwise correlation is symmetric, the exact al-
gorithm at least processes each same(σ, θ)-subgraph pair
twice. In fact, a careful investigation will find that such
redundant processing extends to sets of mutually correlated
FGs. For example, ifk FGs are mutually correlated, the exact
algorithm needs to processk(k− 1) pairs. If duplicate pairs
are processed only once, then we only processk(k − 1)/2
pairs, but we still need to invoke CGSearchk times, which
is still very expensive.

According to our finding in Theorem 2, given an FG
f and the set of its correlated subgraphsAf computed
by CGSearch, the correlated subgraphs inAf have high
correlation with each other. Thus, we can utilize the answer
setAf of a discovered FGf as the candidate sets of all the
subgraphs inAf . That is, we makeCfi

= Af , ∀fi ∈ Af . In
this way, we reduce the candidate sets of many subgraphs
from the whole set of all FGsF to a much smaller setAf .

We describe our algorithm,FCP-Miner, as follows.
FCP-Miner operates in a similar way to the exact algo-

rithm except that we apply askippingmechanism in Line
4 of Algorithm 1. That is, for all FGs returned by FG-
Enumerator, we skip those FGs that already appear in the
answer set of some previously processed FGs. These skipped
FGs are kept in a hashtable once they are discovered to be
correlated with some FG during the mining process (Lines
10-12), and they are skipped in Line 4 by checking the
hashtable. The FGs are hashed into the hashtable by their
canonical label (we use the minimum DFS code in gSpan
[11]).

In other words, in Algorithm 1, we apply a heuristic
implied by Theorem 2 which approximates the answer set
of a skipped FG by the union of all its correlated subgraphs
found in the answer sets of those processed FGs (Line 14).
Therefore, if the FGs in the answer set of an FG indeed share
high mutual correlation, then a huge amount of redundant
processing can be avoided. For example, in the example of
the k mutually correlated FGs mentioned earlier, we only
need to invoke CGSearch once to obtain all the(σ, θ)-
subgraph pairs among thesek subgraphs.

Complexity Analysis. We analyze the complexity of FCP-
Miner with comparison to the exact algorithm. For the exact
algorithm, the complexity isO(h1(F) + |F|h2(n)), where
h1(F) is the complexity of exploring the set of FGsF using
FG-Enumerator, andh2(n) is the complexity for obtaining
n correlated subgraphs using CGSearch, assuming thatn is
the average number of correlated subgraphs of an FG inF .

For FCP-Miner, due to the use of the skipping mechanism,
the complexity is reduced toO(h1(F) + mh2(n)), where
m is the number of those FGs that are not skipped. In
general,m is significantly smaller than|F| and therefore
tremendous saving is obtained, since the dominant factor
in the complexity of the exact algorithm is|F|h2(n). As
we show in the following section,m is only a very small
percentage of|F| in our experiments.

V. PERFORMANCEEVALUATION

We evaluate the performance of our FCP-Miner algorithm
on various metrics. The algorithm was implemented in C++.
We ran all experiments on an AMD Opteron 248 with 8GB
RAM, running Linux 64-bit.

Baseline of Comparison. Since this is the first proposal
to mine (σ, θ)-subgraph pairs, we compare with the exact
algorithm described in Section IV-B, denoted byExactin our
experiments. By comparing with Exact, we can demonstrate
the effectiveness of the skipping mechanism in FCP-Miner
as well as the approximation quality of FCP-Miner. We note
that we do not compare with the frequent-subgraph-mining-
based approach described in Section I because its complexity
is O(h3(F)+ |F|2σ|D|), whereh3(F) is the complexity of
miningF using an FG mining algorithm. This computational
complexity is higher than that ofExactsince FG-Enumerator
is faster than an FG mining algorithm for the purpose of
pattern enumeration in mining(σ, θ)-subgraph pairs, and
n is significantly smaller than|F|. The frequent-subgraph-
mining-based algorithm runs extremely slow for some of the
datasets we test, especially when|F| is large and/or|D| is
large.

Graph Databases.We test two real datasets most popularly
used in the literature for evaluating FG and correlated-
subgraph mining algorithms:AIDS and NCI. AIDS is the
AIDS antiviral screen dataset, which contains 10K graphs.



Table I
CHARACTERISTICS OFDATASETS

Range of Average Range of Average
graph size graph size density density

AIDS 1 − 217 27.40 0.009− 1.0 0.10
NCI 1 − 252 19.95 0.008− 1.0 0.14

0.1 0.05 0.025 0.01 0.005
10

1

10
2

10
3

10
4

10
5

Minimum Support Threshold σ

R
un

ni
ng

 T
im

e 
(s

ec
)

Exact
FCP−Miner

(a) Running time

0.1 0.05 0.025 0.01 0.005
0

200

400

600

800

Minimum Support Threshold σ

P
ea

k 
M

em
or

y 
C

on
su

m
pt

io
n 

(M
B

)

Exact
FCP−Miner

(b) Peak memory consumption

Figure 2. Performance on varyingσ

The NCI dataset contains 100K graphs, which we obtain
from the National Cancer Institute database. Table I lists
some characteristics of the datasets and more details can be
found in their webpages1.

A. Effect ofσ

For the two parameters in a(σ, θ)-subgraph pair, we first
test the effect of the first parameterσ on the performance
of FCP-Miner. We decreaseσ from 0.1 down to 0.005, by
fixing θ at 0.8. We use the AIDS dataset for this experiment.

Fig. 2 reports the total running time and the peak memory
consumption of mining(σ, θ)-subgraph pairs using FCP-
Miner and Exact, respectively. The result clearly shows
that FCP-Miner is significantly faster than Exact and more
scalable as we lower the value ofσ. FCP-Miner is almost
an order of magnitude faster than Exact at a moderateσ of
0.025 and the improvement increases to 17.6 times when
σ = 0.005. The memory consumption of the two algorithms
is comparable, which is proportional to the number of FGs
mined.

We further analyze the effectiveness of our approach by
recording the following experimental findings, as reported
in Table II: (1) % of skip: the percentage of FGs skipped
by the skipping mechanism in FCP-Miner, calculated as
total number of FGs skipped

total number of FGs ; (2) % of miss: the percentage of
(σ, θ)-subgraph pairs not found by FCP-Miner, calculated as
(1 − total number of pairs obtained byFCP-Miner

total number of pairs obtained by Exact); (3) avg φ of miss:
the averageφ value of the missing pairs; (4)avg φ of
all: the averageφ value of all (σ, θ)-subgraph pairs; (5)
cand reduced: the percentage of the candidates reduced
by FCP-Miner from the whole set of FGs, computed as
(1− average number of candidates in FCP-Miner

total number of FGs ); (6) avg ans size: the
average size of the answer set of an FG.

1AIDS: http://dtp.nci.nih.gov/
NCI: http://cactus.nci.nih. gov/ncidb2/download.html

Table II
THE EFFECTIVENESS OFFCP-MINER AT VARYING σ (FROM 0.1 TO

0.005)

0.1 0.05 0.025 0.01 0.005
% of skip 67% 72% 78% 82% 85%
% of miss 5.9% 4.4% 3.0% 4.4% 4.4%
avg φ of miss 0.81 0.82 0.82 0.82 0.82
avg φ of all 0.91 0.91 0.91 0.91 0.90
cand reduced 98.65% 99.35% 99.75% 99.92% 99.96%
avg ans size 7.63 9.73 18.10 54.75 119.56
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Figure 3. Performance on varyingθ

We now analyze the effectiveness of FCP-Miner by the
results reported in Table II. First, the performance improve-
ment shown in Fig. 2(a) can be explained by% of skip,
which shows that on average about 80% of the FGs are
skipped by the skipping mechanism of FCP-Miner. It also
shows that the percentage of FGs being skipped is higher for
smallerσ, which is due to the fact that the average size of the
answer set of an FG,avg ans size, is also larger for smallerσ.
In addition,cand reducedindicates that FCP-Miner is very
effective in reducing the correlation search space. Over 98%
of the FGs are pruned from the candidate set so that a large
number of correlation checking are successfully avoided.

Although the percentage of FGs being skipped is high,%
of missshows that the percentage of(σ, θ)-subgraph pairs
missed by FCP-Miner is small, which is about 4% in most
cases. Importantly,avg φ of missshows that the missing
(σ, θ)-subgraph pairs have the lowestφ values, which is
close toθ = 0.8, while avg φ shows that the averageφ
value of all (σ, θ)-subgraph pairs is much higher thanθ.

In summary, these results reveal that FCP-Miner is effi-
cient since most of the FGs are skipped, and effective since
the percentage of missing(σ, θ)-subgraph pairs is small and
the missing pairs are barely correlated with respect to the
minimum correlation thresholdθ.

B. Effect ofθ

We now test the effect of the second parameter in a(σ, θ)-
subgraph pair,θ, on the performance of FCP-Miner. We
lower θ from 0.9 down to 0.6, by fixingσ at 0.025. We
use the AIDS dataset for this experiment.

Fig. 3 reports the total running time and the peak memory
consumption of FCP-Miner and Exact for the different



Table III
THE EFFECTIVENESS OFFCP-MINER AT VARYING θ (FROM 0.9 TO 0.6)

0.9 0.8 0.7 0.6
% of skip 65% 78% 84% 89%
% of miss 1.6% 3.0% 5.6% 4.9%
avg φ of miss 0.91 0.82 0.73 0.65
avg φ 0.95 0.91 0.86 0.80
cand reduced 99.87% 99.75% 99.57% 99.25%
avg ans size 11.02 18.10 26.74 38.17
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Figure 4. Performance on different database sizes

values of θ. Again, the result shows that FCP-Miner is
significantly faster than Exact, and also more scalable to the
change ofθ, especially whenθ is smaller. The improvement
of FCP-Miner over Exact is about an order of magnitude
faster atθ = 0.8, and the difference doubles whenθ is
lowered to 0.6. The memory consumption of FCP-Miner is
also lower.

The effectiveness of FCP-Miner is assessed in Table III.
Whenθ is high, the number of correlated subgraphs of each
FG is small, as confirmed byavg ans size. Since FCP-
Miner skips those FGs that appear in the answer set of
the non-skipped FGs, the percentage of skipped FGs is also
relatively smaller at higher values ofθ, as shown by% of
skip. However, this does not indicate that FCP-Miner is not
effective for high values ofθ. In fact, the percentage of
candidates reduced by FCP-Miner is high for a highθ of
0.9.

Table III also verifies that the percentage of the missing
pairs remains to be low for allθ values. The missing(σ, θ)-
subgraph pairs are minimally correlated since theirφ values
are merely above the minimum correlation thresholdθ. Note
that the averageφ value of all(σ, θ)-subgraph pairs is much
greater than the respectiveθ.

C. Effect of Database Size

We also test the effect of database size on the performance
of FCP-Miner. We create six NCI datasets, with sizes
ranging from 10K to 100K graphs. The values ofσ and
θ are fixed at 0.05 and 0.8, respectively.

Fig. 4 shows that both the running time and the peak
memory consumption of FCP-Miner and Exact increase
linearly when the size of the database increases. The result

Table IV
THE EFFECTIVENESS OFFCP-MINER AT VARYING DATABASE SIZES

(FROM 10K TO 100K)

10K 20K 40K 60K 80K 100K
% of skip 81% 79% 79% 79% 79% 78%
% of miss 2.5% 2.1% 1.7% 2.1% 3.3% 4.9%
avg φ of miss 0.82 0.82 0.82 0.82 0.82 0.82
avg φ 0.93 0.92 0.92 0.92 0.90 0.90
cand reduced 99.29% 99.38% 99.42% 99.43% 99.35% 99.41%
avg ans size 18.66 19.49 19.11 19.27 22.62 19.69

shows that in all cases, FCP-Miner is almost an order
of magnitude faster than Exact, though the memory con-
sumption is comparable. The speed-up ratio of FCP-Miner
over Exact remains rather stable when the database size
increases, which is due to the fact that the number of all
(σ, θ)-subgraph pairs does not vary significantly for different
database sizes (this is also true with the number of FGs).
This is further confirmed by the stable values ofavg ans
sizeover the different database sizes as shown in Table IV.

The results in Table IV show that FCP-Miner is able
to skip most of the FGs during the mining process, while
keeping a low percentage of missing(σ, θ)-subgraph pairs.
Theφ values of the missing pairs are also low as compared
with the averageφ value of all pairs. Therefore, we conclude
that FCP-Miner is also both efficient and effective for mining
(σ, θ)-subgraph pairs with varying database sizes.

VI. RELATED WORK

In the literature, correlated pattern mining has been widely
studied in various types of databases. For market-basket
data, a correlated pattern [16], [17], [18], [19], [20], [21] is
composed of two or more basket items. Efficient algorithms
were proposed to discover all correlated itemsets defined
by various correlation measures such as theχ2 test [16],
[17], the m-pattern measure [18], h-confidence [19], Pear-
son’s correlation coefficient [20], [21], etc. For stream data
[27], [28], lagged correlation based on Pearson’s correlation
coefficient was proposed to study the lead-lag relationship
between two time series. For multimedia data [29], corre-
lation between multimedia objects was investigated for the
task of automatic captioning of media data. Our work is
incomparable to these studies due to different natures of
data types.

In the context of graph databases, there are only three
existing studies on correlation discovery, the stepwise cor-
related pattern mining [30], CGSearch [22], and the top-k
version of CGSearch [23]. The work of [30] discovered top-
k subgraphs that are correlated to a class attribute and used
them as features for graph classification. CGSearch and its
top-k version studied the correlation between a subgraph and
a given query graph. Our work, on the other hand, does not
require the user to specify a class attribute or a query graph
but aims to discover all frequent correlated subgraph pairs,
which is a more general and harder problem.



VII. C ONCLUSIONS

In this paper, we study the new problem of mining the
set of frequent correlated subgraph pairs from a graph
database, which finds potential usage in many important
applications. We propose an efficient algorithm, FCP-Miner,
to solve the problem. The algorithm employs a very effective
skipping mechanism, which is devised based on a tight
theoretical bound established on the minimum correlation
between any two subgraphs in the answer set of a graph.
We conduct extensive experiments, which verify that FCP-
Miner is able to skip the processing of about 80% of the
frequent subgraphs. Our algorithm is approximate, but it
achieves a high quality of approximation, since the rate of
missing results is very low (around 2-4% in most cases) and
the missing pairs are shown to be marginally correlated.
However, the efficiency gained from the approximation is
that FCP-Miner is over an order of magnitude faster than the
exact algorithm in most cases and it is also more scalable
for various metrics.
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