
Efficient Processing of Distance Queries in Large Graphs:
A Vertex Cover Approach

James Cheng
Nanyang Technological
University, Singapore
j.cheng@acm.org

Yiping Ke
Institute of High Performance

Computing, Singapore
keyp@ihpc.a-star.edu.sg

Shumo Chu
Nanyang Technological
University, Singapore

shumo.chu@acm.org

Carter Cheng
Nanyang Technological
University, Singapore

carter.cheng.w@acm.org

ABSTRACT
We propose a novel disk-based index for processing single-source
shortest path or distance queries. The index is useful in a wide
range of important applications (e.g., network analysis, routing plan-
ning, etc.). Our index is a tree-structured index constructed based
on the concept of vertex cover. We propose an I/O-efficient algo-
rithm to construct the index when the input graph is too large to
fit in main memory. We give detailed analysis of I/O and CPU
complexity for both index construction and query processing, and
verify the efficiency of our index for query processing in massive
real-world graphs.

Categories and Subject Descriptors
G.2.2 [Discrete Mathematics]: Graph Theory—Graph algorithms;
E.1 [Data structures]: Graphs and Networks, Trees

General Terms
Algorithms, Performance, Experimentation

Keywords
Single-source shortest paths, distance queries, disk-based shortest-
path index, vertex cover, distance graph

1. INTRODUCTION
We study the problem of indexing a graph for answering single-

source shortest path or distance (SSSP or SSdist) queries. Given a
graph G and a source vertex s, an SSSP or SSdist query finds the
shortest path or distance from s to every vertex in G. We consider
both weighted and un-weighted graphs. In an un-weighted graph,
SSSP from s is simply breadth-first search (BFS) from s.

SSSP and BFS are two classic algorithmic problems whose so-
lutions have numerous applications. However, in situations where
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the input graphs are large which is becoming more common [19,
7] and where repeated queries are made over the same data, classic
solutions become impractical. To process large graphs that cannot
fit in memory, many external-memory (EM) algorithms have been
proposed for SSSP [17, 21, 22, 19, 20] and BFS [24, 6, 18, 4, 5].
However, the EM algorithms, though having polynomial I/O com-
plexity, are not efficient enough in many practical applications. As
reported in our experiments, the EM BFS algorithm [18] takes up
to 7,500 seconds to process just one single query.

We propose a novel disk-based index for processing SSSP and
BFS queries. Most existing shortest-path or distance indexes fo-
cus on answering source-to-target queries [1], which have applica-
tions mainly in road networks. However, the index for SSSP and
BFS also has many important applications such as urban planning,
routing in telecommunication networks, crawling and analyzing the
Web [25], finding the k-neighbors or k-hops of a vertex in a net-
work/graph, etc. In addition, the index is useful for a large number
of problems that need to process SSSP or BFS repeatedly with dif-
ferent source vertices. We list a few as follows.

• In network analysis, we may build an index and then effi-
ciently compute important measures such as closeness [12],
stress [26], betweenness [15], global efficiency [27], char-
acteristic path length [8], integration and radiality [29], etc.,
which all require to compute SSSP or BFS repeatedly from
all vertices or from selected vertices (for approximation).

• In estimating the diameter of a graph, a key step is to com-
pute SSSP or BFS from a chosen subset of vertices [3], which
is very costly for large graphs but can be efficiently processed
with an index. The index can also be used for efficient esti-
mation of the radius, girth, and circumference of a graph.

• For a number of flow problems, the index can be used re-
peatedly for any input source vertices (i.e., queries), instead
of re-computing the flow from scratch each time. For exam-
ple, Ford-Fulkerson’s maximum flow algorithm uses BFS to
find all paths from a source vertex [14], and the successive
shortest paths algorithm for min-cost flow computes SSSP
repeatedly from the source vertices [11].

• For several maximum matching algorithms [16, 23], we can
use the index to speed up a key step which finds the BFS level
of each vertex from the free vertices (i.e., source vertices).

• We may also apply the index in the approximation of the



Travel Salesman problem, and the Chinese Postman prob-
lem, the shortest common superstring problem [28], etc.

Our index, named as VC-index, applies the concept of vertex
cover (VC) to construct a tree-structured index. The construction
of the index is based on the observation that all vertices in a given
graph are within 1 hop of the VC and this can be related to Dijk-
stra’s observation [10] that the greedy strategy to grow the shortest
paths is optimal via an inductive argument.

By employing the property of VC, we show that, once the dis-
tance from the source vertex s to the vertices in a VC C of G is
known, the distance from s to each remaining vertex in G can be
obtained at a small cost. However, it is inefficient to compute the
distance from s to the vertices in C online. Moreover, it is also im-
practical to pre-compute all the distances offline and retrieve them
online, because the storage size is prohibitively large. Our solu-
tion is to compress the distance information in G step by step until
it becomes affordable to do online distance computation with lim-
ited memory and short response time. To this end, we formulate the
concept of distance graph, which is smaller than G but fully retains
the distance information between the vertices in C. After obtain-
ing the distance graph D0 of G, we recursively construct a distance
graph D1 from D0, and so on until we obtain a distance graph Di

that is small enough for in-memory distance computation. In this
way, as long as s is in Di, the distance from s to all the vertices in
G can be obtained by unfolding the distance information in these
distance graphs, which form a path in VC-index.

We summarize the main contributions of the paper as follows.

• We propose a novel disk-based index for processing SSSP
and BFS queries. In addition to many traditional applications
of SSSP and BFS, our index can also be applied to devise
efficient solutions for a large number of important problems
[12, 26, 15, 27, 8, 29, 3, 14, 11, 23, 16, 28], especially in the
case when the input graph is disk resident.

• Our work is the first to apply VC to build a tree-structured in-
dex. We propose a streaming 2-approximation algorithm for
computing the minimum VC in large graphs, which makes
efficient application of VC for indexing possible.

• The existing (source-to-target) shortest path indexes for gen-
eral graphs rely on in-memory construction [31, 30] (even
though the constructed index may be disk-resident). How-
ever, in-memory index construction algorithms cannot scale
to large graphs that cannot fit in memory. In our work, we
design I/O-efficient algorithms to construct VC-index.

• Our experimental results show that our algorithm for index
construction is efficient in large real graphs with more than
100 million vertices and over 1 billion edges, while other
closely related indexes [31, 30] ran out of memory. The re-
sults also verify the high efficiency of query processing us-
ing VC-index, together with a demonstration on the benefit
of VC-index in some important applications.

Organization. Section 2 defines the problem and the basic nota-
tions. Section 3 describes a simple VC-based index. Section 4 gives
the overall framework. Sections 5 and 6 present the construction of
VC-index and query processing. Section 7 extends VC-index to
process other types of queries. Section 8 reports the experimental
results. Section 9 discusses the update maintenance of VC-index.
Sections 10 and 11 give the related work and the conclusion.

Table 1: Frequently-used notations
Notation Description

G = (VG, EG, ωG) A weighted, undirected simple graph
|G| = (|VG|+ |EG|) The size of G

adjG(v) The set of adjacent vertices of v in G
degG(v) The degree of v in G

C A vertex cover of G
len(p) The length of a path p

SPG(s, v) The shortest path from s to v in G
distG(s, v) The distance from s to v in G

X A node X in VC-index
X The VC at the node X

DX = (VX=X, EX , ωX) The distance graph at the node X
M The main memory size
B The disk block size

2. PROBLEM DEFINITION
We first give the notations used throughout the paper.
Let G = (VG, EG, ωG) be a weighted, undirected simple graph,

where VG is the set of vertices, EG is the set of edges, and ωG :
EG → N

∗ is a function that assigns a positive integer to each edge
as the weight. If G is unweighted, then ∀e ∈ EG, ωG(e) = 1. The
size of G is defined as |G| = (|VG|+ |EG|).

We define the set of adjacent vertices (or neighbors) of a vertex
v in G as adjG(v) = {u : (u, v) ∈ EG}, and the degree of v in
G as degG(v) = |adjG(v)|. For simplicity, the weight of an edge
(u, v), ωG((u, v)), is written as ωG(u, v).

We assume that a graph is stored in its adjacency list representa-
tion (whether in memory or on disk), where each vertex is assigned
a unique vertex ID (or vertex label) and vertices are ordered in the
ascending order of their vertex IDs.

Given a vertex set S ⊆ VG, we say that an edge (u, v) in G
is covered by S (or equivalently S covers (u, v)) if and only if
{u, v} ∩ S �= ∅. A vertex cover (VC) of G, denoted by C, is
a subset of VG that covers all edges in G, i.e., each edge of G
is incident to at least one vertex in C. Given a VC C of G, any
superset of C is also a VC of G. The vertex set VG is trivially a
VC of G. A minimum VC of G is a VC that has the minimum set
cardinality among all VCs of G.

Given a path p in G, the length of p is defined as len(p) =∑
e∈p ωG(e), i.e., the sum of the weight of the edges on p. Given a

vertex s ∈ VG, the shortest path from s to a vertex v ∈ VG, denoted
by SPG(s, v), is a path in G that has the minimum length among
all paths from s to v in G. We define the distance from s to v in G
as distG(s, v) = len(SPG(s, v)). We define distG(s, s) = 0 for
any s ∈ VG.

For the analysis of I/O complexity, we use the standard I/O model
[2] with the following parameters: M is the main memory size
and B is the disk block size, where 1 	 B ≤ M/2. Data is
read/written in blocks from/to disk. Thus, reading/writing a piece
of data of size N from/to disk requires (N/B) I/Os.

Table 1 gives the frequently-used notations in the paper.

Problem Definition. This paper studies the following problem:
Given a graph G = (VG, EG, ωG), construct a disk-based index
for processing single-source shortest path or distance (SSSP or SS-
dist) queries, i.e., for any input source vertex s, find SPG(s, v) or
distG(s, v) for all v ∈ VG.

We propose I/O-efficient algorithms to construct the index, as to
tackle the case when the input graph G cannot fit in main memory,
i.e., |G| > M . We focus on sparse graphs since most large and
many fast growing real-world networks are sparse. Apart from pro-



Algorithm 1 A Simple VC-Based Index

Input: A graph G = (VG, EG, ωG)
Output: A VC-based index, DISTG

1. compute a vertex cover, C, of G;
2. for each u ∈ C do
3. compute DISTG(u,C) = {(v, distG(u, v)) : v ∈ C};
4. return DISTG(u,C) for all u ∈ C;

Algorithm 2 Query Processing By VC-Based Index

Input: A graph G = (VG, EG, ωG), a VC-based index DISTG,
and a source vertex s
Output: distG(s, v) for all v ∈ VG

1. if(s ∈ C)
2. read DISTG(s,C);
3. return GetDistance(s,DISTG(s,C), G);
4. else /∗ s /∈ C ∗/
5. C′ ← {s} ∪ C;
6. compute DISTG(s,C′) = {(v, distG(s, v)) : v ∈ C′}, where:

if v = s, distG(s, v) = 0;
else, distG(s, v)=min{ωG(s, u)+distG(u, v): u∈adjG(s)};

7. return GetDistance(s,DISTG(s,C′), G);

Procedure 3 GetDistance(s,DISTG(s,C), G)

1. for each v ∈ VG do
2. if(v ∈ C)
3. get (v, distG(s, v)) from DISTG(s,C);
4. else /∗ v /∈ C ∗/
5. distG(s, v)← min{distG(s, u) + ωG(u, v): u ∈ adjG(v)};
6. return distG(s, v) for all v ∈ VG;

cessing SSSP and SSdist queries, we also show that our index can
be easily extended to process a few other related types of queries.

3. A SIMPLE VC-BASED INDEX
In this section, we propose a simple VC-based index for answer-

ing SSdist queries. We then identify the limitations of the index for
processing large graphs.

3.1 Index Construction and Query Processing
We sketch how the index is constructed in Algorithm 1. The

algorithm first computes a VC, C, of the input graph G. The index
is essentially a matrix, DISTG, that keeps the pair-wise distance
between the vertices in C. For each u ∈ C, DISTG(u,C) stores
the distance from u to every vertex v ∈ C.

We sketch how we process an SSdist query in Algorithm 2. Given
a source vertex s, there are two cases: either s ∈ C (Steps 1-3 of
Algorithm 2), or s /∈ C (Steps 4-7 of Algorithm 2).

If s ∈ C, we first read DISTG(s,C) (from disk) and then call
Procedure 3 to compute distG(s, v) for each v ∈ VG. If s /∈ C,
we add s to C to form a new VC C

′ of G and compute a new
distance vector DISTG(s,C

′). We then also call Procedure 3 with
DISTG(s,C

′) as input to compute distG(s, v) for each v ∈ VG.
We now discuss how Procedure 3 correctly computes the dis-

tance. We first examine an important property of a VC as follows.

LEMMA 1. Given a graph G, a VC C of G, and a vertex v in
G, if v /∈ C, then ∀u ∈ adjG(v), u ∈ C.

PROOF. Suppose on the contrary that ∃u ∈ adjG(v) such that
u /∈ C. Then, the edge (u, v) is not covered by C, which contra-
dicts to the fact that C is a VC of G.

We first show how Procedure 3 works and prove its correctness.

LEMMA 2. Given a graph G = (VG, EG, ωG), a source ver-
tex s, and a distance vector DISTG(s,C), Procedure 3 correctly
computes distG(s, v) for all v ∈ VG.

PROOF. Procedure 3 computes distG(s, v) for each v ∈ VG by
considering two cases: (1) v ∈ C and (2) v /∈ C.

Case (1): v ∈ C (Steps 2-3 of Procedure 3). Then, distG(s, v)
is pre-computed and stored in DISTG(s,C).

Case (2): v /∈ C (Steps 4-5 of Procedure 3). The shortest path
in G from s to v must contain an adjacent vertex u of v. Thus,
SPG(s, v) is 1 edge (i.e., (u, v)) further away from SPG(s, u)
for some u ∈ adjG(v). By Lemma 1, if v /∈ C, then ∀u ∈
adjG(v), u ∈ C. Thus, ∀u ∈ adjG(v), distG(s, u) can be
obtained directly from DISTG(s,C). From which, we compute
distG(s, v) = min{distG(s, u)+ωG(u, v) : u ∈ adjG(v)}.

We now prove the correctness of Algorithm 2.

THEOREM 1. Given a graph G = (VG, EG, ωG), a VC-based
index DISTG computed by Algorithm 1, and a source vertex s,
Algorithm 2 correctly computes distG(s, v) for all v ∈ VG.

PROOF. There are two cases of s: (1) s ∈ C (Steps 1-3 of Al-
gorithm 2); and (2) s /∈ C (Steps 4-7 of Algorithm 2).

Case (1): s ∈ C. DISTG(s,C) is pre-computed by Algorithm
1 and the correctness of Procedure 3 is given in Lemma 2.

Case (2): s /∈ C. First, C′ = ({s} ∪ C) is a VC of G since
C is a VC and any superset of a VC is also a VC. We now show
that DISTG(s,C

′) is correctly computed in Step 6. By Lemma
1, if s /∈ C, then ∀u ∈ adjG(s), u ∈ C. For v ∈ (C′ \ {s})
(i.e., v ∈ C), SPG(s, v) must contain some u ∈ adjG(s). Thus,
distG(s, v) = min{ωG(s, u) + distG(u, v) : u ∈ adjG(s)}.
Since u, v ∈ C, distG(u, v) can be obtained from DISTG(u,C).
Then, Step 7 passes DISTG(s,C

′) to Procedure 3, which correctly
computes the distance as proved in Lemma 2.

We give an example of query processing as follows.

Example 1. Consider a graph G (for simplicity, assume that all
edges are of unit weight), as shown in Figure 1. A VC of G is
C = {a, b, c, d, e, f}. Let the source vertex be a. Since a ∈ C,
DISTG(a,C) = {(a, 0), (b, 2), (c, 1), (d, 2), (e, 2), (f, 3)} is in-
dexed. Procedure 3 is then invoked. It first retrieves distG(a, v)
from DISTG(a,C) directly for v ∈ C. For any vertex not in
C, for example, h, the distance from a to h is computed from
the adjacent vertices of h, i.e., distG(a, h) = min{distG(a, a) +
ωG(a, h), distG(a, b) + ωG(b, h)} = min{0 + 1, 2 + 1} = 1.

If the source vertex is not in C, for example, h, we construct a
new distance vector of h in C

′ = {h} ∪ C. First, distG(h, h) = 0.
For each v ∈ C, we compute distG(h, v) through the adjacent
vertices of h, i.e., a and b. Thus, distG(h, v) = min{ωG(h, a) +
distG(a, v), ωG(h, b)+distG(b, v)}. For example, distG(h, e) =
min{ωG(h, a)+distG(a, e), ωG(h, b)+distG(b, e)} = min{1+
2, 1 + 1} = 2. Then, DISTG(h,C

′) is passed to Procedure 3 and
the distances are computed in the same way as discussed above. �

a b c d e f g

h i lkj m n

Figure 1: A graph G



3.2 Limitations of the Simple VC-based Index
We first analyze the complexity of both index construction and

query processing and then identify the limitations of the index.
For query processing, if s ∈ C, Algorithm 2 requires O((|C| +

|G|)/B) I/Os, since we only need to read DISTG(s,C) from disk
and scan G once, where |DISTG(s,C)| = 2|C|. If s /∈ C, the
algorithm requires O((degG(s) · |C| + |G|)/B) I/Os, since we
need to read DISTG(u,C) for each u ∈ adjG(s).

The above analysis shows that query processing using the index
is I/O-efficient, as Algorithm 2 reads only relevant distance vec-
tor(s) in blocks and sequentially scans G only once. However, if G
is large, constructing such a VC-based index becomes impractical
for the following reasons.

First, it can be expensive to compute a VC for a disk-resident
graph (Step 1 of Algorithm 1). Second, computing DISTG(u,C)
for all u ∈ C incurs a huge I/O cost for a large disk-resident
graph (Steps 2-3 of Algorithm 1). Third, the space for storing
DISTG(u,C), ∀u ∈ C, is O(|C|2), which is prohibitively large
for a large graph. Such a large index is not practical even with the
low cost of disk storage today. Finally, the memory space required
for query processing is O(|C|), which is a problem if |C| > M .

4. VC-INDEX: OVERALL FRAMEWORK
In the following sections, we propose a novel tree-structured in-

dex, named as VC-index, which applies VC for processing SSSP
and SSdist queries. The new index addresses the limitations of the
simple VC-based index discussed in Section 3.2. In this section,
we first give the overall framework of our work.

We given the framework of VC-index as follows.

• Index structure:

– Let G be the input graph. VC-index is a (rooted) tree-
structured index of G.

– A node in the tree is constructed based on and identified
by a VC X. We name the node as X (note that X is a
node, while X is a VC at X).

– A node X keeps a distance graph, DX , where X is the
set of vertices of DX , and DX is a graph from which
we can compute the distance (in G) between any two
vertices in X.

– The VC at the root of the tree is a VC of G.

– The VC at each node (except the root) of the tree is a
VC of the distance graph of its parent.

– The VC at each internal node of the tree is the union of
the VCs at its children.

• Index construction:

– Initialization: compute a VC of G and construct the
distance graph for the root of the index tree.

– Depth-first construction:
Let X be a node in the tree, and X be the VC at X , we
use DX = (VX = X, EX , ωX) to denote the distance
graph of X .

∗ At each internal node X , compute a VC of DX for
each of X’s children, until the union of the VCs
computed for X’s children is equal to VX .

∗ For each new VC Y of DX computed, create a new
child Y of X and construct DY for Y , with VY =
Y. Recursively create the children of Y in a depth-
first manner, until the distance graph of the child
node is smaller than a pre-defined size threshold.

We give the framework of query processing as follows.

(1) If the source vertex s is in the VC of G:

• Locate the smallest leaf node, X , that is closest to the
root of VC-index, where DX contains s.

• Load DX into memory and compute the distance from
s to all other vertices in DX .

• Move from X towards the root of VC-index. Assume
that at the current step we move from Y to Z, where Z
is the parent of Y , scan DZ and compute the distance
from s to each vertex in VZ\VY . Initially Y = X and
this process stops when Y becomes the root of VC-
index.

• Scan G to compute the distance from s to each vertex
that is not in the VC of G.

(2) If the source vertex s is not in the VC of G:
By Lemma 1, ∀u ∈ adjG(s), u is in the VC of G. Thus, we
process the query with u as the source vertex, for each u ∈
adjG(s), in the same way as in Step (1). Then, the distance
from s to each vertex v in G is the smallest (ωG(s, u) +
distG(u, v)), where u ∈ adjG(s).

The above steps compute only the distances from s to all vertices
in G. We discuss how to extend the index to report the shortest
paths in Section 7.

5. VC-INDEX: INDEX CONSTRUCTION
In Section 4 we give the structure of VC-index and the frame-

work of index construction. We now present the details.

5.1 Streaming Minimum VC Approximation
In the process of index construction, the distance graph at each

node of VC-index is constructed based on a VC of the distance
graph at its parent, or a VC of the input graph G if the node is
the root. Therefore, it is crucial to ensure that the VC computation
is efficient. Given a graph H , it is easy to obtain a trivial VC of
H (e.g., VH itself is a VC of H). However, the larger the size of
the VC, the greater is the height of the VC-index tree, which im-
plies higher cost in both index construction and query processing.
Therefore, ideally we want every VC computed to be minimum.

Computing the minimum VC, however, is NP-hard. The best
constant-factor approximation known is 2-approximation [9], which
is an in-memory algorithm that randomly selects an uncovered edge
and adds both of its end vertices to the VC, until all edges are cov-
ered. Note that the vertices in the 2-approximate minimum VC may
not be ordered.

In our index construction, we need to compute VCs from dis-
tance graphs, which may not fit in memory. We also want the ver-
tices in the VC to be ordered, so as to allow sequential scan and
pre-fetching for I/O-efficient index construction and query process-
ing. To overcome the memory usage barrier and to avoid costly
external-memory sorting, we devise a streaming 2-approximation
algorithm which outputs an ordered VC.

As shown in Algorithm 4, we scan the input graph H (either the
original graph G or a distance graph in VC-index) only once in a
streaming fashion and do not keep the graph in memory. We keep
a dynamically maintained hashtable T . A vertex u is inserted into
T only by an adjacent vertex v of u that is ordered before u (Steps
7-8), meaning that u is selected to be in the VC (with the selection
of the edge (v, u)). For each vertex v, we output v either (1) if
v is in T , i.e., v was selected to be in the VC (Steps 3-4); or (2)



Algorithm 4 Streaming Minimum VC Approximation

Input: A graph H = (VH , EH , ωH)
Output: An ordered, 2-approximate minimum VC of H

1. initialize an empty hashtable, T ;
2. for each v ∈ VH do
3. if(v is in T )
4. output v and delete v from T ;
5. else /∗ v is not in T ∗/
6. for each u ∈ adjH (v) do
7. if(u is ordered after v and u is not in T )
8. output v and insert u into T ;
9. goto Step 2 to process next v ∈ VH ;

there exists some u ∈ adjH(v) such that the edge (v, u) is not yet
covered, i.e., both v and u are not in T (Steps 6-8).

We give an example of approximating the minimum VC by Al-
gorithm 4 as follows.

Example 2. Assume that the vertices in the graph in Figure 1
are ordered alphabetically. Algorithm 4 first reads a, finds its first
adjacent vertex c, then outputs a and inserts c into T . Similarly,
it next outputs b and inserts e into T . Next, when it reads c, it
outputs c and deletes c from T . Next, it outputs d and inserts f
into T . Then, it outputs e and deletes e from T , and similarly for
f. Now, for the rest of the vertices, although they are not in T , they
do not have any adjacent vertex ordered after them. Thus, the VC
computed is C = {a, b, c, d, e, f}. We can easily verify that every
edge in the graph is incident to at least one vertex in C. �

We now show that the VC computed by Algorithm 4 is indeed
an ordered, 2-approximate minimum VC of H .

THEOREM 2. Given a graph H = (VH , EH , ωH), let M be the
minimum VC of H and C be the output of Algorithm 4. Then, C is
a VC of H , |C| ≤ 2|M|, and C is ordered.

PROOF. To prove that C is a VC of H , we show that for each
v ∈ VH and each u ∈ adjH(v), the edge (v, u) is covered by C. If
v is in T when we read v, we output v (Steps 3-4), i.e., add v to C,
and thus ∀u ∈ adjH(v), (v, u) is covered. If v is not in T , there
are two cases: (1) there exists some u ∈ adjH(v) ordered after v
and u is not in T (Step 7); and (2) otherwise. In Case (1), since the
edge (v, u) is not covered yet, we add v to C (Step 8), thus covering
(v, u) for all u ∈ adjH(v). In Case (2), we do not output v (i.e.,
v is not added to C). In this case, all u ∈ adjH(v) ordered after v
(if any) are in T , thus covering (v, u) for all u ∈ adjH(v) ordered
after v (if any). For each u ∈ adjH(v) ordered before v, since v
is not in T , u must be in C because otherwise v must have been
inserted into T when we read and process u in Steps 5-8. Thus, C
covers (v, u) for all u ∈ adjH(v), no matter u is ordered before or
after v.

Now we prove that |C| ≤ 2|M|. It is easy to see that Algorithm
4 always adds pairs of vertices to C. Whenever a vertex v is deter-
mined to be added to C (Steps 7-8), we output v and select one of
its adjacent vertices u ordered after v to be in C, though u is to be
outputted later when we read and process u by Steps 3-4. For each
pair of v and u added to C, either v or u (or both) must be in M

(otherwise the edge (v, u) is not covered by M and M is not a VC).
Therefore, |C|/2 ≤ |M|.

Finally, C is ordered because Algorithm 4 outputs a vertex v only
at the time when it reads v (note that the vertices are ordered in the
adjacency list graph representation, see Section 2).

Algorithm 4 uses (|G|/B) I/Os since it scans G only once. The
memory space required is |C|/2 in the worst case for keeping the

hashtable T . Since we delete a vertex v from T as soon as we
output v, the memory required in practice is much less than |C|/2.

5.2 Construction of Distance Graph
Each node in VC-index keeps a distance graph. We define the

distance graph as follows.

Definition 1 (DISTANCE GRAPH). Given a graph H = (VH ,
EH , ωH) and a VC X of H , let X be the node in VC-index con-
structed based on X. The distance graph at X , denoted by DX =
(VX , EX , ωX), is defined as follows:

• VX = X;

• EX is a set of edges that ensures: ∀u, v ∈ X, distH(u, v) =
distDX (u, v) (i.e., distH(u, v) can be computed in DX ).

The difference between the vertex sets of DX and H is the set
of non-covering vertices, i.e., vertices that are in VH but not in
X. Since DX maintains the distance (in H) between the vertices
in X, the construction of DX from H is essentially to re-establish
the connection between the vertices in X after removing the non-
covering vertices and their incident edges. However, the non-cover-
ing vertices are scattered in H and removing any edge from H may
completely change some shortest paths. Re-establishing the con-
nection between vertices in DX by simply computing their shortest
paths in H is too expensive, especially for a disk-resident graph.

We describe a graph construction method and prove that the
graph constructed by this method is a distance graph as defined by
Definition 1. We then design an I/O-efficient algorithm to construct
the distance graph.

We first categorize the paths in H into two types.

Definition 2 (PATH TYPE). Given a graph H=(VH, EH , ωH)
and a VC X of H , for any u, v ∈ X, where u �= v, we use
PH(u, v) to denote the set of paths from u to v in H . We catego-
rize the paths in PH(u, v) into two types.

• Type 1, denoted by P1
H (u, v): paths that do not pass through

any vertex in X, i.e., all vertices on the path, except u and v,
are in (VH \ X);

• Type 2, denoted by P2
H (u, v): paths that pass through some

vertex in X, i.e., there exists some vertex w on the path such
that w �= u, w �= v and w ∈ X.

As a special case, if u and v are directly connected by an edge in
H , then the path 〈u, v〉 belongs to Type 1. Apparently, PH(u, v) =
P1

H (u, v) ∪ P2
H (u, v) and P1

H (u, v) ∩ P2
H (u, v) = ∅.

We define a graph that is constructed by compressing the Type 1
paths as follows.

Definition 3 (P1
H -GRAPH). Given a graph H=(VH, EH , ωH)

and a VC X of H , we define a P1
H -graph, D = (VD, ED, ωD), as

follows:

• VD = X;

• ED = {(u, v) : u, v ∈ X and P1
H (u, v) �= ∅};

• For each (u, v) ∈ ED, ωD(u, v) = min{len(p) : p ∈
P1

H (u, v)}.

In Definition 3, we connect two vertices u, v ∈ X in the P1
H -

graph D if and only if there exists some path from u to v in H
that does not pass through any vertex in X. Intuitively, the paths in
P 1
H(u, v) are in H but not in D since the intermediate vertices on

the paths (if any) are not in VD = X. Thus, we add the edge (u, v)
to D to capture the distance information carried by these paths.

We now show that the P1
H -graph is in fact a distance graph.



THEOREM 3. Given a graph H = (VH , EH , ωH) and a VC X

of H , the P1
H -graph D is a distance graph of H .

PROOF. To prove ∀u, v ∈ X, where u �= v, distD(u, v) =
distH(u, v), there are two cases: (1) SPH(u, v) ∈ P1

H (u, v), and
(2) SPH(u, v) ∈ P2

H (u, v).
In Case (1), since P1

H (u, v) �= ∅, by Definition 3, the edge (u, v)
is in D. Since SPH(u, v) ∈ P1

H (u, v), we have ωD(u, v) =
distH(u, v). But we still need to prove that the path p = 〈u, v〉
in D, where len(p) = ωD(u, v) = distH(u, v), is the shortest
path from u to v in D. Suppose on the contrary that there ex-
ists another path p′ = 〈u = x0, x1, . . . , xy = v〉 in D, where
y > 1, such that len(p′) =

∑
0≤i≤y−1 ωD(xi, xi+1) < len(p).

By Definition 3, ωD(xi, xi+1) is the minimum length of some path
〈xi, . . . , xi+1〉 in P 1

H(xi, xi+1). Concatenating these paths then
forms a path 〈u = x0, . . . , xi, . . . , xi+1, . . . , xy = v〉 in H of
length len(p′), which is smaller than len(p) = distH(u, v). But
“len(p′) < len(p) = distH(u, v)” contradicts to the fact that
distH(u, v) is the (shortest) distance between u and v in H . Thus,
the path p = 〈u, v〉 in D is the shortest path from u to v in D.

In Case (2), we assume that SPH(u, v) passes through y (y ≥ 1)
vertices inX. Let p = SPH(u, v) = 〈u = x0, . . . , x1, . . . , . . . , xy,
. . . , xy+1 = v〉, where xi ∈ X for 0 ≤ i ≤ y + 1. For each sub-
path pi = 〈xi, . . . , xi+1〉 of p, where 0 ≤ i ≤ y, all vertices
between xi and xi+1 are not in X, and pi is a shortest path from xi

to xi+1 in H (otherwise, p cannot be the shortest). Thus, we have
distH(u, v) = len(p) =

∑
0≤i≤y distH(xi, xi+1). Since pi does

not pass through any vertex in X, this is reduced to Case (1) and
thus we can find a path p′ = 〈u = x0, x1, . . . , xy, xy+1 = v〉 in D
with len(p′) =

∑
0≤i≤y ωD(xi, xi+1) =

∑
0≤i≤y distD(xi, xi+1)

=
∑

0≤i≤y distH(xi, xi+1) = distH(u, v). Following a similar
proof in Case (1), we can prove that SPD(u, v) = p′ and thus
distD(u, v) = len(p′) = distH(u, v).

Although the P1
H -graph is indeed a distance graph, its definition

does not give a hint on the design of an efficient algorithm. Accord-
ing to Definition 3, it requires the set of paths P 1

H(u, v) for every
pair of vertices u, v ∈ X in order to construct the edges. However,
computing P 1

H(u, v) for every u and v is expensive, especially if
H cannot fit in memory.

We investigate the property of P 1
H(u, v) and design an I/O-efficient

algorithm to construct the distance graph defined in Definition 3.
We first examine an important property of P 1

H(u, v) as follows.

LEMMA 3. Let H = (VH , EH , ωH) be a graph and X be
a VC of H . For any u, v ∈ X and any path p = 〈u, . . . , v〉 in
P 1
H(u, v), there is at most one vertex between u and v on p.

PROOF. Suppose on the contrary that there is more than one
vertex between u and v on p. Let p = 〈u,w, t, . . . , v〉. Since
p ∈ P 1

H(u, v), we know that w /∈ X and t /∈ X. Then the edge
(w, t) is not covered by X, which contradicts to the fact that X is a
VC of H .

Lemma 3 implies that if p = 〈u, . . . , v〉 ∈ P 1
H(u, v), then either

p = 〈u, v〉 or p = 〈u,w, v〉, where w /∈ X. In other words, given
u, v ∈ X, v must be within 2 hops of u if P 1

H(u, v) �= ∅. The
first hop of u is simply adjH(u), while the second hop of u is the
union of adjH(v) for each v ∈ adjH(u). Therefore, we only need
to consider the 2-hop neighborhood of a vertex u ∈ X in order
to establish the connections between u and other vertices in the
distance graph.

Given a vertex u, the first hop is easily accessible by reading the
adjacency list of a vertex. However, accessing the second hop re-
quires random access to different locations of the graph. To reduce

Algorithm 5 Distance Graph Construction

Input: A graph H = (VH , EH , ωH) and a VC X of H
Output: The distance graph DX = (VX , EX , ωX)

1. VX = X;
2. for each block, B1, of H read do
3. for each block, B2, of H read do
4. for each vertex u in B1, where u ∈ X, do
5. for each vertex v in B2, do
6. if(v ∈ adjH(u))
7. if(v /∈ X)
8. for each w ∈ adjH(v) do
9. CreateEdge(u, w, ωH (u, v)+ωH (v, w));

10. else /∗ v ∈ X ∗/
11. CreateEdge(u, v, ωH (u, v));
12. return DX = (VX , EX , ωX);

Procedure 6 CreateEdge(u, v, new-weight)
1. if(edge (u, v) is not in EX )
2. add (u, v) to EX with ωX(u, v) = new-weight;
3. else /∗ edge (u, v) is already created ∗/
4. ωX(u, v)← min{ωX(u, v), new-weight};

the I/O cost incurred by random disk access and wasteful data read
(i.e., read a block of data but only use a small portion), we formu-
late the distance graph construction as a block nested-loop join to
allow sequential disk scans, which is shown in Algorithm 5. Note
that if H can fit in memory, the construction of distance graph is
much faster since a 2-hop BFS from each vertex suffices.

In the block nested-loop join in Algorithm 5, both the outer re-
lation and the inner relation are the input graph H . The outer re-
lation reads a vertex u ∈ X, together with the first hop of u, i.e.,
adjH(u), which is then joined with a vertex v in the inner rela-
tion by the condition that v ∈ adjH(u). Since the graph is rep-
resented in adjacency lists, the second hop of u (i.e., adjH(v) for
each v ∈ adjH(u)) can then be accessed in the inner relation. The
outer relation is read into memory in blocks by a simple sequential
scan of the input graph H , but only those vertices in X are pro-
cessed since only vertices in X are in DX (Step 4). For each block
B1 of the outer relation, we sequentially scan each block B2 of the
inner relation once to find matches (Step 5). If there is a match,
i.e., a vertex v in B2 is in adjH(u) of some u in B1 (Step 6),
we construct an edge (u, v) for the path p = 〈u, v〉 in P 1

H(u, v)
if v ∈ X (Steps 10-11) or construct an edge (u,w) for the path
p = 〈u, v, w〉 in P 1

H(u,w) for each w ∈ adjH(v) if v /∈ X (Steps
7-9). Procedure 6 is used to ensure that the weight on each edge
(u, v) in DX is the minimum length of the paths in P 1

H(u, v).
We now prove the correctness of Algorithm 5.

THEOREM 4. Given a graph H = (VH , EH , ωH) and a VC X

of H , the graph DX = (VX , EX , ωX) computed by Algorithm 5
is a distance graph of H .

PROOF. We prove that DX = (VX , EX , ωX) is the same as the
graph D = (VD, ED, ωD) defined in Definition 3.

First, VX = VD = X. Second, we prove that EX = ED. Each
edge in EX is created by either Step 9 or Step 11 of Algorithm
5. If an edge (u,w) is created in EX by Step 9, we have u ∈ X

(by Step 4) and w ∈ X (otherwise, (v, w) is not covered by X

since v /∈ X by Step 7). Thus, we have 〈u, v, w〉 ∈ P 1
H(u,w) and

P 1
H(u,w) �= ∅. Therefore, by Definition 3, edge (u,w) is in ED

too. If an edge (u, v) is created in EX by Step 11, we have u ∈ X

(by Step 4) and v ∈ X (by Step 10). Thus, P 1
H(u, v) �= ∅ since

we have 〈u, v〉 ∈ P 1
H(u, v). Again by Definition 3, edge (u, v) is

in ED. Since every edge in EX is in ED, we have EX ⊆ ED.



On the other hand, for each edge (u, v) ∈ ED, we have u, v ∈ X

and ∃p = 〈u, . . . , v〉 ∈ P 1
H(u, v). By Lemma 3, there is at most

one vertex between u and v on p. Whether there is no vertex or
one vertex between u and v on p, the edge (u, v) is created in EX

by Algorithm 5. Therefore, we have ED ⊆ EX and thus EX =
ED. Finally, we have ωX(u, v) = ωD(u, v) for every edge (u, v)
since the block nested-loop join in Algorithm 5 checks every path
in P 1

H(u, v) and ωX(u, v) is updated as the minimum length of the
paths in P 1

H(u, v) as ensured by Step 4 of Procedure 6.

A Smaller Distance Graph. We can obtain a smaller distance
graph by enforcing the triangle inequality on the DX constructed
by Algorithm 5. DX satisfies the triangle inequality if and only
if, for every triangle {e1 = (u, v), e2 = (v, w), e3 = (w, u)}
in DX , we have ωX(e1) < (ωX(e2) + ωX(e3)), assuming that
ωX(e1) ≥ ωX(e2) and ωX(e1) ≥ ωX(e3). To ensure the triangle
inequality in DX , we postprocess DX as follows. We perform
a block nested-loop join on DX , which is the same as Steps 2-
6 of Algorithm 5 except that the input is DX instead of H . We
then check each triangle {(u, v), (v, w), (u, w)} found in DX . If
it does not satisfy the triangle inequality, we remove the edge with
the highest weight in the triangle. In this way, we reduce the size
of DX while it is still a distance graph, since the distance between
any two vertices in the graph is not changed.

We give an example of distance graph as follows.

Example 3. Given the graph G in Figure 1 and a VC of G C =
{a, b, c, d, e, f}, the corresponding distance graph D is shown in
Figure 2. We can easily verify that for any two vertices u and v in
D, distD(u, v) = distG(u, v). We can also verify that D satisfies
the triangle inequality. �

Figure 2: A distance graph D of G in Figure 1

Complexity of Distance Graph Construction. The I/O complex-
ity analysis of Algorithm 5 is similar to that of the standard block
nested-loop join. Let b1 = b2 = O(|H |/B) be the number of disk
blocks occupied by the outer/inner relation, and b3 = O(|DX |/B)
be the number of I/Os required to write DX to disk. If H can fit in
memory, Algorithm 5 requires O(b1 + b3) I/Os. Otherwise, the al-
gorithm requires O(b1+(b1/(M/B−2)) ·b2+b3) I/Os. The CPU
time complexity is

∑
u∈X

∑
v∈adjH(u) degH(v) = O(|X| · d2),

where d is the average degree in H in the expected case and the
maximum degree in H in the worst case. The complexity analysis
of the triangle inequality checking is similar except that the input
graph is DX .

5.3 Overall Index Construction
We now present the overall index construction algorithm. As

shown in Algorithm 7 and Procedure 8, for each node in VC-index,
we invoke Algorithms 4 and 5 to compute the VC and the distance
graph. For each node X , we ensure that the union of the VCs
computed for X’s children is equal to VX (i.e., X), which can be
done by preferring the inclusion into a new VC those vertices that
are not yet in any VC (by giving priority to those vertices). During
the depth-first construction, a node Y is created as a leaf in VC-
index if the size of DY is smaller than a pre-defined threshold σ.
The setting of σ is discussed in Section 5.4.

We show an example of VC-index as follows.

Algorithm 7 VC-Index Construction

Input: A graph G
Output: VC-index of G

1. create the root, λ, of VC-index;
2. compute a VC C of G for λ (by Alg. 4);
3. construct the distance graph D for λ from G and C (by Alg. 5);
4. GrowTree(C, D, λ);

Procedure 8 GrowTree(X, DX , X)
1. S ← X;
2. while(S �= ∅)
3. create a child Y of X;
4. compute a VC Y of DX (by Alg. 4),

by giving preference to the vertices in S;
5. construct the distance graph DY for Y from DX and Y (by Alg. 5);
6. if(|DY | > σ) /∗ σ is a pre-defined size threshold ∗/
7. GrowTree(Y, DY , Y );
8. S ← S\Y;

Example 4. Figure 3 shows VC-index of the graph G in Figure
1. The distance graph D at the root, λ, is shown in Figure 2, while
the distance graphs at the two children X and Y of the root are
shown in Figures 4 (a) and (b). We can easily verify that the vertex
set of DX (or of DY ) is a VC of D in Figure 2, and each vertex
in D (i.e., in the VC of G) appears in at least one distance graph at
the leaf node of VC-index. �

Figure 3: VC-index of G in Figure 1

X Y

Figure 4: The distance graphs, DX and DY , at nodes, X and
Y , of the VC-index in Figure 3

5.4 Complexity of VC-Index Construction
There are two main operations in VC-index construction: mini-

mum VC approximation and distance graph construction. We have
analyzed the complexity of each of these two operations at the end
of Sections 5.1 and 5.2. However, the input graph at each node
of VC-index is different. A precise complexity analysis of the
overall index construction is difficult because the size of the dis-
tance graph at each node depends on the characteristics of the input
graph, which are difficult to model for real-world graphs. Instead,
we give a worst-case analysis as follows.

Assume that VC-index has N nodes. Let b = b1 = b2 = b3 =
O(|H |/B) = O(|G|/B), where H is a distance graph (note that a
distance graph H is in general much smaller than G; if not, we can
simply stop growing the VC-index tree from there). In the worst
case, constructing VC-index requires O(N(CVC + CDG)) I/Os,
where CVC = b is the I/O cost of approximating the minimum
VC and CDG = O(b1 + (b1/(M/B − 2)) · b2 + b3) is the I/O
cost of computing a distance graph. Thus, O(N(CVC +CDG)) =
O((N/(M/B − 2))(|G|/B)2), where N is typically significantly



Algorithm 9 Query Processing by VC-Index

Input: A graph G = (VG, EG, ωG), VC-index of G, and a source
vertex s
Output: distG(s, v) for all v ∈ VG

1. let C be the VC at the root of VC-index;
2. distG(s, v)←∞, for all v ∈ VG;
3. if(s ∈ C)
4. return ComputeDistance(s);
5. else /∗ s /∈ C ∗/
6. for each u ∈ adjG(s) do
7. DISTG(u, VG)← ComputeDistance(u);
8. for each v ∈ VG do
9. distG(s, v)←min{distG(s, v), ωG(s, u)+distG(u, v)};

10. return distG(s, v), for all v ∈ VG;

Procedure 10 ComputeDistance(a)
1. let X be the smallest leaf closest to the root and containing a;
2. load DX into memory;
3. compute the distance from a to all other vertices in DX ;
4. distG(a, v)← distDX

(a, v), for all v ∈ VX ;
5. MoveToRoot(a, X);
6. for each v ∈ VG\C do
7. distG(a, v)← min{distG(a, u)+ωG(u, v) : u ∈ adjG(v)};
8. return distG(a, v), for all v ∈ VG;

Procedure 11 MoveToRoot(a,X)
1. if(X is not the root of VC-index)
2. scan DY , where Y is the parent of X;
3. for each v ∈ VY \VX (in each block of DY scanned) do
4. distG(a, v)←min{distG(a, u)+ωY (u, v): u∈adjDY

(v)};
5. MoveToRoot(a, Y );

smaller than M/B. Note that this worst-case I/O complexity has
assumed that all distance graphs, except those at leaf nodes, cannot
fit in memory.

Let d be the maximum degree of a vertex in any distance graph
or G. The CPU time complexity is O(N(|G| + |VG| · d2)), where
O(|G|) is the time for approximating the minimum VC and O(|VG|·
d2) is the time for computing a distance graph. The maximum de-
gree d can be large; however, this is for the worst case and most
real-world large graphs have a power-law degree distribution, for
which only a very small number of vertices have large degree [13].

Let X be the set of nodes in VC-index. The storage space re-
quired for VC-index is O(

∑
X∈X |DX |) = O(N |G|).

This size threshold σ for a leaf node X is set such that |DX | <
M , since DX is to be loaded into memory for query processing.
We also want running Dijkstra’s algorithm [10] in DX to have a
complexity of O(|VG|), i.e., O(|DX | log |VX |) = O(|VG|), which
is the optimal time complexity for processing an SSdist or SSSP
query since the output size is O(|VG|).

6. VC-INDEX: QUERY PROCESSING
We now discuss how to process an SSdist query by VC-index.

Let C be the VC at the root of VC-index, i.e., C is a VC of G. As
shown in Algorithm 9, query processing consists of two cases: (1)
the source vertex s is in C, and (2) s is not in C.

If s is in C, the algorithm invokes Procedure 10 to compute
distG(a, v) for all v ∈ VG, where a = s in this case. Procedure
10 loads the distance graph DX at the leaf node X in VC-index,
where DX is the smallest distance graph containing a and X is
closest to the root among other leaf nodes. We can locate X us-
ing an external lookup table with O(1) I/O. We first compute the
single-source distance from a to other vertices in DX , by running

Dijkstra’s algorithm [10] in DX . Then, Procedure 11 is invoked to
compute the distance from a to other vertices that are not in DX .

Procedure 11 reads the distance graph DY of X’s parent, Y . At
this point, ∀u ∈ adjDY

(v) for each v ∈ VY \VX , distG(a, u)
has already been computed. Thus, we use distG(a, u) to compute
distG(a, v) for each v ∈ VY \VX , where u ∈ adjDY

(v). Then,
we move up one step towards the root by invoking Procedure 11 to
process on Y ’s parent, and recursively until we reach the root of
VC-index.

When we return from Procedure 11 to Procedure 10, distG(a, v)
for all v ∈ C has been computed. Then, Steps 6-7 of Procedure 10
compute the distance from a to the rest of the vertices in G.

Finally, if s is not in C, Algorithm 9 first computes the dis-
tance from each adjacent vertex u of s to all vertices in VG. Then,
distG(s, v) is simply the minimum (ωG(s, u) + distG(u, v)), for
u ∈ adjG(s).

We show an example of query processing as follows.

Example 5. Given the graph G in Figure 1 and VC-index of G
in Figure 3, where the distance graphs are shown in Figures 2 and
4, let a be the source vertex. Since a appears in both DX and
DY , we assume that DX is chosen for processing a. We compute
SSdist from a in DX in memory and find that distG(a, b) = 2,
distG(a, c) = 1, and distG(a, d) = 2. Then, we move up to the
parent of X , i.e., the root, and scan D (block by block for a disk-
resident graph). For those vertices that are in D but not in DX , i.e.,
e and f, the distance from a to their adjacent vertices must have
been computed. Thus, we compute distG(a, e) and distG(a, f)
from their adjacent vertices in D. That is, distG(a, e) = min{
(distG(a, a)+ωD(a, e)), (distG(a, b)+ωD(b, e)), (distG(a, c)+
ωD(c, e))} = min{2, 3, 3} = 2. Similarly, distG(a, f) = min{
(distG(a, c)+ωD(c, f)), (distG(a, d)+ωD(d, f))} = min{3, 3}
= 3. Finally, for the remaining vertices in G, their distance from a
is computed in a similar way as in Example 1.

If the source vertex is not in the VC of G, for example, h, we first
compute the distance to all vertices from h’s adjacent vertices in G,
a and b. Then, the distance from h to any vertex, for example, m,
can be computed as distG(h, m) = min{(ωG(h, a)+distG(a, m)),
(ωG(h, b) + distG(b, m))} = min{2, 3} = 2. �

6.1 Correctness of Query Processing
We prove the correctness of query processing as follows.

THEOREM 5. Given a graph G = (VG, EG, ωG), VC-index of
G computed by Algorithm 7, and a source vertex s, Algorithm 9
correctly computes distG(s, v) for all v ∈ VG.

PROOF. We first prove the correctness for the case s ∈ C, where
C is a VC of G at the root of VC-index. This is essentially to prove
the correctness of Procedure 10.

First, we show that ∀v ∈ VX , distG(a, v) is correctly com-
puted by Step 4 of Procedure 10. By Theorem 4 and Definition
1, we know that ∀u, v ∈ VX , distDX (u, v) = distH(u, v), where
H is the distance graph at the parent of X , or H = G if X is
the root of VC-index. Thus, by Definition 1, distDX (u, v) =
distDY (u, v) = · · · = distDλ(u, v) = distG(u, v), where Dλ

is the distance graph at the root, λ, of VC-index. Thus, ∀v ∈ VX ,
distG(a, v) is correctly computed as distDX (a, v) in Steps 3-4 of
Procedure 10.

Next, we prove that ∀v ∈ C\VX , distG(a, v) is correctly com-
puted by invoking Procedure 11 in Step 5 of Procedure 10. We
first show that, ∀v ∈ VY \VX , where Y is the parent of X in VC-
index, Step 4 of Procedure 11 gives the correct distG(a, v). Since
SPDY (a, v) for any v ∈ VY \VX must pass through a neighbor u



of v (or a = u), we have distDY (a, v) = min{distDY (a, u) +
ωY (u, v) : u ∈ adjDY

(v)}. Since VX is a VC of DY , by Lemma
1, ∀v ∈ VY \VX , if u ∈ adjDY

(v), then u ∈ VX . Thus, distG(a, u)
has already been computed, using which Step 4 of Procedure 11
correctly computes distG(a, v) = distDY (a, v), ∀v ∈ VY \VX .
Procedure 11 then moves one step towards the root to process Y ’s
parent recursively. When Procedure 11 reaches the root of VC-
index, distG(a, v), ∀v ∈ C, is correctly computed.

Finally, we prove that ∀v ∈ VG\C, distG(a, v) is correctly com-
puted by Step 7 of Procedure 10. Since SPG(a, v) for any v ∈
VG\C must pass through a neighbor u of v (or a = u), we have
distG(a, v) = min{distG(a, u)+ωG(u, v) : u ∈ adjG(v)}. For
each v ∈ VG\C, by Lemma 1, ∀u ∈ adjG(v), we have u ∈ C.
Note that up to now, distG(a, u), ∀u ∈ C, has been correctly com-
puted. Thus, distG(a, v), ∀v ∈ VG\C, is correctly computed.

Since Procedure 10 is invoked with a = s, distG(s, v), ∀v ∈
VG, is correctly computed.

Now we prove the correctness for the case s /∈ C. For each
u ∈ adjG(s), by Lemma 1, we have u ∈ C. Thus, distG(u, v) for
all v ∈ VG can be correctly computed by Procedure 10 with a = u.
Since SPG(s, v) for each v ∈ VG must consist of a neighbor u of
s, we have distG(s, v) = min{ωG(s, u) + distG(u, v) : u ∈
adjG(s)}. Thus, distG(s, v), ∀v ∈ VG, computed in Steps 6-9 of
Algorithm 9 is correct.

6.2 Complexity of Query Processing
We now analyze the complexity of processing an SSdist query.
Let Y be the set of nodes in VC-index accessed during query

processing. We first analyze the case s ∈ C. For each Y ∈ Y ,
Algorithm 9 only scans DY once. It also scans G once. Thus, in
total we need O((

∑
Y ∈Y |DY |/B)+|G|/B) = O(|Y|·|G|/B) =

O(h|G|/B) I/Os in the worst case, where h is the height of VC-
index.

In the above analysis, we assume that M > |VG|. When M <
|VG|, Steps 3-4 of Procedure 11 and Steps 6-7 of Procedure 10 need
to be implemented as a block nested-loop join as follows. The inner
relation is the set {(u, distG(a, u)) : distG(a, u) �= ∞} (i.e.,
distG(a, u) has already been computed), which is of size |VX | =
O(|C|) for each X along the path from the leaf to the root of VC-
index. The outer relation is the distance graph, which is read in
O(|G|/B) I/Os. If we use (M/B − 2) pages for reading the outer
relation, we need O(h( ((|G|/B)/(M/B − 2)) · (|C|/B) )) =
O(h(|G|/B) ·(|C|/M)) I/Os in the worst case. This is only within
a factor of O(h|C|/M) of (|G|/B), i.e., O(h|C|/M) scans of G.
For sparse real-world graphs, typically h is very small and |C| is
significantly smaller than M .

We now analyze the CPU time complexity. In the worst case,
Steps 3-4 of Procedure 11 and Steps 6-7 of Procedure 10 require
O(|DY |) and O(|G|) time, respectively, since we at most pro-
cess each edge once (or all adjacent vertices of v for all v). Let
A be the time for computing SSdist in DX using Dijkstra’s al-
gorithm [10]. According to Section 5.4, we have A = O(|VG|).
When M ≥ |VG|, the worst-case CPU time complexity is O(A +
|Y| · |G|) = O(h|G|). When M < |VG|, we need O(A + |Y| ·
((|G|/B)/(M/B − 2) · |C|) ) = O((h|C|/M) · |G|) time.

Finally, if s /∈ C, the worst case I/O and CPU time complexity
of Algorithm 9 is degG(s) times those of the case s ∈ C. We
can easily make degG(s) to be smaller than the average degree by
preferring the inclusion of high-degree vertices into the VC C.

7. VC-INDEX FOR SSSP AND ITS VARIANTS
In this section, we discuss how VC-index can be extended to

process SSSP queries and a few types of closely related queries.

7.1 Single-Source Shortest Path Queries
To support SSSP queries, we only need to make the following

change to VC-index.
As shown in Algorithm 5, there are two types of edges created in

a distance graph DX : (u,w) for a path 〈u, v, w〉 in H (Step 9), or
(u, v) for a path 〈u, v〉 in H (Step 11). To process SSSP queries,
we need to attach v to the edge (u,w) to indicate that (u,w) in DX

represents the path 〈u, v, w〉 in H .
For query processing, at the leaf node X , we compute the SSSPs

from the source vertex a to all other vertices in DX by Dijkstra’s
algorithm. The algorithm maintains a predecessor vector as a con-
cise representation from which the exact shortest path can be ob-
tained [9]. Then, when we move up from X towards the root of
VC-index, in addition to finding the distance from a to a vertex v,
we also put u as the predecessor of v if u ∈ adjDY

(v) is on the
shortest path from a to v in the current distance graph DY (Step 4
of Procedure 11). When we move up the tree, we may also need
to update the predecessor of some vertices whose distance from a
has already been computed. This is because when moving towards
the root of VC-index, the distance graphs are “unfolded” step by
step to capture more path information in the original graph G. The
predecessor u of v is updated as another vertex w if w is attached
with the edge (u, v) in the current distance graph. Finally, when
we process Step 7 of Procedure 10 or Step 9 of Algorithm 9, we
put u as the predecessor of v if u ∈ adjG(v) is on the shortest path
from a or s to v in G.

Attaching an extra vertex with an edge in DX increases the space
requirement by at most |EX | for each distance graph DX , which
adds at most O(|EX |/B) I/Os for both index construction and
query processing involving each DX . Updating the predecessor
can be easily done during the process of scanning a distance graph.
Thus, asymptotically the complexity remains the same for both in-
dex construction and query processing.

7.2 Other Related Query Types
VC-index can be easily extended to answer some other related

types of queries. We briefly discuss a few as follows.

BFS Queries. For processing BFS queries, no change is needed
to our algorithm, since BFS is a special case of SSdist by treating
each edge in the input graph as of unit weight.

Synopsis of Shortest Paths. In some applications we may not
need the entire shortest path but only a synopsis of the path, i.e.,
not all vertices on the shortest path are returned. In the simple case,
no change needs to be made to VC-index, but we can simply return
the predecessor of a vertex in the distance graph where the distance
of the vertex is computed. If we want to retain some important
vertices on a shortest path, VC-index can be changed by always
keeping those important vertices in the VCs or giving preference
to them when computing the VCs, with more important vertices
retained in the VCs at the nodes closer to the leaves of VC-index.

K-Level BFS Queries. Some applications, such as finding k-neigh-
bors in social networks or finding the k-hops from a source vertex,
require processing BFS for only k levels. We can use VC-index to
process such a k-level BFS query by simply ignoring those vertices
v in any distance graph if the BFS level of v from s is greater than
k. This can save considerable amount of unnecessary processing.
If k is known in advance, or if we can set a limit to the maximum
value of k, we may further ignore all edges in any distance graph
that have weight greater than k. In doing so we can further reduce
the size of VC-index and speed up query processing.



8. EXPERIMENTAL RESULTS
In this section, we evaluate the performance of VC-index (imple-

mented in C++). We ran all experiments on a machine with Intel
Xeon 2.67GHz CPU and 4GB RAM, running CentOS 5.4.

Datasets. We use the following three datasets in our experiments:
USRN, Web, and BTC. The USRN graph is a weighted graph, which
is the full USA road network (http://www.dis.uniroma1.
it/~challenge9/download.shtml), where vertices repre-
sent intersections and endpoints, and edges represent the roads con-
necting these intersections or endpoints. Web (http://barce-
lona.research.yahoo.net/webspam) is a subgraph of the
UK Web graph, where vertices are pages and edges are hyperlinks.
The original graph �G is directed and is converted into an undi-
rected weighted graph G as follows: two vertices have an undi-
rected edge in G with weight w if and only if they are reach-
able from each other within w steps in �G, where we set w ∈
{1, 2}. The BTC graph is an unweighted graph, which is a seman-
tic graph converted from the Billion Triple Challenge 2009 RDF
dataset (http://vmlion25.deri.ie/), where each vertex
represents an object such as a person, a document, and an event,
and each edge represents the relationship between two nodes such
as “has-author”, “links-to”, and “has-title”. We give the number of
vertices and edges, the maximum vertex degree max-deg, and the
storage size on disk, of the datasets in Table 2.

Table 2: Datasets (M = 106)
|V | |E| max-deg disk size weighted?

USRN 24M 58M 9 1GB yes
Web 106M 1,092M 36,561 13GB yes
BTC 165M 361M 105,618 6GB no

8.1 Results of Index Construction
We first report the results of index construction. We could not

construct the simple VC-based index described in Section 3 be-
cause pre-computing the distance matrix is too expensive for such
large datasets. Note that constructing the distance matrix is equiv-
alent to processing many SSdist queries (see Table 4 for the cost of
answering such a query without an index).

For the construction of VC-index, we report two settings of avail-
able memory size, M = 2GB and M = 4GB. Table 3 reports the
total index construction time, together with the total time taken for
the two main operations of VC-index construction, i.e., minimum
VC approximation and distance graph (DG) construction.

Table 3: Min. VC approximation time, distance graph con-
struction time, total indexing time (wall-clock time in seconds)

VC time DG time Total time

USRN (M = 2GB) 6 283 289
USRN (M = 4GB) 6 283 289

Web (M = 2GB) 41 62,262 62,303
Web (M = 4GB) 41 22,989 23,030

BTC (M = 2GB) 25 13,074 13,099
BTC (M = 4GB) 25 4,216 4,241

The results show that our streaming 2-approximation algorithm
for computing minimum VC is efficient and it takes only a very
small portion of the total indexing time. The most time consuming
part of the index construction is to construct the distance graphs at
each node of the VC-index tree.

The total indexing time for USRN is much smaller because the
graph is relatively small compared to the other two graphs, and also
because road network graph is much simpler and has a much lower
maximum vertex degree. We also note that constructing VC-index
for USRN uses less than 1GB of memory. Thus, the indexing time
is the same for M = 2GB and M = 4GB.

The indexing time for the other two graphs, Web and BTC, is
much longer. However, given the large size of these two graphs
and the large maximum vertex degree, constructing VC-index is
efficient especially given the fact that our algorithm is not an in-
memory algorithm. As we will show in Table 4, even just process-
ing a few queries using an external-memory algorithm would take
longer time than constructing the whole index.

Table 3 also shows that when more memory is available, the
indexing time reduces significantly. As the available memory M
is doubled from 2GB to 4GB, the total indexing time decreases
by approximately 3 times for both Web and BTC. The tremendous
speedup is because in processing the block nested-loop join in the
construction of a distance graph, more memory reduces the num-
ber of times the inner relation being loaded and processed, and thus
reducing both the I/O and CPU cost. On the contrary, the VC ap-
proximation algorithm is a streaming algorithm, and thus its run-
ning time remains stable with the increase in available memory.

Finally, the storage sizes of the indexes (excluding the original
graph) for USRN, Web, and BTC are 1.8, 13.5, and 3.1 GB, respec-
tively. Note that the index size of BTC is only half of its graph size
because BTC has a very small VC.

8.2 Results of Query Processing
We next report the results of query processing using VC-index.

According to Algorithm 9, query processing with VC-index has
two cases: VC queries and non-VC queries, i.e., the query ver-
tices that are in the VC of the input graph and those that are not.
Section 6.2 also shows that VC-index has different complexity for
processing VC queries and non-VC queries. Therefore, we tested
queries of both types. We randomly selected 20 queries. We have
actually tested much more queries for VC-index but processing
these queries using the external-memory (EM) algorithm EM-BFS
is too time consuming (see Table 4). Since the querying time for
single-source distance queries is very stable for both VC-index and
EM-BFS, we only report the results for 20 queries with which EM-
BFS was tested.

The first two rows of Table 4 report the query processing time of
VC-index, averaged over all queries of each type. The remaining
four rows in Table 4 will be discussed shortly.

Table 4: Average query processing time (wall-clock time in sec-
onds) of VC-index, IM-SSdist, and EM-BFS

USRN Web BTC

VC-index (VC queries) 5.54 18.83 5.03
VC-index (non-VC queries) 6.64 52.78 8.14

IM-SSdist (VC queries) 29.97 − −
IM-SSdist (non-VC queries) 30.07 − −
EM-BFS (VC queries) − 7,486.77 3,160.16
EM-BFS (non-VC queries) − 7,506.42 3,166.59

The result shows that even for large graphs with over 100 million
vertices and 1 billion edges, processing SSdist queries takes at most
tens of seconds. We remark that processing an SSdist query has a
lower-bound complexity of Θ(|VG|) even with an index, because
the output size is Θ(|VG|). Thus, the query performance of VC-
index is very competitive, which will be made even clearer when
we compare with IM-SSdist and EM-BFS next.



Table 4 also shows that processing non-VC queries takes only
slightly longer time than processing VC queries for USRN and
BTC. However, for the Web graph, processing a non-VC query
is about three times slower than processing a VC query. This is
mainly because the Web graph is much denser than USRN and BTC.

Before we report the results for other related algorithms, we note
that query processing by VC-index uses about 0.5GB to at most
1.5GB memory for different datasets. VC-index does not need to
use up the available 4GB memory, because it only needs to load
the distance graph at a leaf node into memory and then scans the
distance graph at an internal node in the VC-index tree.

Baseline Reference. Since there is no existing index for pro-
cessing single-source distance queries, we use some closely related
works as comparison baselines to give readers some reference re-
garding the performance of VC-index.

One baseline reference is the indexes for processing source-to-
target distance queries [31, 30], since we can issue (|VG| − 1)
source-to-target distance queries to answer a single-source distance
query. However, all these indexes required more than 4GB mem-
ory (plus an addition of 2GB virtual memory) to construct even
on the smallest USRN dataset. Although we are not able to ob-
tain any query result for these indexes, it does reflect that there is a
need to design I/O-efficient algorithms for index construction when
memory is insufficient, even though the constructed index may be
resident on disk.

Another baseline reference is to directly run a single-source dis-
tance algorithm on the input graph. For the USRN dataset that fits
in memory, we use Dijkstra’s algorithm with a binary heap [10, 9],
denoted by IM-SSdist. For the Web and BTC graphs that cannot fit
in memory, we use EM algorithms. However, we were not able to
obtain any implementation of existing EM SSdist algorithms [17,
21, 22, 19, 20]. Thus, we use the latest released implementation
of the state-of-the-art EM BFS algorithm [18] instead, denoted by
EM-BFS. We remark that in practice SSdist is significantly more
costly than BFS since the factor O(log2 |VG|) cannot be ignored
for a graph with even just 1 million vertices, i.e., SSdist can be
log2 10

6 ≈ 20 times slower than BFS, while our graphs are much
larger.

The last four rows of Table 4 report the query processing time of
IM-SSdist (for USRN) and EM-BFS (for Web and BTC), averaged
over all queries. Note that there is no difference for IM-SSdist and
EM-BFS in processing VC or non-VC queries, but we report the
two types separately for clearer reference with the performance of
VC-index.

The result shows that query processing using VC-index is about
5.4 times faster for VC queries and 4.5 times faster for non-VC
queries than IM-SSdist on USRN. The significantly improved run-
ning time is because our algorithms runs IM-SSdist on a much
smaller distance graph (at a leaf of VC-index) in O(|VG|) time,
while computing the distance from the source vertex to other ver-
tices not in the distance graph takes only O(|VG|) time as well.
However, running IM-SSdist on USRN takes O(|G| log |VG|) time.

For Web and BTC, the advantage of using VC-index over EM-
BFS is obvious. Query processing by VC-index is over two orders
of magnitude faster than EM-BFS on both Web and BTC for all
queries tested. This result demonstrates the efficiency of VC-index
for processing SSdist or BFS queries.

Applications. Based on the above results, we now demonstrate
how VC-index may benefit some popular applications. Consider
the approximation of the closeness measure [12], which requires to
answer SSdist queries from k = (α log |VG|/ε2) source vertices,
where α ≥ 1 is a constant and ε is a parameter for error control.

To obtain a reasonably small error, e.g., ε = 0.1, the correspond-
ing values of k for USRN, Web, and BTC (assuming α = 1), are
given in Table 5. The estimated running time required for the ap-
proximation of closeness without an index and with an index is also
given in Table 5. The running time of closeness approximation is
estimated by multiplying the querying time of BFS/SSdist (with-
out/with an index) by the corresponding k.

Table 5: Sample size and estimated running time (in seconds)
for the approximation of closeness without an index and with
VC-index

USRN Web BTC

Sample size k 2,451 2,334 2,730

No index 73,589 17,494,872 8,634,604
VC-index 15,217 106,558 22,213

In Table 5, to estimate the time needed for approximating close-
ness without an index, we use IM-SSdist for USRN, and EM-BFS
for Web and BTC. For approximating closeness with an index, we
use VC-index for all the three datasets, while we also include the
construction time of VC-index into the total time. We use the aver-
age querying time reported in Table 4 for the estimation. For VC-
index, the querying time is averaged over VC and non-VC queries.

The result clearly demonstrates the advantage, in fact the neces-
sity, of using an index for approximating the closeness measure in
a large graph. Without an index, it is obviously impractical to ap-
proximate or compute the closeness measure in large graphs.

The approximation or exact computation of many other impor-
tant centrality measures for network analysis, such stress [26], be-
tweenness [15], global efficiency [27], characteristic path length
[8], integration and radiality [29], etc., are all processed in a sim-
ilar way as closeness (i.e., require to invoke SSdist queries lots of
times). To compute these measures in a large network, using an
index is clearly a more feasible and efficient way. In addition, tra-
ditional applications such as urban planning and network routing,
as well as others listed in Section 1, also reveal the need for such
an index especially in today’s continually growing networks.

9. A DISCUSSION ON UPDATE MAINTE-
NANCE OF VC-INDEX

We consider two types of updates in the input graph G: edge
insertion and edge deletion. Vertex insertion and deletion can be
handled as inserting/deleting an isolated vertex followed/preceded
by edge insertion/deletion.

Rebuilding the entire VC-index from scratch is expensive when
the update is frequent; however, we can limit the scope of the up-
date in VC-index to small local areas and perform incremental in-
dex maintenance. According to Lemma 3, the construction of the
edge set of a distance graph is restricted to the 2 hops of each ver-
tex only. For the insertion or deletion of an edge (u, v), we only
need to examine the 2 hops of u and v in the input graph from
which a distance graph is constructed, and add or remove edges in
the distance graph accordingly to restore the conditions defined in
Definition 1. For edge insertion, vertex insertion into the distance
graph is also needed if both u and v are not in the distance graph.
For edge deletion, vertex deletion from the distance graph is needed
if either u or v now becomes isolated. The update is performed in
the same way at each node of VC-index, and may propagate to the
leaf nodes but it stops early when there is no update needed at an
internal node. Finally, we note that this update is lazy update in the
sense that the VC at each node may no longer be a 2-approximate



minimum VC. This should not affect the performance of the index
much and we can rebuild the index periodically at system idle time.

10. RELATED WORK
Many indexes have been proposed for processing source-to-target

shortest path and distance queries. Most of them are for planar
graphs or road networks (see [1] and the references therein). For
general graphs, there are a few proposed recently [31, 30], all of
them are in-memory indexes (thus not suitable for processing large
graphs) and most are for un-weighted graphs.

For processing SSSP or BFS on large graphs that cannot fit in
memory, the existing solutions are mainly EM algorithms [17, 21,
22, 19, 20] (for SSSP) and [24, 6, 18, 4, 5] (for BFS). Note that
these algorithms actually find single-source distance, but can be
extended to report the actual path, as does in VC-index. However,
these algorithms are expensive for applications where SSSP or BFS
needs to be processed repeatedly and frequently (see a list of appli-
cations in Section 1). Our index offers a practical solution for these
applications in massive graphs.

11. CONCLUSIONS
We presented a disk-based index for processing single-source

shortest path or distance queries. We verified by experiments that
VC-index is efficient to construct in large graphs with more than
100 million vertices and 1.1 billion edges. Query processing using
VC-index can be several hundred times faster than a non-index ap-
proach for the large graphs that cannot fit in memory. In addition,
our experimental results also reflect the need of such an index in
real applications.
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