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ABSTRACT
Truth discovery is a long-standing problem for assessing the va-
lidity of information from various data sources that may provide
different and conflicting information. With the increasing promi-
nence of data streams arising in a wide range of applications such
as weather forecast and stock price prediction, effective techniques
for truth discovery in data streams are demanded. However, exist-
ing work mainly focuses on truth discovery in the context of static
databases, which is not applicable in applications involving stream-
ing data. This motivates us to develop new techniques to tackle the
problem of truth discovery in data streams.

In this paper, we propose a probabilistic model that transforms
the problem of truth discovery over data streams into a probabilistic
inference problem. We first design a streaming algorithm that infers
the truth as well as source quality in real time. Then, we develop
a one-pass algorithm, in which the inference of source quality is
proved to be convergent and the accuracy is further improved. We
conducted extensive experiments on real datasets which verify both
the efficiency and accuracy of our methods for truth discovery in
data streams.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications

General Terms
Algorithms, Design, Experiments

Keywords
Data Stream, Truth Discovery

1. INTRODUCTION
Truth discovery is an extensively studied topic in databases and

its importance has been widely recognized by the research commu-
nity [19, 6, 7, 14, 29, 25, 11]. In this paper, we study the problem
of Truth Discovery in data streams. Many data stream management
applications require integrating data from multiple sources in real
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Figure 1: Truth Discovery in Weather Forecast for New York

time. For each entity, each source provides a value for it. However,
the values of the entity from different sources may be conflicting, as
some being true while others being false. To provide the true value
for the entity, it is vital that the data stream management system-
s are capable of resolving such conflicts and discovering the true
values.

Consider a set of conflicting weather forecast values for New
York at one timestamp as shown in Figure 1(a). The truth discovery
for Figure 1(a) is to resolve the conflicts and find the true weather
forecast values for New York in Figure 1(b). For example, the value
“Cloudy” provided by the source ACCU is false information.

Previous works [3, 8, 6, 7, 10, 17, 18, 26, 27, 29, 31, 5] on
truth discovery mainly focus on static databases. They defined the
problem of truth discovery in the context of static databases. The
definition is based on the quality of data sources and conflicting
values for the entity. A data source that often provides true values
is given a high score for its accuracy. A value for an entity that is
provided by accurate sources is considered to be more likely true.
Iterative methods were proposed to alternatively discover the true
values and estimate the accuracy of the sources.

In recent years, advances in mobile technologies have led to the
proliferation of many online data intensive applications, in which
data in streaming format are being collected continuously in large
volume and high speed. Effective and efficient truth discovery
methods for such high speed data streams are essential to a wide
range of applications, such as weather forecast, stock price pre-
diction, flight schedule checking, etc. Moreover, there is also a
rising need to share huge amounts of data in various commercial
and scientific applications. Whether or not the data is naturally in
streaming format, its sheer volume makes it impractical to make
multiple passes of the data for truth discovery, while it is also unre-
alistic to assume that the data can be loaded into main memory for
truth discovery. More compelling reasons of studying data stream
integration can be found in [23]. However, as discussed in [14,
31], existing methods focus on static databases, where the prob-



lem of truth discovery is solved using iterative methods. Thus, it
is difficult for these methods to discover truth in data streams, s-
ince their techniques are based on iterative updates of the score of
source quality and values for the data, which requires the entirety
of the data for the processing (i.e., the data needs to reside in main
memory, or otherwise the cost of random disk access incurred will
be too high).

To develop efficient and effective techniques for truth discovery
in data streams, we should address the following three major chal-
lenging computational issues:

• One-Pass Nature: The streaming data from sources arrive
in large quantities and at high speed. Thus, it is impracti-
cal to perform truth discovery on high-speed data streams by
offline multi-passing algorithms. Instead, an efficient algo-
rithm should read the data only once.

• Limited Memory Usage: Data streams are too voluminous
to be kept in main memory, even though memory has be-
come cheaper today. Moreover, many emerging applications
require truth discovery in data streams in memory limited en-
vironments such as in mobile devices, which can only hold a
limited amount of data.

• Short Response Time: Data streams such as weather fore-
cast and stock price prediction are arriving continuously, while
the applications often require real-time response. Thus, truth
discovery should be performed with limited processing time,
i.e., the algorithm should be able to process high-speed data
streams.

None of the existing methods for truth discovery have effectively
addressed the above computational issues. In fact, the best existing
approach that addresses these issues is probably the method ma-
jority vote, which simply considers the value returned by the ma-
jority of the sources. However, this method is known to be error-
prone [31, 14], since the method values the quality of all sources
equally. In general, an effective truth discovery method should take
into consideration the difference in the quality of various sources.

In this work, we formulate the problem of truth discovery in data
streams, and address all the three computational issues stated above
by proposing a generative model for truth discovery. We assume
that there exists a true value for the entity among the conflicting
values provided by different sources. Note that, our focus is not
on fuzzy value integration and hence if a true value does not ex-
ist, there is nothing or no truth to find. The proposed generative
model for the collected conflicting values from various sources is
based on two fundamental factors, which are data uncertainty and
source quality. Within our proposed model, we transform the truth
discovery problem into a probabilistic inference problem. We de-
rive the optimal solution for the inference problem and propose an
iterative algorithm to converge it. Then, we improve the iterative
algorithm and design a streaming algorithm that infers the truth as
well as source quality in real time. Then, we develop a one-pass
algorithm, in which the inference of source quality is proved to be
convergent and the accuracy is further improved. Specifically, we
compute the posterior distribution of all possible values, and find
the most probable one with the maximum probability. Intuitively,
this model best explains all the possible values reported by sources
and the conflicting values in the data streams.

Figure 2 illustrates the important concepts and main ideas in the
architecture of our truth discovery in data streams. As the sources
can be heterogenous, we first employ a semantic mapping for the
values provided by various sources, such that the values for truth
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Figure 2: A Conceptual View of Truth Discovery in Data
Streams

discovery are in a consistent manner. For example, we consider
the meaning of the weather conditions “rainy” and “wet” to be the
same in weather forecast truth discovery. We also group “Partly
Sunny” and “Mostly Cloudy” , and consider them to be the same
as “Clear”. At each time t, the system collects a set of conflicting
values for entity i as V t

i = {v1, v2, . . . , vk} from multiple data
sources. Next, the system resolves the conflicts and discovers the
true value v in V t

i based on the current data uncertainty and source
quality. Then, the system updates the data uncertainty and source
quality based on the inferred value v and conflicting values V t

i .
We summarize the main contributions of our work as follows.

• Most of the existing work focus on the problem of truth dis-
covery in static databases. In this paper, we formulate the
problem of truth discovery in data streams, and propose a
new probabilistic model that resolves conflicting values aris-
ing from multiple data streams.

• We propose a novel source quality model for capturing vari-
ous errors embedded in the information sources. Compared
with existing source quality models that are based on a single
accuracy value, our matrix model is more general and able to
represent the quality of the sources better, since the model is
able to represent true positive rate, true negative rate, false
positive rate and false negative rate.

• We adopt a new approach that converts the truth discovery
problem into a probabilistic inference problem. We then
transform the complex inference problem into a high-dimensional
optimization problem.

• We develop a one-pass algorithm that solves the problem of
truth discovery in data streams, which assumes limited main
memory and short response time. We prove the convergence
of source quality inference for one-pass algorithm. For truth
discovery from the sources with time-evolving quality, we
devise a streaming algorithm to adaptively infer the source
quality over time.

• We evaluate the performance of our algorithms with data
from real applications of truth discovery in data streams. Our
results verify both the accuracy and efficiency of our one-
pass algorithm and streaming algorithm for truth discovery
in data streams

Organization. The rest of the paper is organized as follows.
Section 2 surveys the related work. Section 3 presents our proba-
bilistic model and formulates the problem of truth discovery in data
streams. Section 4 introduces the optimization algorithms for the
proposed problem. We report the experimental results in Section 5
and conclude the paper in Section 6.
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Figure 3: An Illustration of Probabilistic Inference in Truth Discovery

2. RELATED WORK

Truth discovery for conflicting values is a fundamental problem
in databases. The main challenges of such a problem are to resolve
data inconsistency [1]. The problem of truth discovery for static
databases was first formalized by Yin et al. [29] and an iterative
algorithm was proposed to jointly infer the truth values and source
quality. Pasternack and Roth developed several web-link based al-
gorithms and proposed a linear-programming based algorithm [17].
They also introduced a generalized framework that incorporates
background knowledge into the truth finding process [18]. Galland
et al. introduced several fix-point algorithms to predict the truth
values of the facts [10]. Wang et al. proposed an EM algorithm for
discovering the truth in sensor networks [24]. Yin and Tan explored
semi-supervised truth discovery by utilizing the similarity between
data records [30]. Dong et al. studied the source selection prob-
lem for truth discovery [9]. Kasneci et al. developed a probabilistic
model for truth discovery from several knowledge bases [12]. Pal
et al. tackled the problem of evolving data integration [16]. Li et
al. conducted an experimental study on existing algorithms [14]. A
comprehensive survey of truth discovery techniques can be found
in [8].

There are works that focus on other interesting aspects of da-
ta integration which are related to the problem of truth discovery.
The Q system [22, 21, 28] develops an information need driven
paradigm for data integration. The copying relationship detection
in data integration was studied in [3, 7, 6, 19]. Liu et al. proposed
an early-return data integration method when enough confidence
is gained for the data from the unprocessed sources that are un-
likely to change the answer [15]. Mehmet et al. addressed the
privacy-aware data integration [13]. Several works on data fusion
in wireless sensor networks and RFID systems are also related to
our problem, which discover the true location or reading from a set
of observed readings from the sensors [20, 32, 33]. However, these
techniques first train the sensor model based on training datasets
and then infer the true reading based on the trained models, which
are not suitable for truth discovery in data streams.

Nonetheless, none of the above-mentioned algorithms are appli-
cable for handling data streams. This is because the existing meth-
ods mainly require the entire dataset for processing. More recently,
Zhao et al. studied the truth discovery problem using Gibbs sam-
pling and they showed that their algorithm outperforms prior meth-
ods [31]. An incremental algorithm was also proposed, which is
based on the trained model from the batch databases, to discover
the truth of the new data. However, their incremental algorithm
assumes a training phrase on a given batch dataset, which is not
efficient enough, or even not possible, for processing data stream
integration in many applications.

Contrary to all the above-mentioned work, we develop efficient
algorithms for truth finding in data streams, which satisfy the con-
straints of one-pass nature, short response time, and limited mem-
ory usage.

3. A PROBABILISTIC MODEL FOR TRUTH
DISCOVERY IN DATA STREAMS

In this section, we present a probabilistic approach that trans-
forms the problem of truth discovery over data streams into a prob-
abilistic inference problem. We derive the optimal solution for the
inference problem and devise an iterative method. Specifically, we
calculate the posterior distribution of all possible values, and find
the most probable one with the maximum probability. Intuitively,
the proposed model explains all the possible votes by the sources
on the conflicting values. We propose a truth discovery method
based on the generative process of the votes in the data streams.

We start by illustrating the general process of truth discovery in
data streams. After that, we introduce some basic notions and no-
tations in Section 3.1, and define the problem in Section 3.2. Then,
we present a generative process for the vote on conflicting values
in Section 3.3 and define the probabilistic model in Section 3.4.

Now, we illustrate the general process of truth discovery for the
vote on conflicting values by sources using the following example.

EXAMPLE 1. Consider a set of conflicting weather forecast val-
ues for New York City at time t as shown in Figure 3(a). We aim to
report the correct weather conditions in real time. We first extract
the weather forecast values “Cloudy” and “Showery”provided by
the sources. We then record the votes towards the extracted val-
ues in Figure 3(b). For example, the source ACCU votes only for
“Cloudy” , the source Underground votes only for “Showery”, and
the source WFC also votes for “Showery”.

The process of truth discovery is to validate the correctness of
each value provided by the sources. An example of true weather
condition is given in Figure 3(c). �

3.1 Notions and Notations

3.1.1 Conflicting Values
The conflicting values for an entity at time t are a set of values

provided by sources, which are exclusive. We denote the conflict-
ing values for entity i at time t by V t

i = {vt1,i, vt2,i, . . . , vtK,i}
where vtk,i is the value by source k for entity i at time t. For exam-
ple, the weather forecast values for New York City at time t are giv-
en in Figure 3(a), i.e., V t

New York = {vtACCU,New York, v
t
Underground,New York,

vtWFC,New York} = {Cloudy, Showery, Showery}. The value v can be
either literal or numeric. We consider the conflicting values for
entities at time t as V t and the sequential conflicting values at d-
ifferent timestamps as V = {V 1, V 2, . . . , V T } where T can be
infinite.

3.1.2 Vote
We now consider the vote by different data sources for an entity i

at time t asOt
i = {{oti,1,v1 , . . . , oti,K,v1}, . . . , {oti,1,vnt

i

, . . . , oti,K,v
nt
i

}}
where {oti,1,v1 , . . . , oti,K,v1} is the vote of sources on value v1
for entity i and nt

i is the number of possible values for entity i
at time t. For example, the vote by three sources ACCU, Under-
ground and WFC for the weather forecast values of New York at



time t in Figure 3(b) by vote set Ot
New York = {{otNew York,ACCU,Cloudy,

otNew York,Underground,Cloudy, o
t
New York,WFC,Cloudy}, {otNew York,ACCU,Showery,

otNew York,Underground,Showery, o
t
New York,WFC,Showery}} = {{1,0,0}, {0,1,1}}.

The vote value o can either be 0 or 1. We consider the vote for
entities at time t as Ot and the vote at different timestamps as
O = {O1, O2, . . . , OT } where T can be infinite.

3.1.3 Truth Value
We denote the truth value for an entity i at time t as Zt

i =
{zti,v1 , zti,v2 , . . . , zti,vnt

i

} where zti,vj is a validator for value vtj ∈
V t
i (zti,vj ∈ {0, 1}). The validator zti,vj = 1 if the value vj is the

truth in the values for entity i at time t, V t
i , otherwise zti,vj = 0.

An example of the truth value for entity New York is given in
Figure 3(c), i.e., Zt

New York = {ztNew York,Cloudy, z
t
New York,Showery} =

{0, 1}.
3.1.4 Source Quality

Existing work [8, 7] usually models the quality of data sources
using single accuracy value. However, using single accuracy value
may not explain the possible mistakes made by the source such
as false positive and false negative mistakes. Thus, we propose a
more general quality model using confusion matrix for each source
s, denoted by πs. The proposed quality model aims to explain the
vote by the source. The quality model of source s is given by

πs =

(
πs
00 πs

01

πs
10 πs

11

)
. (1)

Consider a conflicting value set for an entity i, V t
i , with its true

value Zt
i , we explain the vote oti,s,v of source s on the value v ∈

V t
i . Based on the confusion matrix of the quality model πs, there

are four cases of the vote, given by

πs
mn = ps(ot∗,s,v = m|zt∗,v = n),m, n ∈ {0, 1} (2)

where ps(ot∗,s,v = m|zt∗,v = n) is the probability of source s to
give a votem given the value truth n.

We define πs
11 as true positive rate, πs

10 as false negative rate,
πs
01 as false positive rate, and πs

00 as true negative rate, where πs
11,

πs
10, π

s
01, π

s
00 ∈ [0, 1] and πs

11 + πs
10 = 1 and πs

01 + πs
00 = 1.

We now explain the vote by referring to the source given by
the example in Figure 3. Suppose the true weather forecast val-
ue is “Showery” as given in Figure 3(c), we then explain the vote
by sources ACCU and Underground. The probability of voting
by source ACCU on “Cloudy” is based on its false positive rate
πACCU
01 and the probability of voting on “Showery” is based on it-

s false negative rate πACCU
10 . We simulate the vote by the sources

based on the confusion matrix of the quality model. We can see that
the source Underground casts a vote on the value “Showery” while
the source ACCU does not cast a vote. We conclude that the true
positive rate πUnderground

11 is higher. On the other hand, the source
ACCU makes the mistake on voting the true value, since its false
negative rate πACCU

10 is high. Similarly, the source Underground
does not cast a vote on a false value “Cloudy” , which illustrates its
high true negative rate πUnderground

00 . In our proposed source qual-
ity model, the accuracy of the source depends on both true positive
rate and true negative rate.

We model the quality of a set of sources S by a collection of
confusion matrices Π = {π1, π2, . . . , π|S|}.

3.2 Problem Definition

We now formulate the problem of truth discovery in data streams
as follows.

Given sets of conflicting values V 1, V 2, . . . , V∞ provided by a
set of sources S, we aim to validate each value of the entities in the
set V t such that the following three computational issues are ef-
fectively addressed: (1) one-pass nature: the streaming collections
of values can be only read once; (2) limited memory usage: only
the current collection of values can be kept in main memory; and
(3) short response time: the total running time should be linear to
the size of streaming collections of values, and the validation of the
values in each set V t should be performed online.

3.3 A Generative Process
Given a set of sources, we illustrate the generative process for the

observed voteO. We first denote a set of parameters ϕ = {−→α ,−→β },
where −→α is the hyper-parameters for confusion matrices and

−→
β is

the hyper-parameters for value uncertainty.

3.3.1 Generating Truth Value Z
For each entity i at time t, its truth Zt

i consists of a set of val-
idators zti,vj for values vj ∈ V t

i . Since the value of each validator
zti,vj is binary (i.e. zti,vj ∈ {0, 1}), we assume that it is generated
from the Bernoulli distribution [2]. The Bernoulli distribution is the
most widely used distribution for binary random variables, which
generates value 1 with success probability θ and value 0 with failure
probability 1 − θ. Thus, the probabilistic generation for validators
zti,vj is given by

zti,vj ∼ Bernoulli(θtvj )

∼ (θti,vj )
zti,vj (1− θti,vj )

1−zti,vj (3)

where θti,vj is the prior probability of value vj to be the truth in the
value set V t

i .
The probability θt∗,v models the the uncertainty of value v to be

the truth or not. We assume that θt∗,v is generated by a Beta dis-
tribution [2]. The Beta distribution generates a continuous value θ
within an interval [0, 1] with two parameters β1 and β0. We choose
the Beta distribution to generate θt∗,v because the Beta distribution
is the conjugate prior [2] of the Bernoulli distribution. The prob-
abilistic generation of value uncertainty θt∗,v with hyperparameter−→
β = (β1, β0) is given by

θt∗,v ∼ Beta(
−→
β )

∼ Γ(β1 + β0)

Γ(β1)Γ(β0)
(θt∗,v)

β1−1(1− θt∗,v)β0−1 (4)

where Γ is a gamma function [2], β1 is the prior truth count, and
β0 is the prior false count for the values to be the truth in the data
streams.

3.3.2 Generating Confusion Matrix Π

We now show the generative process for each confusion matrix
πs. As stated above, the entries of the confusion matrix have the
property that πs

11 + πs
10 = 1 and πs

00 + πs
01 = 1. For brevity,

we give the generative process for true positive rate πs
11 and true

negative rate πs
00 of source s.

We first assume that the true positive rate πs
11 is generated from

a Beta distribution with hyperparameters α11 and α10 in −→α , given
by

πs
11 ∼ Beta(−→α )

∼ Γ(α11 + α10)

Γ(α11)Γ(α10)
(πs

11)
α11−1(1− πs

11)
α10−1 (5)



where α11 is the prior true positive count and α10 is the prior false
negative count for the confusion matrix πs.

We then assume that the true negative rate πs
00 is also generated

from a Beta distribution with hyperparameters α00 and α01 in −→α ,
given by

πs
00 ∼ Beta(−→α )

∼ Γ(α01 + α00)

Γ(α00)Γ(α01)
(πs

00)
α00−1(1− πs

00)
α01−1 (6)

where α00 is the prior true negative count and α01 is the prior false
positive count for the confusion matrix πs.

3.3.3 Generating Vote O
We show the generative process of the votes made by each source.

For the conflicting values of each entity i, we assume that the votes
by source s is generated from the Bernoulli distribution based on
the confusion matrix πs and the truth value for entityZt

i . The value
of each vote by source s for entity i, oti,s,v is also binary, and thus
the Bernoulli distribution is a suitable choice for its generation. The
probabilistic generation for the vote oti,s,v is given by

oti,s,v ∼ Bernoulli(πs
zti,v

)

∼ (πs
zti,v

)o
t
i,s,v (1− πs

zti,v
)1−oti,s,v (7)

For example, if the value v is the truth in V t
i (i.e. zti,v = 1), then

the vote oti,s,v is generated by the true positive rate πs
11 or false

negative rate πs
10 of source s.

3.4 Model Definition

In the previous discussion, we described a generative process for
the votes O. We now formally define a probabilistic model that
represents the underlying joint distribution over the generation of
prior distribution for the truth Θ, truth value Z, source quality Π
and the votes O.

Given hyper-parameters ϕ = {−→α ,−→β }, and a set of sources S,
we factorize the joint distribution over Z, Θ, Π and O, given by

p(Θ, Z,Π, O|S, ϕ) = p(Θ|−→β )p(Z|Θ)p(Π|−→α )p(O|Π, Z)
where

p(Θ|−→β ) =
T∏

t=1

N∏
i=1

∏
v∈V t

i

p(θti,v|β1, β0),

p(Z|Θ) =
T∏

t=1

N∏
i=1

∏
v∈V t

i

p(zti,v|θti,v),

p(Π|−→α ) =
∏
s∈S

p(πs
11|α11, α10)p(π

s
00|α01, α00),

p(O|Π, Z) =

T∏
t=1

N∏
i=1

∏
v∈V t

i

∏
s∈S

p(oti,s,v|πs, zti,v),

and the probability distributions p(θt∗,v|
−→
β ), p(zt∗,v|θt∗,v), p(πs

11|α11, α10),
p(πs

00|α01, α00), p(oti,s,v|πs, zti,v) are defined in Equations 3-7, re-
spectively. For brevity, we omit the conditional part of the joint
distribution p(θ, Z,Π, O|S, ϕ) and abbreviate it to p(θ, Z,Π, O)
in the rest of this paper.

Based on the model, the problem of truth finding for observed
vote can be transformed into a standard probabilistic inference prob-
lem, namely, finding the maximum a posterior (MAP) configura-

tion of the truth Z conditioning on O. That is to find

Z∗ = argmax
Z

p(Z|O) (8)

where p(Z|O) is the posterior distribution of Z given the votes O
(and ϕ). However, it it difficult to compute the posterior distribu-
tion of Z,

p(Z|O) =

∫ ∫
p(Θ, Z,Π|O)dΘdΠ, (9)

where

p(Θ, Z,Π, |O) =
p(Θ, Z,Π, O)∑

Z

∫ ∫
p(Θ, Z,Π, O)dΘdΠ

. (10)

This distribution is intractable to compute due to the coupling
between Π and Θ. To tackle this problem, we develop an efficient
and effective approximation algorithm in the next section.

4. THE OPTIMIZATION ALGORITHM

In this section, we propose the algorithms to approximate the dis-
tribution p(Θ, Z,Π|O) defined in Equation 9. We first introduce a
batch optimization algorithm for the proposed problem by assum-
ing that T is a fixed value. Then, we introduce two online algo-
rithms for solving the problem of truth discovery over data streams.

4.1 Batch Optimizing Algorithm
We present a variational algorithm for discovering the truth with

fixed T . We first restrict the variational distribution to a family of
distributions that factorize as follows:

q(Θ, Z,Π) = (

T∏
t=1

N∏
i=1

∏
v∈V t

i

q(θtv)q(z
t
v))

∏
s∈S

q(πs
11)q(π

s
00).

Thus the calculation of the joint probability distribution can be re-
duced to the product of multiple distributions and thus the compu-
tation cost can be greatly reduced.

The choice of variational distributions is not arbitrary and we
require the distribution in the same family of the model probability
distribution and take the following parametric form:

q(Θ, Z,Π|γ, η,−→λ )

= (
T∏

t=1

N∏
i=1

∏
v∈V t

i

q(θtv|γ)q(ztv|η))
∏
s∈S

q(πs
11|λ1)q(π

s
00|λ0),

where

q(θtv|γ) = Beta(γ),

q(ztv|η) = Bernoulli(η),

q(πs
11|λ1) = Beta(λ1),

q(πs
00|λ0) = Beta(λ0).

Here, γ, η, λ1 and λ0 are the variational parameters.
Thus, the inference for the truth value in Equation 8 can be sim-

plified as follows:

Z∗ = [argmax
Z1

q(Z1), argmax
Z2

q(Z2), . . . , argmax
ZT

(ZT )]

= [argmax
η1

η1, . . . , argmax
ηT

ηT ] (11)

The goal of the variational algorithm is to find the variational
distribution that is close to the true posterior p(Θ, Z,Π|O). This is



equivalent to optimizing the variational parameters γ, η, λ1 and λ0

with respect to some distance measure, given by

(γ∗, η∗, λ∗
1, λ

∗
0)

= arg min
γ,η,λ1,λ0

D(q(γ, η, λ1, λ0)||p(Θ, Z,Π|O)).

In this work, we adopt the Kullback-Leibler (KL) divergence
which is commonly used to measure the difference between two
distributions. It is defined as

KL(q||p)
=

∑
Z

∫ ∫
q(γ, η, λ1, λ0) log

q(γ, η, λ1, λ0)

p(Θ, Z,Π|O)
dΘdΠ,

where KL divergence is a function of the variational parameter-
s γ, η, λ1 and λ0. However, directly optimizing the KL diver-
gence is infeasible because the KL divergence involves the term
p(Θ, Z,Π|O), which is intractable.

Instead, we solve an equivalent maximization problem, whose
objective function is defined as

L(q) =
∑
Z

∫ ∫
q(γ, η, λ1, λ0) log

p(Θ, Z,Π, O)

q(γ, η, λ1, λ0)
dΘdΠ

The equivalence between these two optimization problems can
easily be seen as their objective functions sum up to a constant

KL(q||p) + L(q) = log p(O).

In order to maximize the objective function L(q), we take the
derivatives of it with respect to the variational parameters γ, η, λ1

and λ0, and set these derivatives to zeros.

∇L(q) = (
∂L
∂η

,
∂L
∂γ

,
∂L
∂λ1

,
∂L
∂λ0

) =
−→
0 . (12)

For clarity, we put all the derivations in the Appendix. We report
the solutions to the optimization problem by

ηti,v,j ∝ exp{ψ(γt
i,j)− ψ(

1∑
m=0

γt
i,m)}

× exp{
∑
s∈S

1∑
j=0

oti,s,v,j(ψ(λ
s
i,v,j)− ψ(

1∑
m=0

λs
i,v,m))} (13)

γt
i,j = βj +

N∑
i=1

∑
v∈V t

i

ηti,v,j (14)

λs
0,j = α0,j +

T∑
t=1

N∑
i=1

∑
v∈V t

i

∑
s∈S

ηti,v,0o
t
i,s,v,j . (15)

λs
1,j = α1,j +

T∑
t=1

N∑
i=1

∑
v∈V t

i

∑
s∈S

ηti,v,1o
t
i,s,v,j . (16)

for all s = 1, . . . , |S|; t = 1, . . . , T ; i = 1, . . . , N ; j ∈ {0, 1}.
ψ(·) is the Digamma function which is the logarithmic derivative
of the Gamma function Γ(·), given by

ψ(x) =
∂ log Γ(x)

∂x
.

4.2 Streaming Optimization Algorithm

In this section, we develop a streaming truth finding algorithm
called StreamTF, in Algorithm 1. The StreamTF algorithm is able
to heuristically find the truth with one-pass nature, short response
time and limited memory usage. Furthermore, StreamTF algorithm
is also capable for truth discovery in the case that the quality of data
sources evolves.

The idea of the StreamTF algorithm is based on the sequential
Bayesian estimation, given by

p(ϕt|O1, O2, . . . , Ot) ∝ p(Ot|ϕt−1)p(ϕt−1|O1, O2, . . . , Ot−1)

whereϕt−1 is the estimated variational parameters at time t-1. This
indicates that we can use a posterior p(ϕt−1|O1, O2, . . . , Ot−1)
as the prior and infer the variational parameters ϕt based on the
collection of votes Ot. Thus, we present the techniques of the
StreamTF algorithm that finds the truth and estimates the source
quality sequentially. We notice that Equations 15 and 16 for esti-
mating the source quality can also be represented as

λs
0,j = {α0,j +

T−1∑
t=1

N∑
i=1

∑
v∈V t

i

∑
s∈S

ηti,v,0o
t
i,s,v,j}

+

N∑
i=1

∑
v∈V T

i

∑
s∈S

ηTi,v,0o
T
i,s,v,j ,

λs
1,j = {α1,j +

T−1∑
t=1

N∑
i=1

∑
v∈V t

i

∑
s∈S

ηti,v,1o
t
i,s,v,j}

+
N∑
i=1

∑
v∈V T

i

∑
s∈S

ηTi,v,1o
T
i,s,v,j ,

where we can interpret the terms {α0,j +
∑T−1

t=1

∑N
i=1

∑
v∈V t

i∑
s∈S η

t
i,v,0o

t
i,s,v,j}, and {α1,j +

∑T−1
t=1

∑N
i=1

∑
v∈V t

i

∑
s∈S

ηti,v,1 o
t
i,s,v,j} as the prior parameters of true negative rate and true

positive rate of source s, denoted as (λs
0,j)

T−1 and (λs
1,j)

T−1, re-
spectively. Next, we consider (λs

0,j)
T−1 and (λs

1,j)
T−1 as the pri-

or parameters for estimating data truth ηT and data uncertainty γT .
Then, we estimate source quality (λs

0,j)
T and (λs

1,j)
T based on the

estimated ηT and γT , given by

(λs
0,j)

T = (λs
0,j)

T−1 +
N∑
i=1

∑
v∈V T

i

∑
s∈S

ηTi,v,0o
T
i,s,v,j , (17)

(λs
1,j)

T = (λs
1,j)

T−1 +
N∑
i=1

∑
v∈V T

i

∑
s∈S

ηTi,v,1o
T
i,s,v,j . (18)

The StreamTF is outlined in Algorithm 1. We now show how the
StreamTF algorithm effectively addresses the three computation is-
sues stated in Section 3.2. First, StreamTF achieves one-pass nature
since it is obvious that the algorithm reads the data only once. Sec-
ond, StreamTF achieves limited memory usage because it only uses
memory of size of one collection of votes at any time in the stream.
Third, StreamTF achieves short response time since the algorith-
m reports the truth online and our experiments also verify that our
algorithm can process a lot of collections of votes in one second,
which is in effect real time response.



Algorithm 1 Streaming Truth Finding (StreamTF)

Input: Observed votes Ot, variational parameters λt−1, a thresh-
old ε
Output: Variational parameters ηt, λt, γt

1: for t = 1→∞ do
2: for each source s ∈ S do
3: Set true negative rate λs

0 ← (λs
0)

t−1

4: Set true positive rate λs
1 ← (λs

1)
t−1

5: end for
6: repeat
7: for entity i : 1→ N do
8: for each value v ∈ V t

i do
9: Update ηti,v by Equation 13

10: end for
11: end for
12: Update γt

i by Equation 14
13: until change in 1

N

∑N
i=1

∑
v∈V t

i
ηti,v < ε

14: for each source s ∈ S do
15: Update true negative rate (λs

0)
t by Equation 17

16: Update true positive rate (λs
1)

t by Equation 18
17: end for
18: end for
19: return ηt, λt, γt.

4.3 One-Pass Optimization Algorithm

We can further improve the StreamTF algorithm if the size of the
dataset is known, by which we can design a one-pass algorithm that
not only satisfies the three computational issues of data stream pro-
cessing stated in Section 3.2, but also stochastically maximizes the
objective function in Equation 12, i.e., L(q). Such a one-pass algo-
rithm is particularly useful for processing massive static databases.

We observe that the objective function L(q) can be represented
as T functions of the variational parameters, given by

L(q) =

T∑
t=1


(Ot, ηt, θt, λ0, λ1).

where we consider ηt and θt as local parameters for the function

(Ot, ηt, θt, λ0, λ1) and λ0, λ1 as global parameters for source
quality.

The challenge of this problem is the inference for parameters λ0,
λ1. The reason is that we only have to keep one collection of votes
Ot at each time. To tackle this problem, we develop our one-pass
algorithm based on the stochastic natural gradient algorithm [4].
We model the streaming collections of votes O1, O2, . . . , OT to
be sampled from uniform distribution, that is, h(Ot) = 1

T
. The

expectation of the objective function is given by

Eh[L(q)] = T × Eh[
(O
t, ηt, θt, λ0, λ1)] (19)

Then, we optimize Equation 19 by repeatedly sampling the col-
lection of votes at different times, and applying the update

λs
i,j

← λs
i,j + ρtT

∂
(Ot, ηt, θt, λ0, λ1)

∂λs
i,j

= (1− ρt)λs
i,j + ρt(αi,j + T

N∑
n=1

∑
v∈V t

n

∑
s∈S

ηtn,v,io
t
n,s,v,j)

(20)

Algorithm 2 One-Pass Truth Finding (1PassTF)
Input: Observed votes O, input data size T , a threshold ε
Output: Variational parameters η, λ, γ

1: Define ρt = (τ + t)−κ

2: for t = 1→ T do
3: repeat
4: for entity i : 1→ N do
5: for v ∈ V t

i do
6: Update ηti,v by Equation 13
7: end for
8: end for
9: Update γt

i by Equation 14
10: until change in 1

N

∑N
i=1

∑
v∈V t

i
ηtv < ε

11: for each source s ∈ S do
12: Update variational parameters λs by Equation 20
13: end for
14: end for
15: return η, λ, γ.

for all s, i ∈ {0, 1} and j ∈ {0, 1}, where ρt is the decay factor.
The derivation of Equation 20 can be found in the Appendix.

To guarantee the convergence of source quality, we set the decay
factor as the function of ρt = (τ + t)−κ where the parameters κ,τ
control the learning rate of old λs

i,j to be forgotten. We set κ > 0.5

and τ > 0 such that
∑∞

t=1 ρ
t = ∞ and

∑∞
t=1(ρ

t)2 < ∞, where
the estimation of λs

i,j can converge to a stationary point.

THEOREM 1. (Online Optimization [4]) The general greedy de-
scent method converges if and only if its learning rates ρ fulfills

∞∑
t=1

(ρt)2 <∞,
∞∑
t=1

ρt =∞.

The detailed proof to the above theorem can be found in [4],
and we give the intuition of the convergence on λs

i,j here. The
ratio ρt = (τ + t)−κ is a function of t and becomes smaller af-
ter the algorithm is run for more iterations. The function (αi,j+
T

∑N
n=1

∑
v∈V t

n

∑
s∈S ηtn,v,i o

t
n,s,v,j) is the inference for new

λs
i,j . The update on the variational parameter λs

i,j is the product
of (αi,j+T

∑N
n=1

∑
v∈V t

n

∑
s∈S η

t
n,v,i o

t
n,s,v,j) and ρt which be-

comes less after the algorithm iterates more. Thus, the inference of
parameter λs

i,j becomes convergent.
The 1PassTF algorithm is outlined in Algorithm 2. It is easy

to see that the 1PassTF algorithm also addresses the three compu-
tation issues stated in Section 3.2 by following the same analysis
given to the StreamTF algorithm at the end of Section 4.2.

5. EXPERIMENTAL RESULTS

In this section, we evaluate the effectiveness and efficiency of our
algorithms. All the algorithms, including those we compared with
in the experiments, were implemented in Java and tested on ma-
chines with Windows OS, Intel(R) Core(TM2) Quad CPU 2.66Hz,
and 8GB of RAM.

5.1 Datasets
We use three real datasets to evaluate the performance of our

algorithms. Some statistics of the datasets are reported in Table 1.
Weather. We collected the weather forecast data in May 2013 for
285 US cities that have a population of at least 100,000. The weath-



Table 1: Statistics of Real Datasets

Datasets #Votes Ot
i #Sources

#Values Entropy
Avg Dev Avg Dev

Flight 35k 35 2.809 1.159 0.710 0.147
Weather 154k 7 2.148 2.502 0.531 0.412
Stock 21k 51 7.581 4.027 1.227 0.073

er forecast data are modeled as streams reported hourly from dif-
ferent sources. The source is obtained as follows. We searched
“weather forecast” on Google and collected the deep-web sources
from the top 100 returned results. Among them, we chose the
sources where the weather forecast data are encoded in the URL.
Then, we selected the sources that forecast the weather hourly and
removed the sources whose data were copied from other sources.
Finally, we obtained a set of seven sources. We also collected the
historic weather data for these cities from a normal weather fore-
cast website1 as the groundtruth for our evaluation. We use the
historic weather data as the truth data, since they are recorded after
the day. On the other hand, the weather forecast data may contain
some mistakes as the data are based on some kind of prediction.
Flight. The flight data contains 1200 flights from three airlines
(AA, UA and Continental) in one month. The sources include the
official websites of the three airlines, and 32 third-party websites
that provide flight information for the airlines. We consider the
data provided by the official websites of the three airlines as the
gold standard.
Stock. The stock data contains 1000 stocks from 55 sources over
one month. We use the data provided from NASDAQ100 as the
gold standard.

We obtain both Flight data and Stock data from the website2.
These two datasets are used as benchmark datasets in the experi-
mental study in [14]. The gold standards are the same as suggested
in [14]. For some sources of both Flight data and Stock data, they
may copy the values from other sources to provide the values. We
use the well-known copy-detection method in [7, 19] to remove
these sources.

5.2 Experimental Settings
For continuous values in the datasets such as the departure time

of flight and stock price, we transform their values into discrete
format by the notations of tolerance and bucketing (as suggested
in [14]) as follows.

• Tolerance. For the departure time in the flight data, we tol-
erate a 10-minute difference. For a stock price value at time
t, we consider all the values V t provided by the sources and
compute the mean value V t. The tolerance for V t is comput-
ed based on V t and a predefined threshold ε, which is given
by

τ(V t) = ε× V t,

where the threshold ε is set to 0.01 by default.

• Bucketing. For each collection of values V t, we group val-
ues with very small differences into a bucket. We start to
compute its mean value V t and put all the values into the

following buckets: . . . , (V t − 3τ(V t)
2

, V t − τ(V t)
2

], (V t −
τ(V t)

2
, V t + τ(V t)

2
], (V t + τ(V t)

2
, V t + 3τ(V t)

2
], . . .

1http://www.weatherforyou.com/
2http://cs.binghamton.edu/~xianli/
truthfinding.htm

We now report the consistency of the datasets above. We consid-
er the observed values and votes at time t as V t andOt, respective-
ly. We use the average number of values to measure the uncertainty
of the data streams. We employ the entropy to measure the confu-
sion of the conflicting values for the sources. Both average number
and entropy are popular measurements for data consistency, which
are also used in the experimental study of the work in [14].

• Average Number of Values. We denote the number of val-
ues for entity i by nt

i . For the collection of values V = {V 1,
V 2, . . ., V T }, we consider the average number of values for
data streams as |V | = 1

T×N

∑T
t=1

∑N
i=1 n

t
i . The standard

deviation of |V | is computed by

δ(|V |) =
√√√√ 1

T ×N
T∑

t=1

N∑
i=1

(nt
i − |V |)2.

• Average Entropy. We consider the vote for entity i from
source s ∈ S on the value v at time t as oti,s,v , which is a bi-
nary value. For all the observed votesO = {O1, O2, . . . , OT },
we consider the average entropy of the votes from sources by

Ent(O) =
1

T ×N
T∑

t=1

N∑
i=1

Ent(Ot
i)

=
1

T ×N
T∑

t=1

N∑
i=1

1

nt
i

nt
i∑

i=1

∑
s∈S

oti,s,v
|S| log

oti,s,v
|S| .

And its standard deviation can be computed as

δ(Ent(O)) =

√√√√ 1

T ×N
T∑

t=1

N∑
i=1

(Ent(Ot
i)− Ent(O))2.

The details of the statistics of the real datasets can be found in Ta-
ble 1.

We evaluate the performance of our batch algorithm and the two
streaming algorithms using the above datasets. To measure the ef-
fectiveness of our methods, we define the average accuracy (AVG),
minimum accuracy (MIN) and standard deviation of accuracy (DE-
V). We first partition the collection of the data streams into buckets
of the same size and compute the accuracy of the algorithm for each
bucket. Then, we compute the average accuracy and minimum ac-
curacy over all the buckets as AVG and MIN, respectively. Finally,
we compute the standard deviation of accuracy based on the buck-
et accuracy and average accuracy as DEV. By default, we set the
size of each bucket to be 300. For the streaming algorithms, we al-
so evaluate their robustness by varying the decay factor κ, and the
decay seed τ .

5.3 Streaming Truth Finding
We next evaluate the performance of our streaming algorithm-

s, StreamTF and 1passTF, for the following three measures: (1)
accuracy, (2) running time, and (3) robustness. Since there is no
existing algorithm tackling truth finding over data streams, we use
the incremental algorithm LTMinc [31] as the baseline for compar-
ison. We use 10%-40% percentage of the data for training the LTM
model for LTMinc, denoted by LTMinc0.1-LTMinc0.4, respective-
ly.

5.3.1 Accuracy of Streaming Algorithms
We now present the result of accuracy of the algorithms in Ta-

ble 2. For all the three datasets, both StreamTF and 1passTF achieve



Table 2: Accuracy of Streaming Algorithms (the best score in bold except Dev))

Method
Flight Weather Stock

Avg Min Dev Avg Min Dev Avg Min Dev
1PassTF 0.9575 0.8732 0.0165 0.9426 0.8769 0.0171 0.9071 0.8320 0.0506
StreamTF 0.9565 0.8683 0.0187 0.9426 0.8481 0.0226 0.8985 0.8320 0.0580
LTMinc0.1 0.8426 0.8280 0.0105 0.8009 0.1699 0.3512 0.7733 0.6698 0.0699
LTMinc0.2 0.8610 0.8471 0.0090 0.8092 0.2796 0.3736 0.7800 0.6650 0.0734
LTMinc0.3 0.8572 0.8458 0.0076 0.8106 0.3133 0.3231 0.7711 0.6650 0.0758
LTMinc0.4 0.8776 0.8664 0.0063 0.8177 0.2392 0.3553 0.7837 0.7279 0.0549
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Figure 4: Running Time of Streaming Algorithms

significantly higher accuracy than LTMinc. Both the average accu-
racy and minimum accuracy of StreamTF and 1passTF are higher
than those of LTMinc.

Notably, the accuracy of 1passTF is higher than that of StreamT-
F, which can be explained as follows. Both StreamTF and 1passT-
F sequentially find the truth as well as estimate the source qual-
ity over the data streams. The difference between StreamTF and
1passTF is on the estimation of source quality. The StreamTF
algorithm estimates online the source quality based on sequential
bayesian estimation in Equation 17. However, the estimation of
source quality based on sequential bayesian cannot optimize the
likelihood objective function. On the contrary, the 1passTF algo-
rithm stochastically optimizes online the objective function in E-
quation 19 in order to accurately estimate the source quality using
gradient descent in Equation 20. As a result, the performance of
1passTF is better than that of StreamTF.

5.3.2 Running Time of Streaming Algorithms
We report the running time of the algorithms in Figures 4(a),

4(b) and 4(c), respectively. We sequentially pass the votes for the
entity Ot

i to our algorithms. For all the datasets, StreamTF and
1passTF are faster than LTMinc, and able to process data streams
at high speed.

It is also interesting to see that the running time of StreamTF and
1passTF decreases when more data have been processed (i.e., the
running time increases sub-linear with the increase in the amount of
data being processed), as shown in Figures 4(a), 4(b) and 4(c). The
streaming algorithms keep estimating online the confusion matrix
for source quality. They take more iterations to converge when esti-
mating the source quality from the initial period of the data streams.
As we know, the confusion matrix of the source quality is station-
ary. As the time passes by, our streaming algorithms take less and
less iterations to converge. Finally, we find that the number of itera-
tions for inferring the source quality becomes one when the estima-
tion of source confusion matrix reaches the stationary point. Thus,
the time cost of our streaming algorithms can be greatly reduced as
more data is being processed.
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Figure 5: Robustness of One-Pass Algorithms

5.3.3 Robustness of One-Pass Algorithms
We evaluate the robustness of the 1passTF algorithm by varying

its parameters, decay ratio κ and decay seed τ , to validate its ef-
fectiveness. We measure the performance of the algorithms by the
average accuracy and minimum accuracy (indicated by adding the
prefix “min-” to the algorithm names in the figures), respective-
ly. We denote the 1PassTF algorithm on different datasets such as
flight, weather and stock by 1PassTFf , 1PassTFw and 1PassTFs,
respectively. The results in Figure 5 show that our 1passTF algo-
rithm is robust as it achieves quite consistent high accuracy for dif-
ferent values of decay ratio and decay seed. It is worth mentioning
that the running time of 1passTF also remains stable for different
values of decay ratio and decay seed.

6. CONCLUSIONS

In this paper, we studied the problem of truth discovery in data
streams, which has a wide range of data stream applications such as
weather forecast and flight scheduling. We proposed a probabilis-
tic model that transforms the problem of truth discovery over data
streams into a probabilistic inference problem. We first developed
a streaming algorithm that discovers the truth under the constraints
of one-pass nature, limited memory usage and short response time.
Then, we also proposed a one-pass algorithm that is able to stochas-



tically optimize the probabilistic inference of source quality, which
is able to further improve the accuracy of the streaming algorithm.
As for empirical study, we verified the effectiveness and efficien-
cy of our algorithms using three real datasets from the data stream
applications of weather forecast, flight scheduling and stock price
prediction. The experimental results validate the effectiveness of
our algorithms, in terms of both integration accuracy and running
time.
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