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ABSTRACT

Reachability querying is a basic graph operation with numerous
important applications in databases, network analysis, computa-
tional biology, software engineering, etc. Although many indexes
have been proposed to answer reachability queries, most of them
are only efficient for handling relatively small graphs. We propose
TF-label, an efficient and scalable labeling scheme for processing
reachability queries. TF-label is constructed based on a novel topo-
logical folding (TF) that recursively folds an input graph into half
so as to reduce the label size, thus improving query efficiency. We
show that TF-label is efficient to construct and propose efficient al-
gorithms and optimization schemes. Our experiments verify that
TF-label is significantly more scalable and efficient than the state-
of-the-art methods in both index construction and query processing.
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E.1 [DATA]: DATA STRUCTURES—Graphs and networks

General Terms

Algorithms, Performance

Keywords
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1. INTRODUCTION

A reachability query asks whether there exists a path from one
vertex to another vertex in a directed graph. Reachability query-
ing is one of the fundamental operations in directed graphs. It has
a wide range of applications such as processing recursive queries
in data and knowledge base management, querying associations
and logical reasoning in Web and Semantic Web graphs, pattern
matching in graphs and XML documents, analyzing the biological
function of genes, checking connections in geographic navigation
systems, social network analysis, ontology querying, program anal-
ysis, and many more.

Reachability querying has been extensively studied in the past
[1,2,3,4,5,6, 10, 11, 12, 14, 17, 18, 19, 20, 21, 23, 24, 25,
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26, 28]. In recent years, there is a shift of interest to handle large
graphs. The more recent works [6, 18, 19, 25, 28] have highlighted
the applications of reachability querying in large graphs such as
Web graphs, Semantic Web and RDF graphs, social networks, large
XML databases, etc., and more efforts have been given to the de-
velopment of scalable methods for answering reachability queries.

As pointed out in [18], most existing methods can only handle
relatively small graphs with tens to hundreds of thousands vertices
and edges. For processing larger graphs, these methods are either
too costly in indexing or in query processing (more discussion in
Section 9), thus limiting their application to real world graphs.

For graphs with millions of vertices and edges, only a few meth-
ods can process them with reasonably good efficiency [19, 25, 28].
For larger graphs with tens of millions of vertices and edges, the
only known method that attains reasonable indexing and query-
ing efficiency is the recently proposed backbone structure [18]. A
reachability query, where a vertex s can reach another vertex ¢, can
be answered by (1) first finding all backbone vertices B that can
be reached from s and all backbone vertices B; that can reach ¢,
and then (2) check whether any vertex in B, can reach any vertex
in B;. Any existing method can be applied to the backbone graph
to process Step (2), and querying is generally faster since the back-
bone can be significantly smaller than the original graph.

Although the backbone is used as a general framework (called
SCARAB [18]) to further improve the scalability of a reachability
index (including ours), an efficient and scalable method itself is
still most crucial for query performance for the two main reasons
(both verified in our experiments). First, SCARAB itself may not
be scalable to large graphs. Second, the backbone of a large graph
may still be too large for existing methods.

We propose an efficient and scalable labeling scheme, which can
process large graphs that cannot be handled by SCARAB and other
existing methods. Given the labels of s and ¢, i.e., a set of vertices
that are reachable from s and can reach ¢ respectively, we can an-
swer whether s can reach t efficiently by simply intersecting their
labels (as in [14]). We give the main idea of our method as follows.

We propose a novel data structure, called topological folding
(TF), based on which we develop our labeling scheme, TF-label.
Given a directed graph, we can convert it into a directed acyclic
graph (DAG) by condensing each strongly connected component
(SCC) in the graph into a super node. Reachability queries can be
answered on the DAG since all vertices are reachable from each
other within an SCC. We define a ropological structure T for the
DAG. TF is intuitively a structure obtained by folding 7 into half
each time, which essentially implies a great reduction in the label
size as labeling is processed in O(lg ¢) levels instead of a total of
£ levels in 7. Then, we apply a labeling technique, inspired by the



work of [16], on the TF structure to construct labels for answering
reachability queries.
We summarize the main contribution of our work as follows.

e We propose an efficient and scalable TF-based labeling
scheme for reachability query processing.

e We propose optimization techniques such as special handling
of high-degree vertices to further improve the scalability.

e We propose efficient algorithms for constructing the TF
structure and then the labels from the TF, as well as the opti-
mization techniques.

e Our experiments on a wide spectrum of real and synthetic
datasets verify that TF-label achieves competitive indexing
performance and significantly better query performance than
the state-of-the-art methods [18, 19, 25, 28]. In many cases,
TF-label is an order to several orders of magnitude faster in
query processing. We also show that TF-label is more scal-
able and has stable performance with the change in various
graph properties.

The rest of the paper is organized as follows. We first give some
basic notations and problem definition in Section 2. Then, through
Sections 3 to 7 we present the details of TF and TF-label with their
design and algorithms. We evaluate the performance of TF-label
in Section 8. Finally, we discuss related work in Section 9 and
conclude the paper in Section 10.

2. NOTATIONS/PROBLEM DEFINITION

Given a directed graph G, a reachability query asks whether
there is a path from a vertex u to another vertex v in G. We assume
u # v as it is trivial to process u = v. Formally, a directed edge, or
simply an edge (since all edges are directed in this paper), from u
to v is denoted by (u,v). A path P from v; to vy, in G is defined by
P = (v1,...,vp) such that (v;,v;41) isanedgein G for 1 < i <
p. We use u — v to indicate that u can reach v (or v is reachable
from u), and u - v to indicate that v cannot reach v.

Given any two vertices v and v in a strongly connected compo-
nent (SCC) of G, u can always reach v. With this observation, ex-
isting methods first compute a compressed graph, G = (V, E¢),
of G as follows: the set of vertices Vg of G 1is the set of SCCs of
G, and a directed edge is created in G from one SCC C' to another
SCC C; if there exists a directed edge (v1,v2) in G, where v; is a
vertex in C and v is a vertex in Co. Then, a reachability query is
answered by checking whether there is a path from C,, to C,, in G,
where C,,, C,, € Vg, u is a vertex in C, and v is a vertex in C,.

The compressed graph G created above is in fact a directed
acyclic graph (DAG). Thus, for simplicity, we call G the DAG of
G in this paper. Since the SCCs of G can be computed efficiently
[15], we follow the convention of existing methods and assume that
the input to our algorithm is the DAG of the input directed graph.

Given a DAG, G = (Vg, E¢), we define the set of in-neighbors
(out-neighbors) of a vertex v € Vg as nbin (v, G) = {u : (u,v) €
Ec} (nbout(v,G) = {u : (v,u) € Eg}), and the in-degree
(out-degree) of v as deg,,, (v, G) = |nbin (v, G)| (deg . (v, G) =
[nbout (v, G))).

Problem definition. We study the following problem: given a
DAG G = (Vg, E¢), compute a set of vertex labels (also called
an index) for processing reachability queries, i.e., given s,t € Vg,
the query whether s can reach ¢ can be efficiently answered using
the labels of s and ¢.

3. TOPOLOGICAL FOLDING

Through Sections 3 to 6, we present our main indexing scheme,
called TF-label, which is designed based on a novel topological
folding scheme of the DAG of a directed graph. We first present
the concept of topological folding in this section.

3.1 Basic Topological Folding

Given a DAG G = (Vg, Eg), we start by assigning each vertex
in GG a topological level number as follows.

DEFINITION 1  (TOPOLOGICAL LEVEL NUMBER). Given a
DAG G = (Vg, Egq), the topological level number of a vertex
v € Vg, denoted by £(v, G), is defined as follows:

o If nbin(v,G) =0: L(v,G) =1;
e Eise: {(v,G) = max{({(u,G) + 1) : u € nbin(v,G)}.

The topological level number of G, denoted by £(G), is given by
L(G) = max{l(v,G) : v € Vg}.

Since G is a DAG, it is easy to see that every vertex v € Vg has
exactly one topological level number, which can be derived from a
topological ordering of the DAG.

Given the topological level number, we now define the ropolog-
ical levels of a DAG and state an important property that will be
used in the definition of topological folding later on.

DEFINITION 2 (TOPOLOGICAL LEVELS). A DAG G =
(Va, Eg) consists of t topological levels of vertices, denoted by
{L1(G), ..., L«(GQ)}, where t = £(G), and L;(G) = {v : v €
Ve, l(v,G) =i} for1 <i<t.

LEMMA 1. Each topological level L;(G) of a DAG G, for 1 <
t < (@), is an independent set of G.

PROOF. L;(G) is an independent set of G if Vu,v € L;(G),
(u,v) ¢ Eg and (v,u) ¢ Eg. Suppose to the contrary if (u,v) €
E¢ or (v,u) € Eg, then we have either £(u,G) < £(v,G) or
L(v,G) < £(u, @), contradicting the fact that u,v € L;(G), i.e.,
Lu,G) =L(v,G)=1i. O

To clearly illustrate the concepts, for now let us assume that the
DAG G only has edges going from vertices in L;(G) to vertices in
L;+1(G), and there is no edge going from any vertex in L;(G) to
a vertex in L;(G) where j > ¢ 4+ 1 (we will handle such edges in
Section 3.2). We call such a DAG a k-partite DAG, where £ =
£(G). Figure 1(a) shows an example of a k-partite DAG where
k = 6.

We define a topological folding scheme that recursively folds up
G by taking away half of the levels, as follows.

DEFINITION 3 (TOPOLOGICAL FOLDING (TF)). Given a
£(G)-partite DAG G = (Vg, Eq), the topological folding (TF)
of G is a set of DAGs, G = {G1,G2,...,Gys}, where each
G; = (Va,, Ec,) is defined as follows:

Vo and for 2 < 4
Uisi<ieca1y/ay L2i(Gi);

o VG1 - S f! VG7 =

o Forl < i < f, Eg, is a set of edges with which G; is a
£(Gy)-partite DAG and Vu,v € Vg,, u— vin G; if and
only if u— vinG.

The topological folding number, or TF number, of G, denoted
by tf(G), is givenby tf(G) = f = |G| = |log, £(G) ] + 1.



Intuitively, TF folds each G; into half (i.e., taking away half of
the levels together with their vertices) to obtain GG;_1, starting from
G1 = G to Gy which has only one level and cannot be folded any
more. Hence, we have the name “topological folding”.

To correctly process reachability queries, it is necessary for the
edge sets g, to maintain the reachability of the vertices. To effi-
ciently process reachability queries, we also want each Eg, to be
as small as possible. The following lemma leads to a simple and
efficient method to construct Eg,.

LEMMA 2. Let G = (Vg, Eg) be a ¢(G)-partite DAG and
G = {G1,Ga,...,Gi(q)} be a topological folding of G. For
2 <i <tf(G), Va;_, \Vg, is an independent set of G;_1.

PROOF. According to Lemma 1, each L;j(G;—1) for1 < j <
¢(Gi—1) is an independent set of G;_1. According to the defini-
tion of G, Vg, = Vg and for 2 < i < tf(G), Vo, , \Vg, are
the vertices at all the odd levels of G;—1. Since each G;_1 is a
£(G—1)-partite DAG, the union of the vertices at all the odd levels
of G;_1 is clearly an independent set of G;—1. [

We construct the edge sets Eq, as follows.
o Fg, = Eg;

e For 2 < i < tf(G), Eg, is constructed from G;_1 as fol-
lows: for each v € L;(G;_1), where j is odd, create a new
edge in Eg, from each in-neighbor (if any in G;_1) of v to
each out-neighbor (if any in G;_1) of v.

LEMMA 3. The edge sets Eq, constructed above give a valid
topological folding G of a £(G)-partite DAG G = (Vg, Eg).

PROOF. First, each G; is a £(G;)-partite DAG since each edge
in Eg, only goes from L;(G;) to L;+1(G;), for 1 < j < £(G;).
Second, reachability from each vertex to another is maintained
because each wi, € Lj_1(Gi—1) is connected to each uout €
L;+1(Gi—1) by an edge in E¢, if the edges (uin, v) and (v, Uout)
existin G;_1, where v € L;(G;—1) and j is odd. [J

Note that the correctness of the proof of Lemma 3 also depends
on the validity of Lemma 2, because if any edge (u,v), where
u,v € Vg, ,\Va,, exists in G;_1, then the reachability estab-
lished in the proof of Lemma 3 will not be valid.

The following example illustrates the idea of topological folding.

EXAMPLE 1. Figure 1 shows the topological folding of a 6-
partite DAG G (£(G) = 6). G2 is constructed from G1 by adding
edges (c, f), (d, f), and (f,h), and then removing all vertices in
the odd levels of G1. Next, odd level vertices of G2 are removed to
Sform Gi.

3.2 Dealing with Cross-Level Edges

In Section 3.1 we introduced the basic concepts and structure of
topological folding of a DAG and some of its essential properties.
However, the DAG G of a real world directed graph is rarely £(G)-
partite. On the contrary, there can be many cross-level edges in G,
i.e., there can be edges from vertices in L; (G) to vertices in L; (G),
where 1 <14 < i+ 1< j <{(G), as shown in Figure 2.

To deal with these cross-level edges in the DAG, we observe that
each DAG G; in a topological folding G need not be £(G;)-partite,
but only need the following essential properties to be maintained
in each G;: (1) the set of vertices to be removed from G; is an
independent set of Gi—1 for 2 < i < tf(G); and (2) Vu,v €
Ve, NVa), w = vinG; ifand only if w — v in G.
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Figure 1: Topological folding

To construct each G; that satisfies the above two properties, we
devise a transformation scheme for G;_1, for 2 < i < tf(G),
with which we construct the corresponding transformed topolog-
ical folding as follows:

Procedure 1. TRANSFORMED TF CONSTRUCTION:
1. Gy =G, andseti = 1;

2. Initialize G} =G, then do the following three steps in order:

2.1. For1 < j < {(G7) and jis odd, foreach v € L;(G7):
LetU = (Li(G;)Nnbout (v, G7)), where k > j+1. If
U # 0, then add a dummy vertex w to L;11(G7), add
anew edge set {(w, Uout) : Uour € U} and a new edge
(v,w) to Eg+, and remove the edge set {(v, uout) :
Uout € U} from EG;.

2.2. For1l < j < {(G7) and jis odd, foreach v € L;(G7):
Let U = (Lk(G7) N nbin(v,Gy)), where k < j — 1
and kiseven. If U # (), then add a dummy vertex w to
L;_1(GY), add a new edge set {(uin,w) : uin € U}
and a new edge (w, v) to Eg+, and remove the edge set
{(Win,v) : usn, € U} from Eg:.

2.3. For1l < j <{(G7)and jis odd, foreach v € L;(G;):
add a new edge set {(Win, Uout) : Uin € (Lj—1(G7) N
nbin (v, G})), Uout € (Lj+1(Gi) Nnbout(v, G7))} to
EG’_‘.

3. If {(G7) > 1, initialize G;+1 = G}, and remove all ver-
tices at odd levels of G;y1 together with all edges inci-
dent to them; then, set ¢ = ¢ + 1 and go to Step 2. Oth-
erwise, return the transformed topological folding G* =
{G1,...,G{}} and quit.

Note that Step 2.2 ignores all Level-k in-neighbors of v if k is
odd, because for this case a dummy vertex must have been created
at an even level in Step 2.1, and is thus also handled in Step 2.2.

Also note that we do not increase the number of levels in any
G; or Gj, and hence t f(G) is still defined in the same way as in
Definition 3. We also define the TF number of a vertex as follows.

DEFINITION 4 (TOPOLOGICAL FOLDING NUMBER). Let
G = (Va, Eg) be a DAG, G* = {G1,...,G}(c) } be the trans-
Sformed topological folding of G, and let V'* be the set of dummy
vertices created in G*. The TF number of a vertex v € (Vg UV™),
denoted by tf(v), is given by tf(v) = max{i: v € Vg }.

The TF number of G is given by tf(G) = |G*| = |log, £(G) |+
1. Also note that t f (G) = max{tf(v) : v € Vg}.

We illustrate the concept using the following example.
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Figure 2: Transformed topological folding

EXAMPLE 2. Figure 2 shows the transformed topological fold-
ing of a DAG. The DAG G in Figure 2(a) contains a number of
cross-level edges: (a,h), (b, f), (d, f), (e, g). By Procedure 1, we
first transform G = G to G. At level 1, Step 2.1 is executed, we
add dummy vertex a1 for a, and add edges (a, a1) and (a1, h), then
edge (a, h) is removed; similarly, we add b1, (b,b1) and (b1, f),
and remove (b, f). Next consider level 3, e1 is added for e, and we
add (e,e1), (e1,g), and remove (e, g). At Step 2.3, we add (c, e1)
and (c, f). Finally for level 5, at Step 2.3, we add (e1,h) and
(f,h). Thus, we have constructed G7, i.e., the figure on the right
in Figure 2(a). Note that in G7, the vertices at all the odd levels
are independent of each other. At Step 3 these vertices are removed,
and we obtain G2, as shown in Figure 2(b). Repeating the process,
we obtain G5 and G's, while G5 is simply the same as G's.

By Definition 4, tf(v) = 1 forv € {a,b, e, g} since their last
occurrence is in G1. Similarly, t f(v) = 2 forv € {a1,c¢,d, b1, h},
tf(v) =3forv € {az, e, f}, and tf(G) = 3.

One concern in the process of Procedure 1 is that many dummy
vertices and edges may be created. We will handle these cases in
Sections 5 and 6. In fact, G; (or G;) is also not useful for reacha-
bility processing and hence deleted after the labeling process.

The following lemma are important in establishing the correct-
ness of our method for reachability query answering in Section 4.1.

LEMMA 4. Let G* = {G1,...,G}(q)} be the transformed
topological folding of a DAG G = (Vg, Eg). Let G; be the graph
from which G is transformed. Then, (1) VG;‘,I\VGL' is an in-
dependent set of G;_, for 2 < i < tf(G); and (2) Yu,v €
(Va, N Vgs), where 1 < i < tf(G), u — v in G} if and only
if u — vin Gy, and (3) Yu,v € (VG; n Vg;), where j =i — 1
and1 < i <tf(G), w — vin G} if and only if u — v in G7.

PROOF. We first prove (1). According to Procedure 1, we obtain
G'; by removing the odd levels of G;_, i.e., V&, | \Vg,. Since
there is no edge from a vertex to another vertex at the same level in
Gi_1, each level of G;_; is an independent set of G;_,. For any
edge that goes from « at an odd level to v at another odd level, the
edge is removed from G;_; and a dummy vertex is created to pre-
serve the connection from v to v. Thus, forany u,v € V&,  \Vg,,
(u,v) does not exist in G;_;.

Next we prove (2). From G; to G, Procedure 1 either converts
a cross-level edge to a path with a middle dummy vertex or adds an
edge from an in-neighbor to an out-neighbor of an odd-level vertex
in G;. Thus, in both cases, (2) is true.

Lastly, we prove (3). According to Procedure 1, all the cross-
level edges in Gj are removed from G and hence a vertex w at Ly,
of G}, where 1 < k < £(G7) and k is odd, has only in-neighbors
at Ly, (if any) and out-neighbors at L1 (if any). Since Proce-
dure 1 creates an edge from every in-neighbor of w to every out-

neighbor of w, we have w — v in G; if and only if u — v in G’} for
any u,v € (Vg N VG]*, ), which together with (2) implies (3). [

Note that by a recursive analysis on (3) of Lemma 4, we can
actually prove a stronger lemma that shows v — v in G if and
only if u — vin G7, forall u,v € (VG; n VG;), where 1 < j <
1 < tf(Q) (instead of j =i — 1 as in (3) of Lemma 4).

4. LABELING AND QUERY ANSWERING

In this section, we present our TF-based labeling scheme and
discuss reachability query answering using the labels.

4.1 The Labeling Scheme

The label of a vertex is defined as follows.

DEFINITION 5 (VERTEX LABEL). Let G = (Vg, Eg) be a
DAG, G* = {GT1,...,G{s)} be the transformed topological
folding of G, and let V'™ be the set of dummy vertices created in
G*. The in-label and out-label of a vertex v € (Vg UV'™), denoted
by label;n (v) and label,y: (v), are defined as follows:

o labelin(v): (1) v € labelin(v), and (2) for any u €
labelin (v), nbin(u, G (y)) C labelin(v).

o labelout(v): (1) v € labelowt(v), and (2) for any u €
labelout(v), nbout(u, G:f(u)) C labfflnut(v)~

Intuitively, we add to label;, (v) and labeloy: (v) recursively the
in-neighbors and out-neighbors in the folding graph G; of each
vertex u currently in label;, (v) and labelyy: (v), where ¢ = ¢ f (u).

The following property between a vertex and its in-
neighbors/out-neighbors shows that, in constructing the labels for
a vertex, we only go for reachable vertices with higher TF number
and ignore all other reachable vertices. This is a crucial design prin-
ciple of our labeling scheme that leads to a significant reduction on
the label size (compared with transitive closure), since each ver-
tex has O(L(Q)) levels of reachable vertices, but only O(1g £(Q))
levels of reachable vertices with higher TF number.

LEMMA 5. Ifw € nbin(u, Gipu)) or w € nbout(u, Gipu)),
then tf(w) > tf(u).

PROOF. Since w is in Gyy(,,, we have tf(w) > tf(u). How-
ever, tf(w) = ¢f(u) implies that both w and w are in an inde-
pendent set of Gy} (,), which contradicts the fact that the edge
(u,w) or (w,u) exists in Gyp,y. Thus, tf(w) # tf(u) and
tf(w)>tf(w). O

We use the following example to illustrate the labeling scheme.

EXAMPLE 3. Consider the labeling for vertex a. Initially, a
is added to label;n(a) and labeloyi(a). Since tf(a) = 1 and
nbin(a,G7) = 0, we finalize label;n(a) = {a}. Next, since
nbout(a, G1) = {a1,¢,d}, {a1,c,d} are added to labeloyi(a).
Since a1 has an out-neighbor az in Gip,,y = Gi, we add
az to labeloyt(a). We also add {e1, f} to labelout(a) for
nbout(c, G5) = {e1, f} and nboui(d, G5) = {f}. The vertices
{a2, e1, f} have TF number of 3 but they have no out-neighbor in
G35, and hence the labeling for a is completed. The labels for all
vertices are shown in Table 1.

4.2 Reachability Querying using Labels

We now discuss how we use the vertex labels to process reach-
ability queries. Given two vertices s and ¢ in G, we ask whether s
can reach ¢, the query answer is given by the following equation.



[ vertex | labelout | labelip |
a {a, a1, c,d, eq, f} {a}
b {b,by,d, f} {b}
e {e, e, f} {c, e}
g {g, h} {e1,f, g}
aj {a1, a2} {ai}
c {c,eq, f} {c}
d {d, f} {d}
by {b1, f} {b1}
h {h} {az,e1, 1, h}
as {az} {az}
el {e1} fe1}
f {f} {f}

Table 1: Labeling for the example in Figure 2

| true, if labelow(s) N labeli (t) # 0;
st= { false, if labelou(s) N labeln(t) = 0. V)

We give an example of reachability query processing as follows.

EXAMPLE 4. Consider the example in Figure 2, the labeling
is shown in Table 1. Suppose the query is to ask whether c can
reach h: since labeloyt(c) N labelin(h) = {e1, f}, the answer is
true. Now consider whether a can reach b: since labeloyt(a) N
labelin (b) = 0, the answer is false.

Lemmas 6-9 and Theorem 1 establish the correctness of reach-
ability query answering by Equation (1). The lemmas themselves
also reveal important properties and the design of the TF structure,
and hence how TF labeling works for reachability query answering.

LEMMA 6. Given a path P = (u1,...,uqs) in any graph in
G*, there exists a sequence of vertices S = (u1 = v1,...,v3 =
U ) such that for 1 < i < f: (1) the edge (vi, viy1) is in G} where
Jj = min(tf(vi), tf(vit1)); and (2) the sequence S is maximal,
i.e., no sub-sequence can be inserted between any v; and viy1 such
that the resultant sequence also satisfies (1).

PROOF. The path P implies that there exists a sequence S =
(u1,S1,u2,S2,...,Ua—1,Sa—1,Ua), where each S; for 1 < i <
« is constructed (according to Procedure 1) as follows.

If f(ui,G;) = Lluiz1,G;) + 1, where j =
min(¢f(u;), ¢f(ui+1)), then either w; or wu;41 will be re-
moved in G;4+1 and hence S; must be an empty set. In this case,
we have (u;, uwiq1) in G.

Otherwise, (u;, ui+1) is a cross-level edge in G, where j =
min(¢f(u;), ¢ f(uit1)), then S; is a sequence of dummy vertices.
Assume j = ¢f(u;) (the case j = tf(u;+1) can be processed
similarly). To preserve the reachability from wu; to u;4+1 in Gj,
at least one dummy vertex w must be created in G} together
with the edges (u;,w) and (w,wu;+1). Thus, we have the edge
(us,w) in G5. If (w,us1) is still a cross-level edge in G,
where 7/ = min(tf(w),tf(ui+1)), then another dummy vertex
is to be created in G’;, to preserve the reachability from w to
u;y1 in G. A recursive expansion in this way gives the sub-
sequence S; = (u; = Wi, Wa,...,Wy—1,Wy = Uit1), Where
Si = (wa,...,wy_1),and for 1 < k < v, (wg, wr41) in G} and
J = min(tf(wg), tf(wrt1)). Si is ensured to be maximal if the
above recursive expansion is executed until no more sub-sequence
can be generated.

By relabeling the vertices, we obtain S = (u1 = v1,...,v8 =
uq ) such that S satisfies both (1) and (2). [

Lemma 6 is used to show that a sequence of vertices S with a
special property (as specified in the lemma) exists for a path P in

any graph in G*. The existence of such a sequence is essential in
proving the correctness of Lemma 9 and hence Theorem 1.

LEMMA 7. Given a sequence of vertices S = (s =
V1,...,v3 = t), where for 1 < i < (3, the edge (vi,vit1) is
in G5 where j = min(tf(vi),tf(vit1)): if s and t are both in
some graph G, € G”, then s — t in G,

PROOF. First, each edge (v;,viy1) in G implies v; — v;11 in
G . We can derive the reachability from v; to vg in G as follows.

Consider the vertex v; € S where tf(v;) < ¢ and tf(v;) <
tf(v) for all v € S\{v;}. If v; exists in S, then according to
Procedure 1, v;—1 must be connected to v;4+1 in G F(s) in order
to preserve the the reachability from v;—1 to v;41 via v;. Thus,
removing v; from S we still have v;—1 — v;41 in G;, where j =
min(tf(vi—1),tf(vi41)). We repeat the above process with S =
S\{v;} until we have ¢ f(v) > ¢ for all remaining vertices v in .S,
and let S’ = (s = v1,...,vs = t) be the new sequence obtained
at the end of this process. We continue with S’ as follows.

Consider the vertex v; € S’ thatis notin G and ¢ f (vi) > tf(v)
forall v € S"\{v; }. If v; exists in S, then we have v;—1 — v; in
Gifo;_y) and vi = vig1 in Gip(,,, - Since v; is not in G and
tf(vi) > ¢, v; is a dummy vertex and v; preserves the reachability
from v; 1 to v;11 in G}, where j = min(tf(vi—1),tf(vit1)).
Thus, removing v; from S’ we still have v;i—1 — vi41 in G}. We
repeat the above process with S’ = S"\{v; } until all the remaining
vertices are in G},. Let 8" = (s = v1,...,vgr = t) be the new
sequence obtained at the end of this process.

Note that both s and ¢ are still in S” since s and ¢ are in G.
According to the derivation process, we have v; — vi+1 in G for
1 <4 < B”, from which we have s = v1 — -+ — vgr = t.
Thus, s = tin G3. [

Lemma 7 reveals an important reachability relation between ver-
tices in a sequence as defined in Lemma 6. This reachability rela-
tion is also crucial in the proofs of Lemmas 8 and 9.

LEMMA 8. Given two vertices s,t € Vg, if there exists a vertex
x € labeloyt (s) N labelin (t), then s — tin G.

PROOF. Let us first assume that z # s and * # t. Then,
according to Definition 5, if € labelout(s), there exists a ver-
tex u € labeloyui(s) such that x € nbout(u, G;‘f(u)), Moreover,
u € labelyy: (s) in turn implies that there exists u’ € labeloy:(s)
such that u € nbout(u’, G7f(,r)). Thus, we obtain a sequence
Sout = ($ = u1,...,ua = x), where for 1 < ¢ < « the
edge (u;,uiy1) is in Gyy,,). Similarly, we obtain another se-
quence Sin = (x = wvg,...,v1 = t), where for 1 < i <
B the edge (vit1,v;) is in Gy(,,). According to Lemma 5,
tf(ul) < tf(ui+1) for1 < ¢ < « and tf(’Ui) < tf(v¢+1)
for 1 < ¢ < B. Thus, according to Lemma 7, the sequence

S={(s=ui,...,ua = =vg,...,v1 = t) implies that s — ¢
in G7, and hence s — tin G = G1 by Lemma 4. If z = ¢, then
t € labelou(s) gives the sequence S = (s = u1,...,uq = & =

t), which implies that s — ¢ in G. And similarly for x = s. [
The following lemma proves the reverse statement of Lemma 8.

LEMMA 9. Given two vertices s,t € Vg, if s — t in G, then
there exists a vertex x € labeloyut(s) N labeliy (t).

PROOF. We show that if s — ¢ in G, then there exists a se-
quence of vertices S = (s, ..., t) such that there is a vertex z in .S,
where x € labelow:(s) and x € labeli (t).

First, s — ¢ in G implies that there is a path P = (s = ..., t)
in G7 (by Procedure 1 and Lemma 4). According to Lemma



6, there exists a sequence S = (s = wi,...,wy = t) such
that for 1 < 4 < ~, the edge (w;,w;+1) is in G} where j =
min(¢f(w;), tf(wi+1)), and S is maximal.

Next, we show that there exists a unique vertex x in S such that
tf(z) > tf(w) forall w € S\{z}. It is trivially true that there
exists  such that ¢f(z) > tf(w) for all w € S\{z}. To re-
move the ‘=" sign, suppose to the contrary that there exists another
vertex z’ such that tf(z') = tf(z) = j, which implies that =
and 2’ are both in G;. Assume, without loss of generality, that
x appears before 2’ in S. Then, tf(z') = tf(x) = j implies
that - and 2’ are both in an independent set of G according to
Lemma 4. The independence between z and z’ implies that ei-
ther (1) £ - 2’ or (2) x reaches 2’ via some other vertex z” in
G’ such that t f (") > tf(x). For (1), it is a contradiction since
z — 2’ in G according to Lemma 7. For (2), we have the path
P' = (z,...,2",...,2') in G} and by Lemma 6 we can obtain
another sequence S’ = (z,...,2",...,2') from P’, which con-
tradicts to the fact that S is maximal.

We complete the proof by showing that the unique vertex z,
where tf(z) > tf(w) for all w € S\{x}, is in both label,y:(s)
and label; (). Let S = (s = u1,...,Ua = T =08,...,01 = t).
We first consider the sub-sequence (s = u1,...,uq = ). If
$ = u1 = Uaq = , then x € label,y:(s) by Definition 5. If o > 1,
for each u;, we find the first u;, where 1 < 7 < j < «, such that
tf(ui) < tf(uy). Such a u; must exist since there is at least one
vertex uq where t f(u;) < tf(ua). Moreover, u; — u; in Giy(,,)
according to Lemma 7. Thus, (u;,u;) is an edge in Gf;(,,) be-
cause otherwise, u; reaches u; in Gy (,,) via some other vertex
uy, which contradicts to the fact that S is maximal.

Thus, we obtain a sequence (s = u,...,u,, = x), where
tf(u;) < tf(ujyq) and (uj,uip;) is an edge in G:f(ug) for
1 < i < . According to Definition 5, s = u] € labelowu:(s),
uy € labelou(s) since uy € labelou(s) and uy € nbout (Gyp(ur)):

o Uiry € labelowi(s) since uj € labeloy:(s) and wj,; €
nbout(GZf(u;)), o = ul, € labelyy(s) since ul,_; €
labeloy: (s) and ul, € nbout(GZf(u, , 1)). Finally, a similar analy-
sis shows that z € label;, (t). O

We note that the sequence S in the proof of Lemma 9 may not
be unique, but we only need to show the existence of one such
sequence for the proof.

The following theorem proves the correctness of reachability
query answering by vertex labels.

THEOREM 1. Given a reachability query whether a vertex s €
Vi can reach another vertex t € Vg, the answer given by Equation
1 is correct.

PROOF. The proof follows directly from Lemmas 8 and 9. [

S. REMOVING DUMMY VERTICES

The vertex labels constructed in Section 4 contain dummy ver-
tices, which may take up a lot of space and incur extra processing
in query answering. In this section, we propose a new label with all
dummy vertices removed.

According to Procedure 1, a dummy vertex w is created only
as either an out-neighbor of u or an in-neighbor of v for a cross-
level edge (u,v). If w is created as an out-neighbor of u (or an
in-neighbor of v), then u (or v) is called the in-source vertex (or
out-source vertex) of w, denoted by src(w) = u (or src(w) = v).
If sre(w) = v is a vertex in G, i.e., v is not a dummy vertex, then
v is called the root vertex of w, denoted by t(w). In general, we
have rt(w) = sre(sre(- - - sre(w) -+ +)).

With the definition of in-source/out-source vertices and root ver-
tices, we define a new vertex label as follows.

DEFINITION 6  (VERTEX LABEL WITHOUT DUMMIES). Let
f(w) be a function such that f(u) = rt(u) if u is a dummy vertex,
and f(u) = w otherwise. The new labels of a vertex v € Vg,
denoted by label2:, (v) and label20.: (v), are defined as follows:

o label2in(v) = {f(u) : u € labeli, (v)}.
o label2out(v) = {f(u) : u € labeloy: (v)}.

Intuitively, label2;,(v) is obtained by replacing every dummy
vertex u in label;, (v) with 7t(u), and similarly for label2,.: (v).

For all v € Vg, |label2in(v)] <  |labelin(v)| and
|label2out (V)| < |labelowt (v)], since there can be multiple dummy
vertices with the same root vertex and/or the root vertex may al-
ready exist in the set. Thus, compared with label, label2 reduces
index storage space and improves querying efficiency.

The following lemma and theorem prove the correctness of query
answering using label2.

LEMMA 10. Given s,t € Vg, (1) if x € labelouw:(s) and
rt(xz) ¢ labeloui(s), then s — rt(x) in G; and (2) if ¢ €
labelin (t) and rt(x) ¢ labelin (t), then rt(x) — tin G.

PROOF. We first prove (1). From the proof of Lemma 8, = €
label ot (s) implies a sequence S = (s = uu, ..., us = x), where
for 1 < i < « the edge (ui,uit1) is in Gip(,,)- Since x is a
dummy vertex, according to Procedure 1 there exists another se-
quence Sz = (rt(z) = vi,...,vg_1 = src(x),vg = x), where
for 1 <14 < B: either the edge (vi, vit1) is in G3; () if 7t() is an
in-source vertex, or (vi41,v;) is in Gy ,,) if r¢() is an out-source
vertex.

If r¢(x) is an in-source vertex, then we construct the proof as
follows. Lety = z. Start from i = o — 1to ¢ = 2, we re-
assign y = w; if u; = sre(y) (note that ¢ # 1 since s = up =
rt(x) contradicts rt(x) ¢ labeloui(s)). Let (s = u1,..., Uy =
y) be the sub-sequence such that u,/_1 # src(y). According to
Procedure 1, u,s_; is an in-neighbor of rt(x) so that u,/_; is
also connected to vz in G4 (x)) to preserve the reachability from
Uq/—1 to rt(x)’s cross-level out-neighbors (now via v2). Note that
vz may not be in labeloy:(s), ie., S, because v2 may not be an
out-neighbor of ua/—1 in Gy, , . i, tf(v2) < tf(uar—1).
Thus, we have the sequence (s = u1,...,Uq —1,7t(z)), where
(tar—1,7t(x)) in G{}(14(1))» from which we have s — rt(x) in G
by Lemma 7.

If rt(x) is an out-source vertex, then we have (s =
Uty ..., Ua = & = V8,05-1 = src(x),...,v1 = rt(x)). Again,
by Lemma 7 we have s — rt(z) in G.

Similarly we can prove (2). [

THEOREM 2. Given a reachability query whether a vertex s €
Va can reach another vertex t € Vg, the answer given by Equation
1 with “label” replaced by “label2” is correct.

PROOF. Let X = labelout(s) N labelin(t) and X2 =
label2oui(s) N label2:, (t). We show that (1) if X # 0, then
X2 #0,and (2) if X = (), then X2 = (.

We first prove (1). If X # (), then either (i) 3z € X, z is not a
dummy vertex, or (ii) Vo € X, x is a dummy vertex. For (i), z is
also in X 2 according to Definition 6 and hence X2 # (. For (ii),
rt(x) is in X2 and hence X2 # (.

We now prove (2). Suppose to the contrary that X2 # ), which
must be caused by the replacement of some dummy vertex = by
rt(z), ie., rt(z) € X2 for some dummy vertex z. We have the
following possible cases:



[ vertex | label2out [ label2sy, |
a {a,c,d, e, f} {a}
b {b, d, f} {b}
e {e, f} {c, e}
g {g, h} {e.f.g}
c {c,e, f} {c}
d {d, f} {d}
h {h} {a,e,f,h}
f {f} {f}

Table 2: Removing dummy vertices from the labels in Table 1

() If z € labeloui(s) and ré(x) ¢ labelou:(s): then we have
rt(z) € label2,u:(s) as a replacement of z. Thus, by
Lemma 10, we have s — rt(z) in G.

Otherwise, rt(z) is originally in label,y:(s) since rt(x) €
X 2. Thus, we have rt(z) = s,or s — rt(z) in G by Lemma
8 since rt(x) € labelyy: (s) and ri(x) € label;y, (rt(z)).

(ii) If x € label;,(t) and rt(x) ¢ label,(t): then similarly as
(i) we have r¢(x) — t in G by Lemma 10.

Otherwise, similarly as (i) we have either rt(z) = ¢, or
rt(z) = tin G.

For every combination of the cases in (i) and (ii) above, we have
s — t in G, which implies X # () by Lemma 9 and thus a contra-
diction. Therefore, we have our result that X = @) implies X2 = (.

Given (1) and (2), the correctness of the theorem follows directly
from Theorem 1. []

The following example illustrates the concept of label2.

EXAMPLE 5. Table 2 shows the labeling of the same graph in
Example 3 with dummy vertices removed. In Table 1, we have
labelowt (b) = {b,b1,d, f}, but label2ou:(b) = {b,d, f} in Table
2 since rt(b1) = b already exists in label oyt (b). For labeloyt(c) =
{c,e1, f} in Table 1, we replace dummy vertex ex with rt(e1) = e
and obtain label2,u:(c) = {c,e, f} in 2. Similarly, we obtain
label? for all other vertices in G.

6. HANDLING HIGH-DEGREE VERTICES

In the construction of G ; from G}, or G} from G;, many new
edges may be created to connect the in-neighbors of a vertex v
to v’s out-neighbors. Although such connections are necessary to
preserve reachability after v is removed, the construction is costly
in the presence of high-degree vertices since the number of edges
created is given by (deg,,, (v, G;) * deg,,,.(v, G:)). The following
example illustrates the problem caused by high-degree vertices.

EXAMPLE 6. Consider the example in Figure 3(a), f is a high-
degree vertex with deg,, (f, G1) * deg,,,(f,G1) = 3%5 = 15. By
Procedure 1, f is removed at the first iteration and we need to add
many edges in order to maintain reachability in G2 as shown in
Figure 3(b). In the DAG of many real graphs, often we have a few
vertices with very high degree (these vertices normally correspond
to giant SCCs in the original directed graph). For example, in the
p2p dataset, we have a vertex v with deg,, (v, G1) = 43562 and
deg,,.. (v, G1) = 366. Such high-degree vertices will take up a lot
of space in the intermediate graphs and hence incur a significant
amount of extra processing in the overall labeling process.

Here we propose a method to address this problem. For simplic-
ity, in the subsequent discussion we focus on handling high-degree
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Figure 3: Problem caused by high-degree vertices

vertices in G1 = G, but we remark that the method applies to other
G; in the same way.

Given a vertex v € Vi, we define the set of vertices that are
reachable from v as reachout (v, G) = {u : v — u}, and the set of
vertices that can reach v as reachin (v, G) = {u : u — v}. Let H
be the set of top-k high-degree vertices defined as follows: Vh € H
and v € Vg\H, (deg,, (h,G) * deg,,,(h,G)) > (deg,, (v,G)
deg,,.(v,G)). We may set k as the h-index value of a graph [8,
9].

We propose a new vertex label of a vertex v € Vz, denoted by
label3i, (v) and label3,.: (v), which have dummy vertices removed
as in Section 5 and high-degree vertices handled as follows:

1. For each he H, label3;n (h)={h} and label3 ou: (h)={h}.

2. For each v € Vg \H, initialize label3;n(v) = {h : h €
H,v € reachout(h,G)} and label3out(v) = {h : h €
H,v € reachin(h,G)}.

3. Remove all vertices in H, together with all edges incident to
them, from G. Let G’ be the remaining graph.

4. For each v € Vg (i.e., v € Vig\H), construct label2;, (v)
and label2,u¢ (v) from G’ as discussed in Sections 3-5.

5. ForeachveVg\H, label3in (v)=label2;, (v)Ulabels in (v)
and label3 out (V) = label2 out (v) U label8 out (v).

The following theorem proves the correctness of reachability
query answering using label3 obtained from the above steps.

THEOREM 3. Given a reachability query whether a vertex s €
Va can reach another vertex t € Vg, the answer given by Equation
1 with “label” replaced by “label3” is correct.

PROOF. First, we show that if s — ¢ in G, i.e., there exists a
path P = (s, ..., t) in G, then the answer returned is true.

1. If P contains no vertex in H, then P must be in the remain-
ing graph G’. Thus, query answering using “label2”, which
is constructed from G’ and contained in “label3”, returns
true as proved in Theorem 2.

2. If P contains at least one vertex h € H, then we must have
h € label3oui(s) and h € label3n(t). Thus, the answer
returned is true.

Next, we show that if s - t in G, then the answer returned
is false. Suppose to the contrary that the answer is true, i.e.,
Jz € (label3out(s) N label3in (t)).
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Figure 4: Topological folding with high-degree vertex removed

[ [ label3ous | label3:n | | [ label2out [ label2;y, |
a {a,c,f} {a} a {a,c.f,h,ijk} {a}
b | {bdefk} {b} b | {b.d.e,fh,ijk} {b}
c {c.f} {c} c {c,fh,i,).k} {c}
d | {df} {d} d | {d,fh,ijk} {d}
e {e,f,k} {e} e {e,fh,i,j,k} {e}
f {f} {f} f {f,h,i,j,k} {c.d,e.f}
g | {gk} {e.g} g | {gk} {e.g}
h | {h} {f;n} h | {h} {h}
i {i,1} {fi} i {i} {i}
J | {jm} {fj} J | ) (i}
k | {k} {f.k} k | {k} {k}
{1} {£.1} 1 | {Ln} {i1}
m | {m} {f,m} m | {mn} {j,m}
n {n} {f,l,m,n} n {n} {fi,j,n}

(2) (b)

Table 3: Labeling for G in Figure3(a): (a) label3; (b) label2

1. If z € H, then we have s € reachin(xz,G) and t €
reachoyt(x, G), assuming that x # s and z # ¢. Thus,
we have s — « and ¢ — ¢ in GG, which implies s — ¢ in
G.Now if z = sorxz = t, then t € reachout(z = s,G) or
s € reachin(x = t,G), which again implies s — t in G. In
each case, the result contradicts to the fact that s - ¢ in G.

2. Ifx ¢ H,then x € label2,ut(s) and = € label2:, (t), which
implies s — t in G’ by Theorem 2. Since G’ is a subgraph
of (G, we have s — t in GG, which is a contradiction.

O

The following example further illustrates the idea.

EXAMPLE 7. Consider the example in Figure 3. We first
obtain reachin(f,Q) {a,b,¢,d, e} and reachou:(f,G)
{h,i,j,k,l,m,n}.  Then, we initialize label8 for the ver-
tices: label3 out(v) {f} for each v € {a,b,c,d,e}, and
label8in(v) = {f} for each v € {h,i,j,k,l,m,n}. Then, we
remove f and all edges incident to f, which gives the graph as
shown in Figure 4(a). Next we construct the TF and then label2
from the DAG in Figure 4(a). Finally, we merge label2 and label3
to obtain the final label3 as shown in Table 3(a).

Compared with label2 computed for the graph in Figure 3(a),
which is shown in Table 3(b), label3 is considerably smaller. The
example also reveals that after removing the high-degree vertices,
the graph becomes much easier to handle.

7. ALGORITHM AND COMPLEXITY

In this section, we discuss the algorithmic and complexity is-
sues of our proposed method. Our method consists of two main
phases, namely, the pre-processing or indexing phase and the query

Algorithm 1: Labeling(G* = {G1, ..., Gy })

1 Let Vg, =0, where i = tf(G) + 1;

2 fori=1,...¢f(G) do

3 foreach v € (Vg*\VG ip1) do

4 labelin (v) < {v} U {u: (u,v) € GI};

5 | labeloyt(v) < {v} U {u: (v,u) € GF};
6 fori =tf(G),...,1do

7 foreach v € (VG: \Vg,,,) do

8 foreach u € Zabeli,b(v) do

9 | labelin (v) < labelin (v) U labelin (u);
10 foreach u € labeloyt(v) do
11 L labeloyt (v) < labeloyt (v) U labeloys (u);
12 return label;, (v) and labelyy: (v) for all vertices v;

processing phase. Query processing is just an intersection of two
sets which terminates as soon as the first common element is found
and thus the complexity is bounded by the label size. The pre-
processing phase includes computing the DAG from an input di-
rected graph, topological sorting of the resulting DAG, construc-
tion of the transformed TF structure, and the label construction.
The steps before labeling are either simple or have been presented
in sufficient details. We therefore focus our discussion on the la-
beling algorithm here.

We propose an efficient top-down algorithm to construct the ver-
tex labels defined in Definition 5. As shown in Algorithm 1, Lines
1-5 initializes label;n (v) and labeloy: (v) for each vertex v to con-
tain the in-neighbors and out-neighbors of v in G (,. Note that
for each v € (Va:\Va, ), tf(v) = i since v no longer exists
in G;41. Line 1 is introduced so that (ng\Vg,iJrl) = VG? when
t =tf(G) in Lines 3 and 7, since G ()41 does not really exist.

Lines 6-11 performs a top-down operation starting at the highest
level of the TF structure. At each level ¢, for each vertex v €
(Ve \Va,,, ), we simply include the in-label (out-label) of v’s in-
neighbors (out-neighbors) in label;n (v) (labeloyt(v)).

The correctness of Algorithm 1 follows from Definition 5 and
Lemma 5. While the algorithm does not remove dummy vertices,
we discuss how it can be handled with little additional overhead, as
inspired by the following lemma.

LEMMA 11. Forany vertexv € Vg and any G; € G*, at most
two dummy vertices will be created in G; whose root vertex is v.

PROOF. According to Procedure 1, initially we may create one
dummy vertex uo.¢ as an out-neighbor of v and/or another dummy
vertex u;n as an in-neighbor of v. And uy: and u;, must be cre-
ated in Gy;(,). At most one dummy vertex (let it be woy:) will
be created as an out-neighbor of u,.: since all incoming edges of
Uout are not cross-level edges by construction. And we,: must be
created in G, where j = ¢ f(uou¢). Similarly, at most one dummy
vertex will be created as an out-neighbor of wey¢, and so on. A
similar analysis applies to u;, and thus in any G; € G, we have
at most two dummy vertices created whose root vertex is v. [

If v is the root vertex of any dummy vertex and v is the in-source
vertex, then Lemma 11 implies the existence of a unique sequence
Sout = (V= u1,...,ua), Where u;_1 is the in-source vertex of
u; for 1 < j < o thus, we can use only two labels, label;, (u;)
and labelout(u;), to keep the labels for all dummy vertices u; at
each level ¢+ = tf(u;) in Lines 6-11 of Algorithm 1. Similarly,
the same strategy applies to another unique sequence if v is the
root vertex of a set of dummy vertex and v is the out-source vertex.



Thus, in the top-down labeling process, in total we maintain at most
four labels for each vertex v € Vi for all dummy vertices created
with v as their root vertex.

Next we analyze the complexity of the pre-processing phase.
Computing the DAG takes linear time in the size of the input
directed graph. Given the DAG G = (Vg, Eg), topological
sorting takes O(|Vg| + |Eq|) time. Then, we apply Proce-
dure 1 to construct the TF structure, which takes O(lg¢(G))
iterations of Steps 2 and 3. At the ¢-th iteration, we need
O(EUGVG* (deg,,, (v, G})*deg,,.(v,Gi))) time for the construc-

tion. From Lemma 11, [V | < 2|Vg, | and the degree of a dummy
vertex w is bounded by that of src(w). The total time complexity

is given by C1 = O ciciguo) ZUEVGi(degm(v,Gi) *
deg (v, G3))). The complexity of Algorithm 1, to-
gether with dummy vertex handling, is bounded by C2 =

O(Zlgiglg °(G) ZUE(VG: \VGiH)(ZuEnbm(u,G;) labelin (u) +
D uenbous (v, labelout (u))). Both C'1 and C2 depend on the

characteristics of the input DAG, especially the vertex degree.
Both C'1 and C2 can be significantly reduced by removing the set
of high-degree vertices H, which takes O(|H|(|Ve,;| + |Ea;]))
time to remove H and add h € H to the labels of other vertices as
discussed in Section 6.

8. EXPERIMENTAL EVALUATION

We implemented our method, TF-label, in C++ (source code
available in authors’ webpage). We compare TF-label with the fol-
lowing state-of-the-art methods for processing reachability queries:
PathTree [19], GRAIL [28], PWAHS8 [25], ScaPathTree and
ScaGRAIL. ScaPathTree and ScaGRAIL are the application of
PathTree and GRAIL in the SCARAB framework [18], i.e., first
computing the backbone of the input DAG and then applying
PathTree or GRAIL for reachability querying (more details in Sec-
tion 1). Though in theory any existing method can be applied in
SCARAB, we were not able to do so for PWAHS and TF-label due
to unfamiliarity with their system. ScaPathTree and ScaGRAIL
were provided by the authors of [18].

All source codes of the methods we compare with are the latest
version provided by their authors, and all were implemented in C++
and compiled using the same gcc compiler as TF-label. We ran
all experiments on a computer with an Intel 3.3 GHz CPU, 16GB
RAM, and running Ubuntu 11.04 Linux OS.

8.1 Performance on Real Datasets

We first evaluate the performance of our method on real-world
datasets from a wide spectrum of domains. As shown below, the
first set of 7 datasets are from 3 different domains, while the second
set of 5 datasets are from 5 different domains. We want to exam-
ine the differences in the spectrum of datasets that our method can
handle versus those of existing methods.

Real datasets. We used the following 7 large real datasets that are
used in [18, 28] for scalability test: citeseer, citeseerx and
cit-patent (patent) are citation networks, in which non-leaf
vertices have an average out-degree of 10 to 30; go-uniprot is
the joint graph of Gene Ontologyterm and the annotations from the
UniProt database (www.uniprot.org), which is the universal protein
resource; uniprot22m, uniprotl00m and uniprotl150m
are the subsets of the complete RFG graph of UniProt.

We also used 5 real datasets from Stanford Large Network
Dataset Collection. We selected one large directed graph from
each of the following categories: email-EuAll (email) from
communication networks, soc-LiveJournall (LJ) from so-

Table 4: Real datasets (K = 10%)

Dataset Vgl [Eg] Vol [Ec| [ 4(G) | davg
citeseer — — 694K 312K 13 | 045
citeseerx — — 6540K | 15011K 59 | 2.30
go-uniprot — — 6968K | 34770K 21 | 4.99
patent — — 3775K | 16519K 32 | 4.38
uniprot22m — — 1595K 1595K 4 1 1.00
uniprot100m — — | 16087K | 16087K 9 1.00
uniprotl50m — — | 25038K | 25038K 10 | 1.00
email 265K 420K 231K 223K 71 097
LJ 4848K | 68994K 971K 1024K 24 | 1.05
p2p 63K 148K 48K 55K 14 | 1.14
web 876K 5105K 372K 518K 34 | 1.39
wiki 2394K 5021K 2282K 2312K 8 | 1.01

cial networks, p2p-Gnutella3l (p2p) from Internet peer-
to-peer networks, web-Google (web) from Web graphs, and
wiki-talk (wiki) from Wikipedia networks. In addition,
cit-patent from citation networks is already included in the
first 7 graphs. Detailed descriptions of the datasets can be found in
(snap.stanford.edu/data).

Table 4 lists the number of vertices and edges in the original di-
rected graph, G, as well as in the DAG G of G, respectively. We do
not show |Vg| and | Eg| for the datasets obtained from [28] since
the authors did not provide these numbers. Note that existing meth-
ods for reachability querying assume that the input is a DAG. We
also show the topological level number of G, ¢(G), as well as the
average degree of the vertices (denoted by d.,) in G.

Indexing Performance. We first report indexing performance re-
sults, but remark that (online) query performance should be the
more important performance indicator, provided that (offline) in-
dexing performance is reasonable. We report the index construc-
tion time (total elapsed time in seconds) in Table 5. The shortest
time for each dataset is highlighted in bold.

Table 5: Index construction time (in sec)

H TF-label ‘ PathTree ‘ ScaPathTree ‘ GRAIL ‘ ScaGRAIL ‘ PWAHS

citeseer 0.73 26.76 1.60 0.79 0.98 0.76
citeseerx 63.60 — — 7.80 15.43 | 8597.02
go-uniprot 47.49 — 724.67 13.95 16.60 52.46
patent 162.44 — — 7.24 36.23 | 1380.76
uniprot22m 2.27 — 10.26 2.10 2.09 2.09
uniprotl00m 40.29 — 1301.71 27.25 28.94 24.10
uniprotl50m 55.48 — 4107.77 43.86 48.22 41.07
email 0.10 — 0.61 0.26 0.26 166.98
LJ 0.55 = 31.93 1.08 117 =
p2p 0.03 2.16 0.13 0.04 0.04 1.40
web 0.40 — 11.12 0.41 0.62 | 1559.91
wiki 0.96 — — 2.54 235 —

For the datasets from [28], GRAIL has the best performance and
the performance of ScaGRAIL is close to that of GRAIL. The in-
dexing time of TF-label is comparable to that of PWAHS for most
datasets. For citeseerx and patent, TF-label is 135 and
8.5 times faster than PWAHS. Compared with ScaPathTree, our
method is from a few times to 74 times faster. ScaPathTree was
not able to obtain the results for citeseerx and patent, while
PathTree can only run on citeseer.

For the datasets from the Stanford Collection, TF-label is the
best for indexing all the datasets. TF-label is about twice faster than
GRAIL and ScaGRAIL on average, and up to orders of magnitude
faster than PWAHS, PathTree and ScaPathTree. We note that we
did not specifically pick these datasets, but rather simply selected
one large graph from each category of directed graphs (we did leave
out two categories because the DAGs of these graphs are too small,



for which most existing methods will be efficient enough). There-
fore, the result shows that our method is able to perform well for
graphs from various domains.

Table 6 reports the index size (in MB). For the 3 uniprot
datasets, TF-label is from about 3 to 10 times smaller than all other
methods. For citeseer, TF-label is only worse than PathTree,
but much better than the other methods. But for citeseerx,
patent and go-uniprot, TF-label is much larger. However,
for the second set of 5 datasets, TF-label is much smaller in all
cases except p2p for which it is larger than PathTree.

Table 6: Index or label size (in MB)

[[ TF-label | PathTree | ScaPathTree [ GRAIL | ScaGRAIL | PWAHS |

citeseer 2 1 28 11 28 7
citeseerx 1524 — — 100 285 149
go-uniprot 431 — 403 106 387 244
patent 4732 — — 58 206 5334
uniprot22m 6 — 68 24 67 19
uniprotl00m 77 — 685 246 673 209
uniprotl150m 132 — 1071 382 1049 349
email 0.9 — 10 4 10 2
LJ 4 — 41 15 41 —
p2p 0.2 0.1 2 0.7 2 0.2
web 3 — 16 6 16 4
wiki 9 — — 35 95 —

Overall, the results of indexing time and index size show that our
method is very competitive in indexing performance, especially for
the datasets from the Stanford Collection. In fact, only GRAIL and
ScaGRAIL are able to beat TF-label for indexing a few datasets.
However, next we will show that GRAIL and ScaGRAIL are sig-
nificantly slower in query processing than TF-label for all datasets.

Query Performance. We randomly generate 1 million queries
for each dataset and Table 7 reports the total time taken to run the
queries (the shortest time for each dataset is highlighted in bold).

Table 7: Total query processing time (in milli-sec)
[| TF-label | PathTree | ScaPathTree [ GRAIL [ ScaGRAIL | PWAH8

citeseer 6 98 85 174 63 112
citeseerx 160 — — 18861 684 187
go-uniprot 48 — 142 365 109 449
patent 419 — — 6726 1240 14593
uniprot22m 34 — 115 259 97 210
uniprot100m 79 — 198 407 155 275
uniprot150m 95 — 862 433 183 294
email 14 — 124 6715 93 146
LJ 51 — 207 | 3741919 999 —
p2p 12 22 36 9192 24 11
web 49 — 196 | 436682 1548 142
wiki 39 — — 457529 139 —

The result clearly shows that TF-label outperforms all other
methods in all cases except for p2p, for which TF-label is com-
parable with PWAHS. ScaGRAIL can run on all datasets, but is
from about 2 to 32 times slower than TF-label. ScaPathTree and
PWAHS are also significantly slower than TF-label, and they can-
not scale to run on a number of datasets. GRAIL is up to orders
of magnitude slower than TF-label and PathTree cannot scale for
processing most of the datasets.

Another important feature of TF-label is that it has stable good-
performance for all datasets, unlike the other methods which are
slow for processing some datasets. For example, ScaGRAIL is
particularly slow in processing web, for which ScaPathTree and
PWAHS perform reasonably well. Similarly, ScaPathTree is slow
in processing uniprot150m and PWAHS is slow in processing
patent. Such a stable performance from TF-label is important
for handling datasets from various application domains.

We also emphasize that TF-label can be further applied in the
SCARAB framework, as do ScaGRAIL and ScaPathTree, to im-
prove the performance. Thus, our result is impressive since TF-
label even significantly outperforms the existing methods applied
in SCARAB. In the next experiment, we show that TF-label scales
well where all existing methods, including SCARAB, cannot scale,
for both indexing and querying.

8.2 Scalability and Effects of Various Graph
Properties

We use synthetic datasets to control the different properties of
the DAG graph and hence assess their effects on the performance
of our method, for both efficiency and scalability.

Synthetic datasets. We consider three important properties of the
DAG graph: (1) the number of vertices (Va), (2) the average vertex
degree (davg), and (3) the number of topological levels (¢(G)). We
generate three categories of datasets as follows (let M = 10°):

(C1) Fix dewy = 3 and ¢(G) = 7, then: set Vo = 5M, 10M,
20M, 40M and 80M , respectively.

(C2) Fix Vg = 1M and £(G) = 7, then: set davg = 10, 20, 30,
40 and 50, respectively.

(C3) Fix Vg = 1M and davwg = 3, then: set £(G) = 3, 7, 15, 31
and 63, respectively.

For the generation of a DAG G with |V | vertices, |[((G)] levels,
and average degree dq.g, We first create | V| vertices and distribute
them to the |¢(G)| levels. Then, for each vertex v at each level i,
where 1 < i < [¢(G)|, we add one edge from a vertex selected
randomly at level ¢ — 1 to v, and add edges from v to (davg — 1)
randomly selected vertices at level j > i in G. To test query per-
formance, we randomly generate 1 million queries for each dataset.

Effect of number of vertices. Figure 5 reports the performance
results of processing the (C1) datasets, where we vary the number
of vertices | V| from 5M to 80M (M = 10°).

For index construction, TF-label is significantly faster than all
other methods except GRAIL. Compared with GRAIL, TF-label
is slower when |Vg| < 20M, but is 3 times faster when |Vg| >
40M. When |Vg| = 80M, all other methods failed (we termi-
nated GRAIL after it took two orders of magnitude longer time
than ours). PWAHS could only handle 5M vertices, while PathTree
failed even with 5 vertices (thus not shown in Figure 5). More-
over, ScaPathTree and ScaGRAIL also cannot scale well, since
SCARARB failed to construct the backbone for such large datasets.

The index size of TF-label is about twice that of GRAIL, and
is 1.5 to 3 times smaller than that of the other methods (for the
datasets they can handle).

For query processing, TF-label is again significantly faster than
all the other methods. Moreover, we also see that GRAIL is the
slowest and is over an order of magnitude slower than TF-label.
When |Vg| = 40M, GRAIL is 6400 times slower than TF-label.

Overall, TF-label is shown to be much more scalable than the
existing methods with the increase in the number of vertices, i.e.,
also in the graph size. The results also show that the indexing per-
formance of TF-label scales linearly with the increase in the graph
size, but remains reasonably stable in query performance. The rea-
son that query time does not increases much when the graph size
increases is because the average label size remains stable, which
can be observed as the index size increases only linearly.

Effect of average vertex degree. Figure 6 reports the performance
results of processing the (C2) datasets, where we vary the average
vertex degree from 10 to 50.
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The results show that both PathTree and ScaPathTree cannot
scale to process datasets with average degree of even 10 (thus not
shown in Figure 6). PWAHS can only process datasets with aver-
age degree up to 20, and is up to two orders of magnitude worse
than TF-label in both indexing and query performance.

TF-label is about twice faster than ScaGRAIL but is significantly
slower than GRAIL in indexing, while the index size of TF-label is
also much larger. However, for the more critical online query per-
formance, both ScaGRAIL and GRAIL are too slow. ScaGRAIL is
about two orders of magnitude slower and GRAIL is three orders
of magnitude slower than TF-label in query processing for most of
the cases.

As an index without reasonable query performance is not really
useful, we can conclude that TF-label is the only method shown
to be scalable with the increase in average vertex degree. TF-label
scales linearly when average degree increases.

Effect of number of topological levels. Figure 7 reports the per-
formance results of processing the (C3) datasets, where we vary
the number of topological levels from (2% — 1) to (2° — 1) (which
means that ¢ f (G) ranges from 2 to 6).

For index construction, TF-label is from a few times to 60 times
faster than PathTree, ScaPathTree, and PWAHS. TF-label is faster
than ScaGRAIL for the level number up to 15, but is slower than
both ScaGRAIL and GRAIL in other cases. But in these cases Sca-
GRAIL and GRAIL are too slow in query processing. The index
size also shows a similar trend.

For query processing, TF-label significantly outperforms all the
other methods in all cases. Especially when the level number in-

creases to 15 or more, TF-label is an order to two orders of magni-
tude faster than the other methods.

The results also show that TF-label scales roughly linearly when
the level number increases, while the other methods scale poorly
especially for query processing.

9. RELATED WORK

A reachability query can be answered in O(|Vg| + |Eg|) time
by a BFS or DFS in the input graph G, or in O(1) time by pre-
computing the transitive closure [23] in O(|Vz||E¢|) time. Exist-
ing methods all strive to attain high online query efficiency with a
low offline index construction cost.

The full transitive closure is often too large and hence various
labeling or compression schemes have been processed to reduce the
label size [1, 5, 6, 17, 19, 25, 26]. Although these methods achieve
reasonable query efficiency, most of them have a high indexing cost
and are not efficient enough for processing large graphs.

There is another category of methods that construct vertex labels
by traversing the graph only [4, 24, 28], and hence have a relatively
low index construction cost. While these methods can efficiently
answer a subset of queries that are supported by the labels, in gen-
eral a much larger subset of queries are not covered by the index
and are very costly to process as it requires graph traversal.

There are also a number of methods [2, 3, 10, 11, 12, 20, 21]
that can be considered as improvements over the 2-hop labels [14],
which constructs label, (v) and label oyt (v) for each vertex v and
queries are answered as in Equation (1). Unlike our method, these



methods are all very costly to construct and cannot scale to large
graphs.

A backbone structure was proposed as a general framework [18]
on which existing methods such as [19] can be applied to handle
larger graphs. However, Section 8 shows that the performance of
our method is significantly better than the state-of-the-art methods
[19, 28] applied in the backbone framework. We are also aware of
a recent work [22] that trades off query performance for reduced
index size and indexing cost.

Due to space limit, we cannot discuss every method in greater
details. More detailed discussions on the above existing methods
can be found in [6, 18, 28, 29].

This work is inspired by the work [16], where a hierarchical
structure is proposed for processing shortest path distance queries.
However, the application of the topological structure and the design
of topological folding are unique. In particular, our TF structure
has at most 1g £(G) levels, which is small for real graphs, while the
hierarchical structure in [16] can have many levels.

10. CONCLUSIONS

We introduced a novel and highly effective indexing scheme,
TF-label, for reachability querying in large graphs. Based on an
extensive set of experimental studies, we showed that TF-label has
a very stable high performance in query processing, which is typ-
ically an order of magnitude faster than the best previous methods
[18, 19, 25, 28], while TF-label also enjoys competitive indexing
performance. To our knowledge TF-label is the only truly scalable
method since known scalable methods suffer from slow query re-
sponse time for graphs with large sizes, large average degrees or
large number of topological levels, while TF-label stays efficient.
The ability to handle a wide range of different graph properties also
demonstrates the suitability of TF-label for processing graphs from
various application domains.

A useful extension of the current work is to develop I/O-efficient
algorithms to index graphs that cannot fit in main memory. Meth-
ods developed in [7, 13, 27] may be applied to achieve this task.
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