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Abstract sizen has(2™ — 1) non-empty subset Fls, mining MFlIs ef-
fectively addresses the problem of too many FIs. However,
In this paper, we study an inherent problem of mining most applications are not only interested in the pattens re
Frequent Itemsets (Fts}the number of FIs mined is often resented by the Fls, but also require their occurrence fre-
too large. The large number of FIs not only affects the min- quency in the database for further analysis. For example,
ing performance, but also severely thwarts the application we need the frequency of the FIs to compute the support
of FI mining. In the literatureClosed Fls (CFIsgnd Max- and confidence of association rules. MFIs, however, lose
imal FiIs (MFIs)are proposed asoncise representations of the frequency information of most Fls.
Fls. However, the number of CFls is still too large in many On the contrary, the set of CFls is a lossless representa-
cases, while MFIs lose information about the frequency of tion of Fls. CFls are Fls that have no proper superset with
the Fls. To address this problem, we relax the restrictive the same frequency. Thus, we can retrieve the frequency
definition of CFIs and propose th&Tolerance CFIs §- of the non-closed Fls from their closed supersets. However,
TCFIs). Mining 5-TCFIs recursively removes all subsets of the definition of the closure of CFls is too restrictive, sirac
a ¢-TCFl that fall within a frequency distance boundedby  CFI covers its subset only if the CFl appeargirerytrans-
We propose two algorithm&FI2TCFland MineTCFI, to action that its subset appears in. This is unusual when the
mined-TCFIs. CFI2TCFI achieves very high accuracy on database is large, especially for a sparse dataset.
the estimated frequency of the recovered Fls but is less effi- In this paper, we investigate the relationship between the
cient when the number of CFls is large, since it is based onfrequency of an itemset and its superset and propose a re-
CFI mining. MineTCFl is significantly faster and consumes laxation on the rigid definition of CFIs. We motivate our
less memory than the algorithms of the state-of-the-art con approach by the following example.
cise representations of Fls, while the accuracy of MineTCFI
is only slightly lower than that of CFI2TCFI.

1 Introduction

Frequent Itemse(FIl) mining [1, 2] is fundamental to
many important data mining tasks such as associations [1],
correlations [6], sequences [3], episodes [13], emergatg p
terns [8], indexing [17] and caching [18], etc. Over the last Figure 1. FIs and Their Frequency
decade, a huge amount of research has been conducted on
improving the efficiency of mining Fls and many fast algo- Example 1 Figure 1 shows 15 FIs (nodes) obtained from a
rithms [9] have been proposed. However, the mining oper- retail dataset, whemebcd is an abbreviation for the itemset
ation can easily return an explosive number of Fls, which {a, b, c, d} and the number following “:" is the frequency
not only severely thwarts the application of FIs, but also di of abcd.
rectly affects the mining efficiency. Although we have only 1 MFI, i.eabcd, the best esti-

To address this probleniylaximal Frequent Itemsets mation for the frequency of the 14 proper subsetaloéd
(MFIs) [4] and Closed Frequent Itemse{€FIs) [14] are is that they have frequency at least 100, which is the fre-
proposed asoncise representations of FI8IFIs are also  quency ofabcd. However, we are certainly interested in
Fls but none of their proper supersets is an Fl. Since an Fl ofthe knowledge that the Fls, d andbd have a frequency




significantly greater than that of other FIs. On the contrary considerably lower thad. Most importantly, MineTCFI
CFls preserve the frequency information but all the 15 Fls is significantly faster than all other algorithms, while the
are CFls, even though the frequency of many Fls only differ memory consumption of MineTCFI is also small and in
slightly from that of their supersets. most cases smaller than that of the other algorithms.

We investigate the relationship between the frequency of ~ Another important finding of mining-TCFls is when
the Fls. In Figure 1, the number on each edge is computed increases, the error rate only increases at a much slower
asd = (1 — freauency of ¥y "\whereY is X's smallest su-  rate. Thus, we can further reduce the numbe+8CFIs by

frequency of X ; . . . . .
perset that has the greatest frequency. For CFls, if we wantsing a larged, while still attaining high accuracy.

to removeX from the mining resulty has to be equal t0, Organization. Section 2 gives the preliminaries. Then,
which is a restrictive condition in most cases. However, if Section 3 defines the notion @& TCFls and Section 4
we relax this equality condition to allow a small tolerance, presents the algorithms CFI2TCFI and MineTCFI. Section
sayd < 0.04, we can immediately prune 11 Fls and retain 5 reports the experimental results. Section 6 discusses re-

only abcd, bcd, bd andb (i.e., the bold nodes in Figure |ated work and Section 7 concludes the paper.
1). The frequency of the pruned FIs can be accurately es-

timated as the average frequency of the pruned Fls that ar®  preliminaries
of the same size and covered by the same superset. For ex-

ample,ab, ac andad are of the same size and covered by
the same supersabcd; thus, their frequency is estimated
as 106+1g8+107 =107. O

LetZ = {x1,22,...,2, } be a set of items. Aitemset
(also called gattern) is a subset of. A transactionis an

itemset. We say that a transactiBrsupportsan itemsetX’
We find that a majority of the FIs mined from most of jf y > X. For brevity, an itemsefzy, , Tk, , . .., Tk, } IS

the well-known real datasets [9], as well as from the preva- written asxg, Tk, - - - Tk, in this paper.
Iently used Synthetic datasets [12], exhibit the above-char LetD be a da’[abase’ of transactions. Tﬂwuencwf an
acteristic in their frequency. Therefore, we propose tovall itemsetX, denoted agcreq(X), is the number of transac-

tolerance, bounded by a threshéldn the conditionforthe  tions inD that supportX. X is called aFrequent ltemset
closure of CFls, and define a new concise representation ofF) if freq(X) > o|D|, whereo (0 < o < 1) is a user-

Fis called the-Tolerance CFIg4-TCFIg). The notionob-  specifiedminimum support threshaldx is called aMaxi-

tolerance greatly alleviates the restrictive definitioCéls, mal Frequent ItemsgiMFI) if X is an Fl and there exists

as illustrated in the above example. no FIY such that” > X. X is called aClosed Frequent
We propose two algorithms to mideTCFIs. Our algo-  Itemset(CFl) if X is an Fl and there exists no F such

rithm, CFI2TCF], is based on the fact that the set of CFIs thatY > X andfreq(Y) = freq(X).

is a lossless representation of Fls. CFI2TCFI first obtains

the CFls and then generates th@CFls by checking the 3 §-Tolerance Closed Frequent Itemsets
condition ofj-tolerance on the CFIs. However, CFI2TCFI
becomes inefficient when the number of CFls is large.

We study the closure of th&TCFIs and propose an-
other algorithm,MineTCF|, which makes use of thé-
tolerance in the closure to perform greater pruning on the
mining space. Since the pruning condition is a relaxation
on the pruning condition of mining CFIs, MineTCFl is al-
ways more efficient than CFI2TCFI. The effectiveness of 3 {  The Notion of -TCFIs
the pruning can also be inferred from Example 1 as the ma-

jority of the itemsets can be pruned when the closure def'n'Definition 1 (5-Tolerance Closed Frequent Itemset)An

ition of CFls is relaxed. . . itemsetX is ad-tolerance closed frequent items&t {CFI)
'We compare our algorithms wifiPclose[10], NDI [7], if and only if X is an Fl and there exists no Bl such that
MIinEx [5] and RPlocal[16], which are the state-of-the-art - X,|Y|=|X|+1,andfreq(Y) > ((1—6) - freq(X)),

algorithms for mining the four respective concise represen here 5 (0 < § < 1) is a user-specifietrequency toler-
tations of Fls. Our experimental results on real dataséts [9 gnce factar

Zhow that thg number @-TCFIs is many times (up to or- We can define CFls and MFIs by otHT CFlIs as follows.
ers of magnitude) smaller than the number of itemsets ob- ) . ] T
tained by the other algorithms. We also measure the error-émma 1 An itemsetX is a CFl if and only if.X is a 0-
rate of the estimated frequency of the Fls that are recovered! CFI.

from the-TCFls. In all cases, the error rate of CFI2TCFI Lemma 2 An itemsetX is an MFI if and only if X is a
is significantly lower thad while that of MineTCFlis also  1-TCFI.

In this section, we first define the notion 6fTCFls.
Then, we discuss how we estimate the frequency of the Fls
that are recovered from theTCFIs. Finally, we give an
analysis on the error bound of the estimated frequency of
the recovered Fls.



Corollary 1 The set of all CFIs and the set of all MFIs while bcd is the closest-TCFI superset obc, cd andc.
form theupper boundind thelower boundof the set of all O

0-TCFls, respectively. To estimate the frequency of the Fls with the same clos-
Example 2 Referring to the 15 FIs in Figure 1. Let ©Sto-TCFlsuperset’, we group the FIs according to their
§ = 0.04, then the set ob.04-TCFls is {b, bd, bcd, size and define the frequency extensiof’cés follows.
abcd}. For example,b is a 0.04-TCFI sinceb does Definition 4 (Frequency Extension)Given ad-TCF1Y, let

not have a proper superset that has frequency greater tha; = {X : | X| = |Y|—i andY is the closesi-TCFI super-

((1 = 0.04) x 139) = 133. The Fla is not a0.04-TCFI set of X'}, wherel <i <mandm = MAX{i: X; # 0}.
since(1 — ££4@%)) — (027 < 0.04, and similarly forac Thefrequency extensionf Y, denoted agzt(Y), is a list

freq(@) . .
since(1 — %) = 0.037 < 0.04 and foracd since (emf(y’ 1?’ o eat(Y,m), whereest(Y,i), for 1 < i <
freq (abgg;i Y m, is defined as

(1- W(acd)_) = 0.038 < 0.04. Thus, they are recur- freq(X)
sively covered by their superset that has 1 more item and . dxex, freq(Y)
then finally covered by the.04-TCFl abcd. eat(Y, 1) = |

The set 00.07-TCFlIsis{bd, abcd}, while the set of -
TCFls, i.e., MFls, iabcd}. However, the set ai-TCFls, The size of the frequency extension &f, denoted as
i.e., CFls, is all the 15 Fls.O |ext(Y')|, is defined agext(Y)| = m.

In the rest of the paper, we ugéto denote the set of all The frequency extension &f is essentially a list of aver-
Fls and7 to denote the set of all TCFls, for a givery. aged frequency ratio grouped by the size of the FIs. With the

frequency extension df , we can estimate the frequency of

3.2 Frequency Estimation eachX e &;, as(freq(Y) - ext(Y,4)). We illustrate the

frequency estimation by Example 4.

Given7, we can recovefs (when demanded by appli- Example 4 Referring to Example 3, leY” = abcd, then
cations). The frequency of an B € F can be estimated &1 = {abc, abd, acd}, &> = {ab, ac, ad} and&3 =
from the frequency of its supersets i We discuss the ~ {a}. We have ezt(abcd, 1) = (132 + 152 + 135)/3 =
frequency estimation in this subsection. 1.03, ext(abed,2) = (206 4 108 | 107y ,/3 _ 1 07 and

It is possible that for an FK, there are more than one 111 e

’ ext(abed, 3) /1=1.11.

_ = 100
FIY, whereY 5 X, V| = |X| +1andfreq(Y) > (1 - Thus, the frequency afbc, abd andacd are estimated

d) - freq(X)). Among all these supersetsfﬁf, the one that as(freq(abed)-ext(abed, 1)) = 103, the frequency oéb,
has the greatest frequency can best estimate the frequencxC andad are estimated a&freq(abcd)- ext(abed, 2)) =

of X. Thus, we define this superset as the closest superse}oz while the frequency od is estimated asfreg(abcd)

of X" as follows. ext(abcd, 3)) = 111, O
Definition 2 (Closest Superset)Given an itemsefX, let
y={y Y o X [Y| = |X|+1 andfreq(Y) = 3.3 Error Bound of Frequency Estimation

MAX{freq(Y") : Y’ > X, |Y'| = |X| + 1}}. Y is the

closest supersetf X if Y’ € Y andY"is lexicographically We now analyze the error bound of the frequency esti-

ordered before all other itemsets Ja mation. We first give Lemmas 3 and 4, which we use to

Given an itemseX’, we can follow a path of closest su- define the error bound.

persets and finally reach one closest superset, which-is a | ayyma 3VX € (F—T),3Y € T suchthaty > X and

TCFI. We define thig-TCFI superset as the closésT CFI freq(Y) > (1 — O)YIHIXT . freg(X)).

superset ofX as follows. -

Definition 3 (Closesté-TCFI Superset) Givenn itemsets,

Xi,...,X,, where forl < i < n, X; C X;4; and Lemma 5 (Error Bound of Estimated Frequency) Given

[ Xit1] = [Xi] + 1. Xy, is theclosests-TCFI supersedf  an FI X and X's closests-TCFI superset’, where|Y| —

Xy, if X, € Tandforl <i <n, X, € (F-T)and |X| = i. Letfreq(X) be the exact frequency of and

Xi+1 s the closest superset &f;. freq(X) = (freq(Y)-ext(Y,i)) be the estimated frequency

Example 3 Referring to Figure 1, the closest superset of of X. Then,

a is ac, that ofac is acd and that ofacd is abcd. For

the two supersets afb that have the same frequency, we freq(X) — freq(X)

chooseabc as the closest supersetalb sinceabc is or- S T fealx)
req(X)

dered beforeabd. Whends = 0.04, abcd is the closest

5-TCFI superset of all its subsets that contain the im  whereg = (1 — §)°.

Lemma 4 For anyd-TCFIY, 1 < ext(Y,i) < g5

<1 1
¢

)



Proof. Sinceﬁ%&(X) = (freq(Y) - ext(Y,4)), by Lemma  frequency among all other CFI supersetskaflf X's clos-
4, we have) < freq(Y) < freq(X) < fret;fY)_ By Lemma  ©st CFl superset is not found, théhis a4-TCFl and we
freq(Y) includeX in 7 (Line 10). If X has a closest CFl superset
3, we have0 < freq(Y) SJTEQ(X) < =g Thus, Y but freq(Y) < ((1 — §)YI=IXI . freq(X)), we also in-
0 < (freq(Y)/f"e‘f;Y)) < }‘;:gg(% < (fTeff;Y) /freq(Y)), cludeX in 7 (Line 1Q). Otherwise, we update:t_(Y) with
_ (X)) _ 1 Foa(X)—frea(X) freq(X) andext(X), if any, and then delet& (Lines 7-8).
e, < %EX) < - Hence(p—1) < FHE st < CFI2TCFI computes the exact set of 8T CFls and as
(L-1). O we show in Section 5, the estimated frequency of the Fls re-
¢ _ _ covered from thé-TCFls obtained by CFI2TCFI is highly
Lemma 5 gives the theoretical error bound of the fre- accurate in all cases. However, the search for the closest
quency of an Fl estimated from the frequency of its closest cFj superset of each CFl is costly when the number of CFls
0-TCFI superset. However, according to Definition 4, each ig large. Thus, we propose a more scalable algorithm whose
ext(Y,i) of ad-TCFIY is taken as the average of the fre- efficiency is not affected by the number of CFls.
guency ratio of the Fls iit; over the frequency of, while
_the relative difference i_n the frgquency of_any two Fisdn 4.2 Algorithm MineTCFI
is bounded by. Thus, in practice, the estimated frequency
is highly accurate and the error bound is much smaller than In this section, we discuss a very efficient algorithm,

the. t_heoretlcal bound_ defmed.m Lemma 5, which is also MineTCFl, for mining 5-TCFls. We first describe the data
verified by our extensive experiments. structures used in MineTCFI in Sections 4.2.1 and 4.2.2.

o Then, we discuss an effective pruning in Section 4.2.3 and
4 Mining 0-TCFls present the main algorithm in Section 4.2.4.

In this section, we first present an algorithm that com- 421 EpP-Tree and FP-Growth
putess-TCFlIs from the set of CFls. Then, we propose a
more efficient algorithm that employs pruning based on the The pattern-growth methad=P-growth by Han et al. [11]

closure of theJ-TCFls. is one of the most efficient methods for mining Fls, CFls
and MFIs [10]. We adopt the pattern-growth procedure as
4.1 Algorithm CFI2TCFI the skeleton of our algorithm MineTCFI.

FP-growth mines Fls using an extended prefix-tree struc-

Mining CFls is in general much more efficient than min- ture called the=P-tree. As an example, Figure 2 shows the
ing Fls. Since the set of CFls is a lossless representation of P-tree.lj, constructed from a database excerptwhich gen-
Fls, we devise an algorithm which takes advantage of theerates the Fis in Figure 1.
efficiency of mining CFls. The algorithm first generates the
CFls and then computes theT CFls from the CFls.

Header Table

. . head of
item: freq node-links
Algorithm 1 CFI2TCFI 139 | .
1. Mine the set of all CFls; d: 134 .
2. LetC; be the set of CFls of size e
3.foreachi > 1do c- 115 27
4 foreach X € C; do : . : o
5. Find X’s closest CFI supersgl’; wH B
6. if(AY s.t. freq(Y) > (1 — &)Y 171X freq(X))
7. Updateext(Y') with freq(X) and ext(X);
8. DeleteX: Figure 2. The FP-Tree Tj of Figure 1
9. else
10. T —TU{X} FP-growth mines the set of Fls as follows. Given an FP-
11.return 7; treeTx, where initially X = () andT} is constructed from

the original database. For each itanin T'x.header, FP-
Our algorithm CFI2TCFI, is shown in Algorithm 1. We  growth follows the list of pointers to extract all paths from
first generate all CFIs and partition them according to the the root to the node representingn 7'y . These paths form
size of the CFls. Lef; be the set of CFlIs of size Starting the conditional pattern basef Y = X U {z}, denoted
fromi = 1, we find theclosest CFl supersetf each CFLX as By, from which FP-growth constructslacal FP-tree,
(Line 5). Here, theclosest CFl superseatif X is defined as  called theconditional FP-tree denoted agy. First, the
X's CFl superset that has the smallest size and the greatedtequent items inBy form Ty .header. Then, FP-growth



re-orders the frequent items in each pattBip (the infre-

guent items are discarded) and inserts the new patlipto
Figure 3 shows the conditional FP-treg,, which is con-
structed from the FP-treg, in Figure 2.

Header Table

head of
node-links

Figure 3. The Conditional FP-Tree T

The above procedure is applied recursively until the con-
ditional FP-tree consists of only a single path, from

which FP-growth generates the itemsets represented by all

sub-paths of°.

4.2.2 Thed-TCFI Tree

A crucial operation in MineTCFI is the search for the su-
persets of an itemset in the set®TCFls already discov-

ered. Performing a subset testing by comparing the itemset

with every existing)-TCFl is clearly inefficient. In mining

CFls, the subset testing can be efficiently processed by an

FP-tree-like structure [10]. We thus develop a similarstru
ture, called thé-TCFI treg to be used for mining-TCFIs.

To avoid testing all existing-TCFIs with X, a condi-
tional §-TCFl treg Cx, is created corresponding to the con-
ditional FP-tre€l’x in each of the recursive pattern-growth
procedure calls. Eacfi’x is local since it contains only-
TCFls that are supersets &f. Thus, this local’x is much
smaller than a global-TCFI tree that contains adl TCFls.

Each nodev in Cx has three fieldsitem labe| level
andJs-TCFI-link, where the item label indicates which item
v represents, the level is the level ofin Cx (the root is
at Level 0), and thé-TCFI-link is a pointer to the-TCFI
represented by the root-topath. Since each-TCFI has
a frequency extension, we keep thd CFls in an array so
that the frequency extension will not be duplicated in each
of the conditionab-TCFI trees.

Like Tx, Cx also has a header table, denoted as
Cx .header. The items inC'x.header are the same as the
items inT'x.header and in the same order. Each itenin
Cx.header is associate with an arrayl,. Each entry in
Az, Ag[l], 1s an array of pointers to all nodes @iy that
have item labek and level.

Example 51f 6 = 0.027, we obtain seve-TCFlIs after
processing the itera. Figure 4 shows the globalTCFI

tree,Cy, which contains the sevénTCFIs, and Figure 5(a)
shows the conditiondlTCFI tree,C.., which contains only
0-TCFIs that are supersets of Cy andC. correspond to

Header Table

item: A,

b: (1:v)

d: (lzvs),(szz)

e (1:v7),(2:v,,v),(3:v5)

item label:level: 5-TCFI-link

Figure 4. The Global §-TCFI Tree C

Header Table

item: A,
d: (1:v,)
b: (1:v)),(2:vy)

(a) C, (Before Inserting cbd)

(b) C, (After Inserting cbd)

Figure 5. The Conditional 6-TCFI Tree C.

the FP-tree§) andT in Figures 2 and 3, respectively. Note
thata is not inCy.header and no node irCy represents.
This is because afl-TCFIs containinga have already been
generated and hence there is no need to inciteC’.

In Cy.header in Figure 4, ‘t: (1 : v7),(2 : vy, v6), (3 :
v3)” means thatd. has three entriesAd.[1] has a pointer to
v7 at Level 1,A.[2] has pointers te, andug at Level 2, and
A.[3] has a pointer te; at Level 3. O

Update and Construction of §-TCFI Tree.  To insert a
0-TCFI Z = X UY into Cx, we first sort the items iy as
the order of the items i'x .header. Then, the sorted” is
inserted intaC'x . If a prefix of the sorted” already appears
as a path irC’x, we share the prefix but change tha@CFI-
link, link, of each node on the path as follows. Assuimk
currently points tdV, thenlink will point to Z if either (1)
|Z] < |[W|or(2)|Z| = |W|andfreq(Z) > freq(W). If a
new node is created for an item A, then itsd-TCFI-link
points toZ.

To construct a conditionadTCFI tree,Cy, for an item
x in Cx.header, i.e.,Y = X U {z}, we first initialize
Cy .header based on the set of items T .header. Then,
we access each noden Cx via its pointer inA, and ex-
tract the root-tos path, P. After discarding the nodes ah
that do not correspondto an itemaR-.header, we re-order
the remaining nodes af according ta’y . header and then
insert the path int@’y . The insertion is the same as the way
we insertZ into C'x that we just discussed above.

Example 6To insert the)-TCFIcbd into C. in Figure 5(a),
we first sortbd asdb according toC..header in Figure
5(a). Then, we share the path,,vs). But thed-TCFI-
link of v andws will be changed to point tedb, since
freq(cdb) > freg(acd) and|cdb| < |acdb|. Thed-



TCFl tree after the insertion @fbd is shown in Figure 5(b),  |ext(Z")| > (|Z'| — |Y| — 1), which means thaZ’ has
whereC'..header remains unchanged as in Figure 5(a). already covered subsets of size fro/¥i| + 1) to (| Z/| — 1).
Let U andV be any two such subsets coveredtiywhere
. |[V| = |U| + 1, then the difference between the frequency
4.2.3 Closure-Based Pruning of U and that of/” is bounded by. Since the FIs itF(Ty )

The efficiency of CFI mining is mainly due to the pruning @IS0 share the same super&étthis proximity of frequency

based on the closure of CFls. We make use of the tolerancéf other subsets of” implies a high probability that the Fis

in the closure of thé-TCFls to achieve greater pruning in N 7 (7y) are also covered. Thus, we obtain Heuristic 3.

MineTCEl. We first define that’’ is conditionally coveredy a -
The pruning is described as follows. Given anand ~ TCFI Z'if 2" D Y and|ext(2')| = (12| = [Y] = 1).

X's conditional FP-tred’x. LetY = X U {x}, wherez  Heuristic 3 If Y is covered and there existsdaTCFl, 7/,
is an item inT’x .header, andF (Ty ) be the set of FIsto be  sych thafy” is conditionally covered by’, then we prune
generated fronY’s conditional FP-tredy-. We say that” all FIs in F(Ty).

is coveredif there exists &-TCFI Z such thatZ > Y and o ) ]
freq(Z) > (1 — 8)Z1=I1 . freq(Y)). At the time when Example 7_Based only in Figure 2, |fc_$:0.07, we first
we generatd’, if Y is already covered, then we prune all find abdc is a 0.07-TCFI after processirg Then, when
Fls in F(Ty) and thusZy will not be constructed. we procesg in Ty.header, there are two frequent items

The above pruning can be directly applied to mine 0- id, b}, n BC_’ from which we can generateb, chd and
TCFIs (i.e., CFls), since the FIs ifi(Ty ) must already be cd. Sincec is covered byabde, (c U {d, b}) C abdc
covered by some 0-TCFIs that are found before we generatéand|e‘rlmf(abdc)| =3 > (|abdc| —|c| —1) = 2, we can be
Y. However, wher > 0, a minority of FIs in(Ty) may sure that the frequency ob, cbd andcd can be estimated
not be covered by any existirgTCFI due to the frequency with ezt(abd.c). Thus, we can pruneb, cbd andcd.
tolerance in the closure. Some of this minority of FIs may ~ 'Vote thatifd=0.04, thenabdc does not cover. Hence,
later become@-TCFls. However, only a very small number e Will continue frome and find the)-TCFl cbd. O
of these Fls will becomé-TCFls. Missing thesé-TCFIs  Coverage Testing. We now discuss how Heuristic 3 can
will only slightly degrade the accuracy of the estimated fre pe efficiently processed using thelCFl tree.
quency of the recovered Fls, while we can still recover all  Given an FIX and X's 6-TCFl treeCy, letY = X U
Fls from their othe®-TCFI supersets. But to improve the {x}, wherez is an item inC'x .header. We find the superset
accuracy of the estimated frequency, we apply an additionalof v in C'y as follows. We accesd,, in Cx.header and
checking to prevent pruning these potendidllCFls, as de-  follow the pointers inA,[i] (; > 1, starting fromi = 1)
scribed by the following heuristic. to visit the nodes that have item labelknd are at Level

Heuristic 1 Let H be the set of frequent items¥fis condi- of Cx. For eac_h nc_)de visited, letv’s 6-TQFI-Iink point
tional pattern baseBy, andY’ — Y U H. If Y is covered (0 Z» We check ifY"is covered byZ by testingfreq(Z) >

Z|—-Y
andY" is also covered, then we prune all FIsi(Ty ). (1~ 5)‘_ 7T freg(Y)), . _
If Y is covered byZ, then Heuristic 3 requires us to

Heuristic 1 is based on the proximity of frequency of check ifY’ = Y U H is conditionally covered, wher&l
the itemsets found in most datasets:Yifis covered and s the set of frequent items iBy. To check this, we first
Y’, which is the largest possible superseftothat can be  sort the items inH as their order iC'x.header. Let the
generated fronTy, is also covered, then most likely other sortedH be H = x5 - - - ;.. We accessd,, of the item
Fls in-betweert” andY” are also covered. xk In Cx.header. ’
However, at the time when we generatgethe frequency We first process4xk [k], which contains the pointers to
of Y’ has not been determined and hence we cannot checkhe nodes at Leve! in C'x. For each node accessed via a
the condition whetheY” is covered. However, we find that  pointerin A, [k], we check if the root-tor path represents
if there exists &-TCFI, Z’, which is a superset df’, then a superset off. The checking starts from's parent up to
in most cased” is covered (due to the proximity of fre- the root and we compare both the item label and the level
guency). Thus, we obtain the following heuristic. of each node along the path. When we comparél <
i < k — 1) with a nodeu, if u’s level is smaller than, we
stop the comparison and move on to process the next node
pointerinA, [k], and then the pointersin, [k+ 1] when
Heuristic 2 implies that we only need to check the subset- we finish A, [k] and so on.
superset condition without knowing the frequencydf To SinceCY is alocals-TCFlI tree containing only-TCFls
further increase the probability that other FISA(TYy ) are that are supersets df, the number of comparisons is usu-
also covered, we can add one more level of checking thatally small. In addition, thosé-TCFIs that are accessed via

Heuristic 2 If Y is covered and there existséal CFl, Z’,
such thatZ’ > Y, then we prune all Fls iF(Ty).



pointers inA, [i] (Vi < k) are not compared, since the Algorithm 2 MineTCFI
paths from the root to those nodes have less nodes than the construct the global FP-treg;;
number of items i and hence cannot be supersetgiof 2. Initialize the globab-TCFI tree,Cy;
In the same way, the level of a node also helps terminate3. 7 « 0;
many of the subset testings earlier. 4. Invoke GenTCFI(Ty, Cy, 7T);
When a root-tos path is found to be a supersetif let 5. ReturnZ;
v's 0-TCFI-link point to Z’, we check ifY” is conditionally
covered byZ’ by testinglext(Z')| > (|Z'| - |Y|—1). If Y’ Procedure 1 GenTCF(Tx,Cx,T)
is conditionally covered byz’, Heuristic 3 is then applied 1 (7 is a single pathpP)

and all FIs inF(Ty) are pruned. 2. Generate all local-TCFls from P;

In MineTCFI, if Y is covered byZ andY” is condition- 3. for eachlocal 6-TCFI, Y, generatedio
ally covered (byZ’), we need to determine # isthe closest 4. if ( IsCovered (Y,Cx) = true)
5-TCFI superset ot in order to update the frequency ex- 5. FindY’s closest-TCFI supersety;
tension ofZ. To do this, we need to check whether the size 6 Updateezt(Z) with freq(Y);
of Z is the smallest among al-TCFIs that are supersets /- else

T—TUu{Y}
InsertY” into all Cx’s predecessai-TCFI
trees in the recursive-call stack;

of Y. But this does not mean that we need to process all®
0-TCFls that are supersets Bf. We do not process any of

the 5-TCFIs that are accessed via the pointerslifj], Vj 10. else
> |Z]—|X|, because the pointers i, [;] link to 6-TCFlIs 11.  foreachz in Tx.header do

of size at leas{| X | + j) > |Z]. In most cases)”’s closest 12 Y« X U {z};
d-TCFI superset is found via a pointer i, [1] and rarely 13. LetH be the set of frequent items By ;
do we go through many entries df, . 14. if( IsCovered (Y, Cx) = true)

15. if(IsCondCovered(Y U H,Cx ) = true)

/% Prune all supersets af */
4.2.4 Algorithm MineTCFI 16. FindY’s closests-TCFI supersetZ;
We now present our algorithniiineTCFL as shown in i; elseUpdatem(Z) with freq(Y');
Algorithm 2 After constructing the global FP-treg, 19. Construcl’’s conditional FP-treeTy,
MineTCFI invokes the recursive pattern-growth procedure andY’s conditionals-TCFI tree,Cly;
GenTCF| which is shown irProcedure 1 20. GenTCFI(Ty,Cy,T);
In Procedure 1, the processingls€overedLines 4 and  21. else /x IsCovered(Y,Cx) = false %/

14),1sCondCoveredLine 15) and the search for the closest 22. Construct’”’s conditional FP-tree[y,
6-TCFI superset (Lines 5 and 16) are discussed in Coverage andY’s conditionals-TCFl tree,Cy;

GenTCFI(Ty,Cy,T);

Testing in Section 4.2.3. Procedure 1 can be divided into 23.
two parts: when the input conditional FP-trdg;, consists
of only one single path (Lines 1-9), and whér has more
than one path (Lines 10-23).

WhenTx consists of only one single pafh, GenTCFlI
generates all itemsets which satisfy locally the conditbn
a0-TCFI. Then, for each local- TCFI Y, GenTCFI checks
if Y is covered. IfY" is not covered, thelr is ad-TCFl and
we add it to7 (Line 8). GenTCFl also inserts into allthe 5 Experimental Results
conditional§-TCFI trees which are constructed along the

path of the previous recursive calls of GenTCFI (Line 9), S0 \we now evaluate our approach of minisgl CFls. We

that the future recursive calls can construct their coodil run all experiments on a PC with an Intel P4 3.2GHz CPU
0-TCFl trees correctly. It is covered, GenTCFlI findg’s and 2GB RAM, running Linux 64-bit.

closesty-TCFI supersetZ from C'x and updates’s fre-
guency extension with the frequency¥f(Lines 5-6).

When T'x consists of more than one path, GenTCFI
processes each item in Tx.header as follows. First,
GenTCFI constructs the conditional pattern bdsge of
Y = X U {z}. Let H be the set of frequent items By . e punsb+: the number of CFls is orders of magnitude
If Y is covered andY U H) is conditionally covered, by smaller than that of FIs, but is orders of magnitude
Heuristic 3, GenTCFI prunes all supersetsrothat are to larger than that of MFlIs.

be generated frorifiy (Lines 14-17). Otherwise, GenTCFI
constructsY’s conditional FP-treé/y and conditionaly-
TCFI treeCy (Lines 19 and 22). The recursive procedure
is then called to process di- andCy (Lines 20 and 23).

Datasets. We use the real datasets from the popular FIMI
Dataset Repository [9]. We choose three datasets with the
following representative characteristics. For a wide gng
of values ofs:



e acci dent s: the number of CFls is almost the same 1072 Fpclose
as that of FlIs, and is orders of magnitude larger than = Minex I
that of MFls. o e

e nushr oom the number of CFls is orders of magni- ) v f

tude smaller than that of Fls, but is only a few times
larger than that of MFIs.

Number of Itemsets
=
Q_

N
.S

Algorithms for Comparison. We compare our algorithms
CFI2TCFI and MineTCFI with the following algorithms:

e FPclose[10]: the winner ofFIMI 2003 [9] and one of
the fastest public implementations for mining CFls.

g
1 1]
%.5 0.4 0.3 0.2 0.1
Minimum Support Threshold

Figure 6. Number of Iltemsets (punsb=*)

e NDI [7]: the algorithm (the faster DFS approach) for 10
computing the set afon-derivable FINDIs). L 5 Minex
e MinEx|[5]: the algorithm for mining the set of frequent = Vnerer :
|| —+ CFI2TCFI
o-free-sets 10 & W

e RPlocal [16]: the faster algorithm (thaiRPgloba)
for computing therepresentative patterns of th&
clusters
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Figure 7. Number of Iltemsets (acci dent s)
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We first study the performance of the different algo-
rithms by varying the minimum support threshetd We
fix 0=0.05 for both punsb* and acci dents. For
mushr oom since the difference between the number of
CFls and that of MFIs is much smaller than the other two
datasets, we set a larger= 0.2 to obtain a greater reduc-
tion for the algorithms with the parameter

We use the samefor CFI2TCFI, MineTCFI and RPlo- 18§
cal. However, thé defined in MinEx is an absolute value. 05
Thus, in each case we compare with MinEx, we find a
for MinEx such that the error rate of MinEx approximately
matches that of MineTCFI.

Number of ltemsets
£t

.04 0.03 0,0 0.01
M%imum Support Threshcﬁd

Figure 8. Number of Iltemsets (mushr oo

of MineTCFl is higher than CFI2TCFI because MineTCFI

is only able to include partially the frequency of the subset

_ ) ~of aé-TCFlin its frequency extension, as some of the sub-
We compare the size of each of the concise representationgets are pruned. The error rate of MinEx is the same as that
of Fls. For simplicity, we us&/um alg) to denote the num- ot MineTCFI. NDIs and CFls are lossless representations

ber of itemsets obtained by the algoritiatg. of FIs, while the error rate of RPlocal is boundeddby
Figures 6 to 8 report the number of itemsets returned

5.1.1 Number of ltemsets and Error Rate

by each algorithm. In most casedumCFI2TCFI) and pumsb* | acci dents | nushroom
NumMineTCFI) are about an order of magnitude smaller (6 =0.05) | (6 =0.05) (6 =0.2)
than Num(FPclos¢ and Num(NDI), many times smaller CFI2TCFI 0.01 0.01 0.01
than Num(MinEx), and on average 2 times smaller than MineTCFI 0.03 0.04 0.02

Num(FPclosg. In all cases, the number ofTCFls ob-
tained by both MineTCFI and CFI2TCFlI is very close to
the number of MFIs.

Table 1 shows the error rate of the estimated frequency,
of the Fls recovered from th& TCFIs. We can see the er-
ror rate of CFI2TCFI is much lower thanin all cases. The
error rate of MineTCFl is higher but still lower thanespe-
cially that formushr oomis only 1/10 ofé. The error rate

Table 1. Error Rate of Estimated Frequency

5.1.2 Running Time and Memory Consumption

Figure 9 reports the running time and memory consumption
of the algorithms. We truncate the time and memory that are
orders of magnitude larger than the largest points predente
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Figure 9. Time and Memory for Varying o

in the respective figures, since most of the time and memory

usage are small and will be squeezed into a single line if we
use a logarithmic scale.

It is obvious from Figures 9 (al), (b1) and (cl) that
MineTCFI, which is the lowest line in all figures, is sig-
nificantly faster than all other algorithms. The runningdim
of RPlocal is the closest to that of MineTCFI but still about
3 times longer on average. CFI2TCFl is also fast in most of
the cases, except when the number of CFls is large.

The memory consumption of the algorithms is small in

memory when the number of CFls is large. Roishr oom

as shown in Figure 9 (c2), MineTCFI consumes more mem-
ory than other algorithms but the difference is only 2MB.
However, in most of the other cases, MineTCFI has the low-
est memory consumption among all algorithms, as shown in
Figures 9 (a2) and (b2).

5.2 Effect of Different Values of §

We now study the effect of different values®bn min-
ing 5-TCFls. We test on the two larger dataspters b+

andacci dents. We fix o at 0.3 and vary from 0.001
(a sufficiently low error rate in our opinion) to 0.2 {aat
which the set 06-TCFls is almost the set of MFIs).
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Figure 10. Different Values of §

Figures 10 (a) and (b) show the numberef CFls ob-
tained by CFI2TCFI and MineTCFI, as well as the number
of CFlIs and MFIs as references. The numbe§-GiCFIs is
about 4 to 5 times smaller than that of CFlsdat 0.001
and already becomes over an order of magnitude smaller at
0 = 0.01. The number 06-TCFlIs is within 2 times of that
of MFIs at§ = 0.05 and is almost the same as that of MFIs
até =0.2.
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Figure 11. Error Rate of Different §

Figure 11 shows the error rate of CFI2TCFI and
MineTCFI for punmsb+* andacci dents. At § = 0.001,
the error rate of CFI2TCFI and MineTCFl is significantly

Efup to 20 times) smaller thafy except that of MineTCFI

for pumsb+* which is approximately 0.001. The error rate
increases only slightly for large values &f For punmsb+
at0.05 < § < 0.2 andacci dents at0.1 < § < 0.2, the
error rate increases only within the range of 0.01.

This result shows that the actual error rate does not grow
with the theoretical error bound given in Lemma 5, but re-
mains to be small whe®ibecomes large. This is an impor-
tant finding since for many applications the user is allowed
to specify a largey, while we can still achieve high accu-
racy, which is not largely affected by and obtain a very
concise set 0b-TCFIs. The small error rate also demon-



strates the need for the frequency extension &T&CFI in
maintaining high accuracy of the estimated frequency.

of CFI2TCFI; however, MineTCFI is significantly faster
than all other algorithms [10, 7, 5, 16] in all cases and also
consumes less memory in most cases.
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6 Related Work

qguency bys. They define a set of itemsets, to form
a cluster if3Y (called arepresentative pattejnsuch that
VX € S, X C Yand(1 - }fc;:gg(g) < §. However,
this definition is non-recursive, while the definition of our
0-TCFIls removes the redundant subsets recursively. Thus,
our approach is able to achieve better compression as evi-
denced by experimental results. We note that the number of
0-TCFls can be significantly reduced when a relaxed mini-
mum support threshold is used as in [16]. However, in our
experiments, we do not relax the minimum support thresh-
old for both RPlocal and our algorithms, as to be fair to
other algorithms under comparison.

Boulicaut et al. [5] define an itemsét as aj-free-set if
VX' C X, Y c X’ such tha(freq(Y)—freq(X'))<d. The
frequency of an FLX is estimated from its subsets; thus,
an extra set of border itemsets is required in order to de-
termine whethetX is frequent. Calders and Goethals [7]
utilize the inclusion-exclusion principle to deduce theéo
bound and the upper bound for the frequency of an itemset
and define an itemset as non-derivable if the lower bound
and the upper bound are not equal. The set of NDIs is a
lossless representation of FIs but can be still too large in
some cases. Pei et al. [15] propose two types of condensed
FI bases to approximate the frequency of itemsets with ap
user-defined error bourid The frequency of an Fl can be
derived from either its subsets or supersets in the Fl base.

[11]

7 Conclusions

[12]

We propose&-TCFls as a concise and flexible represen-
tation of Fls. The notion of-tolerance allows us to flexibly

tunes to enjoy the benefits of both MFIs and CFls: we can [1

prune a great amount of redundant patterns from the min-

ing result as do MFIs, while we can retain the frequency [

information of the recovered FlIs as do CFls. Experimental
results verify that in all cases, the numbedefCFls is very

Jiawei Han and Mr. Dong Xin for providing us RPlocal.
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