
δ-Tolerance Closed Frequent Itemsets

James Cheng Yiping Ke Wilfred Ng
Department of Computer Science and Engineering

The Hong Kong University of Science and Technology
{csjames, keyiping, wilfred}@cse.ust.hk

Abstract

In this paper, we study an inherent problem of mining
Frequent Itemsets (FIs): the number of FIs mined is often
too large. The large number of FIs not only affects the min-
ing performance, but also severely thwarts the application
of FI mining. In the literature,Closed FIs (CFIs)andMax-
imal FIs (MFIs)are proposed asconcise representations of
FIs. However, the number of CFIs is still too large in many
cases, while MFIs lose information about the frequency of
the FIs. To address this problem, we relax the restrictive
definition of CFIs and propose theδ-Tolerance CFIs (δ-
TCFIs). Mining δ-TCFIs recursively removes all subsets of
a δ-TCFI that fall within a frequency distance bounded byδ.
We propose two algorithms,CFI2TCFI and MineTCFI, to
mineδ-TCFIs. CFI2TCFI achieves very high accuracy on
the estimated frequency of the recovered FIs but is less effi-
cient when the number of CFIs is large, since it is based on
CFI mining. MineTCFI is significantly faster and consumes
less memory than the algorithms of the state-of-the-art con-
cise representations of FIs, while the accuracy of MineTCFI
is only slightly lower than that of CFI2TCFI.

1 Introduction

Frequent Itemset(FI) mining [1, 2] is fundamental to
many important data mining tasks such as associations [1],
correlations [6], sequences [3], episodes [13], emerging pat-
terns [8], indexing [17] and caching [18], etc. Over the last
decade, a huge amount of research has been conducted on
improving the efficiency of mining FIs and many fast algo-
rithms [9] have been proposed. However, the mining oper-
ation can easily return an explosive number of FIs, which
not only severely thwarts the application of FIs, but also di-
rectly affects the mining efficiency.

To address this problem,Maximal Frequent Itemsets
(MFIs) [4] and Closed Frequent Itemsets(CFIs) [14] are
proposed asconcise representations of FIs. MFIs are also
FIs but none of their proper supersets is an FI. Since an FI of

sizen has(2n − 1) non-empty subset FIs, mining MFIs ef-
fectively addresses the problem of too many FIs. However,
most applications are not only interested in the patterns rep-
resented by the FIs, but also require their occurrence fre-
quency in the database for further analysis. For example,
we need the frequency of the FIs to compute the support
and confidence of association rules. MFIs, however, lose
the frequency information of most FIs.

On the contrary, the set of CFIs is a lossless representa-
tion of FIs. CFIs are FIs that have no proper superset with
the same frequency. Thus, we can retrieve the frequency
of the non-closed FIs from their closed supersets. However,
the definition of the closure of CFIs is too restrictive, since a
CFI covers its subset only if the CFI appears ineverytrans-
action that its subset appears in. This is unusual when the
database is large, especially for a sparse dataset.

In this paper, we investigate the relationship between the
frequency of an itemset and its superset and propose a re-
laxation on the rigid definition of CFIs. We motivate our
approach by the following example.

abcd:100

abd:103
abc:103
 acd:104
 bcd:107

ab:106
 ac:108
 ad:107
 bc:110
 bd:130
 cd:111

a:111
 b:139
 c:115
d:134

0.029

0.029
 0.038

0.065

0.028
 0.037
 0.028

0.027

0.177

0.036

1-108/111=0.027
 0.065
 0.035
 0.030

Figure 1. FIs and Their Frequency

Example 1 Figure 1 shows 15 FIs (nodes) obtained from a
retail dataset, whereabcd is an abbreviation for the itemset
{a, b, c, d} and the number following “:” is the frequency
of abcd.

Although we have only 1 MFI, i.e.,abcd, the best esti-
mation for the frequency of the 14 proper subsets ofabcd
is that they have frequency at least 100, which is the fre-
quency ofabcd. However, we are certainly interested in
the knowledge that the FIsb, d andbd have a frequency

significantly greater than that of other FIs. On the contrary,
CFIs preserve the frequency information but all the 15 FIs
are CFIs, even though the frequency of many FIs only differ
slightly from that of their supersets.

We investigate the relationship between the frequency of
the FIs. In Figure 1, the number on each edge is computed
asδ = (1 − frequency of Y

frequency of X
), whereY is X ’s smallest su-

perset that has the greatest frequency. For CFIs, if we want
to removeX from the mining result,δ has to be equal to0,
which is a restrictive condition in most cases. However, if
we relax this equality condition to allow a small tolerance,
sayδ ≤ 0.04, we can immediately prune 11 FIs and retain
only abcd, bcd, bd andb (i.e., the bold nodes in Figure
1). The frequency of the pruned FIs can be accurately es-
timated as the average frequency of the pruned FIs that are
of the same size and covered by the same superset. For ex-
ample,ab, ac andad are of the same size and covered by
the same supersetabcd; thus, their frequency is estimated
as 106+108+107

3 = 107. 2

We find that a majority of the FIs mined from most of
the well-known real datasets [9], as well as from the preva-
lently used synthetic datasets [12], exhibit the above char-
acteristic in their frequency. Therefore, we propose to allow
tolerance, bounded by a thresholdδ, in the condition for the
closure of CFIs, and define a new concise representation of
FIs called theδ-Tolerance CFIs(δ-TCFIs). The notion ofδ-
tolerance greatly alleviates the restrictive definition ofCFIs,
as illustrated in the above example.

We propose two algorithms to mineδ-TCFIs. Our algo-
rithm, CFI2TCFI, is based on the fact that the set of CFIs
is a lossless representation of FIs. CFI2TCFI first obtains
the CFIs and then generates theδ-TCFIs by checking the
condition ofδ-tolerance on the CFIs. However, CFI2TCFI
becomes inefficient when the number of CFIs is large.

We study the closure of theδ-TCFIs and propose an-
other algorithm,MineTCFI, which makes use of theδ-
tolerance in the closure to perform greater pruning on the
mining space. Since the pruning condition is a relaxation
on the pruning condition of mining CFIs, MineTCFI is al-
ways more efficient than CFI2TCFI. The effectiveness of
the pruning can also be inferred from Example 1 as the ma-
jority of the itemsets can be pruned when the closure defin-
ition of CFIs is relaxed.

We compare our algorithms withFPclose[10], NDI [7],
MinEx [5] andRPlocal[16], which are the state-of-the-art
algorithms for mining the four respective concise represen-
tations of FIs. Our experimental results on real datasets [9]
show that the number ofδ-TCFIs is many times (up to or-
ders of magnitude) smaller than the number of itemsets ob-
tained by the other algorithms. We also measure the error
rate of the estimated frequency of the FIs that are recovered
from theδ-TCFIs. In all cases, the error rate of CFI2TCFI
is significantly lower thanδ while that of MineTCFI is also

considerably lower thanδ. Most importantly, MineTCFI
is significantly faster than all other algorithms, while the
memory consumption of MineTCFI is also small and in
most cases smaller than that of the other algorithms.

Another important finding of miningδ-TCFIs is when
δ increases, the error rate only increases at a much slower
rate. Thus, we can further reduce the number ofδ-TCFIs by
using a largerδ, while still attaining high accuracy.

Organization. Section 2 gives the preliminaries. Then,
Section 3 defines the notion ofδ-TCFIs and Section 4
presents the algorithms CFI2TCFI and MineTCFI. Section
5 reports the experimental results. Section 6 discusses re-
lated work and Section 7 concludes the paper.

2 Preliminaries

Let I = {x1, x2, . . . , xN
} be a set of items. Anitemset

(also called apattern) is a subset ofI. A transactionis an
itemset. We say that a transactionY supportsan itemsetX
if Y ⊇ X . For brevity, an itemset{xk1

, xk2
, . . . , xkm

} is
written asxk1

xk2
. . . xkm

in this paper.
LetD be a database of transactions. Thefrequencyof an

itemsetX , denoted asfreq(X), is the number of transac-
tions inD that supportX . X is called aFrequent Itemset
(FI) if freq(X) ≥ σ|D|, whereσ (0 ≤ σ ≤ 1) is a user-
specifiedminimum support threshold. X is called aMaxi-
mal Frequent Itemset(MFI) if X is an FI and there exists
no FI Y such thatY ⊃ X . X is called aClosed Frequent
Itemset(CFI) if X is an FI and there exists no FIY such
thatY ⊃ X andfreq(Y) = freq(X).

3 δ-Tolerance Closed Frequent Itemsets

In this section, we first define the notion ofδ-TCFIs.
Then, we discuss how we estimate the frequency of the FIs
that are recovered from theδ-TCFIs. Finally, we give an
analysis on the error bound of the estimated frequency of
the recovered FIs.

3.1 The Notion of δ-TCFIs

Definition 1 (δ-Tolerance Closed Frequent Itemset)An
itemsetX is aδ-tolerance closed frequent itemset (δ-TCFI)
if and only ifX is an FI and there exists no FIY such that
Y ⊃ X , |Y | = |X |+1, andfreq(Y) ≥ ((1− δ) · freq(X)),
where δ (0 ≤ δ ≤ 1) is a user-specifiedfrequency toler-
ance factor.

We can define CFIs and MFIs by ourδ-TCFIs as follows.

Lemma 1 An itemsetX is a CFI if and only ifX is a 0-
TCFI.

Lemma 2 An itemsetX is an MFI if and only ifX is a
1-TCFI.

Corollary 1 The set of all CFIs and the set of all MFIs
form theupper boundand thelower boundof the set of all
δ-TCFIs, respectively.

Example 2 Referring to the 15 FIs in Figure 1. Let
δ = 0.04, then the set of0.04-TCFIs is {b, bd, bcd,
abcd}. For example,b is a 0.04-TCFI sinceb does
not have a proper superset that has frequency greater than
((1 − 0.04) × 139) = 133. The FIa is not a0.04-TCFI
since(1 − freq(ac)

freq(a)) = 0.027 < 0.04, and similarly forac

since(1 − freq(acd)
freq(ac)) = 0.037 < 0.04 and foracd since

(1 − freq(abcd)
freq(acd)) = 0.038 < 0.04. Thus, they are recur-

sively covered by their superset that has 1 more item and
then finally covered by the0.04-TCFIabcd.

The set of0.07-TCFIs is{bd,abcd}, while the set of1-
TCFIs, i.e., MFIs, is{abcd}. However, the set of0-TCFIs,
i.e., CFIs, is all the 15 FIs.2

In the rest of the paper, we useF to denote the set of all
FIs andT to denote the set of allδ-TCFIs, for a givenδ.

3.2 Frequency Estimation

GivenT , we can recoverF (when demanded by appli-
cations). The frequency of an FIX ∈ F can be estimated
from the frequency of its supersets inT . We discuss the
frequency estimation in this subsection.

It is possible that for an FIX , there are more than one
FI Y , whereY ⊃ X , |Y | = |X | + 1 andfreq(Y) ≥ ((1 −
δ) · freq(X)). Among all these supersets ofX , the one that
has the greatest frequency can best estimate the frequency
of X . Thus, we define this superset as the closest superset
of X as follows.

Definition 2 (Closest Superset)Given an itemsetX , let
Y =

{
Y : Y ⊃ X, |Y | = |X | + 1, and freq(Y) =

MAX {freq(Y ′) : Y ′ ⊃ X, |Y ′| = |X | + 1}
}

. Y is the
closest supersetof X if Y ∈ Y andY is lexicographically
ordered before all other itemsets inY.

Given an itemsetX , we can follow a path of closest su-
persets and finally reach one closest superset, which is aδ-
TCFI. We define thisδ-TCFI superset as the closestδ-TCFI
superset ofX as follows.

Definition 3 (Closestδ-TCFI Superset) Givenn itemsets,
X1, . . . , Xn, where for1 ≤ i < n, Xi ⊂ Xi+1 and
|Xi+1| = |Xi| + 1. Xn is theclosestδ-TCFI supersetof
X1, if Xn ∈ T and for 1 ≤ i < n, Xi ∈ (F − T) and
Xi+1 is the closest superset ofXi.

Example 3 Referring to Figure 1, the closest superset of
a is ac, that ofac is acd and that ofacd is abcd. For
the two supersets ofab that have the same frequency, we
chooseabc as the closest superset ofab sinceabc is or-
dered beforeabd. Whenδ = 0.04, abcd is the closest
δ-TCFI superset of all its subsets that contain the itema,

while bcd is the closestδ-TCFI superset ofbc, cd andc.
2

To estimate the frequency of the FIs with the same clos-
estδ-TCFI supersetY , we group the FIs according to their
size and define the frequency extension ofY as follows.

Definition 4 (Frequency Extension)Given aδ-TCFIY , let
Xi = {X : |X | = |Y |−i andY is the closestδ-TCFI super-
set ofX}, where1 ≤ i ≤ m andm = MAX {i : Xi 6= ∅}.
Thefrequency extensionof Y , denoted asext(Y), is a list
(ext(Y, 1), . . . , ext(Y, m)), whereext(Y, i), for 1 ≤ i ≤
m, is defined as

ext(Y, i) =

∑
X∈Xi

freq(X)
freq(Y)

|Xi|
.

The size of the frequency extension ofY , denoted as
|ext(Y)|, is defined as|ext(Y)| = m.

The frequency extension ofY is essentially a list of aver-
aged frequency ratio grouped by the size of the FIs. With the
frequency extension ofY , we can estimate the frequency of
eachX ∈ Xi, as(freq(Y) · ext(Y, i)). We illustrate the
frequency estimation by Example 4.

Example 4 Referring to Example 3, letY = abcd, then
X1 = {abc, abd, acd}, X2 = {ab, ac, ad} andX3 =
{a}. We have ext(abcd, 1) = (103

100 + 103
100 + 104

100)/3 =

1.03, ext(abcd, 2) = (106
100 + 108

100 + 107
100)/3 = 1.07 and

ext(abcd, 3) = 111
100/1 = 1.11.

Thus, the frequency ofabc, abd andacd are estimated
as(freq(abcd)·ext(abcd, 1)) = 103, the frequency ofab,
ac andad are estimated as(freq(abcd)·ext(abcd, 2)) =
107, while the frequency ofa is estimated as(freq(abcd) ·
ext(abcd, 3)) = 111. 2

3.3 Error Bound of Frequency Estimation

We now analyze the error bound of the frequency esti-
mation. We first give Lemmas 3 and 4, which we use to
define the error bound.

Lemma 3∀X ∈ (F − T), ∃Y ∈ T such thatY ⊃ X and
freq(Y) ≥ ((1 − δ)|Y |−|X| · freq(X)).

Lemma 4For anyδ-TCFI Y , 1 ≤ ext(Y, i) ≤ 1
(1−δ)i .

Lemma 5 (Error Bound of Estimated Frequency) Given
an FI X andX ’s closestδ-TCFI supersetY , where|Y | −
|X | = i. Let freq(X) be the exact frequency ofX and
f̃req(X) = (freq(Y) ·ext(Y, i)) be the estimated frequency
of X . Then,

φ − 1 ≤
gfreq(X) − freq(X)

freq(X)
≤

1

φ
− 1,

whereφ = (1 − δ)i.

Proof. Sincef̃req(X) = (freq(Y) · ext(Y, i)), by Lemma

4, we have0 ≤ freq(Y) ≤ f̃req(X) ≤ freq(Y)
φ

. By Lemma

3, we have0 ≤ freq(Y) ≤ freq(X) ≤ freq(Y)
φ

. Thus,

0 ≤ (freq(Y)/ freq(Y)
φ

) ≤
gfreq(X)
freq(X) ≤ (freq(Y)

φ
/freq(Y)),

i.e.,φ ≤
gfreq(X)
freq(X) ≤ 1

φ
. Hence,(φ−1) ≤

gfreq(X)−freq(X)
freq(X) ≤

(1
φ
− 1). 2

Lemma 5 gives the theoretical error bound of the fre-
quency of an FI estimated from the frequency of its closest
δ-TCFI superset. However, according to Definition 4, each
ext(Y, i) of a δ-TCFI Y is taken as the average of the fre-
quency ratio of the FIs inXi over the frequency ofY , while
the relative difference in the frequency of any two FIs inXi

is bounded byδ. Thus, in practice, the estimated frequency
is highly accurate and the error bound is much smaller than
the theoretical bound defined in Lemma 5, which is also
verified by our extensive experiments.

4 Mining δ-TCFIs

In this section, we first present an algorithm that com-
putesδ-TCFIs from the set of CFIs. Then, we propose a
more efficient algorithm that employs pruning based on the
closure of theδ-TCFIs.

4.1 Algorithm CFI2TCFI

Mining CFIs is in general much more efficient than min-
ing FIs. Since the set of CFIs is a lossless representation of
FIs, we devise an algorithm which takes advantage of the
efficiency of mining CFIs. The algorithm first generates the
CFIs and then computes theδ-TCFIs from the CFIs.

Algorithm 1 CFI2TCFI
1. Mine the set of all CFIs;
2. LetCi be the set of CFIs of sizei;
3. for each i ≥ 1 do
4. for eachX ∈ Ci do
5. FindX ’s closest CFI superset, Y ;
6. if (∃Y s.t. freq(Y) ≥ (1− δ)|Y |−|X| · freq(X))
7. Updateext(Y) with freq(X) andext(X);
8. DeleteX;
9. else
10. T ← T ∪ {X};
11. return T ;

Our algorithm,CFI2TCFI, is shown in Algorithm 1. We
first generate all CFIs and partition them according to the
size of the CFIs. LetCi be the set of CFIs of sizei. Starting
from i = 1, we find theclosest CFI supersetof each CFIX
(Line 5). Here, theclosest CFI supersetof X is defined as
X ’s CFI superset that has the smallest size and the greatest

frequency among all other CFI supersets ofX . If X ’s clos-
est CFI superset is not found, thenX is a δ-TCFI and we
includeX in T (Line 10). If X has a closest CFI superset
Y but freq(Y) < ((1 − δ)|Y |−|X| · freq(X)), we also in-
cludeX in T (Line 10). Otherwise, we updateext(Y) with
freq(X) andext(X), if any, and then deleteX (Lines 7-8).

CFI2TCFI computes the exact set of allδ-TCFIs and as
we show in Section 5, the estimated frequency of the FIs re-
covered from theδ-TCFIs obtained by CFI2TCFI is highly
accurate in all cases. However, the search for the closest
CFI superset of each CFI is costly when the number of CFIs
is large. Thus, we propose a more scalable algorithm whose
efficiency is not affected by the number of CFIs.

4.2 Algorithm MineTCFI

In this section, we discuss a very efficient algorithm,
MineTCFI, for mining δ-TCFIs. We first describe the data
structures used in MineTCFI in Sections 4.2.1 and 4.2.2.
Then, we discuss an effective pruning in Section 4.2.3 and
present the main algorithm in Section 4.2.4.

4.2.1 FP-Tree and FP-Growth

Thepattern-growth method, FP-growth, by Han et al. [11]
is one of the most efficient methods for mining FIs, CFIs
and MFIs [10]. We adopt the pattern-growth procedure as
the skeleton of our algorithm MineTCFI.

FP-growth mines FIs using an extended prefix-tree struc-
ture called theFP-tree. As an example, Figure 2 shows the
FP-tree,T∅, constructed from a database excerpt which gen-
erates the FIs in Figure 1.

b: 139

root

d: 4
 c: 1

d: 130
 c: 3
 c: 4
 a: 1

c: 107
 a: 3
 a: 3
 a: 4

a: 100

item: freq

head of

node-links

b: 139

d: 134

c: 115

a: 111
 item label: freq

Node
v

Header Table

Figure 2. The FP-Tree T∅ of Figure 1

FP-growth mines the set of FIs as follows. Given an FP-
treeTX , where initiallyX = ∅ andT∅ is constructed from
the original database. For each itemx in TX .header , FP-
growth follows the list of pointers to extract all paths from
the root to the node representingx in TX . These paths form
the conditional pattern baseof Y = X ∪ {x}, denoted
asBY , from which FP-growth constructs alocal FP-tree,
called theconditional FP-tree, denoted asTY . First, the
frequent items inBY form TY .header . Then, FP-growth

re-orders the frequent items in each path inBY (the infre-
quent items are discarded) and inserts the new path intoTY .
Figure 3 shows the conditional FP-tree,Tc, which is con-
structed from the FP-treeT∅ in Figure 2.

root
item: freq

head of

node-links

d: 111

b: 110

Header Table

d: 111

b: 107

b: 3

Figure 3. The Conditional FP-Tree Tc

The above procedure is applied recursively until the con-
ditional FP-tree consists of only a single path,P , from
which FP-growth generates the itemsets represented by all
sub-paths ofP .

4.2.2 Theδ-TCFI Tree

A crucial operation in MineTCFI is the search for the su-
persets of an itemset in the set ofδ-TCFIs already discov-
ered. Performing a subset testing by comparing the itemset
with every existingδ-TCFI is clearly inefficient. In mining
CFIs, the subset testing can be efficiently processed by an
FP-tree-like structure [10]. We thus develop a similar struc-
ture, called theδ-TCFI tree, to be used for miningδ-TCFIs.

To avoid testing all existingδ-TCFIs with X , a condi-
tionalδ-TCFI tree, CX , is created corresponding to the con-
ditional FP-treeTX in each of the recursive pattern-growth
procedure calls. EachCX is local since it contains onlyδ-
TCFIs that are supersets ofX . Thus, this localCX is much
smaller than a globalδ-TCFI tree that contains allδ-TCFIs.

Each nodev in CX has three fields:item label, level
andδ-TCFI-link, where the item label indicates which item
v represents, the level is the level ofv in CX (the root is
at Level 0), and theδ-TCFI-link is a pointer to theδ-TCFI
represented by the root-to-v path. Since eachδ-TCFI has
a frequency extension, we keep theδ-TCFIs in an array so
that the frequency extension will not be duplicated in each
of the conditionalδ-TCFI trees.

Like TX , CX also has a header table, denoted as
CX .header . The items inCX .header are the same as the
items inTX .header and in the same order. Each itemx in
CX .header is associate with an array,Ax. Each entry in
Ax, Ax[l], is an array of pointers to all nodes inCX that
have item labelx and levell.

Example 5 If δ = 0.027, we obtain sevenδ-TCFIs after
processing the itema. Figure 4 shows the globalδ-TCFI
tree,C∅, which contains the sevenδ-TCFIs, and Figure 5(a)
shows the conditionalδ-TCFI tree,Cc, which contains only
δ-TCFIs that are supersets ofc. C∅ andCc correspond to

c:3:abdc

item: A
item

b: (1:v
1
)

c: (1:v
7
),(2:v

4
,v

6
),(3:v

3
)

item label:level:d-TCFI-link

Node v

Header Table

d: (1:v
5
),(2:v

2
) d:2:abd c:2:abc c:2:adc

b:1:ab d:1:ad c:1:ac

root:0:Z

v
0

v
1

v
2

v
4

v
3

v
5

v
6

v
7

Figure 4. The Global δ-TCFI Tree C∅

item: A
item

d: (1:v
2
)

Header Table

b: (1:v
1
),(2:v

3
)

d:1:acd
v

2

root:0:Z

v
0

b:1:acb

v
1

b:2:acdb
v

3

d:1:cdb

v
2

root:0:Z

v
0

b:1:acb

b:2:cdb
v

3

v
1

(a) C
c
 (Before Inserting cbd) (b) C

c
 (After Inserting cbd)

Figure 5. The Conditional δ-TCFI Tree Cc

the FP-treesT∅ andTc in Figures 2 and 3, respectively. Note
thata is not inC∅.header and no node inC∅ representsa.
This is because allδ-TCFIs containinga have already been
generated and hence there is no need to includea in C∅.

In C∅.header in Figure 4, “c: (1 : v7), (2 : v4, v6), (3 :
v3)” means thatAc has three entries:Ac[1] has a pointer to
v7 at Level 1,Ac[2] has pointers tov4 andv6 at Level 2, and
Ac[3] has a pointer tov3 at Level 3. 2

Update and Construction ofδ-TCFI Tree. To insert a
δ-TCFI Z = X ∪ Y into CX , we first sort the items inY as
the order of the items inCX .header . Then, the sortedY is
inserted intoCX . If a prefix of the sortedY already appears
as a path inCX , we share the prefix but change theδ-TCFI-
link, link, of each node on the path as follows. Assumelink
currently points toW , thenlink will point to Z if either (1)
|Z| < |W | or (2) |Z| = |W | andfreq(Z) > freq(W). If a
new node is created for an item inY , then itsδ-TCFI-link
points toZ.

To construct a conditionalδ-TCFI tree,CY , for an item
x in CX .header , i.e., Y = X ∪ {x}, we first initialize
CY .header based on the set of items inTY .header . Then,
we access each nodev in CX via its pointer inAx and ex-
tract the root-to-v path,P . After discarding the nodes onP
that do not correspond to an item inCY .header , we re-order
the remaining nodes onP according toCY .header and then
insert the path intoCY . The insertion is the same as the way
we insertZ into CX that we just discussed above.

Example 6To insert theδ-TCFIcbd intoCc in Figure 5(a),
we first sortbd asdb according toCc.header in Figure
5(a). Then, we share the path〈v2, v3〉. But theδ-TCFI-
link of v2 andv3 will be changed to point tocdb, since
freq(cdb) > freq(acd) and |cdb| < |acdb|. The δ-

TCFI tree after the insertion ofcbd is shown in Figure 5(b),
whereCc.header remains unchanged as in Figure 5(a).2

4.2.3 Closure-Based Pruning

The efficiency of CFI mining is mainly due to the pruning
based on the closure of CFIs. We make use of the tolerance
in the closure of theδ-TCFIs to achieve greater pruning in
MineTCFI.

The pruning is described as follows. Given an FIX and
X ’s conditional FP-treeTX . Let Y = X ∪ {x}, wherex
is an item inTX .header , andF(TY) be the set of FIs to be
generated fromY ’s conditional FP-treeTY . We say thatY
is coveredif there exists aδ-TCFI Z such thatZ ⊃ Y and
freq(Z) ≥ ((1 − δ)|Z|−|Y | · freq(Y)). At the time when
we generateY , if Y is already covered, then we prune all
FIs inF(TY) and thusTY will not be constructed.

The above pruning can be directly applied to mine 0-
TCFIs (i.e., CFIs), since the FIs inF(TY) must already be
covered by some 0-TCFIs that are found before we generate
Y . However, whenδ > 0, a minority of FIs inF(TY) may
not be covered by any existingδ-TCFI due to the frequency
tolerance in the closure. Some of this minority of FIs may
later becomeδ-TCFIs. However, only a very small number
of these FIs will becomeδ-TCFIs. Missing theseδ-TCFIs
will only slightly degrade the accuracy of the estimated fre-
quency of the recovered FIs, while we can still recover all
FIs from their otherδ-TCFI supersets. But to improve the
accuracy of the estimated frequency, we apply an additional
checking to prevent pruning these potentialδ-TCFIs, as de-
scribed by the following heuristic.

Heuristic 1 LetH be the set of frequent items inY ’s condi-
tional pattern base,BY , andY ′ = Y ∪ H . If Y is covered
andY ′ is also covered, then we prune all FIs inF(TY).

Heuristic 1 is based on the proximity of frequency of
the itemsets found in most datasets: ifY is covered and
Y ′, which is the largest possible superset ofY that can be
generated fromTY , is also covered, then most likely other
FIs in-betweenY andY ′ are also covered.

However, at the time when we generateY , the frequency
of Y ′ has not been determined and hence we cannot check
the condition whetherY ′ is covered. However, we find that
if there exists aδ-TCFI, Z ′, which is a superset ofY ′, then
in most casesY ′ is covered (due to the proximity of fre-
quency). Thus, we obtain the following heuristic.

Heuristic 2 If Y is covered and there exists aδ-TCFI, Z ′,
such thatZ ′ ⊃ Y ′, then we prune all FIs inF(TY).

Heuristic 2 implies that we only need to check the subset-
superset condition without knowing the frequency ofY ′. To
further increase the probability that other FIs inF(TY) are
also covered, we can add one more level of checking that

|ext(Z ′)| ≥ (|Z ′| − |Y | − 1), which means thatZ ′ has
already covered subsets of size from(|Y |+1) to (|Z ′|−1).
Let U andV be any two such subsets covered byZ ′, where
|V | = |U | + 1, then the difference between the frequency
of U and that ofV is bounded byδ. Since the FIs inF(TY)
also share the same supersetZ ′, this proximity of frequency
of other subsets ofZ ′ implies a high probability that the FIs
in F(TY) are also covered. Thus, we obtain Heuristic 3.

We first define thatY ′ is conditionally coveredby a δ-
TCFI Z ′ if Z ′ ⊃ Y ′ and|ext(Z ′)| ≥ (|Z ′| − |Y | − 1).

Heuristic 3 If Y is covered and there exists aδ-TCFI, Z ′,
such thatY ′ is conditionally covered byZ ′, then we prune
all FIs in F(TY).

Example 7 Based onT∅ in Figure 2, if δ=0.07, we first
find abdc is a 0.07-TCFI after processinga. Then, when
we processc in T∅.header , there are two frequent items
{d, b} in Bc, from which we can generatecb, cbd and
cd. Sincec is covered byabdc, (c ∪ {d, b}) ⊂ abdc
and|ext(abdc)| = 3 > (|abdc| − |c| − 1) = 2, we can be
sure that the frequency ofcb, cbd andcd can be estimated
with ext(abdc). Thus, we can prunecb, cbd andcd.

Note that ifδ=0.04, thenabdc does not coverc. Hence,
we will continue fromc and find theδ-TCFI cbd. 2

Coverage Testing. We now discuss how Heuristic 3 can
be efficiently processed using theδ-TCFI tree.

Given an FIX andX ’s δ-TCFI treeCX , let Y = X ∪
{x}, wherex is an item inCX .header . We find the superset
of Y in CX as follows. We accessAx in CX .header and
follow the pointers inAx[i] (i ≥ 1, starting fromi = 1)
to visit the nodes that have item labelx and are at Leveli
of CX . For each nodev visited, letv’s δ-TCFI-link point
to Z, we check ifY is covered byZ by testingfreq(Z) ≥
((1 − δ)|Z|−|Y | · freq(Y)).

If Y is covered byZ, then Heuristic 3 requires us to
check if Y ′ = Y ∪ H is conditionally covered, whereH
is the set of frequent items inBY . To check this, we first
sort the items inH as their order inCX .header . Let the
sortedH beH = x1x2 · · ·xk. We accessAx

k
of the item

xk in CX .header .
We first processAx

k
[k], which contains the pointers to

the nodes at Levelk in CX . For each nodev accessed via a
pointer inAx

k
[k], we check if the root-to-v path represents

a superset ofH . The checking starts fromv’s parent up to
the root and we compare both the item label and the level
of each node along the path. When we comparexi (1 ≤
i ≤ k − 1) with a nodeu, if u’s level is smaller thani, we
stop the comparison and move on to process the next node
pointer inAx

k
[k], and then the pointers inAx

k
[k+1] when

we finishAx
k
[k] and so on.

SinceCX is a localδ-TCFI tree containing onlyδ-TCFIs
that are supersets ofX , the number of comparisons is usu-
ally small. In addition, thoseδ-TCFIs that are accessed via

pointers inAx
k
[i] (∀i < k) are not compared, since the

paths from the root to those nodes have less nodes than the
number of items inH and hence cannot be supersets ofH .
In the same way, the level of a node also helps terminate
many of the subset testings earlier.

When a root-to-v path is found to be a superset ofH , let
v’s δ-TCFI-link point toZ ′, we check ifY ′ is conditionally
covered byZ ′ by testing|ext(Z ′)| ≥ (|Z ′|−|Y |−1). If Y ′

is conditionally covered byZ ′, Heuristic 3 is then applied
and all FIs inF(TY) are pruned.

In MineTCFI, if Y is covered byZ andY ′ is condition-
ally covered (byZ ′), we need to determine ifZ is the closest
δ-TCFI superset ofY in order to update the frequency ex-
tension ofZ. To do this, we need to check whether the size
of Z is the smallest among allδ-TCFIs that are supersets
of Y . But this does not mean that we need to process all
δ-TCFIs that are supersets ofY . We do not process any of
theδ-TCFIs that are accessed via the pointers inAx[j], ∀j
> |Z|−|X |, because the pointers inAx[j] link to δ-TCFIs
of size at least(|X | + j) > |Z|. In most cases,Y ’s closest
δ-TCFI superset is found via a pointer inAx[1] and rarely
do we go through many entries ofAx.

4.2.4 Algorithm MineTCFI

We now present our algorithm,MineTCFI, as shown in
Algorithm 2. After constructing the global FP-treeT∅,
MineTCFI invokes the recursive pattern-growth procedure
GenTCFI, which is shown inProcedure 1.

In Procedure 1, the processing ofIsCovered(Lines 4 and
14),IsCondCovered(Line 15) and the search for the closest
δ-TCFI superset (Lines 5 and 16) are discussed in Coverage
Testing in Section 4.2.3. Procedure 1 can be divided into
two parts: when the input conditional FP-tree,TX , consists
of only one single path (Lines 1-9), and whenTX has more
than one path (Lines 10-23).

WhenTX consists of only one single pathP , GenTCFI
generates all itemsets which satisfy locally the conditionof
aδ-TCFI. Then, for each localδ-TCFI Y , GenTCFI checks
if Y is covered. IfY is not covered, thenY is aδ-TCFI and
we add it toT (Line 8). GenTCFI also insertsY into all the
conditionalδ-TCFI trees which are constructed along the
path of the previous recursive calls of GenTCFI (Line 9), so
that the future recursive calls can construct their conditional
δ-TCFI trees correctly. IfY is covered, GenTCFI findsY ’s
closestδ-TCFI supersetZ from CX and updatesZ ’s fre-
quency extension with the frequency ofY (Lines 5-6).

When TX consists of more than one path, GenTCFI
processes each itemx in TX .header as follows. First,
GenTCFI constructs the conditional pattern baseBY of
Y = X ∪ {x}. Let H be the set of frequent items inBY .
If Y is covered and(Y ∪ H) is conditionally covered, by
Heuristic 3, GenTCFI prunes all supersets ofY that are to

Algorithm 2 MineTCFI
1. Construct the global FP-tree,T∅;
2. Initialize the globalδ-TCFI tree,C∅;
3. T ← ∅;
4. Invoke GenTCFI(T∅, C∅, T);
5. ReturnT ;

Procedure 1 GenTCFI(TX , CX , T)

1. if (TX is a single path,P)
2. Generate all localδ-TCFIs fromP ;
3. for each local δ-TCFI,Y , generateddo
4. if (IsCovered (Y,CX) = true)
5. FindY ’s closestδ-TCFI superset,Z;
6. Updateext(Z) with freq(Y);
7. else
8. T ← T ∪ {Y };
9. InsertY into all CX ’s predecessorδ-TCFI

trees in the recursive-call stack;
10. else
11. for eachx in TX .header do
12. Y ← X ∪ {x};
13. LetH be the set of frequent items inBY ;
14. if (IsCovered (Y,CX) = true)
15. if (IsCondCovered(Y ∪H,CX) = true)

/∗ Prune all supersets ofY ∗/
16. FindY ’s closestδ-TCFI superset,Z;
17. Updateext(Z) with freq(Y);
18. else
19. ConstructY ’s conditional FP-tree,TY ,

andY ’s conditionalδ-TCFI tree,CY ;
20. GenTCFI(TY , CY , T);
21. else /∗ IsCovered (Y,CX) = false ∗/
22. ConstructY ’s conditional FP-tree,TY ,

andY ’s conditionalδ-TCFI tree,CY ;
23. GenTCFI(TY , CY , T);

be generated fromTY (Lines 14-17). Otherwise, GenTCFI
constructsY ’s conditional FP-treeTY and conditionalδ-
TCFI treeCY (Lines 19 and 22). The recursive procedure
is then called to process onTY andCY (Lines 20 and 23).

5 Experimental Results

We now evaluate our approach of miningδ-TCFIs. We
run all experiments on a PC with an Intel P4 3.2GHz CPU
and 2GB RAM, running Linux 64-bit.

Datasets. We use the real datasets from the popular FIMI
Dataset Repository [9]. We choose three datasets with the
following representative characteristics. For a wide range
of values ofσ:

• pumsb*: the number of CFIs is orders of magnitude
smaller than that of FIs, but is orders of magnitude
larger than that of MFIs.

• accidents: the number of CFIs is almost the same
as that of FIs, and is orders of magnitude larger than
that of MFIs.

• mushroom: the number of CFIs is orders of magni-
tude smaller than that of FIs, but is only a few times
larger than that of MFIs.

Algorithms for Comparison. We compare our algorithms
CFI2TCFI and MineTCFI with the following algorithms:

• FPclose[10]: the winner ofFIMI 2003 [9] and one of
the fastest public implementations for mining CFIs.

• NDI [7]: the algorithm (the faster DFS approach) for
computing the set ofnon-derivable FIs(NDIs).

• MinEx [5]: the algorithm for mining the set of frequent
δ-free-sets.

• RPlocal [16]: the faster algorithm (thanRPglobal)
for computing therepresentative patterns of theδ-
clusters.

5.1 Performance at Different Minimum
Support Thresholds

We first study the performance of the different algo-
rithms by varying the minimum support thresholdσ. We
fix δ=0.05 for both pumsb* and accidents. For
mushroom, since the difference between the number of
CFIs and that of MFIs is much smaller than the other two
datasets, we set a largerδ = 0.2 to obtain a greater reduc-
tion for the algorithms with the parameterδ.

We use the sameδ for CFI2TCFI, MineTCFI and RPlo-
cal. However, theδ defined in MinEx is an absolute value.
Thus, in each case we compare with MinEx, we find aδ
for MinEx such that the error rate of MinEx approximately
matches that of MineTCFI.

5.1.1 Number of Itemsets and Error Rate

We compare the size of each of the concise representations
of FIs. For simplicity, we useNum(alg) to denote the num-
ber of itemsets obtained by the algorithmalg.

Figures 6 to 8 report the number of itemsets returned
by each algorithm. In most cases,Num(CFI2TCFI) and
Num(MineTCFI) are about an order of magnitude smaller
than Num(FPclose) and Num(NDI), many times smaller
than Num(MinEx), and on average 2 times smaller than
Num(FPclose). In all cases, the number ofδ-TCFIs ob-
tained by both MineTCFI and CFI2TCFI is very close to
the number of MFIs.

Table 1 shows the error rate of the estimated frequency
of the FIs recovered from theδ-TCFIs. We can see the er-
ror rate of CFI2TCFI is much lower thanδ in all cases. The
error rate of MineTCFI is higher but still lower thanδ, espe-
cially that formushroom is only 1/10 ofδ. The error rate

0.10.20.30.40.5
10

1

10
2

10
3

10
4

10
5

10
6

Minimum Support Threshold σ

N
um

be
r

of
 It

em
se

ts

FPclose
NDI
MinEx
RPlocal
MineTCFI
CFI2TCFI
MFI

Figure 6. Number of Itemsets (pumsb*)

0.10.20.30.40.5
10

2

10
3

10
4

10
5

10
6

10
7

Minimum Support Threshold σ

N
um

be
r

of
 It

em
se

ts

FPclose
NDI
MinEx
RPlocal
MineTCFI
CFI2TCFI
MFI

Figure 7. Number of Itemsets (accidents)

0.010.020.030.040.05
10

3

10
4

10
5

Minimum Support Threshold σ

N
um

be
r

of
 It

em
se

ts

FPclose
NDI
MinEx
RPlocal
MineTCFI
CFI2TCFI
MFI

Figure 8. Number of Itemsets (mushroom)

of MineTCFI is higher than CFI2TCFI because MineTCFI
is only able to include partially the frequency of the subsets
of a δ-TCFI in its frequency extension, as some of the sub-
sets are pruned. The error rate of MinEx is the same as that
of MineTCFI. NDIs and CFIs are lossless representations
of FIs, while the error rate of RPlocal is bounded byδ.

pumsb* accidents mushroom
(δ = 0.05) (δ = 0.05) (δ = 0.2)

CFI2TCFI 0.01 0.01 0.01
MineTCFI 0.03 0.04 0.02

Table 1. Error Rate of Estimated Frequency

5.1.2 Running Time and Memory Consumption

Figure 9 reports the running time and memory consumption
of the algorithms. We truncate the time and memory that are
orders of magnitude larger than the largest points presented

0.10.20.30.40.5
0

20

40

60

80

Minimum Support Threshold σ

R
un

ni
ng

 T
im

e
(s

ec
)

FPclose
NDI
RPlocal
MineTCFI
CFI2TCFI

(a1) Running Time (pumsb*)

0.10.20.30.40.5
0

20

40

60

80

100

Minimum Support Threshold σ

M
em

or
y

C
on

su
m

pt
io

n
(M

B
) FPclose

NDI
RPlocal
MineTCFI
CFI2TCFI

(a2) Memory Usage (pumsb*)

0.10.20.30.40.5
0

50

100

150

200

250

300

Minimum Support Threshold σ

R
un

ni
ng

 T
im

e
(s

ec
)

FPclose
NDI
RPlocal
MineTCFI
CFI2TCFI

(b1) Running Time (accidents)

0.10.20.30.40.5
0

50

100

150

200

Minimum Support Threshold σ

M
em

or
y

C
on

su
m

pt
io

n
(M

B
) FPclose

NDI
RPlocal
MineTCFI
CFI2TCFI

(b2) Memory Usage (accidents)

0.010.020.030.040.05
0

5

10

15

20

Minimum Support Threshold σ

R
un

ni
ng

 T
im

e
(s

ec
)

FPclose
NDI
RPlocal
MineTCFI
CFI2TCFI

(c1) Running Time (mushroom)

0.010.020.030.040.05
0

5

10

15

20

25

30

Minimum Support Threshold σ

M
em

or
y

C
on

su
m

pt
io

n
(M

B
) FPclose

NDI
RPlocal
MineTCFI
CFI2TCFI

(c2) Memory Usage (mushroom)

Figure 9. Time and Memory for Varying σ

in the respective figures, since most of the time and memory
usage are small and will be squeezed into a single line if we
use a logarithmic scale.

It is obvious from Figures 9 (a1), (b1) and (c1) that
MineTCFI, which is the lowest line in all figures, is sig-
nificantly faster than all other algorithms. The running time
of RPlocal is the closest to that of MineTCFI but still about
3 times longer on average. CFI2TCFI is also fast in most of
the cases, except when the number of CFIs is large.

The memory consumption of the algorithms is small in
most cases, except that CFI2TCFI and FPclose use more
memory when the number of CFIs is large. Formushroom
as shown in Figure 9 (c2), MineTCFI consumes more mem-
ory than other algorithms but the difference is only 2MB.
However, in most of the other cases, MineTCFI has the low-
est memory consumption among all algorithms, as shown in
Figures 9 (a2) and (b2).

5.2 Effect of Different Values of δ

We now study the effect of different values ofδ on min-
ing δ-TCFIs. We test on the two larger datasetspumsb*

andaccidents. We fix σ at 0.3 and varyδ from 0.001
(a sufficiently low error rate in our opinion) to 0.2 (aδ at
which the set ofδ-TCFIs is almost the set of MFIs).

0.001 0.01 0.05 0.1 0.15 0.2
10

2

10
3

10
4

10
5

Frequency Tolerance Factor δ

N
um

be
r

of
 It

em
se

ts

FPclose
MineTCFI
CFI2TCFI
MFI

(a) No. of Itemsets (pumsb*)

0.001 0.01 0.05 0.1 0.15 0.2
10

3

10
4

10
5

10
6

Frequency Tolerance Factor δ

N
um

be
r

of
 It

em
se

ts

FPclose
MineTCFI
CFI2TCFI
MFI

(b) No. of Itemsets (accidents)

Figure 10. Different Values of δ

Figures 10 (a) and (b) show the number ofδ-TCFIs ob-
tained by CFI2TCFI and MineTCFI, as well as the number
of CFIs and MFIs as references. The number ofδ-TCFIs is
about 4 to 5 times smaller than that of CFIs atδ = 0.001
and already becomes over an order of magnitude smaller at
δ = 0.01. The number ofδ-TCFIs is within 2 times of that
of MFIs atδ = 0.05 and is almost the same as that of MFIs
at δ = 0.2.

0.001 0.01 0.05 0.1 0.15 0.2
10

−5

10
−4

10
−3

10
−2

10
−1

Frequency Tolerance Factor δ

E
rr

or
 R

at
e

MineTCFI (accidents)
MineTCFI (pumsb*)
CFI2TCFI (accidents)
CFI2TCFI (pumsb*)

Figure 11. Error Rate of Different δ

Figure 11 shows the error rate of CFI2TCFI and
MineTCFI for pumsb* andaccidents. At δ = 0.001,
the error rate of CFI2TCFI and MineTCFI is significantly
(up to 20 times) smaller thanδ, except that of MineTCFI
for pumsb* which is approximately 0.001. The error rate
increases only slightly for large values ofδ. Forpumsb*
at 0.05 ≤ δ ≤ 0.2 andaccidents at 0.1 ≤ δ ≤ 0.2, the
error rate increases only within the range of 0.01.

This result shows that the actual error rate does not grow
with the theoretical error bound given in Lemma 5, but re-
mains to be small whenδ becomes large. This is an impor-
tant finding since for many applications the user is allowed
to specify a largeδ, while we can still achieve high accu-
racy, which is not largely affected byδ, and obtain a very
concise set ofδ-TCFIs. The small error rate also demon-

strates the need for the frequency extension of aδ-TCFI in
maintaining high accuracy of the estimated frequency.

6 Related Work

In addition to MFIs [4] and CFIs [14] we have discussed
in Section 1, we are aware of the work by Xin et al. [16]
which uses a similar notion of closeness measure of fre-
quency byδ. They define a set of itemsets,S, to form
a cluster if∃Y (called arepresentative pattern), such that
∀X ∈ S, X ⊆ Y and (1 − freq(Y)

freq(X)) ≤ δ. However,
this definition is non-recursive, while the definition of our
δ-TCFIs removes the redundant subsets recursively. Thus,
our approach is able to achieve better compression as evi-
denced by experimental results. We note that the number of
δ-TCFIs can be significantly reduced when a relaxed mini-
mum support threshold is used as in [16]. However, in our
experiments, we do not relax the minimum support thresh-
old for both RPlocal and our algorithms, as to be fair to
other algorithms under comparison.

Boulicaut et al. [5] define an itemsetX as aδ-free-set if
∀X ′ ⊆ X , ∄Y ⊂X ′ such that(freq(Y)−freq(X ′))≤δ. The
frequency of an FIX is estimated from its subsets; thus,
an extra set of border itemsets is required in order to de-
termine whetherX is frequent. Calders and Goethals [7]
utilize the inclusion-exclusion principle to deduce the lower
bound and the upper bound for the frequency of an itemset
and define an itemset as non-derivable if the lower bound
and the upper bound are not equal. The set of NDIs is a
lossless representation of FIs but can be still too large in
some cases. Pei et al. [15] propose two types of condensed
FI bases to approximate the frequency of itemsets with a
user-defined error boundk. The frequency of an FI can be
derived from either its subsets or supersets in the FI base.

7 Conclusions

We proposeδ-TCFIs as a concise and flexible represen-
tation of FIs. The notion ofδ-tolerance allows us to flexibly
tuneδ to enjoy the benefits of both MFIs and CFIs: we can
prune a great amount of redundant patterns from the min-
ing result as do MFIs, while we can retain the frequency
information of the recovered FIs as do CFIs. Experimental
results verify that in all cases, the number ofδ-TCFIs is very
close to the number of MFIs and much smaller than all other
existing concise representations of FIs [10, 7, 5, 16]. The
results also show that the actual error rate of the estimated
frequency of the recovered FIs is much lower than the theo-
retical error bound. In particular, our algorithm CFI2TCFI
attains an error rate significantly lower thanδ in all cases.
CFI2TCFI is also shown to be very efficient in most cases
except when the number of CFIs is large. Our second algo-
rithm MineTCFI attains an accuracy slightly lower than that

of CFI2TCFI; however, MineTCFI is significantly faster
than all other algorithms [10, 7, 5, 16] in all cases and also
consumes less memory in most cases.

Acknowledgement. This work is partially supported by
RGC CERG under grant number HKUST6185/03E. The
authors would like to thank Prof. G̈osta Grahne for pro-
viding us FPclose, Dr. Bart Goethals for providing us NDI,
Prof. Christophe Rigotti for providing us MinEx, and Prof.
Jiawei Han and Mr. Dong Xin for providing us RPlocal.

References
[1] R. Agrawal, T. Imielinski, and A. N. Swami. Mining Asso-

ciation Rules between Sets of Items in Large Databases. In
Proc. of SIGMOD, 1993.

[2] R. Agrawal and R. Srikant. Fast Algorithms for Mining As-
sociation Rules. InProc. of VLDB, 1994.

[3] R. Agrawal and R. Srikant. Mining Sequential Patterns. In
Proc. of ICDE, 1995.

[4] R. Bayardo. Efficiently Mining Long Patterns from Data-
bases. InProc. of SIGMOD, 1998.

[5] J.F. Boulicaut, A. Bykowski and C. Rigotti. Free-Sets: a
Condensed Representation of Boolean Data for the Approx-
imation of Frequency Queries. InDMKD 7(1):5-22, 2003.

[6] S. Brin, R. Motwani, and C. Silverstein. Beyond Market
Basket: Generalizing Association Rules to Correlations. In
Proc. of SIGMOD, 1997.

[7] T. Calders and B. Goethals. Mining All Non-derivable Fre-
quent Itemsets. InProc. of PKDD, 2002.

[8] G. Dong and J. Li. Efficient Mining of Emerging Patterns:
Discovering Trends and Differences. InProc. of KDD, 1999.

[9] B. Goethals and M. Zaki. FIMI 2003 workshop. InProc. of
the ICDM Workshop on Frequent Itemset Mining Implemen-
tations, 2003.

[10] G. Grahne and J. Zhu. Efficiently Using Prefix-trees in Min-
ing Frequent Itemsets. InIEEE ICDM Workshop on Fre-
quent Itemset Mining Implementations (FIMI 03), 2003.

[11] J. Han, J. Pei, and Y. Yin. Mining Frequent Patterns without
Candidate Generation. InProc. of SIGMOD, 2000.

[12] IBM Quest Data Mining Project. The Quest re-
tail transaction data generator. http://www.
almaden.ibm.com/software/quest/, 1996.

[13] H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery of
Frequent Episodes in Event Sequences. InDMKD, 1:259-
289, 1997.

[14] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discover-
ing Frequent Closed Itemsets for Association Rules. InProc.
of ICDT, 1999.

[15] J. Pei, G. Dong, W. Zou, and J. Han. Mining Condensed
Frequent-Pattern Bases. InKnowl. Inf. Syst.6(5): 570-594,
2004.

[16] D. Xin, J. Han, X. Yan, and H. Cheng. Mining Compressed
Frequent-Pattern Sets. InProc. of VLDB, 2005.

[17] X. Yan, P. Yu, and J. Han. Graph Indexing: A frequent
Structure-Based Approach. InProc. of SIGMOD, 2004.

[18] L. H. Yang, M. L. Lee, W. Hsu. Efficient Mining of XML
Query Patterns for Caching. InProc. of VLDB, 2003.

