
An Efficient Index Lattice for XML Query Optimization

James Cheng and Wilfred Ng

Department of Computer Science

The Hong Kong University of Science and Technology

Hong Kong

Email: {csjames, wilfred}@cs.ust.hk

Abstract

Structural indexes of XML data can effectively reduce the search space for the

evaluation of path queries over the data. The indexes partition the structural graph

of an XML document into equivalent classes of nodes that are then condensed into

index nodes. However, structural indexes are inadequate to handle queries with value-

based conditions, since equivalent nodes in the same partition become distinguishable

by their data contents. In practice, only a small portion of nodes in each partition are

relevant for the processing of a value-based condition.

To enhance the applicability of structural indexes, we propose a lattice structure

on an XML structural index, which we call the Structure Index Tree (SIT). The index

is defined as partitions of equivalent paths in an XML document, while an element

in the lattice, which we call a SIT-Lattice Element (SLE), is an index of an arbitrary

subset of paths in the document. Since paths represent the structure of XML data

and each text node is associated with a unique path, we can define an SLE to filter

out both irrelevant structures and text nodes. We propose a set of SLE operations

and devise efficient techniques to generate SLEs that can be tailored towards query

workloads. Our experiments show that SLEs significantly speed up the evaluation of

path queries with value-based and aggregation-based conditions. We also demonstrate

that SLEs are able to support effective querying over very large XML documents in

memory-limited hand-held devices.

1

1 Introduction

It is well recognized that establishing an efficient index to aid in processing queries on XML

data is important. Many existing structural indexes (or structural summaries) on XML or

semi-structured data, such as Dataguides [12], 1-index [24], A(k)-indexes [18], D(k)-indexes

[7], M(k)-indexes [16], and F&B-index [1, 17], partition nodes in the structure graph of an

XML document into classes of equivalent nodes. Each class of equivalent nodes is condensed

into a single index node, while the node ids are stored in a concise structure, called the

extent, that is associated with the index node. These indexes can thus effectively prune the

search space to speed up the evaluation of structural path queries. However, when value-

based conditions are incorporated into the queries, we need also to examine the data value

of each node (i.e., character data of an XML element) in an equivalent class. Hence, the

indexes become less useful, since normally only a small portion of nodes in an equivalent

class match a given value-based condition.

The use of a structural index to process value-based query conditions and structural path

expressions is mainly hindered by two factors that are related to the size of the index: (1)

huge structure size and (2) huge extent size. By structure size, we refer to the total number

of nodes in the index. By extent size, we refer to, depending on whether we are addressing

a node in the index or the index itself, either the number of equivalent nodes represented by

the extent of the index node or the sum of the extent sizes of all the nodes in the index.

In this paper, we study the problems arising from these two factors and propose a solution

by utilizing a lattice structure [14] defined on a structural index of XML data, called the

Structure Index Tree (or the SIT in short) [8]. The SIT 1 is constructed based on the

partitioning of equivalent paths in an XML document, while an element in the lattice is an

index of an arbitrary subset of paths in the document. We call the lattice the SIT-lattice and

its element a SIT-lattice element, or an SLE for short. We now explain how the SIT-lattice

addresses the two size problems of the existing indexes.

1The SIT was first introduced in our preliminary work [8] to aid in efficient evaluation of XPath [10]

queries on compressed XML data. The full version of XQzip is under reviewing by another journal.

2

1.1 The Huge Structure Size Problem

The structure size of most indexes of XML data can approach the size of the base data. For

example, the structure size of the 1-index on Treebank [23] and that of the F&B-index on

XMark [30] are comparable to the size of the base data. In this case, the indexes are not

efficient enough to support the evaluation of structural queries.

Existing indexes, such as A(k)-indexes, D(k)-indexes and M(k)-indexes, are able to reduce

their structure size by computing the k-bisimulation [26, 18] for a smaller value of k. A more

flexible way of reducing the structure size of an index is the index definition scheme proposed

by Kaushik et al. [17]. The index definition scheme reduces the structure size of a covering

index by indexing a selected set of tags and idrefs [1] and by computing the k-bisimulation

and restricting the number of iterations of the k-bisimulation computation. These techniques

tackle the structure size problem by exploiting a tradeoff between the structure size of the

index and the size of the class of queries that the index is able to cover.

We address the structure size problem by considering different combinations of the root-

to-leaf paths in the SIT. In total, there are 2n combinations, where n is the number of leaf

nodes in the SIT, and each combination constitutes an SLE. Therefore, the structure size of

an SLE ranges from as small as the size of a single path to that of the full index, i.e., the

SIT, which is the top of the index lattice. Compared with Kaushik et al.’s index definition

scheme and other indexing techniques, our proposal of using SLEs is much more flexible and

effective, since we select the index of an arbitrary combination of paths that are relevant for

query evaluation. We illustrate this by the following example.

Example 1.1 Consider a full index, I, of an XML document, as shown in Figure 1(a).

Suppose that we are only interested in the information of the elements “d” and “f” that

are the children of “c” but not the siblings of “h”. To evaluate a query of this information,

our method uses the XPath 2.0 union expression [3], “//c[not h]/(d | f)”, to specify an

SLE and extract it from I, as depicted in Figure 1(b). With Kaushik et al.’s method, the

minimal coverage is to select only the elements “c”, “d”, “f” and “h” and then check a “c”

element by examining if it has a child, “h”. However, this is bound to be less efficient, since

3

not only extra processing of the predicate is needed, but the resulting index also includes

nodes such as “c10”, “d6”, “d11”, “f8” and “h12” which are irrelevant in the evaluation of a

query of the required information.

f
d
d
g
h
d
f
e

c
c
c
d

b
b

2

a
1

/
0

e
d

c

3

d
d

c
c

b
b

a

/

(a) An Index,
I
 (b) A Lattice Element of
I

4
 5
 7
 8
 11

6

12
14
 15
17
 18

9

10
 13
 16

0

1

2

3

4

9

13

15

f
d

c

17
 18

16

Figure 1: A Full XML Index and Its Lattice Element

1.2 The Huge Extent Size Problem

A critical problem with indexes defined based on node-equivalence partitioning is that the

structure size of the index is reduced at the expense of a corresponding increase in the extent

size of the index nodes. For example, consider that an XML document has 10,000 “a”

elements and an A(kL)-index that condenses the 10,000 nodes into 10 nodes, each having an

extent size of 1,000. If an A(ks)-Index, for some ks < kL, further condenses the 10 nodes into

a single node, then the extent size of this single node will be increased to 10,000. Although

the reduction in the structure size (from 10 nodes to 1 node) accelerates the evaluation

of structural queries, such as “//a”, for a value-based query condition, such as “//x[a =

‘‘some value’’]”, we have to match ‘‘some value’’ with the data value of each of the

10,000 “a” elements, even though in practice there are usually few matches.

Our SIT-lattice is a well-defined structure that allows us to select only the relevant subset

of nodes from the extent of an index node, since the SLE can select an arbitrary subset of

paths from an XML document. We illustrate this idea of using the SLEs to accelerate query

evaluation by the following example.

Example 1.2 Consider an XML document tree in Figure 2, where the attached integer of

each node is its node id. Suppose we are only interested in the information related to the

elements, “g”, “h” and “i”, that are descendants of a “c” element that has an “id” attribute

of type “A”. To evaluate queries that retrieve data of these elements, such as “//c[@id =

4

d

29

@id

28

i

f

30

31

c
27

h
g

e

36
 37

35

d

34

@id

33

i

f
38

39

c
32

h
g

e

23
 24

22

d

21

@id

20

i

f
25

26

c
19

d

16

@id

15

i

f

17

18

c
14

h
g

e

10
 11

9
d
5
@id

4

i

f
12

13

c
3

h
g

e

7
 8

6

b
2

a
1

/
0

"i1"
 "i2"
 "i3"
 "i4"
 "i5"

"A"
 "A"
 "B"
 "A"
 "B"
"d0"

"g0"
"h0"
 "g1"
"h1"

"d1"
 "d2"

"g2"
"h2"

"d3"
 "d4

"g3"
"h3"

Figure 2: An XML Document Tree

i

f

c

h
 g

e

i

f

c

b

a

/

{
8,11
}

{
3
}

{
12
}

{
7,10
}

{
6
,
9
}

{
18,
31
}

{
14,2
7
}

{
17,
30
}

{
1
}

{
0
}

{
13
}

{
2
}

Figure 3: A Sample SIT-Lattice Element (SLE)

‘‘A’’]//h”, we need only to access the shaded nodes in Figure 2. As we mentioned before,

with the SLE, we can select a combination of paths in an XML document and the resultant

SLE is an index for the selected XML data. The SLE selected for our example is shown in

Figure 3, which is an index of the shaded nodes in Figure 2. Processing queries using this

smaller index of relevant data is obviously more efficient than using the full index. Moreover,

the SLE also pre-computes the common predicate “[@id = ‘‘A’’]” of the query workload.

In Figure 3, we can further combine the two equivalent paths, 〈c, f, i〉, into one; however,

the collapsed index does not cover branching path expressions. For example, the “f” elements

are not distinguishable by the query “//c[e]/f” with the two paths combined, but are

distinguishable with the SLE in Figure 3. In fact, as we will show later, the main factor

that accelerates query evaluation is the reduction in the extent size, rather than the further

reduction in the structure size obtained by the coalescence of the two paths.

Another practical problem arising from the huge extent size is that in most cases the

extents are too large to be loaded in the main memory of a machine. If we store the extents

in a relational database then it incurs substantial disk I/O, resulting in degraded query

performance. Our method can partition the full index into a set of SLEs, each of which can

fit in the main memory. This approach is feasible in practice, since we usually access only a

portion of the full index at a certain time.

5

In this paper, we make the following contributions.

• We propose a novel lattice structure on the SIT [8], which is a structural index for XML

data. The lattice elements can effectively filter out irrelevant elements to accelerate

query evaluation. To the best of our knowledge, our method is the first to address the

problem of both the structure size and the extent size of an index on XML data.

• We specify an SLE in XPath [3]. We also present a set of heuristic rules to aid in

SLE specification and three strategies to partition a full index to enable querying large

XML datasets in memory-limited devices. We devise a set of lattice operations, such

as union, intersection, subtraction and extraction, to obtain useful SLEs efficiently.

• We evaluate the SLEs on several benchmark datasets and a comprehensive set of

queries. The results show that significant performance improvement is obtained and

that using SLEs can efficiently query large XML datasets in a pocket-PC. We also show

that compared with Kaushik et al.’s index definition scheme [17], the SLEs are much

easier and less costly to construct and more effective in controlling both the structure

size and the extent size of the XML index.

Paper Outline. We define the SIT-lattice in Section 2. We propose a syntax and a set of

rules to specify an SLE, and then present the algorithms to construct an SLE in Sections 3

and 4, respectively. We evaluate the performance of the SLEs in Section 5 and discuss some

related work in Section 6. Finally, we give our concluding remarks in Section 7.

2 An Index Lattice

In this section, we introduce the notion of a lattice structure on the Structure Index Tree

(SIT) [8], which we call the SIT-lattice. We first describe the SIT and then formally define

the SIT-lattice.

2.1 The XML Structure Index Tree (SIT)

The SIT is an index defined on the structure of XML data. We model an XML document

as a tree2, called the structure tree, T = (VT , ET , rootT), where VT and ET are the set of

2We do not consider idrefs [5] in this paper since they are comparatively rare in practice.

6

tree nodes and edges in T , respectively, and rootT is the unique root of T . Each edge in ET

specifies the parent-child relationship of two nodes. Each tree node, v ∈ VT , is defined as v =

(lid, nid, ext), where v.lid is the unique identifier of the element/attribute label generated by

a hash function; v.nid is the unique node identifer assigned to v according to the document

order; and ext denotes the extent associated with v, which contains the nids of the set of

equivalent nodes that are coalesced into v. We set v.ext = {v.nid}, which is later to be

combined with the exts of other equivalent nodes to obtain the SIT.

Each v is identified by the (v.lid, v.nid) pair and the identity of rootT is uniquely assigned

to be (0, 0). In addition, if v has n children (β1, . . . , βn), their order is specified as: (1)

β1.lid ≤ β2.lid ≤ · · · ≤ βn.lid; and (2) if βi.lid = βi+1.lid, then βi.nid < βi+1.nid. This node

ordering accelerates node selection in T by an approximate factor of 2, since we match the

nodes by their lids and, on average, we only need to search half of the children of a node in

T . As an example, Figure 4 shows the structure tree of the XML document in Figure 2.

33
,5
7
,9
7
,6
 81
,25
33
,21
7
,22
3
,20
3
,4

17
,3
 17
,19

217
,1

111
,2

0
,0

89
,10
9
,11
89
,7
9
,8
 70
,13
 70
,26
89
,23
9
,24

81
,12
 81
,17
33
,16

17
,14

70
,18

3
,15
 81
,38
33
,34
7
,35
3
,33

17
,32

70
,39
89
,36
9
,37

81
,30
33
,29

17
,27

70
,31

3
,28

 /
 0 a
 217 b
 111 c
 17

@id
 3

 d
 33

 e
 7 f
 81

 g
 89

h
 9
 i
 70

lid
(Assigned by a Hash Function)

lid
,
nid

A Tree Node

Figure 4: The Structure Tree of the XML document presented in Figure 2

Each text node in an XML document is attached to a unique path in the structure tree,

which is defined by “p = vi . . . vj”, where vj is a leaf node. We also define a path ordering

as follows.

Definition 2.1 (Path Ordering) We define path ordering, ≺, as follows. Given two paths,

p1 = u0 . . . um and p2 = v0 . . . vn, p1 ≺ p2 if one of the following two conditions holds:

1. There exists some i, where 0 ≤ i < min(m,n), such that ui.nid = vi.nid and ui+1.nid 6=

vi+1.nid, and

1.1 ui+1.lid < vi+1.lid; or

1.2 ui+1.lid = vi+1.lid and ui+1.nid < vi+1.nid.

7

2. ui.nid = vi.nid, for 0 ≤ i ≤ m and m = n.

We also say that p1 � p2 (or p2 � p1) if the second condition in Definition 2.1 holds.

While p1 � p2 implies that p1 and p2 are the same path if they are in the same structure tree,

they are different paths if they exist in two distinct structure trees. With this path ordering,

we can specify a structure tree (or a structure subtree), T , as the set of all its paths ordered

by ≺ as follows: T = p0 ≺ · · · ≺ pn.

To eliminate duplicate structures in a structure tree, we introduce the notion of SIT-

equivalence, which is employed to merge duplicate paths and subtrees to obtain the SIT.

Definition 2.2 (SIT-equivalence) Two paths, p1 = u0 . . . um and p2 = v0 . . . vn, are SIT-

equivalent, if ui.lid = vi.lid for 0 ≤ i ≤ m and m = n. Two subtrees, T1 = p10 ≺ · · · ≺ p1m′

and T2 = p20 ≺ · · · ≺ p2n′ , are SIT-equivalent, if (1) the roots of T1 and T2 are siblings and

(2) p1i and p2i are SIT-equivalent for 0 ≤ i ≤ m′ and m′ = n′.

The following example helps illustrate the concepts of branch ordering and SIT-equivalence.

Example 2.1 Given p1 = “(0, 0) . . . (3, 4)”, p2 = “(0, 0) . . . (9, 8)” and p3 = “(0, 0) . . . (3, 15)”

in Figure 4, and p4 = “(0, 0) . . . (3, 15)” in Figure 5, we have p1 ≺ p2 ≺ p3, p3 � p4 and

p4 � p3. The subtrees rooted at the nodes (17,14) and (17,27) in Figure 4 are SIT-equivalent,

since every pair of corresponding paths in these two subtrees are SIT-equivalent. The subtrees

rooted at the nodes (17,19) and (17,32) are also SIT-equivalent.

Since the structures of SIT-equivalent subtrees are duplicate, we define a tree-merge op-

eration, merge(T1, T2), as shown in Procedure 2.1, to eliminate the redundant tree structures

by merging the SIT-equivalent subtrees, T1 and T2.

Procedure 2.1 merge(T1, T2)

/∗ T1 and T2 are SIT-equivalent subtrees and T1.root.nid < T2.root.nid ∗/
begin

1. Depth-first traverse T1 and T2 in parallel in pre-order:

2. for each pair of nodes, u ∈ T1 and v ∈ T2, visited, do

3. u.ext := u.ext ∪ v.ext;

4. Delete v and its incoming edge;

5. return T1; /∗ T2 has been merged into T1 ∗/

end

8

It is obvious that the precondition of the merge operation, i.e., whether T1 and T2 are

SIT-equivalent, can also be verified by a pre-order traversal of T1 and T2 in parallel and

comparing the lids of each pair of nodes visited.

To give an example of the merge operation, if we apply the merge operation to the SIT-

equivalent subtrees rooted at the nodes (17,14) and (17,27) in Figure 4, the resultant merged

subtree is the subtree rooted at (17,14) in Figure 5.

We now give the semantic definition of the SIT.

Definition 2.3 (Structure Index Tree) Given a structure tree, T . The Structure Index

Tree (SIT) of T is a relaxed form of T that allows more than one element in the extent of a

tree node such that no two distinct subtrees in T are SIT-equivalent.

81
,12
33
,5
7
,6
3
,4

17
,3

217
,1

111
,2

0
,0

70
,13
89
,7
9
,8

{
3,19,32
}

{
5
,21,34
}

{
13,26,39
}

{
4,20,33
}

{
12
,25,38
}

{
8,11,24,37
}
 {
7,10,23,36
}

{
6
,
9,22,35
}

81
,17
33
,16
3
,15

17
,14

70
,18

{
18,31
}

{
15,28
}
 {
16,29
}

{
14,27
}

{
17,30
}

{
2
}

{
1
}

{
0
}

v
.
ext
= {
n
id
0
, ... ,
nid
n

}

lid
,
nid

An Index Node,
v

Figure 5: The SIT of the XML Document in Figure 2

It is trivial that T can be viewed as the SIT of T if T has no SIT-equivalent subtrees (i.e.

the SIT whose extents are singletons). Otherwise, the SIT of T can be obtained by applying

merge iteratively on T until no SIT-equivalent subtrees can be found. For example, the tree

shown in Figure 5 is the SIT obtained from the the structure tree shown in Figure 4. Note

that all SIT-equivalent subtrees in Figure 4 are merged into a corresponding SIT-equivalent

subtree in the SIT and that no two subtrees in the SIT is SIT-equivalent.

The operation merge(T1,T2) merges T2 into T1 only if T1 precedes T2 in document order,

and vice versa. Therefore, the SIT is unique even if the merge operation is randomly applied

on any two subtrees of a set of SIT-equivalent subtrees in the structure tree. In practice,

however, we apply the merge operation in post-order, as outlined in Procedure 2.2, so that

we can build the SIT for an XML document in a single parse of the document (c.f. [8]).

Procedure 2.2 buildSIT(T)

9

begin

1. Depth-first traverse the structure tree T in post-order:

2. for each node, v, visited, do

3. if v has some preceding-sibling, u, such that the subtrees, Tu and Tv,

rooted at u and v respectively, are SIT-equivalent, then

4. Apply merge(Tu, Tv);

5. return T ;

end

2.2 The SIT-Lattice

In this subsection, we define the SIT-Lattice on the SIT and introduce a set of efficient

SIT-lattice operations.

Given a set of paths, P = {p0, . . . , pk}, in the SIT, we define the path-join operation

join, as shown in Procedure 2.3, which joins the paths in P one by one to obtain a partial

structure tree.

Procedure 2.3 join(L, p)
/∗ L=p0≺ · · · ≺pk−1 and pk−1≺pk, where pk−1=u0 . . . um and pk=v0 . . . vn ∗/
begin

1. for each 0 ≤ i ≤ m do

2. if (ui.nid = vi.nid) then

3. ui.ext := ui.ext ∪ vi.ext;
4. Delete vi and its outgoing edge, if any;
5. else

6. Connect vi . . . vn to T such that vi is the last child of ui−1;
7. return L;
8. return L;
end

We can apply join on a (meaningful) set of selected paths to obtain a tree, which we call

a partial tree, as defined in Definition 2.4.

Definition 2.4 (Partial Tree) Let P = {p0, p1, . . . , pk} be a set of paths in the SIT and,

without loss of generality, assume that p0 ≺ p1 ≺ · · · ≺ pk. A Partial Tree, L, over P , is

a tree constructed as follows: L = join(· · · join(L′, p1),. . ., pk), where L′ is the initial tree

that consists of only one path, p0.

Example 2.2 If we apply the join operation to the three paths, p0, p1 and p2, in Figure 6,

we obtain the partial tree, L = join(join(p0, p1), p2). Note that the paths are joined together

by the SIT-equivalent portions of the paths.

10

217
,1

111
,2

0
,0

{
1
}

{
0
}

{
2
}

17
,3

7
,6

89
,7
9
,8

{
6,22
}

{
8,24
}
 {
7,23
}

{
3,19
}

{
5,21
}

33
,5

217
,1

111
,2

0
,0

{
1
}

{
0
}

{
2
}

17
,3
 {
3,19
}

217
,1

111
,2

0
,0

{
1
}

{
0
}

{
2
}

17
,3
 {
3,19
}

217
,1

111
,2

0
,0

{
1
}

{
0
}

{
2
}

17
,3
 {
3,19
}

7
,6

89
,7
9
,8

{
6,22
}

{
8,24
}
 {
7,23
}

7
,6
 {
6,22
}
 33
,5

{
5,21
}

Path:
p
0
 Path:
p
1
 Path:
p
2

Partial Tree

L
=
join
(
join
(
p
0
,
p
1
),
p
2
)

Figure 6: A Partial Tree Constructed by Joining Three Paths

Each path, p, in the SIT is the concise representation of a set of SIT-equivalent paths,

PT , in the structure tree, T . However, in most cases, only a subset of PT is useful for the

evaluation of a given query workload. We define a partial index path, pp, of p to represent a

subset, Pt, of PT .

Definition 2.5 (Partial Index Path) Let p = u0 . . . un be a path in the SIT and Pt be

any non-empty set of paths in the structure tree T , such that ∀pt ∈ Pt, where pt = v0 . . . vn,

vn.nid ∈ un.ext. A partial index path, pp, of p is defined by pp = w0 . . . wn, such that

wi.nid = ui.nid, wi.lid = ui.lid, and wi.ext =
⋃

pt∈Pt
{pt.vi.nid}, for 0 ≤ i ≤ n.

Example 2.3 The three paths in Figure 6 are partial index paths of their corresponding

SIT-equivalent paths in the SIT in Figure 5. For example, p0 is a partial path of the path

“(0, 0) . . . (9, 8)” shown in Figure 5, while it represents the two paths, “(0, 0) . . . (9, 8)” and

“(0, 0) . . . (9, 24)”, shown in Figure 4.

Each index path has (2|PT | − 1) partial index path for the corresponding (2|PT | − 1) non-

empty subsets of PT . Similarly, there is also a bijection from the set of all partial trees

to the power-set of the set of paths in T , since any arbitrary subset of paths in T can be

represented by a set of partial index paths in the SIT that can be formed into a partial tree.

Therefore, we can define as many as 2n partial trees, where n is the number of root-to-leaf

paths in T . Since each text node is associated with a unique path, we can define a partial

tree for any subset of relevant paths in an XML document to accelerate query evaluation.

More importantly, we can define a lattice structure [14] on the set of all partial trees. From

the index lattice, we can effectively select more efficient lattice elements served as indexes to

11

accelerate query evaluation. We also define a set of lattice operations, which includes union,

intersection, subtraction and extraction, for efficient construction of useful lattice elements.

Theorem 2.4 The set of all partial trees defined over a SIT is a lattice.

Proof. Let L be the set of all partial trees over a SIT. For all Lx, Ly ∈ L, let Px and Py

be the set of paths in Lx and Ly, respectively. Let px = u0 . . . um and py = v0 . . . vn, where

px ∈ Px and py ∈ Py.

1. L is a non-empty ordered set: we define a binary relation ≤ on L: Lx ≤ Ly if, for all

px, there exists some py such that ui.ext ⊆ vi.ext, for 0 ≤ i ≤ m and m = n. It is

straightforward to see that ≤ on L is a partial order.

2. The least upper bound of Lx and Ly, Lx ∨ Ly, and the greatest lower bound of Lx and

Ly, Lx ∧ Ly, exist:

• PLx∨Ly
= Px ∪ Py.

• Let p = w0 . . . wm, where wi.ext = ui.ext ∩ vi.ext, wi.nid = ui.nid and wi.lid =

ui.lid, for 0 ≤ i ≤ m. PLx∧Ly
= {p: px � py and wm.ext 6= ∅}. �

We call this lattice defined over the SIT the SIT-lattice and an element in the SIT-

lattice, i.e., a partial tree of the SIT, a SIT-lattice element or simply an SLE. Therefore,

the maximum SLE is the SIT and the minimum SLE is an empty tree. The least upper

bound and the greatest lower bound of two SLEs, Lx and Ly, i.e. (Lx ∨ Ly) and (Lx ∧ Ly),

are also referred to as the union and the intersection of Lx and Ly, respectively. To allow

more flexible construction of useful SLEs to aid query evaluation, we introduce two more

SIT-lattice operations, subtraction and extraction. The subtraction of two SLEs, (Lx − Ly),

is the index of the set of paths P = (Px −Py), where Px and Py are the set of paths indexed

by Lx and Ly respectively. We say Lx is an extraction of Ly if Lx ≤ Ly. We give efficient

algorithms for these four SIT-lattice operations in Section 4.

Example 2.4 Figure 7 shows two SLEs, Lx and Ly, and their union (Lx ∨ Ly), intersection

(Lx ∧ Ly) and subtraction (Lx − Ly). All the five SLEs are extractions of the SIT in Figure

5, while (Lx − Ly) is an extraction of Lx and (Lx ∧ Ly) is an extraction of Lx (or Ly), which

in turn is an extraction of (Lx ∨ Ly).

12

217
,1

111
,2

0
,0

{
1
}

{
0
}

{
2
}

17
,3

7
,6

89
,7
9
,8

{
6,22
}

{
8,24
}
 {
7,23
}

{
9,22
}

{
4,20
}

{
3,19
}

217
,1

111
,2

0
,0

{
1
}

{
0
}

{
2
}

3
,4

17
,3

7
,6

{
3,19
}

17
,14

3
,15

{
15
}

{
14
}

(a) SIT-Lattice Element,
L
x

(c)

L
x
 V
L
y

(b) SIT-Lattice Element,
L
y

{
5,21
}

33
,5

89
,7
9
,8

{
11,24
}
 {
10,23
}

217
,1

111
,2

0
,0

{
1
}

{
0
}

{
2
}

17
,3

7
,6

89
,7
9
,8

{
22
}

{
24
}
 {
23
}

{
19
}

{
5,21
}

33
,5

{
6,9,22
}
{
4,20
}

217
,1

111
,2

0
,0

{
1
}

{
0
}

{
2
}

3
,4

17
,3

7
,6

{
3,19
}

17
,14

3
,15

{
15
}

{
14
}

89
,7
9
,8

{
8,11,24
}
 {
7,10,23
}

(d)

L
x
 /\
L
y
 (e)

L
x

L
y

217
,1

111
,2

0
,0

{
1
}

{
0
}

{
2
}

17
,3

7
,6

89
,7
9
,8

{
6
}

{
8
}
 {
7
}

{
3,19
}

{
5,21
}

33
,5

Figure 7: SIT-lattice Elements and Operations

3 SIT-Lattice Element Specification

In this section, we discuss the syntax to specify a SIT-Lattice Element (SLE) and a set

of heuristic rules to aid the specification of a more desirable SLE. We also describe three

partition strategies to support querying large XML data in memory-limited devices.

3.1 An XPath Specification of SLE

We use XPath [3] as the syntax to specify an SLE. Recall that an SLE is an index of a set of

paths and each path is uniquely identified by its leaf node. Given a set of leaf nodes, we can

construct a structure tree by tracing their paths. Therefore, an SLE can be specified using

an XPath query, such as “//a[b = ‘‘B’’ and avg(.//c) > 10]/(d | e | f)”. We will

see in Section 4 (Extraction) how to construct an SLE from its XPath specification.

Intuitively, we can regard an SLE as a materialized view [11, 13, 15] on XML data. In data

warehouse applications, the user can define a materialized view for pre-fetching a fragment

of data so that queries covered by this fragment can be efficiently processed. The SLE shares

a similar spirit in the context of XML by allowing the user to specify an SLE at any time,

such that the set of queries asked subsequently can be processed more efficiently using the

SLE instead of using the full index. For example, we can specify an SLE as “//data[type

13

= ‘‘A’’]” to filter out non-“Type A” data, so that any subsequent queries of the form

“//data[type = ‘‘A’’]· · ·” can be more efficiently processed. The SLE can also help an

administrator restrict the access privilege of “Type A” users to only “Type A” data.

3.2 Heuristic Selection Rules

The problem of specifying an SLE, L, to cover a given set of queries, Q, is equivalent to

checking whether the set of nodes selected by L is a superset of the union of the set of nodes

selected by q ∈ Q. We call this problem the SLE containment problem.

The containment problem for XPath fragments (c.f. A survey on XPath query contain-

ment [31]), that consists of the “child” axis and any two of the following three constructs, (1)

“descendant” axis, (2) predicates, and (3) wildcards, is shown to be in PTIME in [33, 24, 2].

However, the containment problem for the XPath fragment that consists of all three con-

structs is shown to be co-NP complete [22], while adding the union expression “|” to the

fragment makes the containment problem to be in EXPTIME [25].

The SLE containment problem is even harder, since we allow a more rich set of XPath

features such as aggregation-based and value-based predicates. Therefore, we establish a set

of heuristic rules to aid the specification of an efficient SLE, which is described as follows.

• Given a set of queries, Q, we specify an SLE, L, that covers Q as follows.

- We specify the primary location path of L, i.e. the location path that remains

when all predicates are removed from L, as the combination of the primary lo-

cation paths of all q ∈ Q, with the common prefix removed. For example, given

the three queries, “//a/b/c”, “//a/b/d//e” and “//a/b/d//f”, we can specify

an SLE to cover the queries as L = “//a/b/(c | d//(e | f))”, or simply some

less-efficient upper bounds of L, such as “//a/b/(c | d)” and “//a/b”.

- If a location step, s, in L is in the common prefix of a set of queries, Q′ ⊆ Q, let

si be the corresponding location step of q ∈ Q′ and Pi be the predicate, if any, of

si. We define P ′
i as follows: (1) for all “px and py” in Pi, either px or py or “px

and py” in P ′
i ; and (2) for all “px or py” in Pi, “px or py” in P ′

i . Note that P ′
i

14

is defined inductively and the basis of the induction is when both px and py are

reduced to an atomic predicate.

The predicates of s are either all or some of the P ′
i connected by the “or” operator.

For example, given the three queries, “//a/b[[d and e] or f]/c”, “//a/b[e

or f]/d//e” and “//a/b[e]/d//f”, we can specify L as “//a/b[e or f]/(c |

d//(e | f))”.

– If Q can be classified into two disjointed subsets of queries of the forms, “s0 · · · si[pi]

· · ·” and “s0 · · · si [not pi] · · ·”, and L covers Q, then we can extract L′ =

“s0 · · · si[pi]” from L and then construct the complement of L′, given by L′ =

L − L′, to cover the two disjointed subsets of queries. For example, if L covers

“//a[p]/∗” and “//a[not p]/∗”, we can extract L′ = “//a[p]” from L to cover

the set of queries of the form “//a[p]· · ·” and then construct L′ to cover the set

of queries of the form “//a[not p]· · ·”.

• Identify frequently imposed predicates from the queries and impose them on the SLE.

This allows the predicates to be pre-computed by the SLE.

• If an SLE is to be constructed from some existing SLEs, smaller SLEs should always

be preferred to their upper bounds if both of them cover a given set of queries.

• The union and intersection of a set of SLEs covers the union and intersection of the

sets of queries covered by each of the SLEs, respectively.

3.3 Partition Strategies

The indexes of real XML data datasets [19, 32, 30, 23] are often too large to be loaded into

the main memory of a machine, especially hand-held devices such as pocket-PCs. Apart from

extracting an SLE from a large index to reduce the index size, we can also partition a large

index into smaller partitions in order to load them into the main memory. We present three

index partition strategies: Horizontal Partition, Vertical Partition and Hybrid Partition.

Let t(v) be the subtree (having n children) rooted at a node, v, in the SIT or an SLE,

we express t(v) as: v(t(u0), . . ., t(ui), . . ., t(un)), where ui is the i-th child of v. We describe

the three partition strategies applied to t(v) as follows.

15

• Horizontal Partition: each partition is the union of a partial tree of t(ui) for 0 ≤ i ≤ n.

To partition t(v) horizontally, we impose predicates on each ui, such as “//v/u[p]”,

where p is usually a range-match predicate. For example, “//c[.//i >= 3000]” and

“//c[.//i < 3000]” partition the SIT in Figure 5 into two SLEs, as shown in Figure

8. Note that t((17,3)) and t((17,14)) in both SLEs are a partial tree of t((17,3)) and

t((17,14)) in the SIT, respectively.

81
,12
33
,5
7
,6
3
,4

17
,3

217
,1

111
,2

0
,0

70
,13
89
,7
9
,8

{
3,19,32
}

{
5
,21,34
}

{
26,39
}

{
4,20,33
}

{
24,37
}
 {
23,36
}

{
22,35
}
 33
,16
3
,15

17
,14

{
15,28
}
 {
16,29
}

{
14,27
}

{
2
}

{
1
}

{
0
}

{
25,38
}

{
8,11
}

81
,12
7
,6

17
,3

217
,1

111
,2

0
,0

70
,13
89
,7
9
,8

{
3
}

{
13
}

{12
}

{
7,10
}

{
6
,
9
}

81
,17

17
,14

70
,18

{
18,
31
}

{
14,
27
}

{
17,
30
}

{
2
}

{
1
}

{
0
}

SLE: "//c[.//i >= 3000]"
 SLE: "//c[.//i < 3000]"

Figure 8: Horizontal Partition of the SIT in Figure 5

• Vertical Partition: each partition is the union of some t(ui). To partition t(v) vertically,

we do not impose predicate on ui, such as “//v/u”. For example, “//c” vertically

partitions the SIT in Figure 5 into two SLEs, one contains the subtree rooted at the

node (17,3) and the other the subtree rooted at (17,14).

• Hybrid Partition: we apply Horizontal Partition at one level of an SLE and Vertical

Partition at another level, and so on. Hybrid Partition is applied when a simple

Horizontal Partition or Vertical Partition of the SLE may not be sufficient to satisfy

the memory requirement or other requirements of user applications. For example,

“//c[.//i >= 3000]/e” is a specification for Hybrid Partition.

4 SIT-lattice Operations

In this section, we propose efficient algorithms for the SIT-lattice operations, union, inter-

section, subtraction and extraction. The complexities for running these operations are also

discussed.

Let Lx and Ly be two SLEs, and u and v be nodes in Lx and Ly respectively. We describe

efficient algorithms to perform the union, intersection and subtraction of Lx and Ly.

16

Union. The idea is to depth-first traverse Lx and Ly in parallel in pre-order and incremen-

tally construct a new tree, Tnew, which essentially combines the structures of Lx and Ly. We

process each traversal step as follows:

• If the depth of u is equal to that of v, then we consider the following two cases:

– Case 1: If u.nid = v.nid, then we create a new node, w, for Tnew, where w.ext =

u.ext ∪ v.ext, w.nid = u.nid and w.lid = u.lid. We then advance the pre-order

traversal one step forward in both Lx and Ly in parallel.

– Case 2: If (u.lid < v.lid) or (u.lid = v.lid and u.nid < v.nid), we copy the subtree

rooted at u and joint it to Tnew and advance the pre-order traversal one step

forward in Lx; vice versa for (u.lid > v.lid) or (u.lid = v.lid and u.nid > v.nid).

• If the depth of u is greater than that of v, then we copy the subtree rooted at u and

join it to Tnew and advance the pre-order traversal one step forward in Lx only; and

vice versa if the depth of v is greater than that of u.

Intersection. The idea is similar to the union operation. We depth-first traverse Lx and

Ly in parallel in pre-order by only tracing a pair of nodes, (u, v), if u.nid = v.nid. We

perform the intersection of the exts of the nodes in a post-order manner, i.e., the exts of

the children are always intersected before those of their parents. If u and v are leaf nodes

and u.ext ∩ v.ext 6= ∅, we create a new node with its ext = u.ext ∩ v.ext, and then create

its parent node, whose ext is the intersection of the exts of the parents of u and v, and so

on. The process of the new node creation and the intersection of the ext sets continues in a

post-order manner until the roots of Lx and Ly are visited.

Constructing the nodes in a bottom-up manner avoids cascading deletion, because Lx

and Ly may share some common structures in the upper part of the tree but the intersection

of the exts of two nodes in the lower part of the tree may be empty.

Subtraction. To subtract Ly from Lx, we depth-first traverse Lx and Ly in parallel in pre-

order by only tracing a pair of nodes, (u, v), where u.nid = v.nid. Similar to intersection, we

perform the subtraction of the exts of the nodes in a post-order manner. If u and v are leaf

nodes and (u.ext− v.ext) 6= ∅, then u.ext = (u.ext− v.ext). When we finish the subtraction

17

of the exts of the leaf nodes, we compute the ext of their parent according to Definition ??,

and so on for other ancestors until the roots of Lx and Ly are visited.

The complexity of the union, intersection and subtraction operations is all linear to the

size of the two SLE operands, since each operation takes a parallel depth-first traversal of the

two trees, while it takes linear time, in the size of the exts, to perform the union, intersection

and subtraction of the exts of the node pairs.

Extraction. Extraction is the fundamental SIT-lattice operation in the construction of new

SLEs, since initially we have only the SIT, i.e., the maximum SLE. From this maximum SLE,

we extract smaller SLEs, and then apply other more efficient SIT-lattice operations on them

to generate more SLEs. We present an efficient algorithm for the extraction of an SLE from

its upper bound elements. The specification of the SLE is evaluated using the upper bound

SLE and then we extract the new SLE by tracing the paths of the result nodes obtained

from the evaluation. We show the algorithm in Procedure 4.1 and illustrate the construction

by Example 4.1, in which we use the SIT as the upper bound SLE.

Procedure 4.1 extractSLE(V)
/∗ V is the set of result nodes obtained by evaluating the SLE specification using an SLE, L. S is a list

of triplets of the form, (id, vold, vnew), where vold is a node in L and vnew is a node in the new SLE to be

extracted from L. And “u :=id v” denotes “u.nid := v.nid and u.lid := v.lid”. ∗/

begin

/∗ INITIALIZATION ∗/
1. for each v ∈ V do

2. Create a new S element, s := (v.nid, v′, v); /∗ v′ is a node in L, where v′.nid=v.nid ∗/

3. if (S is empty or v.nid < S.head.id) then

4. Insert s as S.head;
5. else /∗ v.nid > S.head.id ∗/

6. Insert s after S.head;
/∗ CONSTRUCTION ∗/

7. while (S.head.next is not null) do

8. s := S.head.next;
9. while (s is not null) do

10. s.vold := s.vold.parent; s.id := s.vold.nid;
11. Create a new node, u, where u :=id s.vold;
12. for each e ∈ s.vnew.ext do

13. u.ext := {e′ : e′ ∈ s.vold.ext, such that e′ < e and if e′ < e′′ < e, e′′ /∈ s.vold.ext};
14. Connect u as the parent of s.vnew;
15. s.vnew := u;
16. s′ := s; s := s.next;

18

{
8,11
}

70
,13
 89
,7
9
,8

{
13
}
 {
7,10
}

70
,18

{
18,
31
}

Set of

result

nodes

:

{
 }
,
,
 ,

Initilization
:
 (
)
,
,
7
 (
)
,
,
18

SIT:

70
,18
 70
,18

{
18,
31
}
 (
)
,
,
8
 (
)
,
13
9
,8

{
8,11
}

9
,8
 70
,13

{
13
}

,
70
,13
89
,7
 89
,7

{
7,10
}

1st-iteration
:
 (
)
,
,
6
 (
)
,
,
17
 81
,17
 (
)
,
,
7
 (
)
,
12
89
,7
 89
,7

70
,13

{
13
}

,
81
,12
7
,6

9
,8

{
8,11
}

2nd-iteration
:

{
7,10,

23,
36
}

{
18,
31
}
 {
8,11,

24,
37
}

{
13,26,
39
}

{
17,
30
}

81
,17

70
,18

{
18,
31
}

{
17,
30
}

{
7,10,

23,
36
}

{
7,10
}
{
6
,
9,

22,
35
}

7
,6

{
6
,
9
}

{12
,25,
38
}

81
,12

{
12
}

(
)
,
,
3
 (
)
,
,
14
 17
,14
 (
)
,
,
6
 7
,6
17
,3

{
14,
27
}
 81
,17

70
,18

{
18,
31
}

{
17,
30
}

{
6,9,22,
35
}

{
3
,
19,
32
}

17
,3

{
3
}

17
,14

{
14,
27
}

{
8,11
}

7
,6

89
,7
9
,8

{
7,10
}

{
6
,
9
}

70
,13

{
13
}

81
,12

{
12
}

3rd-iteration
:
(
)
,
,
2
 (
)
 (
)
,
,
3

111
,2

{
2
}

111
,2

{
2
}

{
8,11
}

7
,6

89
,7
9
,8

{
7,10
}

{
6
,
9
}

81
,17

70
,18

{
18,
31
}

{
17,
30
}

17
,14

{
14,
27
}

,
,
3
 17
,3

{
3
,
19,
32
}

17
,3
 {
3
}

70
,13

{
13
}

81
,12
 {
12
}

17
,3

{
3
,
19,
32
}

17
,3
 {
3
}

4th-iteration
:
(
)
,
,
2

111
,2

{
2
}

{
8,11
}

81
,12
7
,6

17
,3

217
,1

111
,2

0
,0

70
,13
89
,7
9
,8

{
3
}

{
13
}

{12
}

{
7,10
}

{
6
,
9
}

81
,17

17
,14

70
,18

{
18,
31
}

{
14,
27
}

{
17,
30
}

{
2
}

{
1
}

{
0
}

{
8,11
}

81
,12
7
,6

17
,3

111
,2

70
,13
89
,7
9
,8

{
3
}

{
13
}

{12
}

{
7,10
}

{
6
,
9
}

81
,17

17
,14

70
,18

{
18,
31
}

{
14,
27
}

{
17,
30
}

{
2
}
 Extracted SLE :

{
8,11,24,3
7
}

{
4,20,
33
}

81
,12
33
,5
7
,6
3
,4

17
,3

217
,1

111
,2

0
,0

70
,13
89
,7
9
,8

{
3,19,3
2
}

{5
,21,
34
}

{
13,26,
39
}

{
12
,25,3
8
}

{
7,10,23,3
6
}

{
6
,
9,22,
35
}
 81
,17
33
,16
3
,15

17
,14

70
,18

{
18,
31
}

{
15,
28
}
 {
16,
29
}

{
14,2
7
}

{
17,
30
}

{
2
}

{
1
}

{
0
}

Figure 9: An SLE Extraction Example

17. if (s′.id < S.head.id) then

18. Swap s′ with S.head;
19. else if (s′.id = S.head.id) then

20. S.head.vnew.ext := S.head.vnew.ext ∪ s′.vnew.ext;
21. Connect s′.vnew’s children as the children of S.head.vnew;
22. Remove s′ from S;

/∗ COMPLETION ∗/
23. while (S.head.vold is not the root of L) do

24. S.head.vold := S.head.vold.parent;
25. Create a new node, u, where u :=id S.head.vold;
26. for each e ∈ S.head.vnew.ext do

27. u.ext := {e′: e′ ∈ S.head.vold.ext, such that e′<e and if e′<e′′<e, e′′ /∈ S.head.vold.ext};
28. Connect u as the parent of S.head.vnew;
29. S.head.vnew := u;
30. return the tree rooted at S.head.vnew;
end

Example 4.1 Figure 9 illustrates an example that extracts the SLE shown in Figure 3 from

its upper bound SLE, the SIT, shown in Figure 5. The specification of the SLE is evaluated

using the SIT and the set of result nodes, V , obtained is shown at the top left corner of

19

Figure 9. The shaded nodes in the SIT are the nodes to be visited during the SLE extraction.

The extraction procedure is divided into three major phases: initialization, construction and

completion. We show the contents of the list, S, after the initialization and for each iteration

of the construction. The initialization phase constructs S and determines the head of S. The

main idea of the construction phase is as follows: for each iteration (Lines 9-22), we trace

up the SIT to find a common ancestor for all nodes in V . Since there may be more than one

intermediate common ancestor for some nodes in V and the path length of these nodes to

their common ancestors may be different, we compare the id of the elements in S with the

id of S.head for each move of a node up the SIT. Intuitively, this means that the node that

moves highest in the SIT will always “wait” for the other nodes. For each move of a node

up the SIT, we construct a part of the new SLE. As a result, after the construction phase,

i.e., the 4th-iteration in this example, we build a tree whose root is the common ancestor of

all nodes in V , i.e., the node (111,2). We then add the path from this node to the root in

the completion phase.

The complexity of the SLE extraction algorithm is linear in the size of the upper bound

SLE. As illustrated in the example, for each step in each iteration during the construction

phase, we traverse one step up the old SLE, create a new node for the new SLE and compare

the id values. These operations can be performed in constant time. Since we can at most

build an SLE as large as the original one, it follows the linear time complexity.

5 Experimental Evaluation

In this section, we report on experiments that consider the following three issues: (1) the

effectiveness of using the SLEs to control both the structure size and the extent size of the

index and the query performance of using SLEs; (2) a comparative analysis of the SLEs

and Kaushik et al.’s index definition scheme [17]; and (3) the efficiency of using SLEs to aid

querying large XML datasets in memory-limited devices.

We ran the first two sets of experiments on a Windows XP machine with a Pentium 4,

2.53 GHz processor and 512 MB of RAM. In the last experiment, we used a Toshiba Pocket-

20

PC with a 400 MHz Intel PXA250 processor and 64 MB of SDRAM; we loaded the SLEs in

the Pocket-PC’s main memory and retrieved the data contents of the result nodes from the

PC via a wireless LAN with a transfer rate of 11 Mbps.

We use three benchmark XML datasets: XMark [30], which is an XML benchmark

project modelling a deeply nested auction database; SwissProt [23, 32], which describes

DNA sequences; and DBLP [19], which is a popular bibliography database. Table 1 shows

some brief descriptions of the three XML datasets such as the size, the number of distinct

tags/attributes, and the maximum depth of each dataset. |VT | is the number of nodes in the

structure tree, which is the extent size of the SIT, and |VI | is the number of nodes in the

SIT, which is the structure size of the SIT. The ratio of |VI | to |VT | shown in the last column

of Table 1 indicates the degree of its redundancy (a higher ratio indicates less redundancy)

and regularity (a lower ratio indicates greater regularity) of the dataset. Thus, the |VI |/|VT |

ratios show that DBLP is relatively regular and SwissProt has the lowest level of redundancy.

Datasets
 Size
 Tags/Attrs
 Depth
 | V
T
 |
 | V
I
 |
 |V
I
| / |V
T
|

XMark
 111 MB
 86
 11
 1837608
 30071
 1.64%

SwissProt
 109 MB
 100
 5
 5166890
 1466332
 28.38%

DBLP
 127 MB
 38
 5
 3733320
 1874
 0.05%

Table 1: Dataset Descriptions

5.1 Effectiveness of Using SLEs

We study the effectiveness of using SLEs to control both the structure size and the extent

size of the index and the gain in query performance of using SLEs.

Queries and SIT-lattice Elements. We evaluate the SLEs using a set of practical queries

for each dataset and then specify seven SLEs for each set of queries based on the heuristic

rules discussed in Section 3.2. While we include the union and the intersection operations in

the seven SLEs for each dataset, we evaluate the subtraction operation separately in Section

5.1.4 due to the complementary nature of the operation. We list the queries (Q1 to Q5) and

the SLEs (L1 to L7) in Appendix, while we depict an overview of the relationships between

the SLEs and the queries for each dataset in Figure 10. In the figure, a (dotted) path from

21

an SLE, Li, to a query, Qj, means that Li covers Qj, while a (solid) path from an SLE, Li,

to another SLE, Lj, indicates that Lj ≤ Li. For simplicity, we use Li,...,j to denote Li, . . . , Lj

in subsequent discussions.

L
1

SIT
DBLP

L
4
 L
5

Q
3
Q
2
 Q
4
 Q
5
Q
1

L
2
 L
3
 L
6

L
7

L
3

SIT
SwissProt

L
1

L
5

L
2

L
4

Q
5
Q
3
 Q
4
 Q
2
Q
1

L
6
 L
7

L
1

SIT
XMark

L
2
L
3
 L
4
 L
7

L
5
 L
6

Q
2
Q
1
 Q
4
 Q
5
Q
3

(b) SwissProt
 (c) DBLP
(a) XMark

Figure 10: SIT-Lattice Elements and Queries

5.1.1 Performance on SLE Construction

We investigate (1) the effectiveness of the SLEs in controlling the structure size and the

extent size of the index and (2) the efficiency in constructing the SLEs. In Table 2, we show

the Structure Ratio and Extent Ratio of the SLEs of the three XML datasets, L1 to L7,

which represent the ratio of the structure size and the extent size of the respective SLEs to

those of their corresponding SIT, respectively.

The results show that the structure size and the extent size of the SLEs can essentially

vary from as small as 0% to as large as 100% of the SIT, and many points in between. This

implies that we have great flexibility in choosing an SLE to aid in query evaluation.

L
1
 L
2
 L
3
 L
4
 L
5
 L
6
 L
7

Structure Ratio (%)
 11.98
 0.84
 4.95
 7.91
 0.31
 0.40
 0.58

Extent Ratio (%)
 34.18
 0.59
 6.04
 16.42
 0.41
 0.43
 0.69

Build Time (sec)
 0.233
 1.231
 1.032
 1.520
 0.001
 0.001
 0.011

Structure Ratio (%)
 81.11
 57.80
 88.43
 42.95
 35.67
 22.56
 31.81

Extent Ratio (%)
 79.48
 59.33
 90.60
 45.28
 37.20
 23.79
 33.12

Build Time (sec)
 5.123
 7.020
 0.078
 0.021
 0.230
 0.167
 0.188

Structure Ratio (%)
 22.96
 10.34
 11.72
 9.16
 7.25
 8.58
 0.64

Extent Ratio (%)
 54.23
 2.32
 13.39
 2.54
 1.13
 0.16
 0.001

Build Time (sec)
 0.560
 1.709
 1.121
 1.530
 1.002
 1.402
 0.044

SIT-Lattice Elements

XMark

SwissProt

DBLP

Table 2: SLE Construction Results

We also record the time (Build Time) taken to construct the SLEs in Table 2. The Build

22

Time includes the time taken to load the SLE into the main memory, though the loading time

is usually negligible compared to the construction time. When the SLEs (such as L1,2,3,4 of

XMark, L1,2,5,6,7 of SwissProt and L1,2,3,4,5,6 of DBLP) are extracted from their upper bounds,

it is usually more costly if value-based predicates are imposed, since we need to access the

disk to retrieve the data contents of the nodes for the evaluation of the predicates. However,

when the SLEs (such as L5,6,7 of XMark, L3,4 of SwissProt and L7 of DBLP) are constructed

as the union or the intersection of some existing SLEs, the construction time is only on

average tens of milliseconds.

5.1.2 Query Evaluation Speedup

We study the query evaluation speedup obtained by using the SLEs instead of the SITs. Our

goal is to investigate the effect of a reduction in the structure size and/or the extent size on

the query performance.

We measure the response time of each query that is evaluated using the SLEs and the

SIT. Then, we compute the speedup as the ratio of the response time of a query evaluated

using an SLE to that using the SIT. The speedup ratio is expressed as “milliseconds per

second”. We show the speedup ratio in Table 3. For example, for XMark, the speedup ratio

of L4 against Q1 is 80, which means that it takes 80 milliseconds to evaluate Q1 using L4,

while it takes 1 second to evaluate Q1 using the SIT. Thus, a lower speedup ratio indicates

a higher speedup. In Table 3, a slash “/” indicates that the SLE does not cover the query.

We record impressive speedup for all the three datasets. We now discuss some insights

of the performance speedup on each dataset observed from the experimental results.

XMark: Tremendous speedup is achieved by using all SLEs except L1. From Table 2,

both the structure size and the extent size of the SLEs are considerably reduced, except for

L1, whose extent size is not reduced as much as its structure size. The specification of L1

(c.f. Appendix) is only structural, indicating that the extent size of no index nodes in L1 is

reduced. This implies that the main factor contributing to the speedup is the reduction in

the extent size of the SLEs.

23

L
1
 L
2
 L
3
 L
4
 L
5
 L
6
 L
7

Q
1
 933
 103
 147
 80
 10
 7
 21

Q
2
 912
 138
 212
 96
 17
 9
 27

Q
3
 986
 33
 46
 /
 9
 /
 24

Q
4
 877
 35
 /
 41
 /
 18
 25

Q
5
 987
 93
 /
 /
 /
 /
 19

Q
1
 356
 171
 836
 41
 /
 /
 /

Q
2
 334
 194
 719
 71
 33
 /
 /

Q
3
 455
 310
 987
 112
 133
 87
 /

Q
4
 519
 441
 1031
 106
 118
 /
 81

Q
5
 414
 426
 761
 209
 126
 108
 106

Q
1
 904
 92
 537
 123
 45
 19
 1

Q
2
 810
 64
 424
 60
 26
 10
 1

Q
3
 940
 159
 577
 219
 83
 52
 1

Q
4
 1034
 88
 243
 107
 37
 35
 1

Q
5
 911
 146
 751
 128
 69
 27
 1

SIT-Lattice Elements

XMark

SwissProt

DBLP

Table 3: Query Evaluation Speedup Ratio (msec/sec)

SwissProt: According to Table 1, the SwissProt data has a very low level of redundancy,

which implies that the structure size is large while the extent size of each index node is small.

This accounts for the relatively lower speedup (higher ratio) measured for this dataset.

DBLP: We observe that the speedup obtained is roughly proportional to the reduction in

the extent size and the structure size of other SLEs is not greatly reduced compared to that

of L1. This again shows that a reduction in the extent size is essential for better query

performance. We also note that L7 is tailored towards the queries, Q1 to Q5, and thus the

evaluation of all these queries is optimized.

Based on the experimental results, we derive a guideline to achieve better query perfor-

mance using SLEs: more emphasis should be put on reducing the extent size (by imposing

value-based predicates) than on reducing the structure size (by imposing structural pred-

icates). However, we note that for less regular data sources, such as SwissProt, reducing

the structure size and reducing the extent size is equally important, because it is likely that

every index node is associated with only a few extent elements. For such datasets, it is more

effective to reduce the structure size, since a reduction in the structure size also effectively

brings down the extent size of the index, as shown by SwissProt.

Finally, we remark that in this experiment, we evaluated all the predicates imposed on

24

the queries, even though part of them is already pre-computed by the SLEs. The reason

for the re-computation is to give an accurate account of the effects of the reduction in the

structure size and the extent size on query performance. However, we mention that when

we made use of predicate pre-computation, significantly greater speedup was measured for

almost all of the SLEs. In real-world database applications, a user can take advantage of

this feature of the SLE to obtain efficient query performance gain.

5.1.3 Query Performance Gain

In this subsection, we measure the gain in query performance obtained by using the SLEs

instead of the SIT and then illustrate the applicability of the SLEs by an example. We

measure the performance gain as (1 − (SLE Construction Cost + Query Evaluation Cost

using the SLE)/Query Evaluation Cost using the SIT), i.e., G = {1−(cl+
∑n

i=1
c′i)/

∑n

i=1
ci}

× 100%, where ci and c′i is the cost of evaluating the i-th query of the query workload

using the SIT and the SLE, respectively, and cl is the cost of building the SLE. We present

in Table 4 the percentage gains for two scenarios: G+ reports the gain of using an SLE

assuming that the SLE was constructed from some existing SLEs other than the SIT, while

G− reports the gain of an SLE that was constructed (all the way) from the SIT. For example,

the construction cost of L7 of XMark is 0.011 second, as reported in Table 2, for the G+

scenario. However, the cost is 4.029 seconds, which is the sum of the construction time of

all the seven SLEs, for the G− scenario, since all other SLEs must be constructed before L7

can be constructed.

L
1
 L
2
 L
3
 L
4
 L
5
 L
6
 L
7

G+
(%)
 4.06
 86.43
 76.89
 79.99
 98.74
 98.94
 97.76

G-

(%)
 4.06
 85.53
 74.95
 78.08
 77.93
 74.46
 82.10

G+
(%)
 55.43
 63.70
 12.66
 87.73
 89.06
 90.02
 90.43

G-

(%)
 55.43
 63.70
 8.26
 83.34
 84.07
 80.87
 81.63

G+
(%)
 7.60
 89.33
 53.31
 88.11
 95.00
 96.73
 99.98

G-

(%)
 7.60
 89.04
 53.03
 87.82
 94.71
 96.45
 96.26

SIT-Lattice Elements

DBLP

SwissProt

XMark

Table 4: Query Performance Gain

On average, using the SLEs instead of the SIT achieves significant improvement in query

evaluation in both scenarios. The percentage gain is over 70% for most of SLEs, in both

25

G+ and G− scenarios. The small difference between G+ and G− also implies the great

efficiency in constructing the SLEs.

Those less obvious performance gains shown in Table 4 can be explained by the small

query evaluation speedup measured for these SLEs. This is also because we only used five

queries for each SLE in this experiment. In practice, more queries are generally posed at a

given time and hence the performance gain can be further increased.

5.1.4 Evaluation of Subtraction

We evaluate the subtraction operation by a practical scenario of using SLEs. Consider the

following eight queries of the DBLP dataset.

Q1: //inproceedings[ee]/∗

Q2: //inproceedings[crossref]/∗

Q3: //inproceedings[ee or crossref]/∗

Q4: //inproceedings[ee and crossref]/∗

Q5: //inproceedings[not ee]/∗

Q6: //inproceedings[not crossref]/∗

Q7: //inproceedings[not [ee and crossref]]/∗

Q8: //inproceedings[not [ee or crossref]]/∗

Suppose that initially we have the SLE, L1 = “//inproceedings”. To answer the first

three queries, we extract from L1 a finer SLE, L2 = “//inproceedings[ee or crossref]”.

From L2 we extract L3 = “//inproceedings[ee and crossref]”. Then, we construct L4

= (L1 −L3) to answer Q5, Q6, Q7 and Q8. Note that L2, L3 and L4 give instant answers to

Q3, Q4 and Q7, respectively. We can also construct (L4 −L2) to give instant solution to Q8.

We recorded that the total querying time of evaluating the eight queries using L1 is 9.09

seconds, while by applying the scenario of using L2 to answer {Q1, Q2, Q3}, L3 to {Q4} and

L4 to {Q5, Q6, Q7, Q8}}, the total querying time is significantly reduced to 4.20 seconds,

which also includes the 1.44 and 0.50 seconds used to extract L2 and L3 respectively and

0.05 seconds to obtain L4 by the subtraction operation.

5.2 A Comparative Analysis

The index definition scheme proposed by Kaushik et al. [17] is primarily designed to accel-

erate the evaluation of structural queries and hence cannot be applied to define an efficient

26

index to cover queries that contain value-based predicates. However, value-based predicates

are crucial in querying XML data. In this subsection, we compare our method of using SLEs

with Kaushik et al.’s index definition scheme in the evaluation of structural queries. We use

three structural queries for each dataset, as listed below.

XMark:

Q1: count(//person[profile/education])

Q2: count(//person[homepage])

Q3: //item[@id in //open auction[bidder]/itemref/@item]

SwissProt:

Q1: //Entry[count(Ref) = 1]

Q2: //Entry[count(Keyword) >= 5]

Q3: //Entry[count(Org) >= 5]

DBLP:

Q1: //inproceedings[not [ee or crossref]]/@key

Q2: //inproceedings[not ee]/booktitle

Q3: //inproceedings[not crossref]/url

The three queries of XMark are also used in the experimental evaluation in [17] and

we also generate the same F+B-index (c.f. Definition 5 of Table 1 in [17]) that ignores

text tags and idref edges in the forward direction, and idrefs pointing to “person” and

“open auction” tags in the back direction. The three queries of SwissProt and DBLP con-

tain aggregation-based predicates and negation, respectively. For these two sets of queries,

we build a covering index with only those tags and attributes present in the queries and

with the parameters, kfwd, kback and td, set to ∞, 2 and 1, respectively. The index is thus

obtained by computing the ∞-bisimilarity partition, i.e., a global similarity, in the forward

direction and a 2-bisimilarity partition, i.e., a local similarity for paths of length at most 2,

in the backward direction on the XML dataset for 1 iteration. We construct an SLE for each

dataset, which is simply specified as a union of the set of paths used for the evaluation of

the three queries. We show the XPath specification of the SLEs below.

XMark: (//person[profile/education or homepage] | //item |

//open auction[bidder]/itemref/@item)

SwissProt: //Entry[[count(Ref) = 1] or [count(Keyword) >= 5] or [count(Org) >= 5]]

DBLP: //inproceedings[not [ee and crossref]]/(@key | booktitle | url)

27

Since we do not need to access the text data for processing structural queries, we evaluate

all the queries in memory, except that for evaluating Q3 of XMark using the SLE, for which

we access the disk to retrieve the “ids” to perform the join.

Datasets
 Q
1
 Q
2
 Q
3

XMark
 2.73
 2.27
 0.38

SwissProt
 2.43
 2.89
 3.02

DBLP
 4.14
 3.11
 3.20

Table 5: Ratio of Response Time of using SLE to using Covering Index

Table 5 shows the ratio of the response time of each query using the SLE to that using the

covering index. On average, using the SLE is a factor of 1.76, 2.78 and 3.48 faster than using

the covering index to evaluate the queries of XMark, SwissProt and DBLP, respectively. The

significant improvement by the SLE is because the SLE is more effective in selecting a more

tailor-made set of paths for a given query workload. The only exceptional case is that in the

evaluation of Q3 of XMark, which contains an idref, using the SLE is 3.45 times slower than

using the covering index. This is because the SIT does not index the idrefs and therefore

we have to perform a join to evaluate the query, while there is an idref edge pointing the

corresponding “item” node in the covering index. However, we note that in practice few

XML datasets contain idrefs.

In addition to the greater speedup in query evaluation, the construction time of the SLE

for each dataset is about 180 times less than that of the covering index. The reason for the

tremendous difference is that the time for constructing an SLE is the same as evaluating an

XPath query, while a covering index has to be built from the original dataset. Moreover, it

is also obvious from this experiment that specifying an SLE, i.e. writing an XPath query, is

far easier than specifying a covering index.

The results of this experiment thus show that comparing with Kaushik et al.’s index

definition scheme, the SLEs are simpler to specify, less costly to construct, and more efficient

and effective in building a more efficient index.

28

5.3 Use of SLEs in Memory-Limited Devices

The goal of this experiment is to show that the SLEs allow efficient querying of large XML

data in memory-limited devices.

We partition XMark by Vertical Partition (c.f. Section 3.3) and construct an SLE for

each child of the root of its SIT. We horizontally partition SwissProt into 12 SLEs of roughly

the same size by specifying each SLE as “//Entry[@seqlen[. <= range lower and .

>= range upper]”. For DBLP, we first apply Vertical Partition by constructing an SLE

for each child of the root of the SIT of DBLP and then horizontally partition the over-sized

child “inproceedings” as “//incproceedings[@key starts-with ‘‘conf/somevalue/’’]”.

Using the partition strategies, the indexes of all the three datasets are able to be loaded

into the main memory of the pocket-PC. Note that the SLEs are constructed from their

corresponding SITs in the PC machine, since the SITs are too large to be loaded into the

main memory of the pocket-PC.

To assess the query performance, we construct, in the pocket-PC, L2,3,4,5,6,7 (c.f. Ap-

pendix) from L1 for XMark and DBLP. However, L1 of DBLP is too large to be loaded into

the main memory of the pocket-PC. We thus horizontally partition L1 of DBLP into four

SLEs: L11, L12, L13 and L14. Then, we extract L2j,3j,4j,5j,6j from L1j and construct L7j as

the intersection of L2j,3j,4j,5j,6j, where j is 1, 2, 3 and 4, respectively. Finally, Li of DBLP

is constructed as the union of Li1,i2,i3,i4 for 2 ≤ i ≤ 7 and then loaded into the pocket-PC.

Then, we evaluate the same set of queries (c.f. Appendix) by using the SLEs. We measure

the speedup ratio as the ratio of the response time of evaluating a query using an SLE to

that using L1. The query performance gains that we obtain for each of the SLEs are on

average slightly better than but roughly of the same pattern as those obtained on the PC

machine as shown in Sections 5.1.2 and 5.1.3 (detailed experimental results thus omitted).

In real-world applications, the partition strategies can also be used by database admin-

istrators to set access permissions to different users on XML data, which is analogous to the

case of granting access privileges by relational views [11]. Administrators can build appro-

priate SLEs for each user and grant access to more or less data by performing the union,

29

intersection, subtraction or extraction of existing SLEs.

6 Related Work

A considerable amount of research has been conducted on indexing XML or semi-structured

data [12, 24, 20, 18, 9, 17, 27, 28, 7, 29, 16]. However, none of the work has attempted to

speed up the evaluation of value-based query conditions, which is crucial in querying XML

data. We have discussed the A(k)-indexes [18], D(k)-indexes [7], M(k)-indexes [16], and the

index definition scheme [17] to reduce the structure size of an index in Section 1.1. However,

a new index of smaller structure size must be constructed from the base data, while the SLEs

can be very efficiently constructed from existing SLEs by a set of lattice operations.

The same technique to define the lattice structure on the SIT can be also applied to

define a lattice structure on other structural indexes, such as 1-index [24] and F&B-index

[1, 17], by ordering the paths in the index in a specific way, for example, according to the

document order of the paths. However, the study on the lattices defined on these indexes,

in particular, on the approximate indexes [18, 7, 16], is our future work.

Marian et al. [21] constructs a projected document from a set of paths extracted from a

given XQuery [4] to reduce memory requirement for query processing. Their method works

on the original XML document instead of an index. As the projected document in [21] is

constructed from simple XPath expressions without predicates, the irrelevant nodes of value-

based conditions are not filtered out. Buneman et al. [6] also proposes a lattice structure,

which is defined on a class of equivalent tree instances based on bisimulation. However, they

do not focus on constructing a lattice element of smaller size from existing lattice elements

to accelerate query evaluation.

7 Discussion and Conclusions

We have presented the SIT-lattice defined on the SIT. With the SIT-lattice, we are able to

select any subset of relevant paths from an XML document. A SIT-lattice element (SLE)

is specified as an XPath expression and we have proposed a set of heuristic rules and three

30

partition strategies to aid in the SLE-specification. Moreover, we have presented an efficient

set of SIT-lattice operations, which consist of union, intersection, subtraction and extraction,

in order to generate appropriate SLEs. We have also justified, throughout the paper, the

practical value of our SIT-lattice to real-world database applications.

We carried out a wide range of empirical studies of SLEs as follows. First, we showed

with experimental evidence that the SLEs can be constructed very efficiently and that using

the SLEs, instead of the full index, can tremendously improve query performance. Second,

we showed that the SLEs are more effective in defining a desirable refined index to accelerate

query evaluation than is Kaushik et al.’s index definition scheme. Third, we demonstrated

in a Pocket-PC that the SLEs can be used to query large XML data with impressive query

performance.

We remark that, in general, it is difficult to check whether an SLE fully covers a given

query workload, as studied in the containment problem of XPath fragments in [33, 24, 2, 22,

25]. However, in a distributed environment, especially with the rapidly growing popularity in

the use of hand-held devices in peer-to-peer networks, it is more important for users to obtain

a fast response of query results, despite the fact that the results may not be complete. In

such environments, the SLEs can not only be used as efficient query accelerators, but can also

be used to partition the indexes to allow them to fit into the main memory of the memory-

limited devices. Therefore, our development of the SIT-lattice provides a solid foundation

for querying XML data in peer-to-peer networks of hand-held devices.

References

[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the web: from relations to semistructured data and

XML. San Francisco, Calif.: Morgan Kaufmann, c2000.

[2] S. Amer-Yahia, S. Cho, L. V. S. Lakshmanan, and D. Srivastava. Minimization of Tree Pattern Queries.
In Proceedings of SIGMOD, 2001.

[3] A. Berglund et al. XML Path Language (XPath) 2.0, 2003. http://www.w3.org/TR/xpath20.

[4] S. Boag et al. XQuery 1.0: An XML Query Language. http://www.w3.org/TR/xquery, Nov. 2002.

[5] T. Bray et al. Extensible Markup Language (XML) 1.0 (Third Edition), 2004.
http://www.w3.org/TR/REC-xml.

31

[6] P. Buneman, M. Grohe, and C. Koch. Path Queries on Compressed XML. In Proceedings of VLDB,
2003.

[7] Q. Chen, A. Lim, and K. W. Ong. D(K)-Index: An Adaptive Structural Summary for Graph-Structured
Data. In Proceedings of SIGMOD, 2003.

[8] J. Cheng and W. Ng. XQzip: Querying Compressed XML Using Structural Indexing. In Proceedings

of EDBT, 2004.

[9] C. W. Chung, J. K. Min, and K. Shim. APEX: An Adaptive Path Index for XML Data. In Proceedings

of SIGMOD, 2002.

[10] J. Clark and S. DeRose. XML Path Language (XPath) 1.0, 1999. http://www.w3.org/TR/xpath.

[11] H. Garcia-Molina, J. D. Ullman, and J. Widom. Database Systems: The Complete Book, Prentice Hall,
2002.

[12] R. Goldman and J. Widom. Dataguides: Enabling Query Formulation and Opeimization in Semistruc-
tured Databases. In Proceedings of VLDB, 1997.

[13] J. Goldstein and P. Larson. Optimizing Queries Using Materialized Views: A Practical, Scalable Solu-
tion. In Proceedings of SIGMOD, 2001.

[14] G. A. Gratzer. General Lattice Theory. Birkhuser Verlag, c1998.

[15] A.Y. Halevy. Answering Queries Using Views: A Survey. In VLDB Journal, Volume 10 Issue 4, 2001.

[16] H. He and J. Yang. Multiresolution Indexing of XML for Frequent Queries. In Proceedings of ICDE,
2004.

[17] R. Kaushik, P. Bohannon, J. F. Naughton and H. F. Korth. Covering Indexes for Branching Path
Queries. In Proceedings of SIGMOD, 2002.

[18] R. Kaushik, P. Shenoy, P.Bohannon, and E. Gudes. Exploiting Local Similarity for Efficient Indexing
of Paths in Graph Structured Data. In Proceedings of ICDE, 2002.

[19] M. Ley. Digital Bibliography and Library Project (DBLP). http://dblp.uni-trier.de.

[20] Q. Li and B. Moon. Indexing and Querying XML Data for Regular Path Expressions. In Proceedings

of VLDB, 2001.

[21] A. Marian and J. Simeon. Projecting XML Documents. In Proceedings of VLDB, 2003.

[22] G. Miklau and D. Suciu. Containment and Equivalence for a Fragment of XPath. In Journal of the

ACM, Vol. 51, No. 1, pp.2-45, January 2004.

[23] G. Miklau and D. Suciu. XML Data Repository. http://www.cs.washington.edu/research/xmldatasets.

[24] T. Milo and D. Suciu. Index Structures for Path Expressions. In Proceedings of ICDT, 1999.

[25] F. Neven and T. Schwentick. XPath Containment in the Presence of Disjunction, DTDs, and Variables.
In Proceedings of ICDT, 2003.

[26] R. Paige and R. Tarjan. Three partition refinement algorithms. In SIAM Journal of Computing,
16:973988, 1987.

[27] N. Polyzotis and M. Garofalakis. Statistical Synopses for GraphStructured XML Databases. In Pro-

ceedings of SIGMOD, 2002.

32

[28] N. Polyzotis and M. Garofalakis. Structure and Value Synopses for XML Data Graphs. In Proceedings

of VLDB, 2002.

[29] P. Ramanan. Covering Indexes for XML Queries: Bisimulation Simulation = Negation. In Proceedings

of VLDB, 2003.

[30] A. R. Schmidt and F. Waas and M. L. Kersten and M. J. Carey and I. Manolescu and R. Busse. XMark:
A Benchmark for XML Data Management. In Proceedings of VLDB, 2002.

[31] T. Schwentick. XPath Query Containment. In SIGMOD Record, Vol. 33, No. 1, March 2004.

[32] SWISS-PROT Protein Knowledgebase. http://www.expasy.ch/sprot/.

[33] M. Yannakakis. Algorithms for Acyclic Database Schemes. In Proceedings of VLDB, 1981.

33

APPENDIX

This appendix lists, in abbreviated XPath syntax, the queries and the specification of

the SLEs used in the performance evaluation. We use fully parenthesized expressions for the

predicates as to avoid ambiguity.

XMark:

Common predicates used in the queries and the SLE specification:

Px1 = [[[initial >= 100] and [current <= 200]] and [not [reserve]]]

Px2 = [interval[[start >= 01/01/2000] and [end < 01/01/2001]]]

Px3 = [[count(bidder) >= 10] and [avg(bidder/increase) < 5]]

Queries:

Q1: /site/open auctions/open auction[Px1 and [Px2 and Px3]]/@id

Q2: /site/open auctions/open auction[[Px1 and [Px2 and Px3]] and [not

[bidder]]]/(@id | */description)

Q3: //open auction[[Px1 and Px2] and [type = ‘‘featured’’]]/@id

Q4: /site/open auctions/open auction[[Px1 and Px3] and [max(bidder/increase) >=

10]]/annotation/description

Q5: //open auction[[Px1 and [Px2 or Px3]] and [not [contains(type, ‘‘Dutch’’)]]]

/(@id | bidder[increase >= 10]/date)

SIT-lattice elements:

L1: //open auctions

L2: //open auction[Px1]/(@id | ∗/description | type | bidder/(date | increase) |

interval)

L3: //open auction[Px2]

L4: //open auction[Px3]

L5 = L2 ∩L3: //open auction[Px1 and Px2]/(@id | ∗/description | type | bidder/(date

| increase) | interval)

L6 = L2 ∩L4: //open auction[Px1 and Px3]/(@id | ∗/description | type | bidder/(date

| increase) | interval)

L7 = L5 ∪ L6: //open auction[Px1 and [Px2 or Px3]]/(@id | ∗/description | type |

bidder/(date | increase) | interval)

SwissProt:

Common predicates used in the queries and the SLE specification:

Px1 = [@seqlen[[. >= 100] and [. < 1000]]]

Px2 = [Mod[[@type = ‘‘Created’’] and [@date[[. >= ‘‘01-JAN-1993’’] and [. <

‘‘1-JAN-2000’’]]]]]

Px3 = [Px1 and Px2]

Px4 = [Px3 and [count(Ref) = 1]]

34

Px5 = [Px4 and [contains(Species, ‘‘Homo’’)]]

Queries:

Q1: //Entry[Px3]/(@id | Gene)

Q2: //Entry[Px4]/(@id | Gene)

Q3: //Entry[Px5 and [count(Keyword) >= 5]]/(@id | Gene)

Q4: //Entry[Px5 and [count(Org) >= 5]]/(@id | Gene)

Q5: //Entry[Px5 and [[count(Keyword) >= 5] and [count(Org) >= 5]]]/(@id | Gene)

SIT-lattice elements:

L1: //Entry[Px1]

L2: //Entry[Px2]

L3 = L1 ∪ L2: //Entry[Px1 or Px2]

L4 = L1 ∩ L2: //Entry[Px3]

L5: //Entry[Px4]

L6: //Entry[Px4 and [count(Keyword) >= 5]]

L7: //Entry[Px4 and [count(Org) >= 5]]

DBLP:

Common predicates used in the queries and the SLE specification:

P = [[[[[contains(author, ‘‘David’’)] and [year >= 2000]] and

[crossref[[contains(., ‘‘sigmod’’)] or [contains(., ‘‘vldb’’)]]]] and

[contains(booktitle, ‘‘SIGMOD’’)]] and [contains(title, ‘‘Data Mining’’)]]

Queries:

Q1: //∗/@key[ancestor-or-self::inproceedings[P]]

Q2: (//title[parent::inproceedings[P]] | //author[parent::inproceedings[P]])

Q3: //*/inproceedings[P]/(booktitle | year | page | title)

Q4: //cite[@label[. = ‘‘IBM99’’ and ./ancestor::inproceedings[P]]]

Q5: count(//inproceedings[P]/author)

SIT-lattice elements:

L1: //inproceedings

L2: //inproceedings[contains(author, ‘‘David’’)]

L3: //inproceedings[year >= 2000]

L4: //inproceedings[crossref[[contains(. ‘‘sigmod’’)] or [contains(., ‘‘vldb’’)]]]

L5: //inproceedings[contains(booktitle, ‘‘SIGMOD’’)]

L6: //inproceedings[contains(title, ‘‘Data Mining’’)]

L7 = L2 ∩ L3 ∩ L4 ∩ L5 ∩ L6: //inproceedings[P]

35

