
Mining Quantitative Correlated Patterns Using an
Information-Theoretic Approach ∗

Yiping Ke
keyiping@cse.ust.hk

James Cheng
csjames@cse.ust.hk

Wilfred Ng
wilfred@cse.ust.hk

Department of Computer Science and Engineering
Hong Kong University of Science and Technology

Clear Water Bay, Kowloon, Hong Kong

ABSTRACT
Existing research on mining quantitative databases mainly
focuses on mining associations. However, mining associa-
tions is too expensive to be practical in many cases. In
this paper, we study mining correlations from quantitative
databases and show that it is a more effective approach than
mining associations. We propose a new notion of Quantita-
tive Correlated Patterns (QCPs), which is founded on two
formal concepts, mutual information and all-confidence. We
first devise a normalization on mutual information and ap-
ply it to QCP mining to capture the dependency between
the attributes. We further adopt all-confidence as a qual-
ity measure to control, at a finer granularity, the depen-
dency between the attributes with specific quantitative in-
tervals. We also propose a supervised method to combine
the consecutive intervals of the quantitative attributes based
on mutual information, such that the interval combining is
guided by the dependency between the attributes. We de-
velop an algorithm, QCoMine, to efficiently mine QCPs by
utilizing normalized mutual information and all-confidence
to perform a two-level pruning. Our experiments verify the
efficiency of QCoMine and the quality of the QCPs.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database Applications - Data Mining

General Terms: Algorithms

Keywords: Quantitative Databases, Correlated Patterns,
Information-Theoretic Approach, Mutual Information

1. INTRODUCTION
Mining correlations [3, 5, 11, 10, 18, 9] is recognized as

an important data mining task for its many advantages
over mining association rules [1]. Instead of discovering co-
occurrence patterns in data, mining correlations identifies

∗This work is partially supported by RGC CERG under
grant number HKUST6185/03E.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’06, August 20–23, 2006, Philadelphia, Pennsylvania, USA.
Copyright 2006 ACM 1-59593-339-5/06/0008 ...$5.00.

the underlying dependency between the attributes in a pat-
tern. More importantly, mining correlations does not rely
on the support measure to perform pruning; thus, corre-
lated patterns are not restricted to frequently co-occurring
attributes, and those infrequent but significant patterns that
are too expensive to be obtained by association rule mining
can also be discovered. This property of correlation is very
useful for the discovery of rarely occurring but important
incidents, such as diseases, network intrusions, earthquakes
and so on, and their possible causes.

Existing research on mining correlations is primarily con-
ducted on boolean databases. However, most attributes in
real-life databases can be quantitative, which are numeric
values (e.g. salary), and categorical, which are enumerations
(e.g. education level). We refer to these databases as quan-

titative databases. A boolean database is in fact a special
quantitative database that only has categorical attributes
with boolean values. Thus, mining quantitative databases
is a more general problem in its own right but a harder
problem from the technical perspective than mining boolean
databases.

In this paper, we propose to mine correlations from quan-
titative databases using an information-theoretic approach.
We study the properties of Mutual Information (MI) [6] on
quantitative databases and define Normalized Mutual Infor-

mation (NMI) that is to be applied in the context of correla-
tion mining. Then, we propose a new notion of Quantitative

Correlated Patterns (QCPs) based on NMI and the well-
established correlation measure, all-confidence [12, 11]. This
new definition of QCPs achieves two levels of quality control
on the mining result. First, we employ NMI to specify a re-
quired minimum degree of dependency among all attributes
in a pattern. Then, we use all-confidence to enforce corre-
lation at a finer granularity on the specific intervals of the
quantitative attributes.

The first step in mining quantitative databases is to dis-
cretize the large domain of a quantitative attribute into a
number of small intervals. During the mining process, con-
secutive intervals of an attribute may need to be combined
to gain sufficient support value as well as to produce mean-
ingful intervals [15, 16]. We develop a supervised interval

combining method specifically for correlation mining so that
the combined intervals also capture the dependency between
the attributes, thereby ensuring the quality of the mined
correlations. Our interval combining method utilizes MI to
guide the interval combining of one attribute with respect to
another attribute. We model the interval combining prob-

lem as an optimization problem and devise a fast greedy
algorithm as a solution.

We develop an efficient algorithm, QCoMine, for mining
QCPs. The algorithm is built on two effective pruning tech-
niques: the attribute-level pruning by NMI and the interval-

level pruning by all-confidence. First, at the attribute level,
we define an NMI graph on all attributes such that an edge
exists between two attributes only if their NMI exceeds a
pre-defined threshold. We incorporate the NMI graph into
our mining process, which effectively prunes an overwhelm-
ing number of uncorrelated patterns that are generated from
those attributes with low mutual dependency. Then, at the
interval level, all-confidence is applied to further prune the
uncorrelated intervals of the highly dependent attributes.
With its downward closure property, all-confidence is able to
quickly converge a large search space to a small and promis-
ing one.

Our experiments show that the supervised interval com-
bining method and the pruning by NMI and all-confidence
are the keys to efficient correlation mining from quantitative
databases. Without any one of them, QCoMine either uses
substantially more resources (orders of magnitude greater
running time and memory usage) or is unable to complete
the mining (exhausting the memory). The patterns mined
by QCoMine not only reveal the effectiveness of our inter-
val combining method in obtaining meaningful intervals for
correlated attributes, but also verify the efficiency of NMI
and all-confidence in pruning uncorrelated patterns. We fur-
ther examine the feasibility of mining frequent patterns from
quantitative databases [15], compared with our approach of
mining correlated patterns. We find that frequent patterns
are mostly patterns with either very low all-confidence (i.e.,
uncorrelated) or trivial intervals (i.e., common-knowledge),
while the majority of the patterns obtained by QCoMine

are rare but highly correlated. When quantitative frequent
pattern mining becomes infeasible even under very restric-
tive settings such as very large minimum support thresholds,
QCoMine still achieves an impressive performance.

Organization. We give preliminaries in Section 2. We de-
fine NMI in Section 3, based on which we propose a new
notion of QCPs in Section 4. We present our supervised
interval combining method in Section 5 and our mining al-
gorithm, QCoMine, in Section 6. Then, we analyze the per-
formance study in Section 7. Finally, we discuss related
work in Section 8 and conclude our paper in Section 9.

2. PRELIMINARIES
Let I = {x1, x2, . . . , xm} be a set of distinct attributes

or random variables1. These attributes can either be cat-

egorical or quantitative. Let dom(xj) be the domain of an
attribute xj , for 1 ≤ j ≤ m. An item, denoted as x[lx, ux],
is an attribute x associated with an interval [lx, ux], where
x ∈ I and lx, ux ∈ dom(x). We have lx = ux if x is cat-
egorical and lx ≤ ux if x is quantitative. A quantitative

pattern (or simply called pattern) is a nonempty set of items
with distinct attributes. Given a pattern X, we define its
attribute set as attr(X) = {x | x[lx, ux] ∈ X} and its inter-
val set as interval(X) = {[lx, ux] | x[lx, ux] ∈ X}. A pattern
X is called a k-pattern if |attr(X)| = k. Similarly, we define

1We use the terms attribute and random variable inter-
changeably in subsequent discussions.

k-attribute set and k-interval set, where k is the cardinality
of the respective set. Given two patterns X and Y , we say
X is a sub-pattern of Y (or Y is a super-pattern of X) if
∀x[ux, lx] ∈ X, we have x[ux, lx] ∈ Y . For brevity, we write
a pattern X = {x[lx, ux], y[ly, uy]} as x[lx, ux]y[ly, uy].

For simplicity of discussion, we assume a lexicographic
order in the set of attributes I. Thus, the items in a pattern
are ordered according to the order of their attributes in I.

A transaction T is a vector 〈v1, v2, . . . , vm〉, where vj ∈
dom(xj), for 1 ≤ j ≤ m. We say T supports a pattern X

if ∀xk[lk, uk] ∈ X, lk ≤ vk ≤ uk, where k ∈ {1, . . . , m}.
A quantitative database D is a set of transactions. The fre-

quency of a pattern X in D, denoted by freq(X), is the num-
ber of transactions in D that support X. The support of X,
denoted by supp(X), is the probability that a transaction T

in D supports X, and is defined as supp(X) = freq(X)/|D|.

Running Example Table 1 shows an employee database
as a running example throughout the paper for illustra-
tion purpose. The database consists of six attributes: age,
education, gender, married, salary and service years.
The quantitative attributes include age, salary and service

years. All the attributes are labelled with a set of consecu-
tive integers. The last column of the table records the sup-
port value of each transaction value. An example pattern is
X = age[4, 5]gender[1, 1] and supp(X) = 0.25+0.19 = 0.44.

Table 1: Employee Database
age education gender married salary service years supp()
4 2 1 1 1 4 0.25
5 1 1 1 2 3 0.19
2 1 1 1 1 3 0.11
1 2 1 2 2 1 0.09
2 1 1 1 1 1 0.09
3 1 1 1 2 3 0.09
2 2 1 1 2 1 0.08
4 3 2 1 4 3 0.06
3 3 2 1 4 2 0.03
1 2 2 2 3 2 0.01

3. NORMALIZED MUTUAL INFORMATION
In this section, we first review the concepts of entropy and

mutual information. Then, we propose a normalization of
mutual information to make it applicable in mining correla-
tions from quantitative databases.

Entropy and Mutual Information (MI) are two central con-
cepts in information theory [6]. Entropy measures the un-
certainty of a random variable, while MI describes how much
information one random variable tells about another one.

Table 2: Notations
x, y, · · · random variables (or attributes)

vx the value of x in dom(x)
p(vx) the probability of (x = vx)

p(vx, vy) the joint probability of (x = vx) and (y = vy)
p(vy|vx) the conditional probability of (y = vy) given that (x = vx)

Table 2 lists some notations used throughout this paper.
In the context of mining quantitative databases, we have
p(vx) = supp(x[vx, vx]) and p(vx, vy) = supp(x[vx, vx]y[vy, vy]).

Definition 1 (Entropy) The entropy of a random variable
x, denoted as H(x), is defined as

H(x) = −
X

vx∈dom(x)

p(vx) · log p(vx).

The conditional entropy of a random variable y given an-
other variable x, denoted as H(y|x), is defined as

H(y|x) = −
X

vx∈dom(x)

X
vy∈dom(y)

p(vx, vy) · log p(vy|vx).

The joint entropy of two random variables x and y, de-
noted as H(x, y), is defined as

H(x, y) = −
X

vx∈dom(x)

X
vy∈dom(y)

p(vx, vy) · log p(vx, vy).

Definition 2 (Mutual Information) The Mutual Infor-

mation (MI) of two random variables x and y, denoted as
I(x; y), is defined as

I(x; y) =
X

vx∈dom(x)

X
vy∈dom(y)

p(vx, vy) · log
p(vx, vy)

p(vx) · p(vy)
.

We now present some properties of MI that are used to
develop a normalization on MI. Detailed proof can be found
in [6].

Property 1 I(x; y) = H(x) − H(x|y) = H(y) − H(y|x).

Property 1 gives an important interpretation of MI. The
information that y tells us about x is the reduction in the
uncertainty of x given the knowledge of y, and similarly for
the information that x tells about y. The greater the value
of I(x; y), the more information x and y tell about each
other.

Property 2 I(x; y) = I(y; x).

Property 2 suggests that MI is symmetric, which means
the amount of information x tells about y is the same as
that y tells about x.

Property 3 I(x; x) = H(x).

Property 3 states that the MI of x with itself is the entropy
of x. Thus, entropy is also called self-information.

Property 4 I(x; y) ≥ 0.

Property 4 gives the lower bound for MI. When I(x; y) =
0, we have p(vx, vy) = p(vx)p(vy) for every possible values
of vx and vy, which means that x and y are independent,
that is, x and y tell us nothing about each other.

Property 5 I(x; y) ≤ H(x) and I(x; y) ≤ H(y).

Property 5 gives the upper bound for MI.

Property 6 I(x; y) = H(x) + H(y) − H(x, y).

Property 6 shows that the MI of x and y is the uncertainty
of x plus the uncertainty of y minus the uncertainty of both
x and y.

Although MI serves as a good measure to quantify how
closely two attributes are related to each other, the scale
of the MI values does not fall in the unit range as shown
by Properties 4 and 5. Property 5 indicates that the MI of
two attributes is bounded by the minimum of their entropy.

Since the entropy of different attributes varies greatly, the
value of MI also varies for different pairs of attributes. To
apply MI to our mining problem, we require a unified scale
for measuring MI among a global set of attributes. For this
purpose, we propose normalized MI as follows.

Definition 3 (Normalized Mutual Information) The
Normalized Mutual Information (NMI) of two random vari-

ables x and y, denoted as eI(x; y), is defined aseI(x; y) =
I(x; y)

MAX {I(x; x), I(y; y)}
.

Our idea is to normalize the MI of x and y by the maxi-
mum MI of x (or y) and any other attribute in I, which is
either I(x; x) = H(x) or I(y; y) = H(y) as shown by Prop-
erty 5. As a result, we eliminate the localness and make NMI
a global measure. We now present some useful properties of
NMI as follows.

Property 7 eI(x; y) = eI(y; x).

Proof. It follows directly from Property 2. 2

Property 7 shows that, the same as MI, NMI is also sym-
metric.

Property 8 0 ≤ eI(x; y) ≤ 1.

Proof. Since I(x; x) ≥ 0, I(y; y) ≥ 0 and I(x; y) ≥ 0,

we have eI(x; y) ≥ 0. By Properties 3 and 5, I(x; y) ≤
MIN {H(x), H(y)} ≤ MAX {H(x), H(y)} = MAX {I(x; x),

I(y; y)}, thus eI(x; y) ≤ 1. 2

This property ensures that the value of NMI falls within
the unit range [0, 1].

Property 9 eI(x; y) = MIN {H(x)−H(x|y)
H(x)

,
H(y)−H(y|x)

H(y)
}.

Proof. By Properties 1 and 3, we have eI(x; y) = MIN { I(x;y)
I(x;x)

,
I(x;y)
I(y;y)

} = MIN {H(x)−H(x|y)
H(x)

,
H(y)−H(y|x)

H(y)
}. 2

Property 9 gives the semantics of NMI, that is the min-

imum percentage of reduction in the uncertainty of one at-

tribute given the knowledge of another attribute.

Example 1 Consider the employee database in Table 1, by
Definition 2, we can compute I(age; married) =

P
vage∈{1,2,3,4,5}P

vmarried∈{1,2} p(vage, vmarried) log
p(vage,vmarried)

p(vage)p(vmarried)
= 0.47. This

shows that the knowledge of age causes a reduction of 0.47
in the uncertainty of married. However, we have little idea
how much a reduction of 0.47 is. Using the normalization,

we can compute eI(age; married) = I(age; married)
MAX{H(age),H(married)}

=
I(age; married)

H(age)
= 0.47

2.19
= 0.21, which implies a reduction of at

least 21% of the uncertainty of age and married.
Similarly, we can compute I(gender; education) = 0.40

and eI(gender; education) = I(gender; education)
H(education)

= 0.40
1.34

= 0.30.

Note that I(age; married) > I(gender; education), buteI(age; married) < eI(gender; education). This means that
the minimum percentage of reduction in the uncertainty
of gender and education is higher than that of age and
married, although the MI of the former is lower than that
of the latter. The higher MI of age and married is mainly
because the entropy of age is much higher than that of
education (i.e., H(age) = 2.19 > H(education) = 1.34),
which means a much larger absolute value of uncertainty to

be reduced rather than the relative amount. This shows the
advantage of NMI over MI. 2

4. QUANTITATIVE CORRELATED
PATTERNS

In this section, we first generalize the concept of all-confi-
dence for a quantitative pattern and then propose the notion
of quantitative correlated patterns.

There have been a number of measures [3, 12, 11] proposed
for correlations. In recent years, all-confidence [12, 11] has
emerged as a commonly adopted correlation measure and
has been shown in many studies [12, 11, 18, 10, 9] that it
reflects the true correlative relationship among attributes
more accurately than do other measures. The all-confidence
of a boolean pattern is defined as the minimum confidence of

all the association rules that can be derived from the pattern.
We generalize all-confidence for a quantitative pattern as
follows.

Definition 4 (All-Confidence of a Quantitative Pat-
tern) The all-confidence of a quantitative pattern X, de-
noted as allconf (X), is defined as

allconf (X) =
supp(X)

MAX {supp(x[lx, ux]) | x[lx, ux] ∈ X}
.

A pattern is said to be interesting if its all-confidence is no
less than a given minimum all-confidence threshold ς. Ac-
cording to this definition, any association rule derived from
the pattern has confidence no less than ς, which also indi-
cates a high correlation among all the items in the pattern
(note that a high-confidence association rule only indicates
an implication from the set of items at the left side of the
rule to that at the other side).

All-confidence has the downward closure property [12],
which means that if a pattern has all-confidence no less than
ς, so do all its sub-patterns. This property also holds for the
all-confidence of quantitative patterns since the sub-pattern
in quantitative databases is defined in the same way as that
in boolean databases.

Example 2 Given the employee database in Table 1, we
consider the pattern X = gender[1, 1]education[1, 1] and

compute allconf (X) = supp(gender[1,1]education[1,1])
MAX{supp(gender[1,1]),supp(education[1,1])}

= 0.19+0.11+0.09+0.09
MAX{0.25+0.19+0.11+0.09+0.09+0.09+0.08, 0.19+0.11+0.09+0.09}

= 0.53. Similarly, we can compute the all-confidence of the
pattern Y = gender[1, 1]married[1, 1] to be allconf (Y) =
0.9, which indicates a higher correlation among its items
than that among the items of X. 2

Although all-confidence is a good measure of correlation
among boolean attributes, it is inadequate for reflecting the
correlation among quantitative attributes. This is because
all-confidence is a measure applied at a fine granularity to
the intervals of attributes. However, quantitative attributes
often consist of a large number of intervals, we may obtain
patterns that have high all-confidence simply as a result of
co-occurrence (see an example in Example 3). In this case,
all-confidence cannot serve as a true measure of the correla-
tion among the attributes in the pattern.

Realizing that the definition of a correlated pattern [3] is
a set of attributes that are dependent on each other and that
MI is a well-established concept in information theory [6]

to capture the dependency among attributes, we incorporate
the concept of MI into the definition of a QCP. In this way,
we first ensure that every attribute in a QCP is strongly
dependent on each other in the sense that every attribute
carries a great amount of information about every other at-
tribute in the pattern. Then, we further use all-confidence to
guarantee that the intervals of the attributes are also highly
correlated.

Definition 5 (Quantitative Correlated Pattern) Given
a minimum information threshold µ (0 ≤ µ ≤ 1) and a
minimum all-confidence threshold ς (0 ≤ ς ≤ 1), a pattern
X is called a Quantitative Correlated Pattern (QCP) if and
only if the following two conditions are satisfied:

1. ∀x, y ∈ attr(X), eI(x; y) ≥ µ;

2. allconf (X) ≥ ς.

NMI has several properties that make it a natural mea-
sure of correlation. First, NMI is a formal concept for mea-
suring dependency between attributes. Second, NMI gives
an intuitive meaning for quantifying the degree of depen-
dency: NMI has a value of 0 to indicate independence and
its value increases, within the unit range, with the increase
in dependency. Third, we can define a threshold µ for NMI
to indicate the required minimum percentage of reduction
in the uncertainty of an attribute given the knowledge of
another attribute.

Example 3 Given the employee database in Table 1, let µ =
0.2 and ς = 0.5. The pattern X = gender[1, 1]education[1, 1]

is a QCP, since eI(gender, education) = 0.30 ≥ µ as shown
in Example 1, and allconf (X) = 0.53 ≥ ς as shown in Exam-
ple 2. However, the pattern Y = gender[1, 1]married[1, 1] is

not a QCP because eI(gender, married) = 0 < µ, although
allconf (Y) = 0.9 ≥ ς. The truth is that the attributes
gender and married are independent of each other, which
can be easily verified by p(vgender, vmarried) = (p(vgender) ·
p(vmarried)) for every possible vgender and vmarried. The rea-
son for the high all-confidence of Y is simply because both
p(gender[1, 1]) and p(married[1, 1]) are very high (both of
them are 0.9), which results in a high co-occurrence of the
two items gender[1, 1] and married[1, 1]. Obviously, pat-
terns such as Y are of little significance because they do not
reveal the true correlations between the items in the pat-
terns. This explains the necessity of the concept of NMI in
the definition of QCPs. 2

Problem Description Given a quantitative database D,
a minimum information threshold µ and a minimum all-
confidence threshold ς, the mining problem we are going to
solve in this paper is to find all QCPs from D.

5. A SUPERVISED INTERVAL COMBINING
METHOD

Before we mine the quantitative databases, we first dis-
cretize the databases, using a discretization method such as
equi-depth and equi-width, in order to deal with the contin-
uous values and the large domain sizes. We discretize each
quantitative attribute into a set of base intervals, each of
which is assigned a label. The base intervals are considered
as indivisible units during the mining process. Consecutive
base intervals may be combined into larger intervals to gain

sufficient support value, while a combined interval itself can
have a more significant meaning than its composite base
intervals. However, it is critical to control the interval com-
bining process to avoid a combined interval becoming too
trivial. For example, age[0, 2] refers to infants and is more
representative than age[0, 0], age[1, 1] or age[2, 2]; however,
age[0, 100] is simply trivial.

The traditional method of controlling the size of a com-
bined interval using a maximum support threshold [15] is
inapplicable in our problem of mining correlations. This is
because QCPs can be both rare patterns (of low support)
and popular patterns (of high support) and thus have a wide
range of support value. Other more sophisticated interval
combining methods such as [16] have also been proposed
but are primarily concerned with mining quantitative asso-
ciation rules.

In mining QCPs, it would be advantageous to consider the
dependency between the attributes when combining their
intervals, because the intervals of an attribute can be com-
bined in very different ways with respect to different at-
tributes as to reflect specific meanings. For example, com-
bining the intervals of the attribute age with respect to
married can obtain totally different combined intervals com-
pared to that with respect to gender, which is further elab-
orated in Example 4.

We find that MI can be used to take into account the
dependency between attributes and thus to guide the in-
terval combining process to produce meaningful combined
intervals. Since the interval combining is performed locally
between a pair of attributes, we use MI, instead of NMI
which is a global measure for all attributes.

We model the interval combining problem as a supervised
optimization problem with MI as the objective function,
which is described as follows.

Given two attributes x and y, where x is quantitative and
y can either be categorical or quantitative, we want to obtain
the optimal combined intervals of x with respect to y. The
objective function, φ, of the optimization problem is defined
as follows:

φ(x, y) = I
′(x; y) − I(x; y)

= (H ′(x) + H(y) − H
′(x, y)) By Property 6

−(H(x) + H(y) − H(x, y))

= (H ′(x) − H(x)) + (H(x, y) − H
′(x, y)), (1)

where I ′(x; y), H ′(x) and H ′(x, y) are the respective values
of MI and entropy after combining the intervals of x. Note
that H(y) remains unchanged, because the intervals of y are
not combined.

Since both H(x) and H(x, y) always decrease when the
intervals of x are combined, φ can be either positive or neg-
ative depending on the rate of decrease of H(x) and H(x, y).
Thus, the optimization problem is to maximize the function
φ, that is, to either maximize the gain in MI (if φ > 0) or
minimize the loss in MI (if φ < 0).

We now design an algorithm to solve this optimization
problem. If x has n base intervals, to find an optimal so-
lution will require O(2n) computations of MI values, where
each MI value is computed from a possible set of combined
intervals. Obviously, an exhaustive algorithm is unrealistic.
We propose an efficient algorithm which greedily combines
two consecutive intervals of x at each time. The idea of the
greedy algorithm is described as follows.

At each time, we consider combining two consecutive in-
tervals, ix1

and ix2
, of x, where ix1

and ix2
can be either

a base interval or a combined interval. Let φ[ix1
,ix2

](x, y)

denote the value of φ(x, y) when ix1
and ix2

are combined
with respect to y.

Our algorithm, GreedyCombine, is shown in Procedure 1.
The idea (Steps 13-19) is to pick up at each time the max-
imum φ[ixj

,ixj+1
](x, y) among all pairs of consecutive inter-

vals, ixj
and ixj+1

, and combine corresponding ixj
and ixj+1

into ixj′
. Then, φ[ixj−1

,ixj
](x, y) and φ[ixj+1

,ixj+2
](x, y) are

replaced by φ[ixj−1
,ix

j′
](x, y) and φ[ix

j′
,ixj+2

](x, y).

Algorithm 1 CombineInterval()

1. for each quantitative attribute x do

2. for each attribute y 6= x, and the pair x and y has not
been considered do

3. GreedyCombine(x, y,−∞,−∞, 0);
4. Output the intervals of x and y after interval combining;

Procedure 1 GreedyCombine(x, y, φx
min , φ

y
min ,flag)

1. for each pair of consecutive intervals ixj
and ixj+1

of x do

2. if (φ[ixj
,ixj+1

](x, y) ≥ φx
min)

3. Insert φ[ixj
,ixj+1

](x, y) into a heap, Q;

4. if (Q is empty) \\no intervals of x can be combined
5. if (flag = 1) \\no intervals of y can be combined
6. Terminate;
7. else \\flag = 0
8. flag ← 1; \\set flag for the next iteration
9. Goto Step 21;
10. else \\Q is not empty
11. φx

min ← MEAN{φ[ixj
,ixj+1

](x, y) ∈ Q};

12. flag ← 0; \\reset flag for the next iteration
13. Extract maximum φ[ixj

,ixj+1
](x, y) from Q;

14. if (φ[ixj
,ixj+1

](x, y) ≥ φx
min)

15. Combine ixj
and ixj+1

into ixj′
;

16. φ[ixj−1
,ixj

](x, y)← φ[ixj−1
,ix

j′
](x, y);

17. φ[ixj+1
,ixj+2

](x, y)← φ[ix
j′

,ixj+2
](x, y);

18. Update Q;
19. Goto Step 13;
20. else \\no more intervals of x can be combined
21. if (y is quantitative)
22. GreedyCombine(y, x, φ

y
min , φx

min ,flag);
23. else

24. Terminate;

We can efficiently retrieve the maximum φ[ixj
,ixj+1

](x, y)

by implementing a priority queue using a heap Q (Step
3), while φ[ixj−1

,ixj
](x, y) and φ[ixj+1

,ixj+2
](x, y) can be ac-

cessed by putting two pointers in φ[ixj
,ixj+1

](x, y). The up-

date of their positions in the heap takes only O(log n) heapify

operations. In the worst case when all intervals of x are to be
combined into a single interval, the entire combining process
takes O(n log n) heapify operations (O(1) each) and O(n)
computations of φ[ixj

,ixj+1
](x, y) (O(l) each), where n and

l are the number of base intervals of x and y, respectively.
To avoid a combined interval becoming too trivial, we set a

terminating condition, φx
min , as follows. We first set φx

min to
be the mean of all φ[ixj

,ixj+1
](x, y) in the heap (Step 11) with

extremely small values removed. This initial value of φx
min is

chosen in order to allow most pairs of consecutive intervals,

that have relatively high φ, to have a chance to be combined
before we start combining. Thus, φx

min serves as the mini-
mum gain in MI (if φx

min > 0) or the maximum loss in MI
(if φx

min < 0) that we require. When intervals are combined,
the heap is updated (Step 18) and some φ[ixj

,ixj+1
](x, y)

may become less than φx
min . As a result, the corresponding

ixj
and ixj+1

will not be combined (Step 20).
If both attributes x and y are quantitative, we combine the

intervals of x and y in turn recursively (Steps 21-22). The
GreedyCombine terminates when the intervals of both at-
tributes cannot be combined any more with respect to their
respective φmin (Steps 6 and 24). We keep a boolean flag as
one of the input parameters of GreedyCombine to indicate
whether the intervals of the other attribute are combined or
not in the last iteration.

The main algorithm, CombineInterval, to combine the in-
tervals for pairs of attributes, is shown in Algorithm 1. For
each pair of attributes, which contains at least one quantita-
tive attribute, CombineInterval invokes GreedyCombine by
initializing φx

min and φ
y
min to be −∞ and flag to be 0.

Example 4 Consider the employee database in Table 1,
where each label of quantitative attributes corresponds to
one base interval. Using GreedyCombine, the combined in-
tervals of age with respect to married are [1, 1] and [2, 5].
This is reasonable because for the transactions with married

= 2, they all have a value of 1 for age. While for other trans-
actions with married = 1, their values of age fall within the
interval [2, 5]. This reflects the case in real life that most of
the people over a certain age, say 35, are married.

However, if we compute the combined intervals of age

with respect to gender, the results are [1, 2], [3, 4] and [5, 5],
which are totally different from those of age with respect to
married. Fewer base intervals of age are combined with
respect to gender, because for the transactions with the
same value of gender, their values of age scatter over all its
possible values. This shows the case that there are young,
middle-aged and old employees of both men and women. 2

6. MINING QUANTITATIVE CORRELATED
PATTERNS

In this section, we present our algorithm of mining QCPs.
Our algorithm utilizes NMI and all-confidence to perform
a two-level pruning, which significantly reduces the search
space of the mining problem. We first describe the pruning
at each level and then present the overall algorithm.

6.1 Attribute-Level Pruning
The first condition of Definition 5 requires that, to gener-

ate a pattern in the mining process, the NMI of every pair of
attributes in the pattern must be at least µ. This condition
enables us to perform pruning at the attribute level of the
mining problem. We show how the pruning is performed by
introducing the NMI graph as follows.

Definition 6 (Normalized Mutual Information Graph)
A Normalized Mutual Information graph (NMI graph) is an
undirected graph, G = (V, E), where V = I is the set of

nodes and E = {(xi, xj) | xi 6= xj and eI(xi, xj) ≥ µ} is the
set of edges.

Lemma 1 (Necessary Condition) If X is a QCP, then
attr(X) forms a clique in G.

Proof. It follows directly from Definitions 5 and 6. 2

The necessity that the attribute set of a QCP must form a
clique in the NMI graph reveals the strong inter-dependence
between all attributes in a QCP.

Lemma 1 implies that we can generate the attribute sets
of all QCPs by enumerating the cliques in the NMI graph.
Since the mining approach without pruning at the attribute
level can be modelled as a complete graph, that is, an NMI
graph with µ = 0, the search space is greatly reduced from
enumerating all cliques in the complete graph to enumerat-
ing all cliques in a much sparser NMI graph. The signifi-
cance of this pruning at the attribute level is fully disclosed
if we realize that an edge in the NMI graph can generate
an enormous number of patterns, which is equal to the size
of the cartesian product of the set of intervals of two inci-
dent nodes (i.e., attributes) of the edge. We illustrate this
concept in further detail in Section 6.2.

The complexity of enumerating all cliques in a graph is
exponential. However, we show that the clique enumeration
can be seamlessly incorporated into the mining process. Our
mining algorithm adopts a prefix tree structure, called the
attribute prefix tree, denoted as Tattr , which is constructed
as follows.

First, a root node is created at Level 0 of Tattr . Then at
Level 1, we create a node for each attribute in I as a child
of the root, where each child node is assigned a label as the
label of the attribute and the order of the children follows
that of the attributes in I. Tattr is then constructed in a
depth-first manner as follows. For each node u at Level k

(k ≥ 1) and for each right sibling v of u, if (u, v) is an edge
in G, we create a child node for u with the same attribute
label as that of v. Then, we continue the construction in the
same way with u’s children at Level (k + 1).

Lemma 2 Let 〈u1, . . . , uk〉 be a path from a node u1 at
Level 1 to a node uk at Level k of Tattr . Then, {u1, . . . , uk}
forms a clique in G.
Proof Sketch. By induction on the length of the path, k. 2

The prefix tree is shown to be a very efficient data struc-
ture for mining both frequent and correlated patterns, while
Lemma 2 shows that the clique enumeration comes almost
free with the construction of Tattr . The only extra process-
ing incurred is a trivial test of whether (u, v) is an edge in
G. Moreover, the clique enumeration can be terminated ear-
lier by the all-confidence pruning described in the following
subsection.

Lastly, we provide an easy and objective way of setting
the minimum information threshold µ as in Equation (2),
which is the sum of the mean and the standard deviation of
all distinct NMI values, so that G retains edges that reveal
high mutual dependency between the two incident nodes.
We also remark that, similar to the choice of thresholds for
other measures such as the minimum support threshold in
the frequent pattern mining problem, the choice of µ can also
be determined by domain experts to indicate how correlated
they require the attributes in a pattern to be.

µ = MEAN {eI(x; y) | x 6= y} + STD{eI(x; y) | x 6= y} (2)

Example 5 Given the employee database in Table 1, based
on the combined intervals of quantitative attributes, we com-
pute the NMI graph G as shown in Figure 1, where µ = 0.26
as given by Equation (2). There are only four edges in G,
each of which is identified as a strong dependency between
two attributes. Other edges do not exist in G because they

age

gender

salary

education

service
years

married

Figure 1: An NMI Graph G

root

age education gender married salary

Level

0

1

2

3

service
years

service
years gender salary salary

salary

Figure 2: An Attribute Prefix Tree Tattr

cannot constitute any QCP. This ensures that uncorrelated
patterns, such as gender[1, 1]married[1, 1] in Example 3, will
not be generated, because there is no edge between gender

and married in G.
To find the cliques in G, we construct an attribute prefix

tree Tattr as shown in Figure 2. It can be easily verified that
each k-path in Tattr represents a k-clique in G. 2

6.2 Interval-Level Pruning
Although NMI can effectively eliminate the generation of

patterns from uncorrelated attributes, patterns with low all-
confidence may still be generated from correlated attributes.
This is because a node in the attribute prefix tree Tattr actu-
ally represents a set of patterns that have the same attribute
set but different interval set. Thus, we also need pruning at
the interval level. For this purpose, we employ the downward
closure property [12] of all-confidence to prune a pattern X

and all its super-patterns if allconf (X) < ς.
Since the intervals of an attribute are combined in a super-

vised way, the same attribute may have different set of com-
bined intervals with respect to different attributes. When
we join two k-patterns to produce a (k + 1)-pattern, the
intervals of the prefixing (k − 1) attributes in the two k-
patterns may overlap. In this case, an easy way is to com-
pute the intersection of the prefixing (k − 1) intervals of
the two k-patterns to give the intervals for the (k + 1)-
pattern. For example, given age[30, 40]married[1, 1] and
age[25, 35]salary[2000, 3000], we intersect the intervals of
age to obtain the new pattern age[30, 35]married[1, 1]salary
[2000, 3000].

However, the power of pruning by all-confidence comes
from its downward closure property. Producing a (k + 1)-
pattern by intersecting the intervals of k-patterns violates
the downward closure property of all-confidence. This is be-
cause shrinking the intervals in the (k+1)-pattern may cause
a great decrease in the support value of a single item so that
the all-confidence of the (k + 1)-pattern may become larger
than that of its composite k-patterns. However, this prob-
lem can be addressed if we enumerate all sub-intervals of a
(combined) interval before we start to generate a pattern.

We first define the sub-interval of an interval. Given an
interval [l, u], a sub-interval of [l, u] is an interval [l′, u′],
where l ≤ l′ ≤ u′ ≤ u. We use [l′, u′] ⊑ [l, u] to denote
[l′, u′] is a sub-interval of [l, u].

Recall that a node at Level k of Tattr represents a k-
attribute set. We start from Level 2 of Tattr to generate
2-patterns. Let {x, y} be the attribute set represented by
a node at Level 2, and Sx and Sy be the set of combined
intervals of x and y. Similar to mining quantitative frequent
patterns [15], we need to consider all pairs of sub-intervals of
x and y as each of them represents a pattern. For each inter-
val set {i′x, i′y}, where i′x ⊑ ix, i′y ⊑ iy, ix ∈ Sx and iy ∈ Sy,
we generate a QCP X = x[i′x]y[i′y] if allconf (X) ≥ ς.

The above computation is performed on the cartesian
product of two sets of sub-intervals of x and y. The size
of the cartesian product can be very big since an interval

ix = [l, l + n] has n(n+1)
2

sub-intervals. Fortunately, our su-
pervised interval combining method effectively clusters the
base intervals of an attribute into small groups, which dras-
tically reduces the size of the cartesian product.

Since the intersection of two overlapping intervals is just
a common sub-interval of the two intervals, we ensure that
all QCPs will be generated by enumerating all pairs of sub-
intervals. Moreover, since all the possible sub-interval com-
binations are considered in 2-patterns, which are the basis
for generating k-patterns (k > 2), the downward closure
property of all-confidence holds as usual and can be applied
to perform the pruning. The sub-intervals are then consid-
ered as indivisible intervals during the mining process and
not intersected.

For a set of k-patterns generated at a node at Level k (k ≥
2) of Tattr , they often share a large number of common sub-
intervals in their prefixing (k−1)-interval sets. Thus, we also
use a prefix tree T u

interval , called the interval prefix tree, to
keep the interval sets of all the patterns generated by a node
u in Tattr . The interval prefix tree not only saves memory
for storing the duplicate sub-intervals, but also significantly
speeds up the join of two k-patterns to produce a (k + 1)-
pattern.

6.3 QCoMine Algorithm
We now present our main algorithm, QCoMine, as shown

in Algorithm 2. We first combine the base intervals of each
quantitative attribute with respect to another attribute. Then
we construct the NMI graph G and use G to guide the con-
struction of the attribute prefix tree Tattr to perform pruning
at the attribute level. Steps 5-13 of Algorithm 2 construct
Level 2 of Tattr and produce all 2-QCPs. Steps 14-15 in-
voke RecurMine, as shown in Procedure 2, to generate all
k-QCPs (k > 2) recursively in a depth-first manner. Note
that at Step 6 of RecurMine when two k-patterns are joined,
all the prefixing (k − 1) intervals should be the same in the
two patterns, which means that no interval intersection is
performed; in addition, the last intervals of two k-patterns
should form the interval set of a corresponding 2-pattern,
so as to ensure that the last interval is a sub-interval of one
attribute with respect to the other.

To compute the all-confidence of a pattern, we adopt diff-

set [19] to obtain the support value of the pattern, while we
use an extra field to keep the maximum support value of the
items in the pattern. The use of diffset, together with the
depth-first strategy, effectively controls memory consumed
in the mining process as evidenced by our experiments.

Algorithm 2 QCoMine(D, µ, ς)

1. CombineInterval();
2. Construct the NMI graph G;
3. Create the root node, root, of Tattr ;
4. Create a node for each attribute in I as a child of root;
5. for each child node u of root do

6. for each right sibling v of u do

7. if ((u, v) ∈ G)
8. Create w as a child of u and assign to w an attribute

label the same as that of v in Tattr ;
9. Let {x, y} be the attribute set represented by w;
10. for each sub-interval pair, ix and iy , of x and y do

11. if (allconf (X = x[ix]y[iy]) ≥ ς)
12. Output X as a QCP;
13. Insert X’s interval set {ix, iy} into T w

interval
;

14. for each child node w of u do

15. RecurMine(w, Tattr , G, 2);

Procedure 2 RecurMine(u, Tattr , G, k)

1. for each right sibling v of u do

2. if ((u, v) ∈ G)
3. Create w as a child of u and assign to w an attribute

label the same as that of v in Tattr ;
4. Let {x1, . . . , xk+1} be the attribute set represented by w;
5. Let {iu1

, . . . , iuk−1
, iuk
} and {iv1

, . . . , ivk−1
, ivk
} be any

two interval sets in T u
interval

and T v
interval

;
6. if (iuj

= ivj
for 1 ≤ j ≤ k − 1, and {iuk

, ivk
} is

an interval set of the attribute set {xk, xk+1})
7. Let X = x1[iu1

] . . . xk−1[iuk−1
]xk[iuk

]xk+1[ivk
];

8. if (allconf (X) ≥ ς)
9. Output X as a QCP;
10. Insert {iu1

, . . . , iuk−1
, iuk

, ivk
} into T w

interval
;

11. Delete T u
interval

;
12. for each child node w of u do

13. RecurMine(w, Tattr , G, k + 1);

Example 6 (Example 5 continued) Let µ = 0.26 and ς =
0.6. The Tattr constructed by QCoMine is shown in Fig-
ure 2. The node gender at Level 2 of Tattr represents the
2-attribute set {education, gender}. Both education and
gender are categorical, thus all the sub-interval pairs of
this attribute set are the six combinations of three values
of education and two values of gender. Among the six cor-
responding 2-patterns, only education[3, 3]gender[2, 2] has
all-confidence of 0.9, which is greater than ς.

The node salary at Level 2 of Tattr , which is the child of
the node education, represents the 2-attribute set {education,
salary}. The combined intervals of salary with respect to
education are [1, 1], [2, 3], [4, 4], which have five sub-intervals:
[1, 1], [2, 2], [2, 3], [3, 3], [4, 4]. Thus, there are fifteen sub-interval
pairs formed for education and salary, among which only
one corresponding pattern education[3, 3]salary[4, 4] satis-
fies the all-confidence.

The node salary at Level 3 is generated by the RecurMine

procedure, which joins the two 2-patterns education[3, 3]
gender[2, 2] and education[3, 3]salary[4, 4] to produce a 3-
pattern education[3, 3]gender[2, 2]salary[4, 4], which has all-
confidence of 0.9. 2

7. PERFORMANCE EVALUATION
We evaluate the performance of our approach of mining

correlations from quantitative databases on real datasets.

All experiments were run on a linux machine with an AMD
Opteron 844 (1.8GHz) CPU and 8 GB RAM.

We use two real datasets from the commonly used UCI
machine learning repository [8]. Table 3 lists the name, the
number of transactions, the number of attributes, and the
maximum number of base intervals after the discretization,
of each dataset. The number of quantitative attributes of
each dataset is given in the brackets. The detailed informa-
tion of these datasets can be found in [8].

Table 3: Dataset Description
Dataset Transactions Attributes (Quantitative) Maximum Base Intervals
image 2,310 20(19) 96

spambase 4,601 58(57) 761

7.1 Performance of QCoMine
The efficiency of our algorithm QCoMine and the quality

of our QCPs are based on three major components that con-
stitute QCoMine: the supervised interval combining method,
the attribute-level pruning by NMI and the interval-level
pruning by all-confidence. Since there is no existing work on
mining correlations from quantitative databases, we mainly
assess the effect of these three components on the perfor-
mance of our approach.

We make three variants of our algorithm: (a) QCoMine,
which applies the interval combining method and sets µ as
described by Equation (2); (b) QCoMine-0, which applies
the interval combining method and sets µ = 0; and (c)
QCoMine-1, which does not apply the interval combining
method and sets µ as described by Equation (2). We test
all-confidence from ς = 60% to ς = 100%.

60 70 80 90 100
10

2

10
3

10
4

10
5

10
6

Minimum All−Confidence Threshold ς (%)

T
im

e
(m

s)

QCoMine
QCoMine−0
QCoMine−1

(a) Time for image

60 70 80 90 100
0

50

100

150

200

250

Minimum All−Confidence Threshold ς (%)

M
em

or
y

(M
B

)

QCoMine
QCoMine−0
QCoMine−1

(b) Memory for image

60 70 80 90 100
10

1

10
2

10
3

10
4

10
5

T
im

e
(s

ec
)

Minimum All−Confidence Threshold ς (%)

QCoMine
QCoMine−0

(c) Time for spambase

60 70 80 90 100
0

500

1000

1500

2000

2500

3000

Minimum All−Confidence Threshold ς (%)

M
em

or
y

(M
B

)

QCoMine
QCoMine−0

(d) Memory for spambase

Figure 3: Performance of QCoMine

Effect of Supervised Interval Combining. When the
interval combining method is not applied, we are only able
to obtain the result on the dataset image at ς = 100% as
shown in Figures 3(a-b), while QCoMine-1 runs out of mem-
ory on all other cases. QCoMine-1 is inefficient because
when we allow the interval of an item to become too triv-

ial, patterns will easily gain all-confidence greater than ς by
co-occurrence in the database. The number of patterns ob-
tained by QCoMine-1 from image at ς = 100% is 13.4 times
more than that obtained by QCoMine and the difference in-
creases rapidly for smaller ς (700M patterns are returned at
ς = 90% before QCoMine-1 runs out of memory).

We define the span of an interval, [l, u], of an attribute as
u−l

n
, where n is the number of base intervals of the attribute.

For example, if age has 100 base intervals, the interval span
of [20, 80] is 60%. We find that, for the patterns returned
by QCoMine-1 but not by QCoMine, 35% of them consist of
intervals that have a span of 90% (i.e., almost the entire do-
main), while most of the rest consist of at least one interval
with a span over 30%.

The results show that our supervised interval combining
method is effective in defining more meaningful intervals and
thus avoids an overwhelming number of trivial patterns be-
ing mined, which is essential in the control of memory and
CPU usage.

Effect of Normalized Mutual Information. The per-
formance improvement by utilizing NMI as a pruning tool
is clearly revealed by the performance difference between
QCoMine and QCoMine-0. Figures 3(a-d) show that, com-
pared with QCoMine-0, the running time of QCoMine is re-
duced by over one order of magnitude for image and almost
three orders of magnitude for spambase, while QCoMine con-
sumes memory up to 44 times less for image and 10 times
less for spambase than does QCoMine-0.

The number of patterns obtained by QCoMine is on av-
erage 65 times less for image and 88 times less for spambase

than that obtained by QCoMine-0. The extra patterns re-
turned by QCoMine-0 are shown to consist of attributes with
large interval spans. Recall that QCoMine-0 also applies our
interval combining method. However, the result does not
mean that the interval combining method is not effective.
We investigate the attributes in the datasets and find that,
if an attribute x has no or little correlation with another at-
tribute y, our interval combining method may return some
rather trivial combined intervals for x with respect to y.
Such uncorrelated patterns are successfully pruned by the
use of NMI in QCoMine and thus not returned.

Therefore, the results demonstrate the effectiveness of NMI
both as a measure for correlation and as a tool for pruning
unpromising search space.

Effect of All-Confidence. Figures 3(a) and 3(c) show
that the running time of both QCoMine and QCoMine-0
increases only slightly for smaller ς. This is because the
majority of the time is spent on computing the 2-patterns.
No matter what the value of ς is, we need to test every 2-
pattern to determine whether it is a QCP, before we can
employ the downward property of all-confidence to prune
all super-patterns of an uncorrelated pattern. Therefore,
the slight difference in running time for different values of ς

in fact reflects the pruning power of all-confidence, since our
algorithm only spends a small portion of the time to generate
the larger patterns when the pruning starts to work.

The number of patterns returned by QCoMine grows steadily
by about 2 times for each decrease in ς from 100% to 60%.
A similar trend is also observed for QCoMine-0, except that
when ς decreases from 100% to 90%, there is a rapid in-
crease in the number of patterns that consist of attributes
with large interval spans.

7.2 Quantitative Correlated Patterns v.s. Quan-
titative Frequent Patterns

In this section, we demonstrate the high complexity of
mining quantitative frequent patterns as to further justify
the effectiveness of our approach of mining correlations. We
implement the algorithm proposed by Srikant and Agrawal
[15] using the same prefix tree structure and the diffset [19]
as used in QCoMine. We denote this algorithm as MFP in
this experiment.

We test five settings of minimum support threshold σ =
0.1%, 1%, 10%, 20%, 30%, for MFP. Since MFP uses a max-

imum support threshold, σm, to control the span of a com-
bined interval, we set σm = 1.3σ, which means the support
of a combined interval is at most 1.3σ.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

All−Confidence (%)

P
ro

ba
bi

lit
y

σ=0.1%
σ=1%
σ=10%
σ=20%

(a) All-Confidence
Distribution for MFP

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Support (%)

P
ro

ba
bi

lit
y

ς = 60%
ς = 70%
ς = 80%
ς = 90%
ς = 100%

(b) Support Distribution for
QCoMine

60 70 80 90 100
10

2

10
3

10
4

10
5

10
6

Minimum All−Confidence Threshold ς (%)

T
im

e
(m

s)

QCoMine
MFP

0.1 1 10 20 30
Minimum Support Threshold σ (%)

(c) Time

60 70 80 90 100
10

0

10
1

10
2

10
3

Minimum All−Confidence Threshold ς (%)

M
em

or
y

(M
B

)

QCoMine
MFP

0.1 1 10 20 30
Minimum Support Threshold σ (%)

(d) Memory

Figure 4: Quantitative Correlated Patterns v.s.
Quantitative Frequent Patterns for image

Figure 4(a) presents the cumulative probability distribu-
tion of all-confidence over the patterns obtained by MFP
for image. When σ is small (≤ 1%), over 80% of the pat-
terns have very low all-confidence of less than 10%. When
σ = 10%, there are still half of the patterns having all-
confidence of only 10%. Although most of the patterns have
all-confidence greater than 80% when σ = 20%, these pat-
terns are mostly composed of attributes with trivial inter-
vals, which are unlikely to be considered as useful knowledge.
On the contrary, the support distribution of the patterns
obtained by QCoMine, as presented in Figure 4(b), shows
that most of the QCPs are rare (as over 70% of them have
support less than 2%) and significant (as the items in these
patterns are highly correlated). Mining such patterns using
MFP requires a small σ, while MFP with a small σ may
return a large number of uncorrelated patterns.

We also show the running time and memory consumption
of MFP at each σ (as indicated by the upper x-axis) and
QCoMine at each ς (as indicated by the lower x-axis) in
Figures 4(c-d). Although they are incomparable, the figures
do reflect that mining QCPs is much more stable in the use
of resources than mining quantitative frequent patterns.

We do not present the results of MFP for spambase be-
cause MFP runs out of memory for all values of σ, even when
we set σm almost the same as σ. At the point that the mem-
ory is exhausted, MFP already returns millions of patterns,
which occupies over 20GB of disk space (for each σ). The
massive number of patterns generated not only results in
high memory consumption, but also reveals the difficulty in
the use of the patterns for further analysis. On the contrary,
QCoMine obtains impressive results for spambase as shown
in Figures 3(c-d), which further reveals the effectiveness of
mining QCPs over mining quantitative frequent patterns.

We also note that the high memory consumption of MFP
is not due to our implementation, since MFP and QCoMine
adopt the same depth-first strategy using the same data
structure. In fact, the efficiency of QCoMine is primarily
due to the supervised interval combining method and the
pruning by NMI and all-confidence, as implied by the poor
performance of QCoMine-0 and QCoMine-1 in Section 7.1.

8. RELATED WORK
Existing research on mining quantitative databases have

mainly focused on mining quantitative association rules. This
is first studied by Piatetshy-Shapiro [13] with both sides of
the rule restricted to a single attribute. Srikant and Agrawal
[15] generalize the work by allowing multiple attributes on
both sides of the rule. Then, some variants of mining as-
sociation rules have also been proposed, such as mining op-
timized association rules [7, 4, 14] by finding the optimal
values of certain given attributes, and mining association
rules with its consequent as a statistical measure [2, 17, 20]
(e.g., mean, min, max) of a quantitative attribute.

Wang et al. [16] propose an interestingness-based crite-
rion to merge intervals. Their merging criterion is based
on association rules, which means that the candidate rules
should be generated beforehand and the interval combining
is then performed on the rules instead of the attributes. Our
objective function, in contrast, is based on the attribute sets,
which further guide the generation of QCPs.

In mining correlations from boolean databases, Brin et al.
[3] introduce the correlation measures, χ2 and interest. Co-
hen et al. [5] mine highly correlated 2-patterns measured
by a symmetric similarity between two boolean attributes.
Ma and Hellerstein [11] propose an m-pattern, of which any
two subsets are mutually dependent measured by the condi-
tional probability. Omiecinski [12] proposes two interesting
measures, all-confidence and bond, both of which have the
downward closure property. Xiong et al. [18] develop a
measure called h-confidence, which is mathematically equiv-
alent to all-confidence but defined from a different perspec-
tive to capture the degree of affinity in a pattern and to
eliminate the cross-support patterns. Later in [10] and [9],
all-confidence is shown to be a better measure for correla-
tions than χ2 and interest.

9. CONCLUSIONS
To our knowledge, our paper is the first study on mining

correlations from quantitative databases. We propose a new
notion of QCPs, which achieves two levels of quality control
on correlation based on NMI and all-confidence. We develop
a supervised interval combining method to combine the in-
tervals according to the dependency between the attributes.
We devise an efficient algorithm, QCoMine, to mine QCPs

by utilizing NMI and all-confidence to perform a two-level
pruning. Experimental results reveal that our interval com-
bining method derives meaningful intervals and effectively
eliminates the generation of trivial intervals, the number of
which is always too large for the mining to be efficient. Our
experiments also demonstrate that NMI is both an effective
measure of correlation and a powerful tool for pruning un-
promising search space arising from uncorrelated patterns,
while all-confidence further ensures a stable performance for
QCoMine as well as the quality of QCPs. We also show that
QCoMine attains impressive speed and small memory con-
sumption even when mining quantitative frequent patterns
becomes too expensive, while the QCPs obtained are shown
to be more useful than quantitative frequent patterns.

10. REFERENCES
[1] R. Agrawal, T. Imielinski, and A. N. Swami. Mining

association rules between sets of items in large databases.
In SIGMOD, 1993.

[2] Y. Aumann and Y. Lindell. A statistical theory for
quantitative association rules. Journal of Intelligent
Information Systems, 20(3):255–283, 2003.

[3] S. Brin, R. Motwani, and C. Silverstein. Beyond market
baskets: generalizing association rules to correlations. In
SIGMOD, pages 265–276, 1997.

[4] S. Brin, R. Rastogi, and K. Shim. Mining optimized gain
rules for numeric attributes. In KDD, pages 135–144, 1999.

[5] E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk,
R. Motwani, J. D. Ullman, and C. Yang. Finding
interesting associations without support pruning. IEEE
TKDE, 13(1):64–78, 2001.

[6] T. M. Cover and J. A. Thomas. Elements of Information
Theory. John Wiley & Sons, Inc., 1991.

[7] T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama.
Data mining with optimized two-dimensional association
rules. ACM TODS, 26(2):179–213, 2001.

[8] S. Hettich, C. Blake, and C. Merz. UCI repository of
machine learning databases.

[9] W.-Y. Kim, Y.-K. Lee, and J. Han. Ccmine: Efficient
mining of confidence-closed correlated patterns. In
PAKDD, pages 569–579, 2004.

[10] Y.-K. Lee, W.-Y. Kim, Y. D. Cai, and J. Han. Comine:
Efficient mining of correlated patterns. In ICDM, page 581,
2003.

[11] S. Ma and J. L. Hellerstein. Mining mutually dependent
patterns. In ICDM, pages 409–416, 2001.

[12] E. R. Omiecinski. Alternative interest measures for mining
associations in databases. IEEE TKDE, 15(1):57–69, 2003.

[13] G. Piatetsky-Shapiro. Discovery, analysis, and presentation
of strong rules. In Knowledge Discovery in Databases,
pages 229–248. 1991.

[14] R. Rastogi and K. Shim. Mining optimized association
rules with categorical and numeric attributes. IEEE
TKDE, 14(1):29–50, 2002.

[15] R. Srikant and R. Agrawal. Mining quantitative association
rules in large relational tables. In SIGMOD, 1996.

[16] K. Wang, S. H. W. Tay, and B. Liu. Interestingness-based
interval merger for numeric association rules. In KDD,
pages 121–128, 1998.

[17] G. I. Webb. Discovering associations with numeric
variables. In KDD, pages 383–388, 2001.

[18] H. Xiong, P.-N. Tan, and V. Kumar. Mining strong affinity
association patterns in data sets with skewed support
distribution. In ICDM, page 387, 2003.

[19] M. J. Zaki and K. Gouda. Fast vertical mining using
diffsets. In KDD, pages 326–335, 2003.

[20] H. Zhang, B. Padmanabhan, and A. Tuzhilin. On the
discovery of significant statistical quantitative rules. In
KDD, pages 374–383, 2004.

