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Abstract—De novo genome assembly is the process of stitching
short DNA sequences to generate longer DNA sequences, without
using any reference sequence for alignment. It enables high-
throughput genome sequencing and thus accelerates the discovery
of new genomes. In this paper, we present a toolkit, called
PPA-assembler, for de novo genome assembly in a distributed
setting. The operations in our toolkit provide strong performance
guarantees, and can be assembled to implement various se-
quencing strategies. PPA-assembler adopts the popular de Bruijn
graph based approach for sequencing, and each operation is
implemented as a program in Google’s Pregel framework for
big graph processing. Experiments on large real and simulated
datasets demonstrate that PPA-assembler is much more efficient
than the state-of-the-arts and provides good sequencing quality.

I. INTRODUCTION

Modern sequencing technologies generate a very large num-
ber of short DNA segments called reads, which are stitched
together to generate longer DNA sequences for finding new
genomes. Although millions of reads can be generated in a
day to allow high sequencing coverage, the assembly pro-
cess becomes highly computation-intensive. Single-threaded
assemblers often require a high-end server with terabytes of
RAM, and are not efficient enough. As a result, parallel short
read assembly has aroused a lot of attention recently thanks
to the advances in big data systems. Many parallel (and often,
distributed) assemblers have emerged, including ABySS [17],
Spaler [1], Ray [2] and SWAP-Assembler [12].

Instead of providing yet another parallel assembler, we de-
veloped a toolkit called PPA-assembler, which implements the
basic data structures and operations in genome assembly. The
operations have strong performance guarantees, and can be
assembled to implement various sequencing strategies. Each
operation may either read its input from Hadoop Distributed
File System (HDFS)1, or directly obtain its input by converting
the output of another operation in memory. As a result, PPA-
assembler can inter-operate with existing Big Data platforms
such as Hadoop and Spark [21], and intermediate results
between consecutive jobs do not have to go through HDFS.

PPA-assembler adopts the popular de Bruijn graph (DBG)
based approach for sequencing [13]. Therefore, we built it on
top of Pregel+2, our open-source implementation of Google’s
Pregel framework for big graph processing. We remark that our

1Hadoop: http://hadoop.apache.org/
2Pregel+: http://www.cse.cuhk.edu.hk/pregelplus/

solution is applicable to any Pregel-like system [4], [14], [6],
and Pregel+ is adopted mainly due to its superior performance
as reported by [10] and due to its wide application [5], [19],
[18]. Since the assembly process also involves some non-graph
operations, such as to construct DBG from raw DNA reads,
we also extended Pregel+’s API with new functionalities,
including grouping and merging data by key, and in-memory
data conversion for seamless job concatenation.

We summarized the key operations from existing assem-
blers, such as contig merging, tip removing and bubble fil-
tering, and implemented these operations in PPA-assembler
as scalable Pregel programs. Specifically, each operation is
implemented as a Practical Pregel Algorithm (PPA) as defined
in [19], which runs for at most logarithmic number of itera-
tions (to DBG size), and each iteration has linear space usage,
computation cost and communication cost. Users may also
include new operations into PPA-assembler by implementing
them using the user-friendly Pregel API.

Unlike ABySS [17], Ray [2] and SWAP-Assembler [12],
PPA-assembler decouples low-level execution (e.g., data dis-
tribution and communication) from the high-level assembly
logic, allowing both layers to be independently optimized.
For example, as the Implementation section of [17] indicates,
ABySS needs to collect messages into larger 1KB packets
for transmission in batch, in order to hide the round-trip time
of individual messages, but such communication details are
automatically taken care of and optimized by a Pregel-like
system. Moreover, PPA-assembler is compatible with existing
big data platforms and can inter-operate with other systems
that perform various sequence mining and analytics tasks.

Although Spaler [1] is built on top of Spark to be compatible
with existing big data platforms, the algorithms designed are
rather ad hoc: they only demonstrate how genome assembly
operations can be mapped into Spark API, without any for-
mal analysis on the computation complexity. Moreover, most
operations in DBG-based sequencing are graph operations,
for which Spaler [1] uses the GraphX (Spark’s graph API)
that are often over one order of magnitude slower than tailer-
made Pregel-like systems [20], [3]. PPA-assembler adopts
the efficient Pregel+ system to process the dominating graph
operations in DBG-based sequencing, and extends the API to
conveniently and efficiently support those non-graph opera-
tions required during assembly. We compared PPA-assembler
with other existing distributed assemblers on large simulated



and real datasets, and the results show that PPA-assembler
significantly beats all other assemblers in execution time, and
provides comparable sequencing quality.

The rest of this paper is organized as follows. Section II
reviews the framework of Pregel, and the definition of PPA.
Section III provides the necessary concepts in genome assem-
bly for readers without bioinformatics background. Section IV
presents the implementation of our various operations in
PPA-assembler. Finally, we report the experimental results in
Section V, and conclude this paper in Section VI.

II. PREGEL REVIEW

For ease of presentation, we first define our graph notations.
Given a graph G = (V,E), we denote the number of vertices
|V | by n, and the number of edges |E| by m. We also denote
the diameter of G by δ . If G is undirected, we denote v’s
neighbors by Γ(v) and v’s degree by d(v) = |Γ(v)|. If G is
directed, we denote v’s in-neighbors (resp. out-neighbors) by
Γin(v) (resp. Γout(v)) and v’s in-degree (resp. out-degree) by
din(v) = |Γin(v)| (resp. dout(v) = |Γout(v)|). We denote the ID
of v by id(v), and use v and id(v) interchangeably.

Computation Model. Pregel [11] distributes vertices to dif-
ferent machines in a cluster, where each vertex v is associated
with its adjacency list (e.g., Γ(v)) and its attribute a(v).
A program in Pregel implements a user-defined compute(.)
function and proceeds in iterations (called supersteps). In each
superstep, each active vertex v calls compute(msgs), where
msgs is the set of incoming messages sent from other vertices
in the previous superstep. In v.compute(msgs), v may process
msgs and update a(v), send new messages to other vertices,
and vote to halt (i.e., deactivate itself). A halted vertex is
reactivated if it receives a message in a subsequent superstep.
The program terminates when all vertices are inactive and
there is no pending message for the next superstep. Finally,
the results (e.g., a(v)) are dumped to HDFS.

Pregel numbers the supersteps, so that a user may access the
current superstep number in compute(.) to decide the proper
behavior. Pregel also supports aggregator, a mechanism for
global communication. Each vertex can provide a value to an
aggregator in compute(.) in a superstep. The system aggregates
those values and makes the aggregated result available to all
vertices in the next superstep.

Our Extensions to Pregel API. We find the following two
API extensions useful in implementing PPA-assembler. Firstly,
for two consecutive jobs j and j′, we allow j′ to directly
obtain input from the output of j in memory. In contrast,
existing Pregel-like systems require j to first dump its output
to HDFS, which is then loaded again by j′. Let the vertex class
of job j (resp. j′) be Vj (resp. Vj′ ), then to enable the direct
memory input, users need to define a user-defined function
(UDF) convert(v) which indicates how to transform an object
v of class Vj (processed by j) into (zero or more) input objects
of class Vj′ (for job j′). After job j finishes, each machine
generates a set of objects of type Vj′ by calling convert(.)
on its assigned vertices of type Vj (which are then garbage
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Figure 1. Illustration of BPPA for List Ranking

collected). Since Pregel+ distributes vertices to machines by
hashing vertex ID, the generated objects of type Vj′ are then
shuffled according to their vertex ID, before running job j′.

Secondly, the input data may not be in the format of one line
per vertex. For example, each line may correspond to one edge,
and hence the adjacency list of a vertex can be obtained from
multiple lines. To create vertices from such input data, we
support a mini-MapReduce procedure during graph loading.
Specifically, each line may generate (zero or more) key-value
pairs (using UDF map(.)) where the key is vertex ID, and these
key-value pairs are then shuffled according to vertex ID. After
each machine receives its assigned key-value pairs, these pairs
are sorted by key, so that all pairs with the same key form a
group. Finally, each group with key id(v) are processed (using
UDF reduce(.)) to create the input vertex object v.

Practical Pregel Algorithm (PPA). Our prior work [19]
defined a class of scalable Pregel algorithms called PPAs, and
it designed PPAs for many fundamental graph problems. These
PPAs can be used as building blocks to design PPAs for other
sophisticated graph problems, such as DBG-based sequencing
studied in this paper. Formally, a Pregel algorithm is called a
balanced practical Pregel algorithm (BPPA) if it satisfies the
following constraints:

1) Linear space usage: each vertex v uses O(d(v)) (or
O(din(v)+dout(v))) space of storage.

2) Linear computation cost: the time complexity of the
compute(.) function for each vertex v is O(d(v)) (or
O(din(v)+dout(v))).

3) Linear communication cost: at each superstep, the size
of the messages sent/received by each vertex v is
O(d(v)) (or O(din(v)+dout(v))).

4) At most logarithmic number of rounds: the algorithm
terminates after O(logn) supersteps.

Constraints 1-3 offers good load balancing and linear cost
at each superstep, while Constraint 4 controls the total running
time. Note that Constraint 4 includes those algorithms that run
for a constant number of supersteps. For some problems, the
per-vertex requirements of BPPA can be too strict, and we
can only achieve overall linear space usage, computation and
communication cost (still in O(logn) rounds). We call a Pregel
algorithm that satisfies these constraints simply as a practical
Pregel algorithm (PPA). The workload skewness problem can
be solved using the request-respond API of Pregel+ [18].

We now review two PPAs proposed in [19], both will be
used by PPA-assembler for finding contigs in Section IV-B.
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Figure 2. Illustration of the Simplified S-V Algorithm

BPPA for List Ranking. Consider a linked list L with n
vertices, where each vertex v keeps a value val(v) and its
predecessor pred(v). The vertex v at the head of L has
pred(v) = null. For each vertex v in L , let us define sum(v) to
be the sum of the values of all the vertices from v following
the predecessor link to the head. The list ranking problem
computes sum(v) for every vertex v in L , where the vertices
are stored on HDFS in arbitrary order.

The BPPA for list ranking works as follows. Each vertex
v initializes sum(v) ← val(v). Then in each round, each
vertex v does the following in compute(.): if pred(v) 6=
null, v sets sum(v)← sum(v)+ sum(pred(v)) and pred(v)←
pred(pred(v)); otherwise, v votes to halt. Note that to per-
form these updates, v needs to first request its predecessor
w = pred(v) for sum(w) and pred(w), which takes another
superstep. This process repeats until pred(v) = null for every
vertex v, at which point all vertices vote to halt and we have
sum(v) as desired.

Figure 1 illustrates how the algorithm works. Initially,
objects v1–v5 form a linked list with sum(vi) = val(vi) = 1 and
pred(vi) = vi−1. Let us now focus on v5. In Round 1, we have
pred(v5) = v4 and so we set sum(v5)← sum(v5)+ sum(v4) =
1+1 = 2 and pred(v5)← pred(v4) = v3. One can verify the
states of the other vertices similarly. In Round 2, we have
pred(v5) = v3 and so we set sum(v5)← sum(v5)+ sum(v3) =
2+2 = 4 and pred(v5)← pred(v3) = v1. In Round 3, we have
pred(v5) = v1 and so we set sum(v5)← sum(v5)+ sum(v1) =
4+ 1 = 5 and pred(v5)← pred(v1) = null. The number of
vertices whose values get summed is doubled after each
iteration, and thus the algorithm terminates in logn rounds.

Simplified S-V Algorithm. The S-V algorithm was proposed
in [19] for computing the connected components (CCs) of
a big undirected graph G in O(logn) number of supersteps,
by adapting Shiloach-Vishkin’s PRAM algorithm [16] to run
in Pregel. In the S-V algorithm, each round of computation
requires three operations: tree hooking, star hooking, and
shortcutting. However, we find that star hooking is actually an
artifact required by the original Shiloach-Vishkin’s algorithm
for correct termination in the PRAM setting. Here, we propose
a simplified version of the S-V algorithm that does not require
star hooking, which is more efficient as the expensive checking
of whether a vertex is in a star (i.e., a tree with height 1)
required by the original S-V algorithm is eliminated.

Throughout this algorithm, vertices are organized by a forest
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Figure 3. DNA Clones, Reads and Sequencing Errors

such that all vertices in a tree belong to the same CC. Each
vertex v maintains a link D[v] to its parent in the forest. We
relax the tree definition a bit here to allow the tree root w to
have a self-loop (i.e., D[w] = w).

At the beginning, each vertex v initializes D[v]← v, forming
a self loop as shown Figure 2(a). Then, the algorithm proceeds
in rounds, and in each round, the parent links are updated in
two steps: (1) tree hooking (see Figure 2(b)): for each edge
(u,v), if u’s parent w = D[u] is a tree root, we hook w as a
child of v’s parent x = D[v] (i.e., we merge the tree rooted at
w into v’s tree); (2) shortcutting (see Figure 2(c)): for each
vertex v, we move it closer to the tree root by linking v to
the parent of v’s parent, i.e., D[D[v]]. Note that Step 2 has no
impact on D[v] if v is a root or a child of a root.

The algorithm repeats these two steps until no vertex v has
D[v] updated in a round (checked by using aggregator), by
which time every vertex is in a star, and each star corresponds
to a CC. Since D[v] monotonically decreases during the
computation, at the end D[v] equals the smallest vertex in v’s
CC (which is also the root of v’s star). In other words, all
vertices with the same value of D[v] constitute a CC. Since
each round can be formulated in Pregel as a constant number
of supersteps, and shortcutting provides the O(logn)-round
bound, the algorithm is a PPA.

III. DE NOVO GENOME ASSEMBLY

This section provides the necessary concepts in DBG-based
sequencing for readers without bioinformatics background.

We model a DNA molecule as a very long sequence of nu-
cleotides, where each nucleotide can take one of the four base
types A, C, G and T. Since sequencing long DNA segments
is error-prone, modern sequencing technologies generate a
large number of short DNA segments, called reads. Figure 3
illustrates this process, where 4 DNA clones are sheared into
6 reads. Note that a DNA molecule consists of two strands
coiled around each other, and we only consider strand 1 in
Figure 3 for simplicity. Reads can have variable lengths, and
sequencing errors may happen at some positions such as in
reads 1© and 5© in Figure 3 (errors highlighted in red). Also,
reads may overlap with each other, such as reads 2© and 4©
in Figure 3 that share the segment “AGT”. It is through these
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Figure 4. Illustration of k-mers

overlaps that genome assembly algorithms stitch reads to get
longer sequences (called contigs) or even the whole sequence.

De Bruijn Graph & k-mer. The DBG-based assembly ap-
proach first constructs a de Bruijn graph (DBG) from the reads,
and then find contigs from the DBG. To construct a DBG,
each read is cut into consecutive sub-sequences of length k+1,
where each sub-sequence is called a (k+1)-mer. For example,
Figure 4 illustrates how we can generate 3-mers from reads 3©,
4© and 6© of Figure 3 (we consider k = 2 here), where read 3©

“ATTG” can be cut into two 3-mers “ATT” and “TTG”. For
each (k + 1)-mer, we define its prefix (resp. suffix) as the
subsequence without the last (resp. first) nucleotide, which is
a k-mer. The k-mers define the vertices in the DBG, and each
(k+1)-mer defines an edge from its prefix to its suffix in the
DBG. For example, in Figure 4, the first 3-mer of read 3©, i.e.,
“ATT”, defines a directed edge in DBG from vertex “AT” to
vertex “TT”. From all the 3-mers in Figure 4, we can create
a path as shown at the top right corner of Figure 4, which
essentially stitches reads 3©, 4© and 6© together into a longer
contig “ATTGCAAGT”.

Ideally, we would like to choose k to be large enough
so that any sub-sequence of length k in the whole DNA
sequence appears only once, i.e., any k-mer vertex of the DBG
corresponds to a unique sub-sequence in the whole sequence.
If this is the case (an extreme case is when we set k equal
to the length of the whole sequence), the DBG is essentially
a path like in Figure 4, following which we can reconstruct
the whole sequence. Also, since we are essentially hashing the
k-mers contained in the whole sequence to 4k possible values
(4 is because each nucleotide can take four values), a larger
k reduces the chance of having two DNA sub-sequences of
length k with the same sequence content. However, we cannot
set k arbitrarily large, since reads are short and any read with
length less than (k+ 1) cannot contain any (k+ 1)-mer and
will be ignored. We should set k to use the majority of the
reads when constructing the DBG, but a k-mer vertex in the
DBG may correspond to several different segment positions in
the whole sequence. We call such a vertex as ambiguous. It is
clear that the whole sequence corresponds to a Eulerian path
of the DBG (not considering long repetitive sequence patterns
that cause cycles), but there can be many Eulerian paths in
the DBG. Thus, the goal of DBG-based sequencing is to find
the maximal simple paths in the DBG that do not contain any
ambiguous vertex, which constitute contigs which are longer
sub-sequences of the whole sequence.

Error Correction. The above sequencing method does not
consider the possibility that reads may contain errors. Read

AT TT TG GC

CA AA

AG GT TC

GA

TACT

Tip Bubble

Figure 5. De Bruijn Graph

errors can further complicate the assembly process by intro-
ducing false vertices and edges into the DBG. Two typical
errors are tips and bubbles, as illustrated in Figure 5 which
shows the DBG constructed from the reads of Figure 3. A
tip is a short dangling path in the DBG that leads to a dead-
end, such as edge “TG”→“GA” in Figure 5 that is contributed
by the error in read 1©. A bubble is a sub-path that starts
from a certain vertex at the main path of the DBG, and
returns to the same path after a few hops. Figure 5 shows
a bubble where the main path “GC”→“CA”→“AA”→“AG”
is contributed by correct reads such as 4© and 6©, and the
erroneous sub-path “GC”→“CT”→“TA”→“AG” is caused by
read 5© that has an error. Note that vertex “TG”, “GC” and
“AG” become ambiguous simply because of the read errors.
If we can correct the errors, we can obtain longer contigs. For
example, in Figure 5, we essentially reconstruct the whole
sequence as a contig after removing erroneous paths.

However, we should not be overly aggressive when correct-
ing potential errors, as false alarms may create wrong (albeit
longer) contigs. For example, we only consider a dangling path
as a tip if it is short, as a long tip needs to be generated by
multiple errors which is unlikely. In fact, a long dangling path
is mostly likely to be a valid contig, with its dead-end caused
by no read coverage at the corresponding position in the whole
sequence (or covered by reads with length less than (k+1)).
Here, we define the coverage of a base-pair (or, position) in
the whole sequence as the number of reads that covers it.
For example, in Figure 3, the first nucleotide has coverage
1 (covered only by read 3©), and the second nucleotide has
coverage 2 (covered by reads 1© and 3©). As there are many
DNA clones, it is unlikely (but still possible) that a particular
base-pair is never covered.

As for a bubble, we remove sub-path(s) with a very low
coverage. Here, we define the coverage of a path as the
minimum coverage among all edges on the path, where the
coverage of an edge (i.e., a (k + 1)-mer) is defined as the
number of reads that generate that (k + 1)-mer. A correct
path is unlikely to have a low coverage as there are many
DNA clones, and a low coverage is often contributed by an
erroneous read. We also require a sub-path to be similar to
the main path (with high coverage) in order to remove it,
since it is unlikely to have multiple errors that significantly
changes the corresponding sub-sequence. The similarity can be
measured by the edit distance between the two sub-sequences
represented by these two paths.

Directionality. In the discussion so far, we have been assum-
ing that the DNA molecule is just a long sequence. In reality,
reads may be obtained from both strands of the DNA molecule.
As Figure 3 on Page 3 shows, each strand has an end-to-
end chemical orientation, and reads are always obtained in
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Figure 6. Canonical k-mers & Edge Polarity

the 5’-to-3’ direction. Specifically, strand 1 (resp. strand 2)
is read from left to right (resp. from right to left). Let us
temporarily read both strands from left to right, then two
nucleotides at the same position in both strands constitute a
base-pair. For example, in Figure 3, the first two base-pairs
are (A,T ) and (T,A). Nucleotides A and T (resp. G and C)
are complementary to each other, and the two nucleotides in
a base-pair are always complementary, as shown in Figure 3.

Given a nucleotide x, we denote its complement by x.
The reverse complement of a DNA sequence s = x1x2 . . .x`
is denoted by rc(s) = x` x`−1 . . .x1 (or simply x`x`−1 . . .x1).
For example, the reverse complement of strand 1 in Figure 3
is “GACTTGCAAT”, which is exactly strand 2 reading in the
5’-to-3’ direction.

Now consider read 4© in Figure 3 which is re-plotted on
strand 1 in Figure 6. If we read the same DNA segment
on strand 2 in the 5’-to-3’ direction, we obtain another read
“ACTT”, which is exactly the reverse complement of read 4©.
Figure 6 also shows the k-mer vertices and (k+1)-mer edges
generated by these two reads (k = 2).

Ideally, we would like any length-k sub-sequence of a strand
to appear only once in that strand, and not to appear in the
other strand, so that each k-mer decides a unique segment
location in only one of the two strands. Assume this is the case,
it is not difficult to see in Figure 6 that a k-mer and its reverse
complement refer to the same position in the DNA molecule.
For example, the two rightmost k-mer nodes “GT” and “AC”
are the reverse complement of each other. We would like a
k-mer and its reverse complement to correspond to a unique
vertex in the DBG, so that reads from different strands can
be stitched to create longer contigs as long as the reads share
overlapping DNA segments. To achieve this goal, we define the
canonical k-mer of a k-mer s as the lexicographically smaller
sequence between s and rc(s), and use the canonical k-mer as
a vertex in the DBG. For example, the rightmost k-mers “GT”
and “AC” in Figure 6 both refer to the rightmost DBG vertex
“AC” of the chain in the middle of Figure 6.

Accordingly, now each DBG edge (u,v) needs to have a
polarity to indicate the direction of a (k+1)-mer that generates
this edge, i.e., u-to-v or v-to-u. Polarity is used to indicate
the stitching directions when constructing contigs. We use an
example to explain how edge polarity is determined. Consider
the last (k+1)-mer of read “AAGT” from strand 1 in Figure 6
(k= 2), i.e., “AGT”, which creates an edge “AG”→“GT”. Edge
source “AG” is already canonical and thus we give it a label
L, while edge target “GT” needs to be converted to its reverse
complement “AC” to be a DBG vertex, in which case we give

A T T G C
00…00011111001

10…00000000000
10…0XX0…00YYY(a) k-mer

(b) k-mer = NULL (c) Contig
32 bits 32 bits

worker ID contig order

Figure 7. Vertex ID Format

it a label H. The edge direction is simply a concatenation of
the source and target labels, i.e., 〈L : H〉.

We say that labels H and L are complementary, and denote
H = L and L = H. It is not difficult to see the following
property (e.g., from Figure 6).

Property 1: Edge (u,v) with polarity 〈X : Y 〉 is equivalent
to edge (v,u) with polarity 〈Y : X〉.

This property allows us to stitch k-mers generated from
different strands. For example, consider (k+1)-mers “AAG”
from strand 1 and “ACT” from strand 2, which generates

two edges “AA”
〈L:L〉−−−→“AG” and “AC”

〈L:H〉−−−→“AG”. Although
both edges are incident to “AG”, the labels at the side
of “AG” do not match. Since the latter edge is equiva-

lent to “AG”
〈L:H〉−−−→“AC”, we can stitch the edges to obtain

“AA”
〈L:L〉−−−→“AG”

〈L:H〉−−−→“AC” where both edges agree on label
L for “AG” and are in the same direction.

Finally, we remark that our discussion has been assuming
the ideal case, and in reality a k-mer may appear in multiple
positions in both strands. Such a k-mer is ambiguous, and our
goal is still to find the contigs, i.e., the maximal simple paths
in the DBG that do not contain any ambiguous vertex.

IV. PPA-ASSEMBLER ALGORITHMS

We first present our compact graph data structures, and then
describe the operations supported by PPA-Assembler.

A. Vertex & Edge Formats

We design compact data structures for vertices and edges
in our vertex-centric programs to be memory-efficient (note
that genome assembly has a very high memory demand [9]).

Vertex ID. Each vertex in a Pregel program has a unique ID
for message passing, and we use integer to specify vertex ID.
There are two kinds of vertices in PPA-Assembler, (1) k-mer
and (2) contig. We encode the sequence of a k-mer directly
into its integer ID, so that different k-mers have different
IDs. Recall that reads are cut into (k+ 1)-mers during DBG
construction. Without loss of generality, let us assume that
k≤ 31, and hence we use 64-bit integer for ID (more bits will
be used if k > 31). Each nucleotide is represented by two bits:
A (00), T (11), G (10), C (01), and thus a k-mer requires at
most 62 bits to represent. We align this binary sequence to the
right of the 64-bit ID, and pad all remaining bits (at least 2) on
the left with zeros. As an example, Figure 7(a) shows the ID of
a 5-mer “ATTGC”. Sometimes, we would like to indicate that
a k-mer or a contig has no neighbor along one direction (e.g.,
the dead-end of a tip). We use a dummy neighbor in this case,
denoted by NULL, whose ID is given by the special 64-bit
binary sequence with the most significant bit being 1 and all
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Figure 8. Adjacency List Format

others being 0. Finally, since a contig can be an arbitrarily long
sequence, we cannot encode the sequence into the contig’s ID.
Instead, since the contigs are distributed among the machines
after their generation in PPA-assembler, we let the i-th worker
machine assign its j-th contig a 64-bit ID that equals the 32-bit
integer representation of i concatenated with the 32-bit integer
representation of j as shown in Figure 7(c). To avoid collision
with the ID of a k-mer, we also flip the most significant bit to
be 1.

Compared with directly using sequence as vertex ID, using
integer ID provides the following benefits: (1) Pregel heavily
checks vertex IDs for message delivery, and integer IDs benefit
from efficient word-level instructions; (2) no additional space
is needed to store the sequence of a k-mer vertex, and the
sequence-related processing can be efficiently executed by
bitwise operations.

Format of a k-mer Vertex. Each vertex also maintains an
adjacency list of its neighboring vertices (k-mers or contigs).
Since a contig is obtained by merging unambiguous k-mers,
it has only two neighbors along its two opposite sequencing
directions, where each neighbor is either an ambiguous k-mer
or NULL (i.e. the dead-end).

In contrast, a k-mer vertex may have more than two neigh-
bors. There are two cases: (1) at the beginning, all vertices
(and hence all neighbors) are k-mers that are generated from
reads; (2) in later processing, a neighbor of a k-mer may
also be a contig that is generated by merging unambiguous k-
mers (this later processing makes sense since error correction
may render the current k-mer unambiguous, leading to further
contig merging). Case (1) is the most memory-consuming
since the overlapping k-mers incur a lot of data redundancy;
once unambiguous k-mers (which are often the majority) get
merged into contigs, the memory consumption is usually no
longer a problem due to the significantly reduced data volume.

Therefore, we compress the adjacency lists of k-mer vertices
in Case (1) using compact bitmaps, which we describe next.
Let us first ignore edge polarity, then a k-mer can have
at most 4 in-neighbors and 4 out-neighbors (i.e., 8 neigh-
bors). For example, the 4-mer “CCGT” can have at most
4 in-neighbors whose suffix matches its prefix “CCG”, i.e.,
“ACCG”, “TCCG”, “GCCG” and “CCCG”. Now taking the 4
possible edge polarity 〈L : L〉, 〈L : H〉, 〈H : L〉 and 〈H : H〉 into
account, we obtain 4× 8 = 32 possible combinations, which
we represent using the 32-bit bitmap shown in Figure 8(a).
A bit is 1 if the corresponding neighbor exists (and it is 0

otherwise). For example, if the rightmost bit is 1, then we can
obtain the neighbor (i.e., its ID that encodes the sequence) by
(i) reverse-complementing the current k-mer (i.e., its ID) since
the left half of edge polarity is H, (ii) appending “C” to its
suffix, and (iii) reverse-complementing the resulting sequence
since the right half of edge polarity is H. In addition to the
32-bit neighbor bitmap, a k-mer vertex also maintains a list of
counts, one for each neighbor (i.e., each bit 1 in the bitmap)
which records the coverage of the corresponding edge. The
counts are stored as variable-length integers to save space (e.g.,
a small count can often be represented with just one byte). In
fact, using Property 1 mentioned in Section III, we can actually
further cut the bitmap size by half.

In uncompressed format, each k-mer neighbor (i.e., adja-
cency list item) of a k-mer vertex is represented by an 8-
bit bitmap plus the coverage of the corresponding edge. The
bitmap format is shown in Figure 8(b), where the leftmost
three bits are always 0, two bits XX are used to indicate
what nucleotide gets prepended (resp. appended) to the prefix
(resp. suffix) of the current k-mer vertex to form the neighbor,
one bits Y is used to indicate whether the neighbor is an in-
neighbor or an out-neighbor, and two bits ZZ are used to
indicate the polarity of the corresponding edge. For example,
consider the 4-mer vertex “ACGG” in Figure 8(b). Its in-
neighbor, node 1©, is represented by the bitmap 00010111
which indicates that the edge polarity is 〈H : H〉, and that
the neighbor’s sequence “CGGC” is obtained by reverse-
complementing “ACGG” into “CCGT”, prepending G (10)
to the prefix “CCG” to obtain “GCCG”, and then reverse-
complementing it into “CGGC”. Finally, sometimes we need
to indicate that a k-mer vertex reaches a dead-end along
one direction, in which case we use the bitmap 10000000 to
indicate that the neighbor is NULL.

A k-mer vertex tracks its contig neighbors differently from
the k-mer neighbors, and we shall discuss the format shortly.

Format of a Contig. Recall from Figure 7(c) that the
ID of a contig does not contain its sequence information.
In PPA-assember, a contig vertex keeps its sequence as a
variable-length bitmap. For example, Figure 9 shows a DBG
path where only the two end k-mer vertices are ambiguous,
and the other k-mers are merged into a contig with bitmap
11 10 01 01 10 11 00 01. We always keep the contig-side edge
polarity to be L, so that the contig corresponds to the sequence
in strand 1 rather than strand 2. Besides the bitmap, a contig
vertex also maintains an in-neighbor (resp. out-neighbor) such
as the k-mer vertex “CTGC” (resp. “TACA”) in Figure 9. Note
that the in-neighbor and out-neighbor are uniquely defined
since we already specify the sequencing direction of any
contig, i.e., 5’-to-3’ in strand 1. Besides ID, each neighbor
is also stored with the neighbor-side edge polarity (e.g., the
red and blue L’s in Figure 9), and the coverage of the
corresponding adjacent edge (e.g., 101 and 103 in Figure 9).
Finally, a contig vertex also maintains its own coverage (e.g.,
98 in Figure 9), which is computed as the minimum coverage
of all edges (i.e., (k+1)-mers) merged by the contig.
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Figure 9. Contig Format

We now consider how a k-mer vertex vme tracks its contig
neighbors. Recall that vme tracks each k-mer neighbor by
a bitmap plus a coverage. It tracks each contig neighbor
vcontig quite differently. Referring to Figure 9 again, while
we can view the contig as the neighbor of vertex “CTGC”
(and “TACA”), another perspective is to treat it as a label
on the edge connecting “CTGC” to “TACA”. We adopt the
latter perspective, and let vme maintain vcontig’s information as
a triplet including (i) the k-mer vertex’s ID on the other end
of vcontig, denoted by vother; (ii) direction of edge (vme,vother)
(incoming or outgoing) and polarity (e.g., the red and blue
L’s in Figure 9); (iii) vcontig’s ID which can be used by vme to
request for vcontig’s sequence (e.g., for further contig merging).
Other information about vcontig such as sequence length and
coverage can also be materialized in its corresponding adja-
cency list item of vme to facilitate tip removing and bubble
filtering, which eliminates the cost of requesting them from
vcontig during processing.

Vertex Types. First consider a k-mer vertex v, and it can be
of one of the following three types: (1) 〈1〉: such a vertex only
has one neighbor, and is thus a dead-end; (2) 〈1-1〉: such a
vertex has two neighbors, and when both edges agree on the
polarity label for v (either L or H) which can be enforced using
Property 1, one neighbor is an in-neighbor and the other is an
out-neighbor; such a vertex is unambiguous; (3) 〈m-n〉: such
a vertex has at least two neighbors, but it does not satisfy the
requirement of 〈1-1〉; such a vertex is ambiguous. Note that v
cannot have no neighbor, since a k-mer vertex is contributed
by the prefix or suffix of a (k+1)-mer.

Since a contig is generated by merging unambiguous k-
mers, it can only be of type 〈1〉 or type 〈1-1〉. Here, we say
that a contig vertex is of type 〈1〉 iff at least one of its two
neighbors is NULL, i.e., the contig corresponds to a dangling
path in DBG and is thus a tip candidate. Note that it is possible
to have an isolated contig where both ends are dead-ends (i.e.,
NULL), and will be regarded as a tip unless it is long.

B. Operations and Their Algorithms

PPA-assembler provides a library of operations for flexible
genome assembly in a distributed environment deployed with
Hadoop. Each operation is implemented as a PPA (described
in Section II) and is thus scalable; it can either load data
from HDFS, or directly obtain input from another operation’s
output in memory. Users may combine the provided operations
to implement various sequencing strategies, and they may
even integrate new operations or redefine existing operations
(e.g., changing the criteria for judging tips and bubbles) using
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Figure 10. Operation Diagram

Pregel+’s vertex-centric API.

Overview. Figure 10 shows the data flow diagram of PPA-
assembler, which includes five operations: 1© DBG construc-
tion, which constructs a DBG from the DNA reads, and
outputs the k-mer vertices of the DBG along with their
adjacency lists; 2© contig labeling, which divides the vertices
into two sets (ambiguous ones and unambiguous ones) and
labels unambiguous vertices by the contigs that they belong
to; 3© contig merging, which merges unambiguous vertices
into contigs according to the labels; 4© bubble filtering, which
filters any low-coverage contig that shares both ends with
another high-coverage contig that have a similar sequence;
5© tip removing, which takes the ambiguous k-mers and the

contigs (after bubble filtering), and removes tips.
In fact, the output of tip removing can be fed to the

“contig labeling” operation again to grow longer contigs (see
arrow 6© in Figure 10), since the previous error correction
operations may have converted some ambiguous k-mer vertices
into unambiguous ones, and the operations 2©– 5© may loop
as many times as needed (though we typically just loop for
one more round). At the first round, the inputs to operations
“contig labeling” an “contig merging” must be k-mers, but
starting from the second round, the inputs may contain a mix
of k-mers and contigs. For ease of discussion, we focus on
the first round when discussing operations “contig labeling”
an “contig merging”.

1© DBG Construction. This operation loads DNA reads from
HDFS, and creates a DBG from them through two mini
MapReduce phases: (i) the first phase extracts (k + 1)-mers
from reads, and (ii) the second phase constructs k-mer vertices
and their adjacency lists from the extracted (k+1)-mers, which
form the DBG.

We first describe phase (i). In real DNA data, a read’s
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Figure 11. Bidirectional List Ranking

sequence may contain element “N” besides “A”, “T”, “G”,
“C”, and such an element indicates that the nucleotide cannot
be determined due to noise in measurement. For this purpose,
in map(.), a read is first split into sequences by elements “N”,
and each sequence is parsed to obtain the (k+1)-mers using a
sliding window of (k+1) elements as illustrated in Figure 4.
The sequence of a (k+ 1)-mer is directly encoded in its 64-
bit integer ID, which functions as the key for shuffling. In
each worker machine, if a (k + 1)-mer is obtained for the
first time, the worker creates an (ID,count) pair for it where
count = 1; otherwise, the (k+1)-mer’s count is increased by
1. After shuffling, for each (k+1)-mer, all its counts (from all
workers) are input to reduce(.), which then sums these counts
to obtain the total count of the (k + 1)-mer; reduce(.) only
outputs the (k+1)-mer as an (ID,count) pair, if the coverage
count > θ where θ is a user-defined threshold. We filter a low-
coverage (k+1)-mer since it is very likely to be contributed
by erroneous readers.

In Phase (ii), each remaining (k+1)-mer is input to map(.),
which extracts two k-mers that correspond to its prefix and
suffix. In each worker, if an extracted k-mer is obtained for the
first time, the worker creates a k-mer vertex for it. A directed
edge from the prefix k-mer vertex to the suffix k-mer vertex
is also added into the adjacency lists of both k-mer vertices,
where an adjacency list is represented by a 32-bit bitmap as
shown in Figure 8, and edge count (which equals the (k+1)-
mer’s count) is also recorded or incremented, using a variable-
length integer. The k-mer vertices with partially constructed
adjacency lists are then shuffled by the 64-bit integer ID. After
shuffling, for each k-mer, its partial adjacency lists (from all
workers) are input to reduce(.), which combines them to obtain
the complete adjacency list (still represented in 32 bits), and
sums the counts of the each edge to obtain the edge coverage
(represented compactly using a variable-length integer).
2© Contig Labeling. Let us call a path that only contains

vertices of types 〈1〉 and 〈1-1〉 as an unambiguous path. The
“contig labeling” operation marks all vertices on each maximal
unambiguous path with a unique label, so that they can be
grouped to create a contig later. The operation is executed
right after “ 1© DBG construction”, and the input vertices are
all k-mers. It can also be executed after “ 5© tip removing” to
find longer contigs, in which case some input vertices could
already be contigs.

A vertex is at one end of a maximal unambiguous paths,

if its type is 〈1〉, or if its type is 〈1-1〉 and at least one
neighbor is of type 〈m-n〉. For example, in Figure 9, vertex
“GGCA” is at the left end of contig “TGCCGTAC”, since
its neighbor “CTGC” is of type 〈m-n〉. The contig labeling
operation first recognizes contig-ends in two supersteps: (1) in
superstep 1, every vertex of type 〈m-n〉 broadcasts its ID
to all its neighbors, and then votes to halt; it will never be
reactivated again as the remaining computation only involves
unambiguous vertices; (2) in superstep 2, a vertex recognizes
itself as a contig-end if it is of type 〈1〉, or if it is of type
〈1-1〉 and receives the ID of any ambiguous vertex sent from
superstep 1.

There are two methods to find all maximal unambiguous
paths (i.e., contigs) in O(logn) supersteps, both of which
require contig-end vertices to remove all their edges with
ambiguous vertices, so that the DBG graph becomes a set of
isolated unambiguous paths, each corresponding to a contig.
The first method is to run the simplified S-V algorithm
described in Section II, so that every vertex v is labeled
with the smallest vertex ID in its connected component (i.e.,
isolated unambiguous path containing v). The second method
is to use the idea of list ranking described in Section II to find
all unambiguous paths in O(log`max) time, where `max is the
length of the longest unambiguous path. We now describe the
second algorithm in more detail.

We illustrate this algorithm using the example of Figure 9,
which is replotted in Figure 11. Each edge is plotted along
with its equivalent edge in the other direction as determined
by Property 1, and each vertex is denoted by its integer ID
(e.g., “GGCA” is encoded with bitmap 10100100, which is
164). As mentioned two paragraphs before, in superstep 2, a
vertex v that recognizes itself as a contig-end needs to remove
edges with any ambiguous vertex. Instead of deleting such an
edge from v’s adjacency list, we replace it with a self-loop
edge, but we flip the second most significant bit of target ID
(i.e., v’s ID, let it be idv) to indicate that v is a contig-end. The
flipped ID is denoted by idv. For example, in Figure 11, vertex
v2 with ID 164 has two neighbors v1 and v3, and it replaces
the edge with the ambiguous neighbor v1 (who sent its ID to
v2 in superstep 1) by a self-loop edge to v2 itself, leading to a
pair of neighbor ID (164,105). Recall from Figure 7 that the
second most significant bit of a 64-bit ID is neither used to
encode k-mer sequence nor used to differentiate ID types.

In our list ranking approach, each unambiguous vertex



maintains a pair of IDs, which is initialized as the pair of
neighbor IDs set by superstep 2, as illustrated by round 0 in
Figure 11. Note that a vertex v of type 〈1〉 also has a pair
of IDs, since its NULL neighbor is replaced with the self-
loop edge (note that v is a contig-end). We then perform list
ranking in both sequencing directions of a contig, and we call
the process as bidirectional list ranking. We pass messages in
both directions rather than from one end of a contig to the
other end, since the two ends are symmetrically recognized
in superstep 2, and edge direction alone is not sufficient to
determine the sequencing direction as explained by Property 1.

In the ID-pair maintained by a vertex v, each ID corresponds
to v’s predecessor in one sequencing direction, which is
updated as the predecessor’s predecessor after each round until
it becomes the flipped ID of a contig-end. We illustrate this
process by considering vertex v3 with ID 105 in Figure 11. In
round 0, v3 sends its ID to its two predecessors 164 (v2) and
26 (v4) in one superstep. In the next superstep, v2 receives v3’s
ID 105, checks its ID pair (105,108) and finds the predecessor
that is not the received ID, i.e., v5 (108), which is responded
back to v3. Similarly, v3 will also receive 164 from v2, and
it then replaces its current ID-pair with the received pair of
IDs (164,108). In round 1, v3 send requests to 108 (v5) only
since it has already reached the contig-end 164 in the other
direction. It receives v5’s predecessor 177, and updates its ID-
pair as (164,177). Since it reaches both contig-ends, it votes
to halt and will not participate in any future computation. In
fact, all vertices reach both contig ends before round 2 and
vote to halt, and thus the computation stops in 2 rounds. It is
not difficult to see that the number of hops between a vertex
and its precedessors gets doubled by each round, and thus
the computation stops in O(log`max) supersteps and is thus
a BPPA. When the computation terminates, the ID-pair of
each vertex contains the flipped IDs of its two contig-ends.
Obviously, each ID-pair uniquely defines a contig, and we use
the smaller contig-end vertex’s ID as the contig-label.

Bidirectional list ranking alone is not sufficient if the DBG
contains a cycle of vertices of type 〈1-1〉 (a special contig if
large enough), since these vertices will never reach an end.
Note that if the vertex ID-pairs in any contig is not finalized,
each round will have some vertices vote to halt due to reaching
both contig-ends. Therefore, if the number of active vertices is
larger than 0 and does not decrease after a round, the algorithm
turns to run our simplified S-V algorithm on the remaining
active vertices, so that each vertex in a cycle obtains the
smallest ID in the cycle. Bidirectional list ranking is preferred
since each round only takes 2 supersteps, much smaller than
that required by a round of the S-V algorithm. On the other
hand, running the S-V algorithm over vertices in cycles at last
is fast, since there are very few active vertices remaining.

To summarize, if only the simplified S-V algorithm is
adopted, then each vertex obtains its contig-label as the
smallest vertex ID in its contig; if bidirectional list ranking is
adopted, each vertex in a non-cycle contig obtains its contig-
label as the smaller contig-end vertex’s ID, while each vertex
in a cycled contig obtains its contig-label as the smallest vertex

ID in the cycle.

3© Contig Merging. This operation takes the labeled unam-
biguous vertices as the input, and uses a mini MapReduce
procedure to group the vertices by their labels. All vertices
with the same contig-label are input to reduce(.), which then
merges the sequences of these vertices to obtain the contig.

We now describe the merging process in reduce(.). Firstly,
a hash table is constructed over all the vertices in the contig-
group, so that we can lookup a vertex object (storing informa-
tion like its sequence and neighbors) using its 64-bit integer
ID. We also identify a contig-end vertex, which contains a
neighbor not in the group (either NULL or of type 〈m-n〉), to
start the stitching with. If such a vertex cannot be found, the
contig is cycled and we start stitching from an arbitrary vertex.

We then order all the vertices from the starting vertex (and
meanwhile, set the edge directions properly), so that they can
be stitched in order. Let us denote the starting vertex by v1, and
denote the subsequent vertices after ordering by v2,v3, . . . ,vk.
Initially, we find a neighbor of v1 that is not its self-loop,
which is found as v2. We let v1’s out-neighbor be v2, and let
the other neighbor of v1 be its in-neighbor. Edge directions
and polarities are properly adjusted using Property 1 if they
are originally inconsistent. We then obtain v2 from the hash
table for processing, using its ID stored in v1’s adjacency list.
Generally, for each vertex vi (i > 1), we let vi−1 be its in-
neighbor, and let the other neighbor (which is found as vi+1) be
the out-neighbor; then vi+1 can be obtained from the hash table
(using its ID in vi’s adjacency list) to continue the ordering
process. The ordering finishes when all k vertices have been
processed.

If vk is of type 〈1〉, we exit reduce(.) if the aggregated contig
length is not above the user-specified tip-length threshold
(since the contig is a tip). In all other cases, we stitch the
vertices in the order of v1,v2, . . . ,vk to construct the contig.
Specifically, if the edge polarity on v1’s side is H, we reverse-
complement v1’s sequence and append it to the contig’s
sequence; otherwise, v1’s sequence is directly appended to the
contig’s sequence. For each subsequent vertex vi (i > 1), we
check whether the edge polarity on its side is L or H, and
use vi’s sequence or its reverse complement to update the
contig’s sequence. Note that the two sequences overlap by
(k−1) elements and this should be taken into consideration.
For example, in Figure 9, assume that vertex “GGCA” already
appended sequence “TGCC” to the contig’s sequence (as edge
polarity is H on the side of “GGCA”), then vertex “CGGC”
should only append the complement of the first element (not
the last element as as edge polarity is H on the side of
“CGGC”) to the contig’s sequence, leading to “TGCCG”.
We also set the contig’s coverage as the minimum edge
coverage seen during the concatenation, and set the contig’s
two neighbors with v1’s in-neighbor and vk’s out-neighbor.

4© Bubble Filtering. The contigs previously constructed may
then enter the “bubble filtering” operation for further filtering
though a mini MapReduce procedure. In map(.), each contig
with neighbors nb1 and nb2 (nb1 < nb2), both of type 〈m-n〉,



associates itself with a key (nb1,nb2) for shuffling. As a result,
all contigs that share two neighboring ambiguous vertices
(nb1,nb2) are input to reduce(.), and let us denote them by
c1,c2, . . . ,ck. We then process each contig ci as follows: if
ci is not already pruned, we check whether any contig c j
( j > i) can prune ci. Specifically, we first compute the edit
distance between ci’s sequence and c j’s sequence or its reverse
complement (depending on whether ci and c j’s edge directions
are consistent, i.e., nb1-to-nb2 or nb2-to-nb1). If the distance
is smaller than a user-defined threshold, we mark ci (resp. c j)
as pruned if its coverage is smaller than c j (resp. ci).

5© Tip Removing. This operation takes both ambiguous k-
mers and the merged contigs as input. We first need to update
the adjacency lists of the ambiguous k-mers, to link them to
the newly merged contigs. In fact, since some contigs may
have been removed due to bubble filtering, some ambiguous
k-mers may have changed their types from 〈m-n〉 to 〈1-1〉
or 〈1〉. Recall from Section IV-A that a k-mer vertex stores
its contig neigbhor by maintaining (1) the contig vertex’s ID
(e.g., for requesting its sequence), (2) the vertex that the contig
connects to on the other end, and (3) other contig information
like its length. We set the adjacency lists of the k-mer vertices
in two supersteps: (i) in superstep 1, each contig vertex sends
its information mentioned above to both neighbors (if not
NULL); then (ii) in superstep 2, each k-mer vertex collects
these information into its adjacency list.

Since only path length is concerned during tip removing, we
only need to check the k-mer vertices as each k-mer vertex u
maintains each contig neighbor c in the form of c’s ID, c’s
sequence length, and the k-mer vertex v on the other end of c.
However, when deleting the edge (u,v) (due to being part of
a tip), a message should be sent to the contig vertex c (using
c’s ID stored in the adjacency list item) to tell it to delete
itself, which we take for granted and will not emphasize in
the subsequent algorithm description.

Note that the removal of tips may cause some vertices
of type 〈m-n〉 to change their type to 〈1〉, hence generating
new tips. As a result, we run our vertex-centric tip removing
procedure for multiple phases, until no new 〈1〉-typed vertex
is generated at the end of a phase.

In a phase, we start message passing from vertices of type
〈1〉, where a message records (1) the sender’s ID, (2) cumula-
tive sequence length, and (3) a type REQUEST. A 〈1〉-typed
vertex u initializes the cumulative sequence length as k (i.e.,
u’s sequence length). When a vertex u of type 〈1-1〉 receives a
REQUEST message, it relays the message to the other neighbor
v (i.e., not the sender) by adding the cumulative sequence
length by 1 (contributed by u) plus the contig length minus
(k−1) if edge (u,v) contains a contig (“minus (k−1)” is not
to count the overlapping sequence).

The REQUEST message ends at an 〈m-n〉-typed or 〈1〉-
typed vertex v, which checks whether the cumulative sequence
length is not larger than the tip-length threshold. If so, v
sends a message of type DELETE to the sender to delete
the vertices on the dangling path. The DELETE message is

relayed by 〈1-1〉-typed vertices back till reaching the 〈1〉-
typed vertex that initiates the REQUEST message, and vertex
and contig deletions are triggered along the backward message
propagation.

A special case is when a tip has two 〈1〉-typed ends. Since
both vertices at the ends initiate a REQUEST message sent
towards each other, when the two DELETE messages are sent
back, they meet in the middle of the tip (rather than reach the
other 〈1〉-typed end).

An 〈m-n〉-typed vertex v also deletes its edge to the neighbor
that it sends a DELETE message, and if its type becomes 〈1〉,
it keeps itself activated to initiate the REQUEST message in
the next phase.

V. EXPERIMENTS

The state-of-the-art parallel assemblers often use ad-hoc
design. For example, ABySS [17] builds the DBG by let-
ting each k-mer send messages to its 8 possible neighbors
(with A/T/G/C prepended/appended) to establish edges. This
increases ambiguity (and hence reduces contig length) since an
edge will be created between 2-mers “CA” (e.g., contributed
by 3-mer “CAT”) and “AA” (e.g., contributed by “GAA”) even
though the 3-mer “CAA” does not exist in the DNA molecule.
As another example, instead of using list ranking or S-V to find
maximal unambiguous paths as contigs, Spaler [1] iteratively
breaks each unambiguous path by sampled vertices to form
segments, and then merges segments that meet at a sampled
boundary vertex. The process is repeated until 〈m-n〉-typed
vertices account for more than 1/3 of all vertices in the graph,
and this heuristic provide no guarantee of path maximality.
PPA-assembler avoids ad-hoc design by well-designed assem-
bly algorithmic logic (that can be further customized by users),
which are decoupled from low-level distributed communica-
tion through using the performance-optimized vertex-centric
and mini MapReduce procedures provided by Pregel+.

We compare PPA-assembler with the state-of-the-art parallel
assemblers, ABySS (version 1.5.2), Ray (version 2.3.1) and
SWAP-Assembler (version 3.0). Spaler is not open-sourced
and is thus not included in our comparison. We use the simple
workflow 1© 2© 3© 4© 5© 6© 2© 3© in Figure 10 for PPA-assembler,
i.e., to grow contigs once further after error correction. How-
ever, we remark that users may customize their own workflow
or even change the existing operations (e.g., add coverage-
threshold pruning to bubble filtering) or add new operations
implemented in Pregel+’s API (e.g., branch splitting [1] for
error correction) to implement different assembly strategies,
including those of ABySS, Ray and SWAP-Assembler.

All experiments were conducted on a cluster of 16 machines
connected by Gigabit Ethernet, each with 48 GB DDR3 RAM
and 12 cores (two Intel Xeon E5-2620 CPUs). We used k = 31
for defining k-mers. For PPA-assembler, edit distance threshold
for bubble filtering is set as 5, and length threshold for tip
removing is set as 80, since we found that the sequencing
results are very stable near these parameter ranges. We used
the default settings of ABySS, Ray and SWAP-Assembler in
their respective experiments.
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Figure 12. Execution Time of the Assemblers with Varying Number of Machines

Table I
DATASETS (M = 1,000,000, BP = BASE PAIRS)

Dataset Name # of Reads AVG Read 
Length

Reference 
Sequence Length

Homo Sapiens Chromosome 2 4.81 M 100 bp 48,170,570
Homo Sapiens Chromosome X 9.26 M 100 bp 96,301,240

Human Chromosome 14 18.25 M 101 bp -
Bombus Impatiens 151.55 M 155 bp -

We ran our experiments with the 4 datasets shown in
Table I, where are listed in the increasing order of data
volume. The two smaller datasets are generated from NCBI’s
reference gene sequences Homo Sapiens Chromosome X (HC-
X)3 and Homo Sapiens Chromosome 2 (HC-2)4, using the
ART5 software [8]. These datasets have reference sequences
and thus we can measure the sequencing quality exactly. To
test scalability further, we also selected the 2 larger datasets
Human Chromosome 14 (HC-14) 6 and Bombus Impatiens
(BI) 7, which are downloaded from the GAGE project [15]. All
the datasets are in FASTQ format, which includes the sequence
of each DNA read.

Running Time & Scalability. We use bidirectional list rank-
ing for contig labeling in this set of experiments. Figure 12
shows the performance of the four assemblers on the two
large datasets HC-14 and BI (the results on HC-X and HC-
2 are similar and are thus omitted). For each assembler, we
show the end-to-end execution time of assembly when each
machine runs 1, 2, 3 and 4 workers, respectively. We can
see that PPA-assembler is much faster than all the other
assemblers in all cases, thanks to the efficient Pregel+ backend
and our well-designed algorithms. This performance difference
becomes even larger when the input dataset becomes larger
(e.g., compare Figure 12(b) to Figure 12(a)), which verifies
the superior scalability of PPA-assembler towards data size.
In contrast, Ray has the poorest performance, often one order
of magnitude slower than the other assemblers.

As for the scalability towards the number of workers, the
performance of PPA-assembler, SWAP-Assembler and Ray
keeps improving as the worker number increases. In contrast,

3http://www.ncbi.nlm.nih.gov/nuccore/NC 000023.11
4https://www.ncbi.nlm.nih.gov/nuccore/NC 000002.12
5http://www.niehs.nih.gov/research/resources/software/biostatistics/art/
6http://gage.cbcb.umd.edu/data/Hg chr14
7http://gage.cbcb.umd.edu/data/Bombus impatiens

Table II
LR V.S. S-V FOR LABELING UNAMBIGUOUS k-MERS

Datasets # of Supersteps # of Messages Runtime (s)
LR S-V LR S-V LR S-V

HC-X 26 86 2,325 M 5,913 M 93 212
HC-2 28 93 1,498 M 3,644 M 58 128

HC-14 67 93 2,342 M 6,852 M 213 415
BI 60 86 6,705 M 22,958 M 239 723

Table III
LR V.S. S-V FOR LABELING CONTIGS

Datasets # of Supersteps # of Messages Runtime (s)
LR S-V LR S-V LR S-V

HC-X 32 44 2.16 M 5.28 M 0.51 0.67
HC-2 12 37 1.05 M 2.74 M 0.20 0.50
HC-14 22 51 6.04 M 22.46 M 1.06 1.83

BI 38 65 74.36 M 280.04 M 3.77 10.26

the performance of ABySS is insensitive to the number of
workers. In fact, more workers may even lead to a longer
assembly time.

Bidirectional List Ranking v.s. Simplified S-V. These are
two approaches for contig labeling. As we mentioned, while
both algorithms are PPAs that runs for O(logn) rounds (and
hence supersteps), each round of S-V require a larger number
of supersteps than a round in list ranking, and thus list ranking
(LR) is expected to be much faster. Recall that we run PPA-
assembler with the simple workflow of 1© 2© 3© 4© 5© 6© 2© 3©
in Figure 10, and “ 2© contig labeling” is performed twice:
once for labeling unambiguous k-mers, and once for labeling
contigs (to grow longer ones).

Table II and Table III show the comparison of LR and
S-V for labeling k-mers and labeling contigs, respectively,
on the four datasets, where we report (1) the number of
supersteps, (2) the number of messages, and (3) the running
time. We can see that LR runs for much fewer supersteps,
sends much fewer messages, and is much faster than S-V.
The message number and runtime in Table III is three orders
of magnitude less than those in Table II, since the vertex
number is significantly reduced after we merge unambiguous
k-mers into contigs. For example, the DBG of the HC-2 dataset
has 46.97 M vertices, which is reduced to 1.00 M vertices
after merging unambiguous k-mers into contigs, and further
to 68,264 vertices after these contigs are merged after error
correction.

Sequencing Quality. We now assess the sequencing quality
of the assemblers. We remark that, for PPA-assembler, we are



Table IV
QUALITY COMPARISON ON HC-2

Assembler PPA ABySS Ray SWAP
# of contigs 22,707 29,231∗ 26,739 12,477
Total length 36,878,742∗ 31,426,810 20,854,349 8,232,160
N50 2,070∗ 1,184 779 640
Largest contig 16,376∗ 7,166 3,248 1,982
GC (%) 40.89 41.77∗ 41.03 41.21
# Misassemblies 1∗ 4 1∗ 167
Misassembled length 1,366 3,666 520∗ 115,998
Unaligned length 24∗ 427 1,227 47,810
Genome fraction (%) 76.285∗ 65.104 42.981 16.963
# Mismatches per 100 kbp 0.43∗ 13.75 1.04 43.02
# Indels per 100 kbp 0.03∗ 0.10 0.09 5.32
Largest alignment 16,376∗ 7,166 3,248 1,982

just evaluating the adopted workflow. We can easily configure
PPA-assembler with other assembly strategies that leads to a
higher sequencing quality. Even with the adopted workflow,
PPA-assembler achieves comparable (if not better) quality,
which we present next.

We used the popular assessment tool, QUAST [7], which
reports various quality metrics commonly used in genetic
analysis. These metrics include: (1) N50, which is defined as
the sequence length of the contig that contains middle element
of the sequence that concatenates all contigs from the longest
one to the shortest one; (2) the number of contigs whose length
are larger than 500 bp; (3) the length of largest contig; (4) the
total length of contigs; (5) genome coverage, which is the
percentage of bases in the genome covered; (6) the number
of misassembled contigs; (7) unaligned length, and so on.
Some of these metrics do not require a reference sequence
(e.g., N50), while others do (e.g., the number of misassembled
contigs).

We present the sequencing quality of the assemblers on
HC-2 in Table IV. Since HC-2 has a reference sequence, we
obtained all the various quality metrics reported by QUAST.
The best results among the assemblers are highlighted in
Table IV, and we can observe that PPA-assembler performs
the best in the majority of the metrics (and comparable in
others). For example, it has the highest N50 value and the
lowest misassemblies (i.e., only 1 misassembled contig). It is
worth mentioning that the second round of contig merging is
effective: N50 is 1074 after we merge unambiguous k-mers
into contigs, and it improves to 2070 (i.e., is doubled) after
we merge contigs after error correction. The results on HC-X
are similar and thus omitted.

Table V
QUALITY COMPARISON ON HC-14

Assembler PPA ABySS Ray SWAP
Number of contigs 41,445 18,008 45,984 47,252∗

Total length 62,667,868 26,586,604 63,456,459 63,752,569∗

N50 1,891∗ 1,847 1,641 1,605
Largest contig 16,069∗ 15,744 15,116 13,251

We report the sequencing quality of the assemblers on HC-
14 in Table V. Since HC-14 has no reference sequence, we
cannot report many of the metrics such as misassemblies.
The results show that PPA-assembler achieves the largest N50
value, performs the best in 2 of the 4 metrics, and achieves
comparable performance to the best in the other two metrics.
The results on BI are similar and thus omitted.

VI. CONCLUSION

We presented a scalable and flexible de novo genome assem-
bler, PPA-assembler, built on a popular big data framework and
provides strict performance guarantee. PPA-assembler is many
times faster than other distributed assemblers, and achieves
comparable (if not better) sequencing quality.
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