
Maintaining Frequent Itemsets over High-Speed

Data Streams⋆

James Cheng, Yiping Ke, and Wilfred Ng

Department of Computer Science
Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong, China
{csjames, keyiping, wilfred}@cs.ust.hk

Abstract. In this paper, we propose a false-negative approach to ap-
proximate the set of frequent itemsets over a sliding window. Existing
approximate algorithms use an error parameter, ǫ, to control the accu-
racy of the mining result. However, the use of ǫ leads to a dilemma.
The smaller the value of ǫ, the more accurate is the mining result but
the higher the computational complexity, while increasing ǫ degrades
the mining accuracy. We address this dilemma by introducing a progres-
sively increasing minimum support function. When an itemset is retained
in the window longer, we require its minimum support to approach the
minimum support of a frequent itemset. Thus, the number of potential
frequent itemsets to be maintained is greatly reduced. Our experiments
show that our algorithm not only attains highly accurate mining results,
but also runs significantly faster and consumes less memory than do
existing algorithms for mining frequent itemsets over a sliding window.

1 Introduction

Frequent itemset (FI) mining [1] is fundamental to many important data mining
tasks such as associations and correlations. Recently, the increasing prominence
of data streams has led to the study of online mining of FIs, which is an important
technique to a wide range of applications [7], such as web log and click-stream
mining, network traffic analysis, trend analysis and fraud/anomaly detection in
telecom data, e-business and stock market analysis, and sensor networks. With
the rapid emergence of these new application domains, it has become increasingly
demanding to conduct advanced analysis and data mining over data streams to
capture interesting trends, patterns and exceptions.

Unlike mining on static datasets, mining data streams poses many new chal-
lenges. First, it is unrealistic to keep the entire stream in main memory or even
in secondary storage, since a data stream comes continuously and the amount
of data is unbounded. Second, traditional methods of mining on stored datasets
by multiple scans are infeasible since the streaming data is passed only once.

⋆ This work is partially supported by RGC CERG under grant number
HKUST6185/02E and HKUST6185/03E.

Third, mining streams requires fast, real-time processing in order to keep up
with the high data arrival rate and mining results are expected to be available
within short response times. In addition to the unbounded memory requirement
and the high arrival rate of a stream, the combinatorial explosion of itemsets
exacerbates mining FIs over streams in terms of both memory consumption and
processing efficiency. Due to these constraints, research studies have been con-
ducted on approximating mining results.

Existing approximation techniques for mining FIs are mainly false-positive1

[9, 13, 3, 12, 4, 8, 5]. Most of these approaches use an error parameter, ǫ, to control
the quality of the approximation. However, the use of ǫ leads to a dilemma. A
smaller ǫ gives a more accurate mining result. Unfortunately, a smaller ǫ also re-
sults in an enormously larger number of itemsets to be maintained, thereby dras-
tically increasing the memory consumption and lowering processing efficiency.
A false-negative2 approach [15] is proposed recently to address this dilemma.
However, the method focuses on the entire history of a stream and does not
distinguish recent itemsets from old ones.

In this paper, we propose a false-negative approach to mine FIs over high-
speed data streams. Our method places greater importance on recent data by
adopting a sliding window model. To tackle the problem introduced by the use
of ǫ, we consider ǫ as a relaxed minimum support threshold and propose to pro-
gressively increase the value of ǫ for an itemset as it is kept longer in a win-
dow. In this way, the number of itemsets to be maintained is greatly reduced,
thereby saving both memory and processing power. We design a progressively
increasing minimum support function and devise an algorithm to mine FIs over
a sliding window. Our experiments show that our approach is able to obtain
highly accurate mining results even with a large ǫ, so that the mining efficiency
is significantly improved. In most cases, our algorithm runs significantly faster
and consumes less memory than do the state-of-the-art algorithms [13, 5], while
attains the same level of accuracy.

Organization. We discuss the related work in Section 2 and give the background
in Section 3. In Sections 4 and 5, we introduce the progressively increasing
minimum support function and present our algorithm. We analyze the quality
of the approximation of our approach in Section 6. We present our experimental
results in Section 7 and conclude the paper in Section 8.

2 Related Work

Existing streaming algorithms on mining FIs mainly focus on a landmark window
[9, 13, 12, 15]. However, these approaches do not distinguish recent itemsets from
old ones. Since the importance of an itemset in a stream usually decreases with

1 The false-positive approach returns a set of itemsets that includes all FIs but also
some infrequent itemsets.

2 The false-negative approach returns a set of itemsets that does not include any
infrequent itemsets but misses some FIs.

time, methods that discount the importance of old itemsets exponentially with
time have been proposed [3, 8].

Another well-known approach to place greater importance on recent data is
adopting the sliding window model [11, 4–6]. Lee et al. [11] propose to mine the
exact set of FIs. Their method needs to scan the entire window and computes the
FIs from the candidate 2-itemsets for each slide. This method is expensive, espe-
cially when the window is large, and is thus more suitable for offline processing.
Chang and Lee [4, 5] adopt the estimation mechanism of the Carma algorithm
[9] and that of the Lossy Counting algorithm [13], respectively, to mine an ap-
proximate set of FIs. The two approaches incrementally update a set of itemsets
that are potential to be frequent for each incoming and expiring transaction. We
implement their algorithm [5] that adopts the Lossy Counting estimation mech-
anism and a variant of the same algorithm that performs the update for each
batch of transactions instead of for each transaction. We find that the former
(update-per-transaction) is much slower and consumes much more memory than
the latter (update-per-batch), while our approach significantly outperforms the
latter as shown by our experimental results. Another work on mining over a slid-
ing window is the Moment algorithm proposed by Chi et al. [6]. Their method
is not comparable to ours since Moment mines closed FIs [14] instead of FIs.

Yu et al. [15] adopt the Chernoff bound to develop a false-negative approach
that can control the bound of memory usage and the quality of the approximation
by a user-specified probability parameter. Since Chernoff bound requires the size
of the stream to become sufficiently large in order to obtain an accurate mining
result, it is inflexible to apply it into the sliding window model.

3 Preliminaries

Let I = {x1, x2, . . . , xm} be a set of items. An itemset (or a pattern) is a subset
of I. A transaction, X , is an itemset and X supports an itemset, Y , if X ⊇ Y .
For brevity, we write an itemset {xj1 , xj2 , . . . , xjn

} as xj1xj2 . . . xjn
.

A transaction data stream is a continuous sequence of transactions. We denote
a time unit in the stream as ti, within which a variable number of transactions
may arrive. A window or a time interval in the stream is a set of successive time
units, denoted as T = 〈ti, . . . , tj〉, where i ≤ j, or simply T = ti if i = j. A
sliding window in the stream is a window that slides forward for every time unit.
The window at each slide has a fixed number, w, of time units and w is called
the size of the window. In this paper, we use tτ to denote the current time unit.
Thus, the current window is W = 〈tτ−w+1, . . . , tτ 〉.

We define trans(T) as the set of transactions that arrive on the stream in
a time interval T and |trans(T)| as the number of transactions in trans(T).
The support3 of an itemset X over T , denoted as sup(X, T), is the number of
transactions in trans(T) that support X . Given a predefined Minimum Support
Threshold (MST), σ (0 ≤ σ ≤ 1), we say that X is a frequent itemset (it FI)
over T if sup(X, T) ≥ σ|trans(T)|.

3 The support here is the absolute occurrence frequency instead of the relative support.

t1 t2 t3

abc bc bde

bce abd ac

bcd bcd

Table 1. Transactions in Two Windows

Given a transaction data stream and an MST σ, the problem of FI mining
over a sliding window in the stream is to find the set of all FIs over the window
at each slide.

Example 1. Table 1 records the transactions that arrive in the stream in two
successive windows, W1 = 〈t1, t2〉 and W2 = 〈t2, t3〉. If the minimum support
required is 3 (i.e., σ = 3/5 in both windows), then the set of FIs over W1 and
W2 are {b, c, bc} and {b, c, d, bd}, respectively. For example, bc is an FI over
W1 since sup(bc, W1) = 4; however, bc is infrequent over W2 since its support
over W2 drops to 2 due to its low frequency in t3. 2

4 A Progressively Increasing MST Function

An itemset may be infrequent at some point in a stream but becomes frequent
later. Since there are exponentially many infrequent itemsets at any point in a
stream, it is infeasible to keep all infrequent itemsets. Suppose we have an itemset
X which is discovered to be frequent at time t. Since X is infrequent before t,
the support of X in the stream before t is lost. A common approach [13, 12, 5] to
estimate X ’s support before t is to use an error parameter, ǫ, where 0 ≤ ǫ ≤ σ.
X is maintained in the (sliding or landmark) window as long as its support is
no less than ǫN , where N is the number of transactions received in the current
window. Thus, if X is kept only after t, the support of X before t is at most ǫN .
However, the use of ǫ leads to a dilemma. A small ǫ gives an estimated support
close to the true support. Unfortunately, a small ǫ also results in a large number
of itemsets to be processed and maintained, thereby drastically increasing the
memory consumption and lowering processing efficiency. To tackle this problem,
we consider ǫ as a relaxed MST and propose to progressively increase the value
of ǫ as an itemset is kept longer in the window.

We use the relaxed MST ǫ = rσ, where r (0 ≤ r ≤ 1) is the relaxation
rate, to mine the set of FIs over each time unit t in the sliding window. Since
all itemsets whose support less than rσ|trans(t)| are discarded, we define the
computed support of the itemsets as follows.

Definition 1 (Computed Support) The computed support of an itemset X
over a time unit t is defined as follows:

s̃up(X, t) =

{
0 if sup(X, t) < rσ|trans(t)|
sup(X, t) otherwise,

where sup(X, t) is the true support of X over t.

The computed support of an itemset X over a time interval T = 〈tj , . . . , tl〉
is defined as

s̃up(X, T) =

l∑

i=j

s̃up(X, ti).
2

Based on the computed support of an itemset, we apply a progressively in-
creasing MST function to define a semi-frequent itemset.

Definition 2 (Semi-Frequent Itemset) Let W = 〈tτ−w+1, . . . , tτ 〉 be a win-
dow of size w and T k = 〈tτ−k+1, . . . , tτ 〉, where 1 ≤ k ≤ w, be the most recent
k time units in W . We define a progressively increasing function

minsup(k) =
⌈
mk × rk

⌉
,

where mk = σ
∣∣trans

(
T k

)∣∣ and rk =
(

1−r
w

)(
k − 1

)
+ r.

An itemset X is a semi-frequent itemset (semi-FI) over W if s̃up(X, T k) ≥
minsup(k), where k = τ − o + 1 and to is the oldest time unit such that
s̃up(X, to) > 0.

2

The first term mk in the minsup function in Definition 2 is the minimum sup-
port required for an FI over T k, while the second term rk progressively increases
the value of the relaxed MST rσ at the rate of ((1 − r)/w) for each older time
unit in the window. We keep an itemset X in the window only if its computed
support over T k is no less than minsup(k), where T k is the time interval starting
from the time unit to, in which the support of X is computed, up to the current
time unit tτ .

We remark that k is relative to the specific window at each slide and the
computed support of a semi-FI X over 〈tτ−w+1, . . . , tτ−k〉 is considered as un-
promising and discarded. When we re-compute the value of k for the window at
the next slide, the computed support of X over 〈tτ−w+1, . . . , tτ−k〉 will be taken
as 0.

We illustrate the concept of semi-FIs by the following example.

k 10 9 8 7 6 5 4 3 2 1

minsup(k) 182 148 117 90 66 46 30 17 8 2

Time Unit t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

sup(ab,ti) 3 1 2 3 2 1 4 7 11 19 21
sup(cd,ti) 3 11 20 29 11 8 17 28 37 41 39

Table 2. Two Sample Semi-FIs

Example 2. Let σ = 0.01, r = 0.1 and w = 10. We assume a uniform input
rate of 2,000 transactions in each time unit. The 11 time units constitute to the
windows for two slides, W1 = 〈t1, . . . , t10〉 and W2 = 〈t2, . . . , t11〉. Table 2 shows

the value of minsup(k), for 1 ≤ k ≤ 10, and the support of two itemsets, ab and
cd, over each time unit.

We first discuss the method used by the state-of-the-art algorithm Lossy
Counting [13, 5], which is the baseline of comparison with our approach in our
experiments. Lossy Counting keeps an itemset if its overall support is no less
than rσN , where N is the number of transactions in the current window. Thus,
both ab and cd are retained in both windows since rσN = 20, even though the
supports of ab over some time units are very low and obviously unpromising.
Note that in t2 and t6, the support of ab is 1 but ab is still mined. Mining item-
sets with minimum support 1 means mining all itemsets, which is an extremely
expensive operation in terms of both time and space, since the number of all
itemsets is prohibitively large. Although we only need to consider those itemsets
that have already been discovered, the number of these itemsets is still very large
when σ is small.

With our progressively increasing MST, the supports of ab over the first six
time units can at most pass minsup(1)=2 and are always less than minsup(2)=8
over any two consecutive time units. For ab to be frequent in W1 or W2, its
support must increase rapidly from t7 to t11, which is unlikely given the low
supports of ab in the past. Thus, the supports of ab over the first six time
units can be regarded as unpromising and discarded. Although the trend in the
support of ab from t7 to t11 shows that ab may become frequent after a few
window slides, the first few time units will have expired at that time. Therefore,
it is reasonable that we require the support of ab to increase progressively as it
stays longer in a window. In this way, ab is only retained from t7 and afterwards,
as its supports from t7 up to t11 are greater than the corresponding minsup(k),
for k = 1, . . . , 5. Indeed, the supports of ab over these time units are more likely
to contribute to the overall support of ab should it become frequent later.

The supports of cd over all the time units, in both W1 and W2, are always
greater than the corresponding minsup(k), for k = 1, . . . , 10. However, we can see
that there are some low supports observed over the first few time units and those
in the middle. These low supports are not discarded since they are compensated
by the high supports of cd over other time units. 2

5 Mining FIs over a Sliding Window

We use a prefix tree to keep the semi-FIs of the window at each slide. A node in
the prefix tree has three fields:

– item: the last item of an itemset4, X , so that X is represented by the path
from the root to the node.

– uid(X): the ID of the time unit, tuid(X), in which X is inserted into the
prefix tree.

– s̃up(X): the computed support of X since tuid(X).

4 We assume the items of an itemset are lexicographically ordered.

Algorithm 1 (MineSW)
Input: (1) An empty prefix tree. (2) σ, r and w. (3) A transaction data stream.
Output: An approximate set of FIs of the window at each slide.

1. We apply an existing non-streaming algorithm to mine all FIs over the set of
transactions received within each time unit, using a relaxed MST rσ.

2. Initialization: For each of the first w time units, ti (1 ≤ i ≤ w), mine all FIs
from trans(ti). For each mined itemset, X, check if X is in the prefix tree.
(a) If X is in the prefix tree, perform the following operations.

i. Addgsup(X, ti) togsup(X).
ii. Ifgsup(X) < minsup(i − uid(X) + 1), remove X from the prefix tree and

stop mining the supersets of X from trans(ti).
(b) If X is not in the prefix tree, create a new node for X in the prefix tree with

uid(X) = i andgsup(X) =gsup(X, ti).

After the itemsets mined from trans(ti) are updated, traverse the prefix tree once
to remove all itemsets X ifgsup(X) < minsup(i − uid(X) + 1). When we remove
X, we also remove all its descendants since they are its supersets (other supersets
of X that are not descendants of X are removed when they are visited in the tree
traversal).

3. Incremental Update:

– For each expiring time unit, tτ−w+1, mine all FIs from trans(tτ−w+1). For each
mined itemset, X:
• If X is in the prefix tree and τ −uid(X)+1 ≥ w, subtractgsup(X, tτ−w+1)

fromgsup(X). Otherwise, stop mining the supersets of X from trans(tτ−w+1).
• Ifgsup(X) becomes 0, remove X from the prefix tree. Otherwise, set uid(X) =

τ − w + 2.
– For each incoming time unit, tτ , mine all FIs from trans(tτ). For each mined

itemset, X, check if X is in the prefix tree.
(a) If X is in the prefix tree, perform the following operations.

i. Addgsup(X, tτ) togsup(X).
ii. If (1) τ − uid(X) + 1 ≤ w andgsup(X) < minsup(τ − uid(X) + 1), or

(2) τ −uid(X)+1 > w andgsup(X) < minsup(w), remove X from the
prefix tree and stop mining the supersets of X from trans(tτ).

(b) If X is not in the prefix tree, create a new node for X in the prefix tree
with uid(X) = τ andgsup(X) =gsup(X, tτ).

4. Pruning and Outputting: Scan the prefix tree once. For each itemset X visited:
– Remove X and its descendants from the prefix tree if (1) τ − uid(X) + 1 ≤ w

and gsup(X) < minsup(τ − uid(X) + 1), or (2) τ − uid(X) + 1 > w andgsup(X) < minsup(w).
– Output X ifgsup(X) ≥ σ|trans(W)| (we can thus set minsup(w) = σ|trans(W)|

to prune more itemsets).

The algorithm for mining FIs over a sliding window, as described in Algo-
rithm 1, is self-explanatory. In the initialization step, we create the prefix tree
for the first window and we make sure all itemsets kept in the prefix tree are
semi-frequent. After we finish processing the first w time units, we begin to slide
the window.

Before each slide, we first subtract the support of the existing semi-FIs over
the first time unit of the window, that is, the expiring time unit tτ−w+1. Note
that we need to make sure that the support of an itemset is computed from

tτ−w+1. If τ − uid(X) + 1 < w, then X is inserted after tτ−w+1 and thus we
should not decrease the support of X for tτ−w+1. If τ−uid(X)+1 ≥ w, then part
of X ’s support is from tτ−w+1 and needs to be subtracted. The “≥”, instead of
“=”, is used because if we continue to keep X in the prefix tree, we set uid(X) to
the ID of the next time unit τ −w+2. Therefore, if X is not mined over the next
i ≥ 1 time units after tτ−w+1, in the coming window 〈t(τ−w+1)+(i+1), . . . , tτ+i+1〉
after (i + 1) slides, when we compute “τ − uid(X) + 1” again, we have (τ + i +
1) − (τ − w + 2) + 1 = w + i > w.

After processing the expiring time unit, we process the new time unit tτ to
complete the window at the current slide. This step is similar to processing each
time unit in the initialization step, except that the condition for the removal
of an itemset X is different. Here, we need to check when X is inserted into
the prefix tree so that we can compare s̃up(X) with the corresponding minsup
value. If τ − uid(X) + 1 ≤ w, then X is inserted in some time unit within the
current window and we check its support against the minsup value for the most
recent (τ − uid(X) + 1) time units. If τ − uid(X) + 1 > w (the “>” sign is
as explained above), then X was inserted before the current window; thus, we
check X ’s support against minsup(w).

The pruning step following each slide, as well as in initialization, clears those
itemsets that no longer satisfy the semi-frequent criterion and are not pruned
when we mine the time units (they may not be mined if their subset is not mined).
Finally, we output all itemsets whose support is greater than the minimum
support. Thus, there is no false-positive.

6 Approximation Quality

In this section, we analyze the quality of the approximation on the mining results
returned by our algorithm.

The error bound of the computed support of a semi-frequent itemset X over
T k, s̃up(X, T k), is described as follows:

sup(X, T k) − E ≤ s̃up(X, T k) ≤ sup(X, T k),

where E =
∑

i: τ−k+1≤i≤τ ∧ gsup(X,ti)=0

(
rσ

∣∣trans(ti)
∣∣ − 1

)
.

Note that s̃up(X, ti) = 0 implies that X is infrequent over ti. Thus, the true
support of X over ti is at most (rσ|trans(ti)| − 1).

Replacing rσ with ǫ and |trans(T k)| with Nk, we obtain an upper bound for
the maximum support error E as follows,

E < ǫNk

In most cases (except for skewed data distribution which is addressed in
Section ??), the cardinality of the set {i : τ − k + 1 ≤ i ≤ τ ∧ s̃up(X, ti) = 0}
is small, since otherwise X would not be semi-frequent. More importantly, the
k for the frequent itemsets over each window is mostly equal to w, for which
|{i : τ − k + 1 ≤ i ≤ τ ∧ s̃up(X, ti) = 0}| is even smaller since there are no
unpromising supports discarded for the first few time units of a window. Thus, in

most cases, the maximum support error bound of a frequent itemset is described
as follows,

E ≪ ǫN,

where N is the number of transactions over the window.
We remark that ǫN is the maximum support error bound of most existing

approximate stream mining algorithms [13, 8, 12, 5].
When there are some unpromising supports of an itemset discarded for the

first few time units of a window, the maximum support error bound of the itemset
can be greater. However, the loss in support over these time units is considered
unpromising and it should be noted that these time units are expiring (this is
different from the landmark window model where there is no expiring time unit).

Our mining algorithm returns all itemsets whose computed support is at
least σN . Thus, there is no false-positives. The set of false-negatives are defined
as {X | s̃up(X, W) < σN ∧ sup(X, W) ≥ σN}. If s̃up(X, W) < σN but
sup(X, W) ≥ σN , then it must be due to some time unit ti in W such that
s̃up(X, ti) = 0. Recall that s̃up(X, ti) = 0 only if sup(X, ti) < ǫ|trans(ti)| or
s̃up(X, ti) is unpromising and discarded. Thus, the true supports of X over other
time units in W must be much greater such that we can still have sup(X, W) ≥
σN . Therefore, we can deduce that false-negatives are mostly itemsets with
skewed support distribution over the stream, which can be addressed using a
specific minsup function as discussed in Section ??. In most other cases, the
number of false-negatives is small as verified by our experiments.

7 Experimental Evaluation

We run our experiments on a Sun Ultra-SPARC III with 900 MHz CPU and
4GB RAM, running Solaris 8 64-bit. We compare our algorithm MineSW with
a variant of the Lossy Counting algorithm [13] applied in the sliding window
model, denoted as LCSW. We remark that LCSW is different from the algorithm
proposed by Chang and Lee [5] as discussed in Section 2. We implement both
algorithms and find that the algorithm by Chang and Lee is much slower than
LCSW and runs out of memory even with 4GB of RAM.

Datasets: We generate the data streams using the IBM data generator [2, 10]
(we are not able to obtain any real dataset that is large enough to model a
stream). However, we find that both MineSW and LCSW attain 100% accuracy
(MineSW is significantly faster) in most cases, because the distribution of the
itemsets in the data streams is too uniform. In order to have a better account on
the accuracy of the two approximation techniques, we modify the data generator
so that there are new itemsets added and old itemsets expired from the window at
each slide. We generate two types of data streams, t10i4 and t15i6, where 10 and
15 (4 and 6) are the average size of a transaction (a maximal frequent itemset)
of the two streams, respectively. Each stream consists of 3M transactions and
we report the results of MineSW and LCSW averaged over 40 consecutive slides.
Each window consists of 20 time units and each time unit receives approximately
50K transactions. At each slide, the window has 3K unique items, while the
number of newly-added and old-expiring unique items are limited to 100.

0

10

20

30

40

50

60

70

80

90

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Relaxation Rate

P
re

ci
si

o
n

 (
%

)

MineSW(t10i4)
LCSW(t10i4)
MineSW(t15i6)
LCSW(t15i6)

(a) Precision

80

85

90

95

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Relaxation Rate

R
ec

al
l (

%
)

MineSW(t10i4)

LCSW(t10i4)

MineSW(t15i6)

LCSW(t15i6)

(b) Recall

Fig. 1. Precision and Recall with Varying Relaxation Rate

7.1 Varying Relaxation Rate

We first examine the effect of varying the relaxation rate r on MineSW and
LCSW (note that ǫ = rσ in LCSW). We set σ = 0.1%. Fig. 1 (a) and (b) show
that MineSW has 100% precision while LCSW has 100% recall. However, as
r increases from 0.1 to 1, the precision of LCSW drops from 98% to around
10%, while the recall of MineSW only drops from 99% to around 90%. The
result reveals that the estimation mechanism of the Lossy Counting algorithm
relies on ǫ to control the mining accuracy, while our progressively increasing
minsup function maintains a high accuracy which is only slightly affected by the
change in r. Recall that MineSW mines the frequent itemsets over each time
unit at an MST rσ, increasing r means faster mining process and less memory
consumption. As a result, this finding enables us to use a larger r to obtain
approximately the same mining accuracy but with much faster speed and less
memory consumption, as we show in the next section.

7.2 Varying Minimum Support Threshold

This section assesses the performance of MineSW by varying σ from 0.5% to
0.05%. According to Lossy Counting [13], a good choice of ǫ is 0.1σ. Thus, we
set r = 0.1 for LCSW. However, the experimental result of last section shows
that MineSW can obtain a good accuracy even with a larger r. Thus, we also
test r = 0.5 for MineSW, in addition to r = 0.1 as a baseline. We note that
LCSW runs out of memory at σ = 0.05% on the data stream t15i6.

Fig. 2 (a) and (b) show that for both streams and all σ, the precision of LCSW
is over 94% and the recall of MineSW is over 96% (mostly over 99%). The recall
of MineSW (r = 0.5) is only slightly lower than that of MineSW (r = 0.1).
However, Fig. 3 (a) and (b) show that MineSW (r = 0.5) is significantly faster
than MineSW (r = 0.1). On average, MineSW (r = 0.5) is 6.8 times faster than
MineSW (r = 0.1), while MineSW (r = 0.1) is approximately 2 times faster
than LCSW. Fig. 4 (a) and (b) show the memory consumption of the algorithms
in terms of the number of itemsets maintained at the end of each slide. The
number of itemsets kept by MineSW (r = 0.1) is about 1.5 times less than that
of LCSW, while that kept by MineSW (r = 0.5) is less than that of LCSW by
up to several orders of magnitude.

90

92

94

96

98

100

0.05 0.075 0.1 0.25 0.5
Minimum Support Threshold (%)

P
re

ci
si

o
n

 (
%

)

MineSW(r=0.5, t10i4)
MineSW(r=0.1, t10i4)
LCSW(t10i4)
MineSW(r=0.5, t15i6)
MineSW(r=0.1, t15i6)
LCSW(t15i6)

(a) Precision

90

92

94

96

98

100

0.05 0.075 0.1 0.25 0.5

Minimum Support Threshold (%)

R
ec

al
l (

%
)

MineSW(r=0.5, t10i4)
MineSW(r=0.1, t10i4)
LCSW(t10i4)
MineSW(r=0.5, t15i6)
MineSW(r=0.1, t15i6)
LCSW(t15i6)

(b) Recall

Fig. 2. Precision and Recall with Varying Minimum Support Threshold

0

5

10

15

20

25

30

35

40

0.05 0.075 0.1 0.25 0.5

Minimum Support Threshold (%)

T
im

e
(s

ec
)

MineSW(r=0.5)

MineSW(r=0.1)

LCSW

(a) Processing Time (t10i4)

0

50

100

150

200

250

300

350

0.05 0.075 0.1 0.25 0.5
Minimum Support Threshold (%)

T
im

e
(s

ec
)

MineSW(r=0.5)

MineSW(r=0.1)

LCSW

(b) Processing Time (t15i6)

Fig. 3. Processing Time with Varying Minimum Support Threshold

0

500

1000

1500

2000

2500

3000

0.05 0.075 0.1 0.25 0.5

Minimum Support Threshold (%)

o

f
It

em
se

ts
 (

K
)

MineSW(r=0.5)
MineSW(r=0.1)
LCSW

(a) Memory Consumption (t10i4)

0

5000

10000

15000

20000

25000

30000

35000

0.05 0.075 0.1 0.25 0.5

Minimum Support Threshold (%)

o

f
It

em
se

ts
 (

K
)

MineSW(r=0.5)

MineSW(r=0.1)

LCSW

(b) Memory Consumption (t15i6)

Fig. 4. Memory Consumption with Varying Minimum Support Threshold

In overall, the performance of MineSW (r = 0.1) is about 2 times better
than that of LCSW. However, when r is set at 0.5, MineSW not only attains
a similar (or better) level of mining accuracy as with LCSW, but also runs
faster and consumes less memory than LCSW by an average of over an order of
magnitude. Therefore, we can use r = 0.5 or even larger values of r to process
high-speed data streams and use smaller values of r only when the application
demands a very high accuracy (say, using MineSW (r = 0.1) to achieve 100%
precision and over 99.99% recall).

8 Conclusions

We propose a false-negative approach to mine frequent itemsets over a sliding
window. Existing false-positive approaches use an error parameter, ǫ, to control
the quality of the approximate mining results. However, a small ǫ results in low
mining efficiency while a large ǫ gives a poor mining accuracy. We address this
problem by a progressively increasing minimum support function. In our ap-
proach, increasing the value of ǫ only slightly and gradually degrades the mining
accuracy, but significantly improves the mining efficiency and saves memory us-
age. We devise an efficient algorithm and verify, by extensive experiments, that
our algorithm runs significantly faster and consumes less memory than existing
algorithms, but attains the same level of accuracy on the mining results. When
applications require highly accurate mining results, our experiments show that
by setting ǫ = 0.1σ (a rule-of-thumb choice of ǫ in Lossy Counting [13]), our
algorithm attains 100% precision and over 99.99% recall.

References

1. R. Agrawal, T. Imielinski, and A. N. Swami. Mining Association Rules between
Sets of Items in Large Databases. In Proc. of SIGMOD, 1993.

2. R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules. In Proc.
of VLDB, 1994.

3. J. H. Chang and W. S. Lee. Finding Recent Frequent Itemsets Adaptively over
Online Data Streams. In Proc. of KDD, 2003.

4. J. H. Chang and W. S. Lee. estWin: Adaptively Monitoring the Recent Change of
Frequent Itemsets over Online Data Streams. In Proc. of CIKM, 2003.

5. J. H. Chang and W. S. Lee. A Sliding Window method for Finding Recently
Frequent Itemsets over Online Data Streams. In Journal of Information Science
and Engineering, Vol. 20, No. 4, July, 2004.

6. Y. Chi, H. Wang, P. S. Yu and R. R. Muntz. Moment: Maintaining Closed Frequent
Itemsets over a Stream Sliding Window. In Proc. of ICDM, 2004.

7. M. Garofalakis, J. Gehrke, R. Rastogi. Querying and Mining Data Streams: You
Only Get One Look. In Tutorial of SIGMOD, 2002.

8. C. Giannella, J. Han, J. Pei, X. Yan, and P. S. Yu. Mining Frequent Patterns in
Data Streams at Multiple Time Granularities. MIT/AAAI Press, 2004.

9. C. Hidber. Online Association Rule Mining. In Proc. of SIGMOD, 1999.
10. IBM Quest Data Mining Project. The Quest retail transaction data generator.

http://www. almaden.ibm.com/software/quest/, 1996.
11. C. Lee, C. Lin, and M. Chen. Sliding-window Filtering: an Efficient Algorithm for

Incremental Mining. In Proc. of CIKM, 2001.
12. H. Li, S. Lee, and M. Shan. An Efficient Algorithm for Mining Frequent Itemsets

over the Entire History of Data Streams. In Proc. of First International Workshop
on Knowledge Discovery in Data Streams, 2004.

13. G. S. Manku and R. Motwani. Approximate Frequency Counts over Data Streams.
In Proc. of VLDB, 2002.

14. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering Frequent Closed
Itemsets for Association Rules. In Proc. of ICDT, 1999.

15. J. Yu, Z. Chong, H. Lu, and A. Zhou. False Positive or False Negative: Mining
Frequent Itemsets from High Speed Transactional Data Streams. In Proc. of VLDB,
2004.

