
A Model-based Approach to Attributed Graph Clustering

Zhiqiang Xu
School of Computer

Engineering
Nanyang Technological
University, Singapore

zxu1@e.ntu.edu.sg

Yiping Ke
Institute of High Performance

Computing
Singapore

keyp@ihpc.a-star.edu.sg

Yi Wang
Department of Computer

Science
National University of

Singapore
wangy@comp.nus.edu.sg

Hong Cheng
Department of Systems

Engineering and Engineering
Management

The Chinese University of
Hong Kong

hcheng@se.cuhk.edu.hk

James Cheng
School of Computer

Engineering
Nanyang Technological
University, Singapore
j.cheng@acm.org

ABSTRACT
Graph clustering, also known as community detection, is a long-
standing problem in data mining. However, with the prolifera-
tion of rich attribute information available for objects in real-world
graphs, how to leverage structural and attribute information for
clustering attributed graphsbecomes a new challenge. Most ex-
isting works take a distance-based approach. They proposed vari-
ous distance measures to combine structural and attribute informa-
tion. In this paper, we consider an alternative view and propose a
model-based approach to attributed graph clustering. We develop
a Bayesian probabilistic model for attributed graphs. The model
provides a principled and natural framework for capturing both
structural and attribute aspects of a graph, while avoiding the ar-
tificial design of a distance measure. Clustering with the proposed
model can be transformed into a probabilistic inference problem,
for which we devise an efficient variational algorithm. Experimen-
tal results on large real-world datasets demonstrate that our method
significantly outperforms the state-of-art distance-based attributed
graph clustering method.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining; G.2.2 [Graph The-
ory]: Graph Algorithms

General Terms
Algorithms, Experimentation, Performance

Keywords
Attributed graph clustering, model-based clustering, Bayesian method

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’12,May 20–24, 2012, Scottsdale, Arizona, USA.
Copyright 2012 ACM 978-1-4503-1247-9/12/05 ...$10.00.

1. INTRODUCTION
Graph clustering is a well-studied problem in data mining and

machine learning. The objective of graph clustering is to group
vertices in a given graph based on vertex connections (i.e., edges).
In recent years, with the proliferation of rich information available
for real-world objects, vertices in graphs are often associated with a
number of attributes that describe the characteristics and properties
of the vertices. This gives rise to a new type of graphs, namely
attributed graphs, and hence the demand of a new clustering task,
attributed graph clustering.

Attributed graph clustering is useful in many application do-
mains. For example, in service-oriented social networking sites
(e.g., Facebook, Twitter, LinkedIn), users and their interactions
(e.g., friend-of, follower-of) form a social network. Each user in
the network can be further characterized by various information in
his/her personal profile, such as interests, gender, education, resi-
dency, etc. Clustering the users in a social network by considering
both their global social relationships and personal profiles is partic-
ularly useful for social networking sites in service/apps recommen-
dation, user-targeted online advertising, etc. In telecommunication
business, a communication network consists of subscribers as ver-
tices and their communications (e.g., voice calls, text messaging,
email) as edges. Each subscriber is associated with attributes such
as demographic information, current service plans, service usage,
etc. User groups discovered by clustering the attributed commu-
nication network can be used to design effective group-oriented
marketing strategies so as to mitigate customer churns for telecom
operators.

Attributed graph clustering, though having many important ap-
plications, poses significant new challenges. An attributed graph
contains two completely different types of information, structural
connections and attribute values. Traditional graph clustering and
object clustering handle only one of the two types, and thus the re-
sultant clustering inevitably does not reflect both information in the
input graph. Therefore, in the problem of clustering an attributed
graph, how to naturally combine and leverage these two types of
information in the process of clustering becomes a big challenge.

Existing works [19, 1, 20, 9, 16] on attributed graph clustering
are mainlydistance-based, which requires to deliberately design a
distance measure that can take both structural and attribute infor-
mation into consideration. Such a distance measure assigns, either



explicitly or implicitly, weights to structural and attribute informa-
tion in order to achieve a good balance between them. Manual
weighting obviously cannot work for a general graph, while learn-
ing weights for specific graphs is often time consuming.

In this paper, we consider an alternative view and propose a
model-basedapproach to attributed graph clustering. Our approach
avoids the artificial design of a distance measure. Instead, it is
based on a probabilistic model which fuses both structural and at-
tribute information in anatural and principledmanner.

Our model is grounded on two assumptions that are well recog-
nized in clustering research: (1) there exists atrue but unknown
clustering of the vertices underlying the data; (2) vertices from the
same cluster behave similarly to each other, while vertices from
different clusters can behave differently. In our model, the cluster
label of each vertex is explicitly represented as ahiddenvariable.
Moreover, the model enforces the intra-cluster similarity by assert-
ing that the attribute values and edge connections of a vertex should
depend on its cluster label. In particular, for vertices from the same
cluster, their attribute values and edge connections should follow
the common distributions that are specific to that cluster. Via the
hidden clustering variable, we seamlessly leverage the attribute and
connection information of the vertices.

Our probabilistic model essentially defines a joint probability
distribution over the space of all possible clusterings and all pos-
sible attributed graphs. For a given attributed graph to be clustered,
the model assigns a probability for each possible clustering of the
vertices. Therefore, the clustering problem can be transformed into
a standardprobabilistic inferenceproblem, i.e., to find the cluster-
ing that gives the highest probability [12]. Intuitively, this cluster-
ing best explains the observed attribute values and edge connec-
tions of the graph.

Despite the conceptual simplicity of the inference problem, it is
computationally intractable. To address this issue, we take a varia-
tional approach [7] and propose an efficient approximate algorithm
for probabilistic inference. The idea is to (1) restrict ourselves to
a computationally tractable family of distributions, (2) find the dis-
tribution from this family that best approximates our probabilistic
model, and (3) perform clustering based on this approximation. We
formally define the tractable family and formulate the approxima-
tion problem as an optimization problem. We further derive the
stationary point conditions for the optimization problem, based on
which we then develop an iterative optimization procedure. The
procedure essentially starts from an initial guess of the clustering,
and iteratively improves the quality of the clustering until conver-
gence.

We summarize the main contributions of this paper as follows.

• We propose a novel model-based approach for the problem of
attributed graph clustering. Our model conforms to the two
fundamental assumptions in clustering research and provides
a natural and principled way of leveraging the structural and
attribute information in clustering.

• We formulate the clustering problem as a probabilistic infer-
ence problem and analyze its computational difficulty. We
then take a variational approach and design an efficient ap-
proximate algorithm to solve the inference problem.

• We evaluate the performance of our algorithm on real-world
attributed graphs. Compared with the state-of-the-art distance-
based attributed graph clustering algorithm [20], our algo-
rithm obtains significantly higher clustering quality, in terms
of both structural and attribute information, for all datasets
tested. Regarding clustering efficiency, our algorithm is con-
sistently faster, from a few times in a small dataset to two

orders of magnitude in larger datasets, and consumes sub-
stantially less memory.

Organizations. The rest of the paper is organized as follows. Sec-
tion 2 defines the problem of attributed graph clustering. Section 3
presents our Bayesian model for attributed graph clustering. Sec-
tion 4 presents our variational inference algorithm. Section 5 re-
ports the experimental results. Section 6 discusses related work.
Finally, Section 7 concludes the paper.

2. PROBLEM STATEMENT
An attributed graphG is defined as a 4-tuple(V,E,Λ, F ), where

V = {v1, v2, . . . , vN} is a set ofN vertices,E = {(vi, vj) : 1 ≤
i, j ≤ N, i 6= j} is a set of edges,Λ = {a1, a2, . . . , aT } is
a set ofT categorical attributes,F = {f1, f2, . . . , fT } is a set
of T functions and eachft : V → dom(at) assigns each vertex
in V an attribute value in the domaindom(at) of the attributeat

(for 1 ≤ t ≤ T ). In an attributed graphG, a vertexvi ∈ V is
essentially associated with an attribute vector of lengthT , where
thet-th element in the vector is given by the functionft(vi).

In this paper, we restrict our discussions onundirectedattributed
graphs, while our method can be easily extended to process directed
attributed graphs.

Given an attributed graphG and the number of clustersK, the
clustering problem studied in this paper is to partition the vertex
setV of G into K disjoint subsetsV1, V2, . . . , VK , whereV =⋃K

i=1 Vi andVi ∩ Vj = ∅ for anyi 6= j, such that: (1) in terms of
structure (i.e., edge connections inG), the vertices within clusters
are densely connected, while the vertices in different clusters are
sparsely connected; and (2) in terms of attribute (i.e., attribute val-
ues on the vertices inG), the vertices within clusters have low di-
versity in their attribute values, while the vertices in different clus-
ters may have diverse attribute values.

3. A BAYESIAN MODEL FOR ATTRIBUTED
GRAPH CLUSTERING

In this section, we present a Bayesian probabilistic model for
attributed graph clustering. Given a set of verticesV , a set of
attributesΛ, and the number of clustersK, the model defines a
joint probability distribution over the space of all possible attributed
graphsandall possible partitions overV . That is, it defines a proba-
bility for each possible combination of attributed graphs and vertex
clusterings of the graphs.

Based on this model, we can cluster a given attributed graph by
probabilistic inference. Specifically, we calculate the posterior dis-
tribution over all possible clusterings of the given graph, and find
the most probable clustering with the maximum probability. Intu-
itively, this clustering best explains the attribute values and edge
patterns of the given graph.

We start by introducing some basic notions and notations in Sec-
tion 3.1. We then present an intuitive generative process for at-
tributed graphs in Section 3.2. This process essentially draws sam-
ples of attributed graphs from an underlying distribution. In Section
3.3, we investigate a number of assumptions made by the generative
process, based on which we formally define our model. Finally, in
Section 3.4, we elaborate how to use this model for attributed graph
clustering and analyze the computational challenges.

3.1 Notions and Notations
Suppose we are given a set of verticesV , a set of attributesΛ,

and the number of clustersK. LetN andT be the sizes ofV and
Λ, respectively.



Procedure 1Generate Clustered Attributed Graph
Input : a set of verticesV , a set of attributesΛ, and the number of
clustersK
Output : a sample of clustered attributed graph(X,Y,Z)

1. Chooseα ∼ Dirichlet(ξ)
2. For each clusterk ∈ {1, 2, . . . ,K}:

(a) For each attributeat:
• Chooseθtk ∼ Dirichlet(γt)

(b) For each clusterl ∈ {k, k + 1, . . . ,K}:
• Chooseφkl ∼ Beta(µ, ν)

3. For each vertexvi ∈ V :
(a) ChooseZi ∼ Multinomial(α)
(b) For each attributeat:
• ChooseY t

i ∼ Multinomial(θtZi
)

(c) For each vertexvj ∈ V with i > j:
• ChooseXij ∼ Bernoulli(φZiZj )

• An adjacency matrixX = [Xij ] is anN × N symmetric
random matrix. Each elementXij is a binary random vari-
able that takes value0 or 1, which indicates whether there is
an edge between verticesvi andvj .

• An attribute matrixY = [Y t
i ] is anN × T random matrix.

Each elementY t
i is a categorical random variable that takes

value fromdom(at), which denotes the value of attributeat

associated with vertexvi.

• A clustering of verticesZ = [Zi] is anN × 1 random vec-
tor. Each elementZi is a categorical random variable that
takes value from{1, 2, . . . ,K}, which denotes the label of
the cluster that vertexvi belongs to.

By enumerating the values ofX andY, we can exhaust all pos-
sible attributed graphs overV . Every instantiation ofX andY

leads to a unique graph. Therefore, we can equivalently represent
an attributed graph as a pair(X,Y). Suppose we further know
the value ofZ. In this case, we have a clustering (or partition) of
the vertex setV . Therefore, we refer to the tuple(X,Y,Z) as a
clustered attributed graph.

3.2 A Generative Process
Procedure 1 outlines a generative process for clustered attributed

graphs. The process takes as input a set of verticesV , a set of
attributesΛ, and the number of clustersK. It outputs a sample from
all possible clustered attributed graphs, denoted by(X,Y,Z).

We start by discussing Step 3, the core step of this process. Steps
1 and 2 are for the Bayesian treatment of the model parameters. We
will elaborate on them in Section 3.2.2.

3.2.1 GeneratingX, Y, Z
In order to generate a sample of clustered attributed graphs, we

need to determine (1) an adjacency matrixX = [Xij ], (2) an at-
tribute matrixY = [Y t

i ], and (3) a clustering of verticesZ = [Zi].
At Step 3 of Procedure 1, we generate them as follows:

1. We first sample the cluster labelZi of each vertexvi from
a multinomial distribution independently (Step 3(a)). The
multinomial distribution is defined as

p(Zi = k|α) = αk, k = 1, 2, . . . ,K. (1)

The distribution is parameterized by aK-vectorα = (α1, α2,

. . . , αK). The elementαk denotes the proportion of the

vertices belonging to clusterk, and satisfies the constraints
αk ∈ [0, 1] and

∑K

k=1 αk = 1. For now, let us assume the
parameterα (and alsoθ, φ below) is given. Later on, we will
show how to sampleα from a Bayesian prior distribution.

2. Given the cluster labelZi for vertexvi, we then sample the
attribute values of this vertex (Step 3(b)). Specifically, we
sample the valueY t

i of each attributeat from a multinomial
distribution defined as

p(Y t
i = m|θtZi

) = θ
t
Zim

, m = 1, 2, . . . ,M t
. (2)

The parameter of the distribution is aM t-vectorθtZi
= (θtZi1

,

θtZi2
, . . . , θtZiM

t), whereM t is the size of the domaindom(at).
The elementθtZim

denotes the proportion of vertices in clus-
terZi that take them-th value indom(at). It satisfiesθtZim

∈

[0, 1] and
∑Mt

m=1 θ
t
Zim

= 1.

As indicated by its subscriptZi of θtZi
, the multinomial dis-

tribution is specific to clusterZi. In other words, all vertices
belonging to the same cluster share a common multinomial
distribution, while the distributions can differ across differ-
ent clusters. The idea is that vertices in the same cluster are
similar to each other. Therefore, they should exhibit a similar
pattern in their attribute values.

3. Given the cluster labelsZi andZj for vertex pairvi andvj ,
we finally sample the indicatorXij which denotes whether
there is an edge betweenvi and vj (Step 3(c)). Xij is a
binary variable taking value 0 or 1. We sample it from a
Bernoulli distribution defined as

p(Xij |φZiZj ) =
(
1− φZiZj

)1−Xij
(
φZiZj

)Xij . (3)

The parameterφZiZj denotes the edge occurrence probabil-
ity between clustersZi andZj , and satisfiesφZiZj ∈ [0, 1]
andφZiZj = φZjZi .

Note that the parameterφZiZj depends on the cluster labels
Zi andZj . The implication is as follows. Consider two ver-
tices vi and vj . Suppose we are generating the indicators
Xik andXjk for these vertices with respect to a common
third vertexvk. If vi andvj come from the same cluster, i.e.,
Zi = Zj , we sampleXik andXjk from the same Bernoulli
distribution. Otherwise, we use different Bernoulli distribu-
tions for sampling. This is reasonable because vertices from
the same cluster should be similar to each other, and they
should have the same chance to connect with other vertices.
On the other hand, for vertices from different clusters, the
chance may diverge.

3.2.2 Generatingα, θ, φ
So far we assume that the parametersα, θ, andφ are given in the

generative process. However, the behavior of the process depends
on the choice of these parameters. We now discuss how to specify
the parameter values.

We take a Bayesian approach to address this issue. Instead of
presuming a fixed value for each parameter, we treatα, θ, andφ
themselves as random variables and place aprior distribution over
them. By doing so, we explicitly model the intrinsic uncertainty in
the values ofα, θ, andφ. We essentially take all possible values
into consideration rather than sticking to a single hypothetic value.
We will discuss more about the benefits of the Bayesian treatment
in Section 3.4.



To obtain the values ofα, θ, andφ required by Step 3 of Proce-
dure 1, we sample those values from the prior distribution (Steps 1
and 2 of Procedure 1) as follows.

1. We place a Dirichlet distribution overα, from which we sam-
ple the value ofα at Step 1. The density function of the
Dirichlet distribution is defined as

p(α|ξ) =
Γ
(∑K

k=1 ξk

)

∏K

k=1 Γ (ξk)

K∏

k=1

α
ξk−1
k , (4)

whereΓ(·) is the Gamma function. The distribution is pa-
rameterized by a positive realK-vectorξ = (ξ1, ξ2, . . . , ξK).
We refer toξ as ahyper-parameterof the generative process
in order to distinguish it from the parameterα.

The choice of the Dirichlet distribution forα (and also the
distributions forθ, φ below) is not arbitrary. We will elabo-
rate on this point at the end of this subsection.

2. We place a Dirichlet distribution overθtk for each attributeat

and each clusterk, defined as

p(θtk|γ
t) =

Γ
(∑Mt

m=1 γ
t
m

)

∏Mt

m=1 Γ (γt
m)

Mt∏

m=1

(
θ
t
km

)γt
m−1

. (5)

Similar toξ, γt = (γt
1, γ

t
2, . . . , γ

t
Mt) is a positive realM t-

vector and is a hyper-parameter of the generative process.
Note that there is one dedicated hyper-parameterγt for each
attributeat. This is because the domains of different at-
tributes are different.

On the other hand, one may notice thatγt does not depend on
the cluster labelk, which means that a common set of hyper-
parameters are shared by all theK clusters. This should not
be interpreted as that the parametersθtk for different clusters
are tied to the same value, and thus vertices in different clus-
ters are confined to the same pattern of attribute values. In
fact, at Step 2(a) of Procedure 1, we sample the parameterθtk
for each clusterk independently. Therefore, the values ofθtk
vary across different clusters. This allows us to accommo-
date the inter-cluster heterogeneity of attribute values.

3. Finally, we place a Beta distribution overφkl, from which
we sample the value ofφkl for each cluster pair(k, l), k ≤ l
independently (Step 2(b)). The Beta distribution is a special
case of Dirichlet distribution with only two components, and
is defined as

p(φkl|µ, ν) =
Γ(µ+ ν)

Γ(µ)Γ(ν)
φ
µ−1
kl (1− φkl)

ν−1
. (6)

Hereµ andν are the hyper-parameters of the generative pro-
cess.

As aforementioned, the choices of Dirichlet and Beta as the prior
distributions ofα, θ, φ are not arbitrary. Recall that we sampleX,
Y, Z from multinomial and Bernoulli distributions parameterized
byα, θ, φ. Mathematically, the Dirichlet and Beta distributions are
known as theconjugate priorsfor multinomial and Bernoulli dis-
tributions, respectively [3]. It means that, if the prior distributions
of α, θ, φ are Dirichlet and Beta, then after we observe an instan-
tiation of X, Y, Z (or equivalently, a clustered attributed graph)
the posterior distributions ofα, θ, φ are still Dirichlet and Beta.
This will give rise to a closed-form expression for the posterior and
thus mathematical convenience when we derive an attributed graph
clustering algorithm later.

i
Z j

Z

ij
X

t

i
Y

t

j
Y

T T

Vvv ji ,

Figure 1: A graphical representation of the proposed model.

In the generative process, all the hyper-parameters are fixed at
a predefined value. In this paper, we follow the convention in
Bayesian statistics and set the value at 1, which leads to the well
known non-informativepriors [3]. In this case, the Dirichlet and
Beta priors overα, θ, φ are equivalent to uniform distributions.
They assign equal probabilities to all possible values ofα, θ, φ.
Intuitively, it reflects that our prior belief has no preference on any
parameter value over the others.

3.3 Model Definition
In the previous subsection, we described a generative process

for clustered attributed graphs. Each run of this process generates
a sample of the parametersα, θ, φ and a sample of clustered at-
tributed graphs(X,Y,Z). It essentially draws samples from an
underlying joint probability distribution overα, θ, φ,X, Y,Z. In
this subsection, we formally define a Bayesian model that repre-
sents this underlying distribution.

We first note that the generative process implicitly makes a num-
ber of conditional independence assumptions amongξ, γ, µ, ν, α, θ,

φ,X,Y,Z. Mathematically, two random variablesA andB are
conditionally independent given a third variableC if and only if

p(A,B|C) = p(A|C)p(B|C).

Instead of enumerating the assumptions, we give a compact graph-
ical representation in Figure 1. Each node in the graph corresponds
to one random variable. Each rectangle denotes the repetition of the
enclosed structure, where the number of repetitions is indicated by
the subscript/superscript of the rectangle. For example, the rect-
angle encompassing the nodeY t

i means that there areT nodes
Y 1
i , Y

2
i , . . . , Y

T
i , each of which has 2 parent nodesθ andZi. Note

that the structure of the graph is constructed according to the flow
of the generative process.

The set of conditional independence assumptions can be readily
read off the graph. Specifically, a node is independent of all its
non-descendants given its parent nodes [12]. For example,Zi is in-
dependent ofξ, γ, µ, ν, θ, φ givenα. This is because the generation
of Zi depends only onα (see Step 3(a) of Procedure 1). Similarly,
Zi andZj are conditionally independent givenα. This is because
the cluster labels for different verticesvi andvj are sampled inde-
pendently.

Given the hyper-parametersξ, γ, µ, ν, we decompose the joint
distribution overα, θ, φ,X,Y,Z using the probability chain rule
and apply the conditional independence assumptions encoded in



Figure 1. This leads to our Bayesian probabilistic model for clus-
tered attributed graphs:

p(α, θ, φ,X,Y,Z|ξ, γ, µ, ν)

= p(α|ξ)p(θ|γ)p(φ|µ, ν)p(Z|α)p(X|Z, φ)p(Y|Z, θ),

where

p(θ|γ) =

K
∏

k=1

T
∏

t=1

p(θtk|γ
t),

p(φ|µ, ν) =
K
∏

k,l=1
k≤l

p(φkl|µ, ν),

p(Z|α) =
N
∏

i=1

p(Zi|α),

p(X|Z, φ) =
N
∏

i,j=1
i<j

p(Xij |φZiZj
),

p(Y|Z, θ) =
N
∏

i=1

T
∏

t=1

p(Y t
i |θ

t
Zi

),

and p(Zi|α), p(Y t
i |θ

t
Zi
), p(Xij |φZiZj ), p(α|ξ), p(θtk|γ

t),
p(φkl|µ, ν) are defined in Equations (1)–(6), respectively.

For brevity, we will omit the conditional part of the joint distribu-
tionp(α, θ, φ,X,Y,Z|ξ, γ, µ, ν) and abbreviate it top(α, θ, φ,X,
Y,Z) in the rest of this paper. The same applies to all the con-
ditional and marginal distributions that are derived from this joint
distribution. One should however always bear in mind that all these
distributions are conditioned on the hyper-parametersξ, γ, µ, ν.

3.4 Model-based Clustering of Attributed Graph
The Bayesian model proposed in the previous subsection defines

a joint distributionp(α, θ, φ,X,Y,Z). Based on this model, the
problem of clustering a given attributed graph(X,Y) can be trans-
formed into a standard probabilistic inference problem, namely,
finding themaximum a posteriori(MAP) configuration [12] of the
clusteringZ conditioning onX,Y. That is to find

Z
⋆ = argmax

Z

p(Z|X,Y), (7)

wherep(Z|X,Y) is the posterior distribution ofZ given X,Y

(andξ, γ, µ, ν). Intuitively, Z⋆ gives the most probable clustering
of the vertex setV that best explains the attribute valuesY and
edge patternsX of the given graph.

Despite its conceptual simplicity, the probabilistic inference prob-
lem is notoriously hard. There are two major difficulties.

The first difficulty is the maximization over theN variablesZ =
{Z1, Z2, . . . , ZN}. For largeN , the global maximization is com-
putationally prohibitive.

The second difficulty lies in the calculation of the posterior dis-
tribution ofZ,

p(Z|X,Y) =

∫∫∫
p(α, θ, φ,Z|X,Y)dαdθdφ, (8)

where

p(α, θ, φ,Z|X,Y) =
p(α, θ, φ,X,Y,Z)

∑

Z

∫∫∫

p(α, θ, φ,X,Y,Z)dαdθdφ
. (9)

Due to the integrals over the parametersα, θ, φ, there is no closed-
form expression forp(Z|X,Y).

In the next section, we develop an efficient approximate algo-
rithm to address both problems.

We have described how to perform clustering based on the pro-
posed Bayesian model. Before closing this section, we would like
to emphasize the significance of the Bayesian treatment to the clus-
tering method. This can be clearly seen from how we calculate the
posteriorp(Z|X,Y) in Equation (8). By treating the parameters
α, θ, φ as random variables, we model the intrinsic uncertainty in
their values. We essentially consider all possible values ofα, θ, φ,
and take average over them by integration. In this way, the esti-
mation ofp(Z|X,Y) is more reliable, which thus leads to more
robust clustering results.

4. A VARIATIONAL ALGORITHM

4.1 The Basic Idea
We develop an efficient variational algorithm to solve the proba-

bilistic inference problem. The basic idea is to approximate the dis-
tributionp(α, θ, φ,Z|X,Y) defined in Equation (9) using avaria-
tional distributionq(α, θ, φ,Z) that is tractable for the maximiza-
tion overZ and integration overα, θ, φ in Equations (7) and (8).

Specifically, we restrict the variational distribution to a family of
distributions that factorize as follows:

q(α, θ, φ,Z) = q(α)q(θ)q(φ)
∏

i

q(Zi). (10)

We then find the distribution within this family that is the most
similar to the truthp(α, θ, φ,Z|X,Y) as the approximation. Given
this approximationq(α, θ, φ,Z), we can approximate the MAP
clusteringZ⋆ as follows:

Z
⋆ = argmax

Z

p(Z|X,Y)

= argmax
Z

∫∫∫

p(α, θ, φ,Z|X,Y)dαdθdφ

≈ argmax
Z

∫∫∫

q(α, θ, φ,Z)dαdθdφ

= argmax
Z

∫∫∫

q(α)q(θ)q(φ)
∏

i

q(Zi)dαdθdφ

= argmax
Z

∏

i

q(Zi)

=

[

argmax
Z1

q(Z1), argmax
Z2

q(Z2), . . . , argmax
ZN

q(ZN )

]

.

(11)

Due to the factorization ofq(α, θ, φ,Z), the integrals overα, θ, φ
diminish and the global maximization overZ reduces to local max-
imizations over eachZi independently.

Two questions remain: (1) how to define the family of variational
distributions, and (2) how to find the best distribution from this
family that is the closest top(α, θ, φ,Z|X,Y). We address these
two questions in Sections 4.2 and 4.3, respectively.

4.2 Parametric Family of Variational Distri-
butions

We have put a general restriction on the family of variational
distributions in Equation (10). We further require the distributions
in this family to take the following parametric form:

q(α, θ, φ,Z|ξ̃, γ̃, µ̃, ν̃, β̃) = q(α|ξ̃)q(θ|γ̃)q(φ|µ̃, ν̃)
∏

i

q(Zi|β̃i),

where

q(α|ξ̃) = Dirichlet(ξ̃),



q(φ|µ̃, ν̃) =
K
∏

k,l=1
k≤l

q(φkl|µ̃kl, ν̃kl),

q(φkl|µ̃kl, ν̃kl) = Beta(µ̃kl, ν̃kl),

q(θ|γ̃) =
K
∏

k=1

T
∏

t=1

q(θtk|γ̃
t
k),

q(θtk|γ̃
t
k) = Dirichlet(γ̃t

k),

q(Zi|β̃i) = Multinomial(β̃i).

Hereξ̃, γ̃, µ̃, ν̃, β̃ are thevariational parameters. The distributions
in this family can be exhausted by enumerating the instantiations of
these parameters. Each instantiation specifies a unique distribution.

This definition of the family of variational distributions is not
arbitrary. In fact, the distributionsq(α|ξ̃), q(φ|µ̃, ν̃), q(θ|γ̃), and
q(Zi|β̃i) take exactly the same parametric forms asp(α|ξ), p(φ|µ, ν),
p(θ|γ), andp(Zi|α) in our Bayesian model (see Section 3.3). There
are only two differences. The first is that the variational parameters
ξ̃, γ̃, µ̃, ν̃, β̃ are free to vary, while the hyper-parametersξ, γ, µ, ν

are fixed throughout the clustering process.
The second difference is betweenq(Zi|β̃i) and p(Zi|α). We

introduce a variational parameter̃βi to replace the parameterα.
This is because we require the variational distribution to factorize
according to Equation (10). Therefore,Zi should no longer depend
onα with respect to the distribution.

For simplicity, we will omit the conditional parts of theq(·) dis-
tributions. For example, we will abbreviateq(α, θ, φ,Z|ξ̃, γ̃, µ̃, ν̃, β̃)
and q(Z|β̃) to q(α, θ, φ,Z) and q(Z), respectively. One should
however always bear in mind that theq(·) distributions are condi-
tioned on the variational parametersξ̃, γ̃, µ̃, ν̃, β̃.

Before closing this subsection, we would like to point out a con-
sequence of the definitionq(Z). Becauseq(Zi) is multinomial dis-
tribution, the MAP clusteringZ⋆ in Equation (11) can be further
simplified as follows:

Z
⋆ =

[
argmax

Z1

q(Z1), argmax
Z2

q(Z2), . . . , argmax
ZN

q(ZN )

]

=
[
argmax

k
β̃1k, argmax

k
β̃2k, . . . , argmax

k
β̃Nk

]
. (12)

4.3 Optimizing Variational Parameters
Recall that our goal is to find the variational distribution in the

family that is the closest to the true posteriorp(α, θ, φ,Z|X,Y).
This is now equivalent to optimize the variational parametersξ̃, γ̃, µ̃,

ν̃, β̃ with respect to some distance measure. In the following, we
define a distance measure and present an iterative optimization pro-
cedure.

4.3.1 The Objective Function
To measure the distance between a variational distribution

q(α, θ, φ,Z) and the true posteriorp(α, θ, φ,Z|X,Y), we adopt
the Kullback-Leibler (KL) divergence [2] that is commonly used in
information theory and machine learning. It is defined as

KL(q||p) =
∑

Z

∫∫∫

q(α, θ, φ,Z) log
q(α, θ, φ,Z)

p(α, θ, φ,Z|X,Y)
dαdθdφ.

(13)

Note that the KL divergence is a function of the variational pa-
rameters̃ξ, γ̃, µ̃, ν̃, β̃. Our problem is thus to find the optimal vari-
ational parameters that minimize the KL divergence. However, this
optimization problem is infeasible because the KL divergence in-

volves the termp(α, θ, φ,Z|X,Y), which is exactly what we strive
to approximate in the first place.

Instead of directly minimizing the KL divergence, we solve an
equivalentmaximizationproblem. The objective function of this
maximization problem is defined as

L̃(q) =
∑

Z

∫∫∫
q(α, θ, φ,Z) log

p(α, θ, φ,X,Y,Z)

q(α, θ, φ,Z)
dαdθdφ.

(14)
The equivalence between these two optimization problems can be
easily seen by noticing that their objective functions sum up to a
constant:

KL(q||p) + L̃(q) = log p(X,Y).

4.3.2 Stationary Points of̃L(q)
In order to maximize the objective functioñL(q), we first char-

acterize its stationary points. Specifically, we take the derivatives
of L̃(q) with respect to the variational parametersξ̃, γ̃, µ̃, ν̃, β̃, and
set these derivatives to zeros

∇L̃(q) =

(
∂L̃

∂ξ̃
,
∂L̃

∂γ̃
,
∂L̃

∂µ̃
,
∂L̃

∂ν̃
,
∂L̃

∂β̃

)
= 0.

Plugging in the definitions of̃L(q) andq(α, θ, φ,Z) and simpli-
fying the formulas, we arrive at the following system of equations
that ξ̃, γ̃, µ̃, ν̃, β̃ must satisfy at the stationary points ofL̃(q). For
clarity, we put all the derivations in Appendix A.

ξ̃k = ξk +
N∑

i=1

β̃ik (15)

γ̃
t
km = γ

t
m +

N∑

i=1

β̃ikδ
(
Y

t
i , a

t
m

)
(16)

µ̃kk = µ+
N∑

i,j=1
i<j

β̃ikβ̃jkXij (17)

ν̃kk = ν +

N∑

i,j=1
i<j

β̃ikβ̃jk(1−Xij) (18)

µ̃kl = µ+
N∑

i,j=1
i 6=j

β̃ikβ̃jlXij (19)

ν̃kl = ν +
N∑

i,j=1
i 6=j

β̃ikβ̃jl(1−Xij) (20)

β̃ik ∝ exp

{[
ψ
(
ξ̃k

)
− ψ

(
K∑

k=1

ξ̃k

)]

+

T∑

t=1

Mt∑

m=1

δ(Y t
i , a

t
m)


ψ
(
γ̃
t
km

)
− ψ




Mt∑

m=1

γ̃
t
km






+

N∑

j=1
j 6=i

K∑

l=1

β̃jl

[
Xijψ(µ̃kl) + (1−Xij)ψ(ν̃kl)

−ψ(µ̃kl + ν̃kl)
]}
, (21)

for all i = 1, 2, . . . , N ; k = 1, 2, . . . ,K; l = k+1, k+2, . . . ,K;



Algorithm 2 Iterative Optimization of̃L(q)

Input : an initial valueβ̃(0), a thresholdǫ, a limit on the number of
iterationsnmax

Output : ξ̃, γ̃, µ̃, ν̃, β̃

1. n← 0
2. repeat:

(a) Givenβ̃(n), updateξ̃(n+1), γ̃(n+1), µ̃(n+1), ν̃(n+1)

according to Equations (15)–(20)
(b) Givenξ̃(n+1), γ̃(n+1), µ̃(n+1), ν̃(n+1), β̃(n), update

β̃(n+1) according to Equation (21)
(c) n← n+ 1

until L̃
(
q(n)

)
− L̃

(
q(n−1)

)
< ǫ or n > nmax

3. return ξ̃(n), γ̃(n), µ̃(n), ν̃(n), β̃(n)

t = 1, 2, . . . , T ; andm = 1, 2, . . . ,M t. Here,

δ
(
Y

t
i , a

t
m

)
=

{
1, Y t

i = atm

0, Y t
i 6= atm

is the Kronecker delta function.ψ(·) is the Digamma function
which is the logarithmic derivative of the Gamma functionΓ(·),

ψ(x) =
d log Γ(x)

dx
=

Γ′(x)

Γ(x)
.

The Digamma function can be efficiently approximated by series
expansion and standard implementations exist in popular mathe-
matical libraries such as Matlab.

4.3.3 Iterative Optimization Procedure
Based on the stationary point equations, we present an iterative

procedure for maximizing̃L(q) in Algorithm 2. It takes as input
an initial valueβ̃(0), a thresholdǫ, and a limit on the number of
iterationsnmax. It outputs the optimized variational parameters
ξ̃, γ̃, µ̃, ν̃, β̃. Recall that giveñβ, we can easily find the cluster-
ingZ

⋆ of the vertices according to Equation (12).
Intuitively, Algorithm 2 starts with an initial guess of̃β, and

repeatedly enforces the stationary point conditions. Therefore, it
should persistently improve the objective functionL̃(q). This intu-
ition is formalized by the following proposition.

PROPOSITION 1. For all n = 0, 1, . . .,

L̃
(
q
(n)
)
≤ L̃

(
q
(n+1)

)
,

whereq(n) denotesq(α, θ, φ,Z|ξ̃(n), γ̃(n), µ̃(n), ν̃(n), β̃(n)).

For clarity, we defer the proof to Appendix B.
Because the value of̃L(q) is finite, an immediate corollary of

Proposition 1 is that the iterative maximization procedure is guar-
anteed to converge with a finite number of iterations. In particular,
it will converge to a local maximum of̃L(q). BecausẽL(q) is
non-concave, it can have multiple local maxima. The quality of the
local maximum that the iterative process converges to depends on
the choice of the initial valuẽβ(0). We will discuss the initialization
issue in the experiments.

At each iteration of Algorithm 2, we alternate between two steps.
At Step 2(a), we updatẽξ, γ̃, µ̃, ν̃ based oñβ. At Step 2(b), we up-
date β̃ based onξ̃, γ̃, µ̃, ν̃. To speed up the convergence of the
algorithm, in practice, we choose to perform asynchronous update

and execute Step 2(b) multiple times in each iteration. The key ob-
servation is that the stationary point equations ofξ̃, γ̃, µ̃, ν̃ depend
only on β̃. Therefore, updating̃β more frequently should bring
about more improvement iñL(q) and thus fasten the convergence.

5. EXPERIMENTAL STUDY
We evaluate the performance of our algorithm, comparing with

the state-of-the-art distance-based attributed graph clustering algo-
rithm, Inc-Cluster[20]. Both algorithms were implemented in Mat-
lab and tested on machines with Linux OS, Intel Xeon 2.67GHz
CPUs, and 12GB and 256GB of RAM.

5.1 Datasets
We use the three real attributed graphs that are used in the evalu-

ation ofInc-Cluster[20].

• Political Blogs. The dataset has1, 490 vertices and19, 090
edges. Each vertex represents a webblog on US politics and
each directed edge represents a hyperlink from one webblog
to another. Each vertex is associated with an attribute, indi-
cating the political leaning of the webblog,liberal or con-
servative. Since we only consider undirected graphs in this
work, we ignore the edge directions in this dataset, which
results in16, 715 undirected edges.

• DBLP10K. The dataset is a co-author network extracted from
the DBLP Bibliography data. Each vertex represents a scholar
and each edge represents a co-author relationship between
two scholars. The dataset contains10, 000 scholars who
have published in major conferences in four research fields:
database, data mining, information retrieval, and artificial in-
telligence. Each scholar is associated with two attributes,
prolific andprimary topic. The attribute “prolific” has three
values: “highly prolific” for the scholars with≥ 20 publica-
tions, “prolific” for the scholars with≥ 10 and< 20 publi-
cations, and “low prolific” for the scholars with< 10 publi-
cations. The domain of the attribute “primary topic” consists
of 100 research topics extracted by a topic model [5] from a
collection of paper titles from the scholars. Each scholar is
then assigned a primary topic out of the100 topics.

• DBLP84K. This dataset is a larger DBLP co-author network.
It contains84, 170 scholars in15 research fields. In addition
to the four research fields used inDBLP10K, eleven fields
are further included: machine learning, computer vision, net-
working, multimedia, computer systems, simulation, theory,
architecture, natural language processing, human-computer
interaction, and programming language. This dataset also
has two vertex attributes, which are defined in a similar way
as inDBLP10K.

Table 1 summarizes the characteristics of the three datasets, in-
cluding the number of vertices|V |, the number of edges|E|, and
the domain size of each of the attributes|dom(ai)|. Among the
three datasets, thePolitical Blogsdataset is the smallest, while the
other two datasets are much larger. The larger DBLP dataset, i.e.,
DBLP84K, allows us to see some scalability issue of the algorithms
(e.g.,Inc-Clusteruses 60GB of memory for this dataset).

5.2 Experimental Settings
We detail the experimental settings in this subsection, including

the algorithm for comparison, the measures we use to assess the
quality of the clustering, as well as the initializations of parameters.



Table 1: Datasets
|V | |E| |dom(a1)| |dom(a2)|

Political Blogs 1,490 16,715 2 NIL
DBLP10K 10,000 27,867 3 100
DBLP84K 84,170 201,334 3 100

5.2.1 Algorithm for Comparison
We compare our model-based clustering algorithm, denoted as

BAGC (Bayesian Attributed Graph Clustering), to the state-of-the-
art distance-based clustering algorithm, denoted asInc-Cluster [20].
In order to design a distance measure that considers both structure
and attributes, Inc-Cluster constructs an augmented graph, which
introduces an artificial node for each attribute value and links a ver-
tex in the inputG to the artificial node if the vertex takes the corre-
sponding attribute value. A unified distance measure is defined as
the random walk score computed from the augmented graph. The
k-medoids algorithm is then applied to cluster vertices with the de-
fined distance measure.

5.2.2 Clustering Quality Assessment
Since our objective is to cluster attributed graphs, we assess the

quality of the clustering in two aspects,structureandattribute.
We usemodularityas a quality measure for structure. Modularity

[11] is popularly used in graph clustering to measure the strength
of division of a graph into vertex clusters (i.e., communities).

To define modularity, we first introduce the following notions.
Given a clustering{V1, · · · , VK}, let Ekl (k 6= l) be the set of
inter-cluster edges betweenVk andVl, andEkk the set of intra-
cluster edges inVk. Then the fraction of intra-cluster edges inVk

is defined asfkk = |Ekk|
|E|

and the fraction of inter-cluster edges

betweenVk and Vl (k 6= l) is defined asfkl = flk = |Ekl|
2|E|

(There are2|E| edges in the denominator because an edge is shared
by fkl andflk). By counting both intra-cluster and inter-cluster
edges, the fraction of edges incident to clusterVk is defined as
αk =

∑K

l=1 fkl.
The modularity is then defined as

modularity(V1, · · · , VK) =
K∑

k=1

(
fkk − α

2
k

)
.

Intuitively, if edges were distributed at random, the expected
fraction of intra-cluster edges inVk is α2

k. By subtracting this
expected fraction (i.e.,α2

k) from the true fraction of intra-cluster
edges inVk (i.e.,fkk), modularity reflects the concentration of ver-
tices within clusters compared with random distribution of edges
between all vertices regardless of clusters. The value of modular-
ity falls within the range of[−1, 1]. A positive value indicates that
the number of intra-cluster edges exceeds the number expected on
a random basis. Therefore, a clustering result with high modular-
ity has dense vertex connections within the same cluster and sparse
vertex connections across different clusters.

For attributes, we useentropyas a quality measure. Entropy
is a well accepted measure, which quantifies the uncertainty of a
random variable. In the problem of clustering attributed graphs,
entropy can be used to measure the degree of inconsistency of the
attribute values in each cluster.

Given a clustering{V1, · · · , VK}, for each attributeat, the en-
tropy ofat in clusterVk is defined as

entropy(at, Vk) = −

|dom(at )|∑

s=1

p
t
ks log p

t
ks,

whereptks is the fraction of vertices in clusterVk that take thes-th
value indom(at).

We then define the entropy of an attributeat with respect to the
clustering{V1, · · · , VK} as

entropy(at) =
K∑

k=1

|Vk|

|V |
entropy(at, Vk),

which is the average entropy ofK clusters weighted by the cluster
size |Vk|. The value of entropy falls within the range of[0,∞).
A lower entropy indicates a higher degree of consistency in the
attribute values associated with the vertices in the same cluster and
thus a higher intra-cluster attribute similarity.

5.2.3 Initializations of Parameters
For the fairness of comparison, BAGC uses the same initial clus-

tering as in Inc-Cluster to initializẽβ. Since both algorithms adopt
the same initialization process, we report the running time and
memory consumption of the optimization process only, by exclud-
ing the initialization part to reflect the pure performance of the clus-
tering algorithms. We note that other initialization methods such as
random initialization and spectral methods can also be applied in
our algorithm.

All hyperparameters in BAGC are set to1 for all experiments.
The thresholdǫ for the objective functioñL(q) is set to10−10. The
limit on the number of iterationsnmax is set to3 for the small
dataset Political Blogs, and5 for larger datasets DBLP10K and
DBLP84K.

5.3 Performance Results
We report and discuss the performance results of both BAGC and

Inc-Cluster, for each of the three datasets as follows.

5.3.1 Clustering Performance on Political Blogs
For the Political Blogs dataset, we set the number of clusters,

K = 4, 6, 8, and10, respectively.
We first examine the quality of clustering with respect to struc-

tural information. Figure 2(a) reports the modularity of the cluster-
ing by BAGC and Inc-Cluster. The result shows that according to
the modularity values (the higher the better), BAGC achieves sig-
nificantly higher quality clustering than Inc-Cluster, since a value
of nearly 0.3 is a big difference in modularity [10].

The modularity values of the clusterings by Inc-Cluster are in
fact all negative, meaning that the clustering computed by Inc-
Cluster has a lower quality than a clustering obtained by randomly
distributing edges to different clusters. Note that when the cluster-
ing is formed by random chance, the value of modularity is 0. The
poor performance of Inc-Cluster is mainly because it is a distance-
based method with the objective of optimizing the intra-cluster dis-
tance. Their distance measure, i.e., the random walk score, may not
be a good reflection of community structures.

Next we assess the quality of clustering with respect to attribute
information. Figure 2(b) reports the attribute entropy of the clus-
tering by BAGC and Inc-Cluster on the Political Blogs dataset. On
average, BAGC improves the attribute entropy of Inc-Cluster by
40.6%. The much lower entropy value of BAGC shows that BAGC
attains a much higher degree of consistency in intra-cluster attribute
values, which indicates a much higher attribute similarity than Inc-
Cluster.

Our method is able to obtain low attribute entropy because in
our generative model, the attribute value of the vertices in the same
cluster is drawn from the same multinomial distribution. The pro-
cess of optimizing̃L(q) favors more skewed multinomial distribu-



4 6 8 10
−0.05

0    

0.1  

0.2  

0.3  

K

M
od

ul
ar

ity
 

 

Inc−Cluster
BAGC

(a) Modularity

4 6 8 10
0.5

0.6

0.7

0.8

0.9

1

1.1

K

E
nt

ro
py

 o
f a

1

 

 

Inc−Cluster
BAGC

(b) Entropy of Attribute1

4 6 8 10
0

0.005

0.01

0.015

0.02

K

R
un

ni
ng

 T
im

e 
(s

ec
.)

 

 

Inc−Cluster
BAGC

(c) Running Time

Figure 2: Clustering Performance on Political Blogs

tion and thus achieves a low attribute entropy in clustering results.
On the other hand, Inc-Cluster converts attribute values to artifi-
cial nodes and their links to original vertices to form an augmented
graph. This increases the vertex connectivity with additional paths
through artificial nodes. However, it may not lead to consistent at-
tribute values in the clusters. For example, two verticesu andv are
both connected to an artificial node of an attribute valuea1, mean-
ing that bothu andv take the attribute valuea1. Then supposev is
structurally connected to another vertexw andw takes a different
attribute valuea2. Inc-Cluster may putu, v, w in the same cluster
since their random walk scores can be high due to the paths through
a1, even thoughu, v, w do not exhibit high attribute consistency.

For different values ofK tested, the clustering quality of Inc-
Cluster is stable. But for BAGC, the modularity becomes slightly
smaller (worse) and the entropy also becomes smaller (better) when
K increases. This indicates that for different values ofK, BAGC
is able to leverage the clustering quality in terms of structure and
attribute in order to achieve a stable overall performance.

We now report the running time, i.e., the elapsed time in seconds,
of clustering Political Blogs by both algorithms, as shown in Figure
2(c). The result shows that BAGC is approximately 2 to 3 times
faster than Inc-Cluster on average. Therefore, both efficiency-wise
and quality-wise, the results show that BAGC is a clear winner.

5.3.2 Clustering Performance on DBLP10K
For the DBLP10K dataset, we set the number of clusters,K =

50, 100, 200, and300, respectively.
Figure 3(a) shows that BAGC obtains high quality clustering as

the modularity for all values ofK is constantly over 0.4. Accord-
ing to Newman [10], a modularity value of 0.3 already indicates a
significant community structure, i.e., a high quality clustering. On
the contrary, Inc-Cluster records a low modularity for all values
of K. The difference in the modularity value between BAGC and
Inc-Cluster also becomes greater in this larger dataset than in the
smaller Political Blogs dataset.

Figures 3(b) and 3(c) report the entropy values of each of the two
attributes1 of DBLP10K. The results show that BAGC attains con-
siderably lower entropy values for both attributes than Inc-Cluster,
demonstrating the advantage of BAGC over Inc-Cluster in attaining
a higher quality clustering with respective to attribute information,
in addition to structural information.

Figure 3(d) reports the running time of BAGC and Inc-Cluster.
The result shows that BAGC is two orders of magnitude faster than
Inc-Cluster. AsK increases, the running time of BAGC also in-
creases linearly withK (the same trend is also observed in Figures
2(c) and 4(d)). However, for the running time of Inc-Cluster, we
observe a different trend. Inc-Cluster uses almost the same amount

1Note that the entropy value of Attribute1 is significantly lower than that
of Attribute2 because the domain size of Attribute1 is significantly smaller
than that of Attribute2, as shown in Table 1.

of time for the range ofK from 50 to 100, then there is a sudden
increase in running time asK increases to 200, and then the run-
ning time remains stable again for the range from 200 to 300. We
examined the Inc-Cluster algorithm and found that the number of
iterations in its optimization process increases in a step-wise man-
ner asK increases, and the running time is mainly determined by
the number of iterations. We also found that Inc-Cluster uses 3 it-
erations forK ∈ [50..100] and 5 iterations forK ∈ [200..300],
which explains the trend shown in Figure 3(d). However, as shown
in Figure 3(d), the magnitude of increase in the running time of
Inc-Cluster is significantly more rapid than the linear increase in
that of BAGC.

5.3.3 Clustering Performance on DBLP84K
For the largest dataset, DBLP84K, we use a wider range of val-

ues ofK, withK = 150, 300, 600 and1200, respectively.
As reported in Figure 4(a), the modularity value of BAGC for

this largest dataset is the highest among three datasets, and is con-
sistently over 0.5, implying a very high quality clustering. The
difference in the modularity value between BAGC and Inc-Cluster
also further widens as the modularity value of Inc-Cluster remains
low. The result thus shows that the quality of clustering obtained
by BAGC improves over larger datasets.

Figures 4(b) and 4(c) further show that BAGC consistently at-
tains lower entropy values for both of the attributes than Inc-Cluster.
Thus, the result again demonstrates that BAGC obtains higher qual-
ity clustering with more consistent intra-cluster attribute values than
Inc-Cluster for large datasets as well.

Finally, Figure 4(d) again shows a huge gap between the running
time of BAGC and that of Inc-Cluster. As explained for Figure
3(d) in Section 5.3.2, the running time of BAGC increases linearly
asK increases. On the contrary, the running time of Inc-Cluster
increases in a step-wise manner, with a significantly greater mag-
nitude in the increase. Thus, the result shows that BAGC is more
scalable in clustering large datasets than Inc-Cluster.

5.3.4 Conclusions on Performance Comparison
In conclusion, the results in Sections 5.3.1 to 5.3.3 show that

BAGC consistently attains high quality clustering in terms of both
structure quality and attribute quality. Compared with the state-of-
the-art distance-based attributed graph clustering algorithm, Inc-
Cluster [20] (an improved version of SA-Cluster [19]), the clus-
tering obtained by BAGC has significantly higher modularity and
lower entropy for all datasets and all values ofK. In addition,
BAGC is also consistently faster than Inc-Cluster, where the speed-
up in time is up to two orders of magnitude for the two larger
datasets. The results further show that BAGC is much more scal-
able for clustering larger datasets with larger values ofK.

We did not show the details of memory consumption of the algo-
rithms in Sections 5.3.1 to 5.3.3, but report here that Inc-Cluster re-
quires significantly more memory than BAGC. Inc-Cluster uses ap-



50 100 200 300
0

0.1

0.2

0.3

0.4

0.5

K

M
od

ul
ar

ity

 

 

Inc−Cluster
BAGC

(a) Modularity

50 100 200 300
0.45

0.5

0.55

0.6

0.65

K

E
nt

ro
py

 o
f a

1

 

 

Inc−Cluster
BAGC

(b) Entropy of Attribute1

50 100 200 300
5

5.5

6

6.5

K

E
nt

ro
py

 o
f a

2

 

 

Inc−Cluster
BAGC

(c) Entropy of Attribute2

50 100 200 300
0

100

200

300

400

K

R
un

ni
ng

 T
im

e 
(s

ec
.)

 

 

Inc−Cluster
BAGC

(d) Running Time

Figure 3: Clustering Performance on DBLP10K

150 300 600 1200
0  

0.2

0.4

0.6

K

M
od

ul
ar

ity

 

 

Inc−Cluster
BAGC

(a) Modularity

150 300 600 1200
1.4 

1.45

1.5 

K

E
nt

ro
py

 o
f a

1

 

 

Inc−Cluster
BAGC

(b) Entropy of Attribute1

150 300 600 1200
5.5

6

6.5

7

K

E
nt

ro
py

 o
f a

2

 

 

Inc−Cluster
BAGC

(c) Entropy of Attribute2

150 300 600 1200
0

1000

2000

3000

4000

5000

K

R
un

ni
ng

 T
im

e 
(s

ec
.)

 

 

Inc−Cluster
BAGC

(d) Running Time

Figure 4: Clustering Performance on DBLP84K

proximately 460MB, 4GB, and 60GB of memory, while our method
uses 320MB, 680MB, and 4GB of memory for Political Blogs,
DBLP10K, and DBLP84K, respectively. The memory consump-
tion, especially a huge difference of 56GB for DBLP84K, also re-
veals that our method is more scalable than Inc-Cluster when the
input dataset becomes large. Note that due to the high memory con-
sumption of Inc-Cluster for DBLP84K, we ran all the experiments
of DBLP84K for both Inc-Cluster and BAGC on a computer with
256GB of RAM.

To summarize, with the remarkably higher clustering efficiency
(in terms of both time and memory consumption), and the signif-
icantly better clustering quality (in terms of both structure and at-
tribute), our model-based approach is evidentially a more promis-
ing solution to attributed graph clustering than existing distance-
based approaches.

6. RELATED WORK
The algorithms for attributed graph clustering can be mainly cat-

egorized into two types,distance-basedandmodel-based.
Most existing works on attributed graph clustering fall into the

category of distance-based approaches. The main idea is to design
a distance/similarity measure for vertex pairs that combines both
structural and attribute information of the vertices. Based on this
measure, standard clustering algorithms like k-medoids and spec-
tral clustering are then applied to cluster the vertices.

Neville et al. [9] proposed a weighted adjacency matrix as the
similarity measure. The weight of each edge is defined as the num-
ber of attribute values shared by the two end vertices. They then
applied three existing graph clustering algorithms on the weighted
adjacency matrix to perform clustering. Steinhaeuser and Chawla
[16] proposed a similar measure as in [9] to handle categorical at-
tributes, and also a new measure for continuous attributes.

The state-of-the-art distance-based approaches are the SA-Cluster
proposed by Zhou et al. [19] and its extended versions, SA-Cluster-
Opt [1] and Inc-Cluster [20]. In their work, an augmented graph
is constructed by linking all vertices that share the same attribute
value to a common artificial node. They then defined the distance
measure as the random walk score [17] computed from the aug-

mented graph. In the distance measure, different weights are as-
signed to structure and attributes, which can be tuned automatically
by their algorithm. The K-mediods algorithm is then applied to find
the clustering. In order to efficiently compute the distance mea-
sure, they further proposed an approximate distance computation
in SA-Cluster-Opt [1] and an incremental distance computation in
Inc-Cluster [20]. In this paper, we compared our algorithm with
Inc-Cluster and as evidenced by the experimental results, our ap-
proach significantly outperforms Inc-Cluster in terms of both clus-
tering quality and efficiency.

Although the distance-based approach has been extensively stud-
ied, little has been done on the model-based approach to attributed
graph clustering. We are only aware of two existing works [18,
4] in this category. [18] adopts a similar generative process as
ours, and also proposes a probabilistic model to cluster attributed
graphs. However, there are two major differences between [18]
and our work. First, their work targets on continuous attributes,
and cannot deal with categorical attributes as in our approach. Sec-
ond, their work treats model parameters as fixed values, while we
take a Bayesian treatment on the model parameters. Our Bayesian
model essentially considers all possible parameter values and leads
to more robust clustering results. [4] applies the Latent Dirich-
let Allocation (LDA) to graph clustering. The proposed method
is based on a different Bayesian framework from ours and it deals
with edge attributes rather than vertex attributes.

In literature, the term “attributed graph clustering” sometimes
refers to another clustering problem, in which a set of attributed
graphs is given and the task is to group the graphs into clusters [14,
13, 15, 8, 6]. Their problem is different from ours since the objects
to be clustered there are smallgraphs, while those to be clustered
in our problem are theverticesin a single attributed graph.

7. CONCLUSIONS
We studied the problem of clustering attributed graphs. Unlike

the existing works that define artificial distance measures to fuse
the structural and attribute information, we proposed a natural and
principled model-based approach to attributed graph clustering. We
devised a Bayesian model to seamlessly leverage the structural and



attribute information in clustering an attributed graph, and trans-
formed the clustering problem into a standard probabilistic infer-
ence problem. We then developed an efficient variational algorithm
to solve the probabilistic inference problem.

Our experiments on real-world attributed graphs verified both the
effectiveness and efficiency of our method. First, the experimen-
tal results show that our algorithm attains high clustering quality
both structure-wise and attribute-wise, both of which being sig-
nificantly superior to the currently best known algorithm for this
task, Inc-Cluster [20]. Second, our algorithm is up to two orders
of magnitude faster and consumes substantially less memory than
Inc-Cluster. The results particularly show that our algorithm is far
more scalable in clustering large attributed graphs than Inc-Cluster.

Model-based clustering methods are commonly considered slow
and hard to scale up. Nonetheless, this work shows that our model-
based method is far more efficient than the state-of-the-art distance-
based method. Given the promising results, we hope that our work
can attract more attention to model-based methods and stimulate
the development in this line for large-scale data mining.

8. ACKNOWLEDGMENTS
This research is supported in part by the A*STAR Thematic

Strategic Research Programme Grant (102 158 0034), the AcRF
Tier-1 Grant (M52020092) and the MoE Grant (MOE2010-T2-2-
071) from Ministry of Education of Singapore, and the grant of the
Research Grants Council of the Hong Kong SAR, No. 411211.

9. REFERENCES
[1] H. Cheng, Y. Zhou, and J. X. Yu. Clustering large attributed

graphs: A balance between structural and attribute
similarities.TKDD, 5(2):12, 2011.

[2] T. M. Cover and J. A. Thomas.Elements of information
theory. Wiley-Interscience, 1991.

[3] M. H. DeGroot.Proability and Statistics. Addison-Wesley,
2nd edition, 1986.

[4] K. Henderson, T. Eliassi-Rad, S. Papadimitriou, and
C. Faloutsos. Hcdf: A hybrid community discovery
framework. InSDM, pages 754–765, 2010.

[5] T. Hofmann. Probabilistic latent semantic indexing. In
SIGIR, pages 50–57, 1999.

[6] B. J. Jain and F. Wysotzki. Central clustering of attributed
graphs.Machine Learning, 56(1-3):169–207, 2004.

[7] M. I. Jordan, Z. Ghahramani, T. Jaakkola, and L. K. Saul. An
introduction to variational methods for graphical models.
Machine Learning, 37(2):183–233, 1999.

[8] M. A. Lozano and F. Escolano. ACM: Attributed graph
clustering for learning classes of images. InGraph Based
Representations in Pattern Recognition, pages 247–258,
2003.

[9] J. Neville, M. Adler, and D. Jensen. Clustering relational
data using attribute and link information. InText Mining and
Link Analysis Workshop, IJCAI, pages 689–698, 2003.

[10] M. E. J. Newman. Fast algorithm for detecting community
structure in networks.Physical Review E, 69:066133, 2004.

[11] M. E. J. Newman and M. Girvan. Finding and evaluating
community structure in networks.Physical Review E,
69:066113, 2004.

[12] J. Pearl.Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann
Publishers, 1988.

[13] A. Sanfeliu, R. Alquézar, and F. Serratosa. Clustering of
attributed graphs and unsupervised synthesis of

function-described graphs. InInternational Conference on
Pattern Recognition, pages 6022–6025, 2000.

[14] D. S. Seong, H. S. Kim, and K. H. Park. Incremental
clustering of attributed graphs.IEEE Transactions on
Systems, Man and Cybernetics, 23(5):1399 –1411, 1993.

[15] F. Serratosa, R. Alquézar, and A. Sanfeliu. Synthesis of
function-described graphs and clustering of attributed
graphs.International Journal of Pattern Recognition and
Artificial Intelligence, 16(6):621–656, 2002.

[16] K. Steinhaeuser and N. V. Chawla. Community detection in a
large real-world social network. InSocial Computing,
Behavioral Modeling, and Prediction, pages 168–175. 2008.

[17] H. Tong, C. Faloutsos, and J.-Y. Pan. Fast random walk with
restart and its applications. InICDM, pages 613–622, 2006.

[18] H. Zanghi, S. Volant, and C. Ambroise. Clustering based on
random graph model embedding vertex features.Pattern
Recognition Letters, 31(9):830–836, 2010.

[19] Y. Zhou, H. Cheng, and J. X. Yu. Graph clustering based on
structural/attribute similarities.PVLDB, 2(1):718–729, 2009.

[20] Y. Zhou, H. Cheng, and J. X. Yu. Clustering large attributed
graphs: An efficient incremental approach. InICDM, pages
689–698, 2010.

APPENDIX

A. DERIVATION OF STATIONARY POINT
EQUATIONS

Our starting point is the equation

∇L̃(q) =

(
∂L̃

∂ξ̃
,
∂L̃

∂γ̃
,
∂L̃

∂µ̃
,
∂L̃

∂ν̃
,
∂L̃

∂β̃

)
= 0.

We first simplifyL̃(q) as follows:

L̃(q) =
∑

Z

∫∫∫
q(α, θ, φ,Z) log

p(α, θ, φ,X,Y,Z|ξ, γ, µ, ν)

q(α, θ, φ,Z)
dαdθdφ

= Eξ̃[log p(α)] + Eγ̃ [log p(θ)] + Eµ̃,ν̃ [log p(φ)] + Eξ̃,β̃ [log p(Z|α)]

+Eµ̃,ν̃,β̃ [log p(X|Z, φ)] + Eγ̃,β̃ [log p(Y|Z, θ)] − Eξ̃[log q(α)]

−Eγ̃ [log q(θ)] − Eµ̃,ν̃ [log q(φ)] −
N∑

i=1

Eβ̃i
[log q(Zi)].

The expectations are taken with respect to the variational distri-
bution q(·|·) and the subscripts denote the variational parameters
involved in the expressions. For example,

Eξ̃[log p(α)] =

∫
q(α|ξ̃) log p(α)dα.

We now derive the partial derivatives one by one, starting with
∂L̃

∂ξ̃
. For simplicity, we collect the terms involving̃ξ in L̃(q), and

denote the sum as

L̃ξ̃ = Eξ̃[log p(α)] + Eξ̃,β̃
[log p(Z|α)] − Eξ̃[log q(α)]

= log





∏K
k=1 log Γ

(
ξ̃k

)

Γ
(∑

K
k=1 ξ̃k

)





+
K∑

k=1

(
ξk − ξ̃k +

N∑

i=1

β̃ik

)[
ψ
(
ξ̃k

)
− ψ

(
K∑

k=1

ξ̃k

)]
.(22)

Thus, for allk = 1, 2, . . . ,K,

∂L̃

∂ξ̃k
=
∂L̃ξ̃

∂ξ̃k
=

(
ξk − ξ̃k +

N∑

i=1

β̃ik

)
ψ

′
(
ξ̃k

)

−

K∑

l=1

(
ξl − ξ̃l +

N∑

i=1

β̃il

)
ψ

′

(
K∑

l=1

ξ̃l

)
.



Setting ∂L̃

∂ξ̃k
= 0 for all k, we arrive at Equation (15)

ξ̃k = ξk +

N∑

i=1

β̃ik.

The stationary point equations for the other variational parame-
ters can be derived similarly. Forγ̃, we have

L̃γ̃ = Eγ̃ [log p(θ)] + Eγ̃,β̃ [log p(Y|Z, θ)] − Eγ̃ [log q(θ)]

=

T∑

t=1

K∑

k=1

log





∏Mt

m=1 Γ
(
γ̃t
km

)

Γ
(∑

Mt

m=1 γ̃
t
km

)





+

T∑

t=1

K∑

k=1

Mt∑

m=1

[
γ
t
m − γ̃

t
km +

N∑

i=1

β̃ikδ
(
Y

t
i , a

t
m

)]


ψ
(
γ̃
t
km

)
− ψ




Mt∑

m=1

γ̃
t
km




 .

Setting ∂L̃

∂γ̃t
km

=
∂L̃γ̃

∂γ̃t
km

= 0 for all t, k,m, we obtain Equation (16)

γ̃
t
km = γ

t
m +

N∑

i=1

β̃ikδ
(
Y

t
i , a

t
m

)
.

For µ̃ andν̃, we have

L̃µ̃,ν̃ = Eµ̃,ν̃ [log p(φ)] + Eµ̃,ν̃,β̃ [log p(X|Z, φ)] − Eµ̃,ν̃ [log q(φ)]

=
∑

k≤l

log

{
Γ (µ̃kl) Γ (ν̃kl)

Γ (µ̃kl + ν̃kl)

}

+

K∑

k=1

[
µ− µ̃kk +

∑

i<j

β̃ikβ̃jkXij

][
ψ
(
µ̃kk

)
− ψ

(
˜µkk + ν̃kk

)]

+

K∑

k=1

[
ν − ν̃kk +

∑

i<j

β̃ikβ̃jk

(
1 − Xij

)][
ψ
(
ν̃kl

)
− ψ

(
µ̃kl + ν̃kl

)]

+
∑

k<l

[
µ− µ̃kl +

∑

i 6=j

β̃ikβ̃jlXij

][
ψ
(
µ̃kl) − ψ(µ̃kl + ν̃kl

)]

+
∑

k<l

[
ν − ν̃kl +

∑

i 6=j

β̃ikβ̃jl

(
1 − Xij

)][
ψ
(
ν̃kl) − ψ(µ̃kl + ν̃kl

)]
.

Setting
∂L̃µ̃,ν̃

∂µ̃kl
=

∂L̃µ̃,ν̃

∂ν̃kl
= 0 for all k ≤ l, we obtain Equations

(17)–(20)

µ̃kk = µ+
∑

i<j

β̃ikβ̃jkXij ,

ν̃kk = ν +
∑

i<j

β̃ikβ̃jk

(
1 − Xij

)
,

µ̃kl = µ+
∑

i 6=j

β̃ikβ̃jlXij ,

ν̃kl = ν +
∑

i 6=j

β̃ikβ̃jl

(
1 − Xij

)
.

For β̃, we have

L̃β̃i
=

K∑

k=1

β̃ik

[
ψ
(
ξ̃k

)
− ψ

(
K∑

k=1

ξ̃k

)]
−

K∑

k=1

β̃ik log β̃ik

+
∑

j 6=i

K∑

k=1

K∑

l=1

β̃ikβ̃jlXij

[
ψ
(
µ̃kl

)
− ψ

(
µ̃kl + ν̃kl

)]

+
∑

j 6=i

K∑

k=1

K∑

l=1

β̃ikβ̃jl

(
1 − Xij

)[
ψ
(
ν̃kl

)
− ψ

(
µ̃kl + ν̃kl

)]

+

T∑

t=1

K∑

k=1

β̃ik

Mt∑

m=1

δ(Y
t
i , a

t
m)


ψ
(
γ̃
t
km

)
− ψ




Mt∑

m=1

γ̃
t
km




 ,

subject to
∑K

k=1 β̃ik = 1. Introducing Lagrange multiplierλ and

then setting ∂

∂β̃ik

[
L̃β̃i

+ λ(
∑K

k=1 β̃ik − 1)
]
= 0 for all i, k will

lead to Equation (21)

β̃ik ∝ exp

{[
ψ
(
ξ̃k

)
− ψ

(
K∑

k=1

ξ̃k

)]

+
∑

j 6=i

K∑

l=1

β̃jlXij

[
ψ
(
µ̃kl

)
− ψ

(
µ̃kl + ν̃kl

)]

+
∑

j 6=i

K∑

l=1

β̃jl

(
1 − Xij

)[
ψ
(
ν̃kl

)
− ψ

(
µ̃kl + ν̃kl

)]

+

T∑

t=1

Mt∑

m=1

δ(Y
t
i , a

t
m)


ψ
(
γ̃
t
km

)
− ψ




Mt∑

m=1

γ̃
t
km





}
.

B. PROOF SKETCH FOR PROPOSITION 1
As described in Algorithm 2,q(n+1) is obtained fromq(n) by a

sequence of variational parameter updating:

1. Updatẽξ(n+1), γ̃(n+1), µ̃(n+1), ν̃(n+1) according to Equations
(15)–(20);

2. Updateβ̃(n+1) according to Equation (21).

In order to provẽL
(
q(n)

)
≤ L̃

(
q(n+1)

)
, we only need to show

that none of the updating will decrease the value ofL̃. Due to space
limit, we only prove this for updating̃ξ(n+1) in the following. The
other cases can be shown similarly.

As shown in Appendix A, the objective functioñL can be de-
composes into two parts,

L̃ = L̃ξ̃ + C.

Here,L̃ξ̃ is a function ofξ̃ as defined in Equation (22), whileC is a

constant with respect tõξ. Because updating̃ξ only affectsL̃ξ̃, we

only need to show̃Lξ̃(n) ≤ L̃ξ̃(n+1) .

Rearranging the expression ofL̃ξ̃ in Equation (22), we get

L̃ξ̃ = −KL
(
q(α|ξ̃)||p′(α)

)
+ logC

where

p
′(α) =

1

C
exp

{
log p(α) + Eβ̃(n) [log p(Z|α)]

}
,

C =

∫
exp

{
log p(α) + Eβ̃(n) [log p(Z|α)]

}
dα.

Note thatKL(q||p′) is nonnegative and attains its minimum value
zero if and only ifq = p. Therefore,L̃ξ̃ will be maximized at̃ξ⋆

that satisfies

q
(
α|ξ̃⋆

)
= p

′(α).

Simplifying the above equation, we arrive at

ξ̃
⋆
k = ξk +

N∑

i=1

β̃
(n)
ik , k = 1, · · · ,K

Note this is exactly the updating equation forξ̃(n+1). Consequently,
we have

L̃ξ̃(n) ≤ L̃ξ̃⋆ = L̃ξ̃(n+1) .


