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ABSTRACT 1. INTRODUCTION

Graph clustering, also known as community detection, is a long- ~ Graph clustering is a well-studied problem in data mining and
standing problem in data mining. However, with the prolifera- machine learning. The objective of graph clustering is to group
tion of rich attribute information available for objects in real-world ~ vertices in a given graph based on vertex connections (i.e., edges).
graphs, how to leverage structural and attribute information for In recent years, with the proliferation of rich information available
clustering attributed graphbecomes a new challenge. Most ex- for real-world objects, vertices in graphs are often associated with a
isting works take a distance-based approach. They proposed vari-number of attributes that describe the characteristics and properties
ous distance measures to combine structural and attribute informa-Of the vertices. This gives rise to a new type of graphs, namely
tion. In this paper, we consider an alternative view and propose a attributed graphsand hence the demand of a new clustering task,
model-based approach to attributed graph clustering. We developattributed graph clustering
a Bayesian probabilistic model for attributed graphs. The model Attributed graph clustering is useful in many application do-
provides a principled and natural framework for capturing both mains. For example, in service-oriented social networking sites
structural and attribute aspects of a graph, while avoiding the ar- (€.9., Facebook, Twitter, LinkedIn), users and their interactions
tificial design of a distance measure. Clustering with the proposed (€.9., friend-of, follower-of) form a social network. Each user in
model can be transformed into a probabilistic inference problem, the network can be further characterized by various information in
for which we devise an efficient variational algorithm. Experimen- his/her personal profile, such as interests, gender, education, resi-
tal results on large real-world datasets demonstrate that our methoddency, etc. Clustering the users in a social network by considering
significantly outperforms the state-of-art distance-based attributed both their global social relationships and personal profiles is partic-
graph clustering method. ularly useful for social networking sites in service/apps recommen-
dation, user-targeted online advertising, etc. In telecommunication
business, a communication network consists of subscribers as ver-

Categorles and SUbJeCt Descrlptors tices and their communications (e.g., voice calls, text messaging,
H.2.8 [Database Applicationg: Data Mining; G.2.2 (Graph The- email) as edges. Each subscriber is associated with attributes such
ory]: Graph Algorithms as demographic information, current service plans, service usage,

etc. User groups discovered by clustering the attributed commu-
nication network can be used to design effective group-oriented
General Terms marketing strategies so as to mitigate customer churns for telecom
Algorithms, Experimentation, Performance operators.
Attributed graph clustering, though having many important ap-
plications, poses significant new challenges. An attributed graph
Keywords contains two completely different types of information, structural
Attributed graph clustering, model-based clustering, Bayesian methadnnections and attribute values. Traditional graph clustering and
object clustering handle only one of the two types, and thus the re-
sultant clustering inevitably does not reflect both information in the
input graph. Therefore, in the problem of clustering an attributed
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personal or classroom use is granted without fee providatidbpies are information in the process of clustering becomes a big challenge.
not made or distributed for profit or commercial advantage aatidbpies Existing works [19, 1, 20, 9, 16] on attributed graph clustering
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explicitly or implicitly, weights to structural and attribute informa- orders of magnitude in larger datasets, and consumes sub-

tion in order to achieve a good balance between them. Manual stantially less memory.
weighting obviously cannot work for a general graph, while learn-
ing weights for specific graphs is often time consuming. Organizations. The rest of the paper is organized as follows. Sec-

In this paper, we consider an alternative view and propose a tion 2 defines the problem of attributed graph clustering. Section 3
model-basedpproach to attributed graph clustering. Our approach presents our Bayesian model for attributed graph clustering. Sec-
avoids the artificial design of a distance measure. Instead, it is tion 4 presents our variational inference algorithm. Section 5 re-
based on a probabilistic model which fuses both structural and at- ports the experimental results. Section 6 discusses related work.
tribute information in anatural and principlednanner. Finally, Section 7 concludes the paper.

Our model is grounded on two assumptions that are well recog-

nized in clustering research: (1) there existsw®e but unknown 2. PROBLEM STATEMENT

clustering of the vertices underlying the data; (2) vertices from the . . )

same cluster behave similarly to each other, while vertices from V’in attributed grapl is defltnef(]jvas até_l-tupéé/,_E, A_’ F) V.quie
different clusters can behave differently. In our model, the cluster | {v1,02,...,un} is aset ofN vertices, N {g”“ Vi) s
label of each vertex is explicitly represented dsiddenvariable. b tS gj ! ZA J}. |sla§§; Otf edgis/,\ = {a’,a e @ t 'St
Moreover, the model enforces the intra-cluster similarity by assert- afs;fo t_ca ego(rjlca a r|. l‘J/esF d_ {flt’ fa,... fr} |sha S?
ing that the attribute values and edge connections of a vertex should unctions an eacpft Vo .Dm(a )t assigns eac vertex
depend on its cluster label. In particular, for vertices from the same in 1 an attribute value in the domaifom(a”) of the attributen

cluster, their attribute values and edge connections should follow gg;elntigallt is;)éi;Pegzvﬁgrf#tggri%ﬁgmvé;c;/re(r)tfef(e vr;@fm‘ée'fe
the common distributions that are specific to that cluster. Via the y

; : ; ; thet-th element in the vector is given by the functis{v;).
hidden clustering variable, we seamlessly leverage the attribute and In this paper, we restrict our discussion lirectedattributed

connection information of the vertices. . . .
Our probabilistic model essentially defines a joint probability graphs, while our method can be easily extended to process directed
attributed graphs.

d_|str|but|pn over the space of all p055|_ble clusterings and all pos- Given an attributed grap’ and the number of clustes, the
sible attributed graphs. For a given attributed graph to be C|UStered’clusterin roblem studied in this paper is o partition the vertex
the model assigns a probability for each possible clustering of the 9p S pap P
. . .~ setV of G into K disjoint subsetd/,, Vs, ..., Vk, whereV =
vertices. Therefore, the clustering problem can be transformed into UK Vi andV; N V; — 0 for anyi = 7, such that: (1) in terms of
a standargbrobabilistic inferencgproblem, i.e., to find the cluster- i=1 "0 S e I Anye 7 J, Lo A
structure (i.e., edge connectionsd@), the vertices within clusters

ng that gives t'he highest probablllty [12]. Intuitively, this cluster- are densely connected, while the vertices in different clusters are
ing best explains the observed attribute values and edge connec-

. sparsely connected; and (2) in terms of attribute (i.e., attribute val-
tions of the graph. ) . . L :
. . L . ... ues on the vertices @), the vertices within clusters have low di-

Despite the conceptual simplicity of the inference problem, it is versity in their attribute values, while the vertices in different clus-
computationally intractable. To address this issue, we take a varia- Y X L
. > . . ters may have diverse attribute values.
tional approach [7] and propose an efficient approximate algorithm
for probabilistic inference. The idea is to (1) restrict ourselves to

a computationally tractable family of distributions, (2) find the dis- 3. A BAYESIAN MODEL FOR ATTRIBUTED

tribution from this family that best approximates our probabilistic GRAPH CLUSTERING

;nodell,l agdf@) p;ﬁrfc;rm ::Ilt,l)ftefnng_lbaseddfon th'ls' ?pﬁ)r:oxmatlor_l. We In this section, we present a Bayesian probabilistic model for
tprma yble in€ the ract.a i€ tgmly a& ormvl\J/afe the agprpxmt]ﬁ- attributed graph clustering. Given a set of vertidésa set of
lon problem as an optimization problem. We urther gerive the attributesA, and the number of clustel®’, the model defines a

sta_tlonary point conditions f(_)r the_ optlm!zgtlon problem, based on joint probability distribution over the space of all possible attributed
which we then de_velop an iterative c_)p_tl_mlzatlon procedure. The graphsandall possible partitions ovér. Thatis, it defines a proba-
procgdurg essentlally starts from_ an initial guess_of the _clustenng, bility for each possible combination of attributed graphs and vertex
and iteratively improves the quality of the clustering until conver- clusterings of the graphs.
gence. . . _— . Based on this model, we can cluster a given attributed graph by
We summarize the main contributions of this paper as follows. probabilistic inference. Specifically, we calculate the posterior dis-
e \We propose a novel model-based approach for the problem of tribution over all possible clusterings of the given graph, and find
attributed graph clustering. Our model conforms to the two the most probable clustering with the maximum probability. Intu-
fundamental assumptions in clustering research and providesitively, this clustering best explains the attribute values and edge
a natural and principled way of leveraging the structural and patterns of the given graph.
attribute information in clustering. We start by introducing some basic notions and notations in Sec-
tion 3.1. We then present an intuitive generative process for at-
tributed graphs in Section 3.2. This process essentially draws sam-
ples of attributed graphs from an underlying distribution. In Section
3.3, we investigate a number of assumptions made by the generative
process, based on which we formally define our model. Finally, in
e \We evaluate the performance of our algorithm on real-world Section 3.4, we elaborate how to use this model for attributed graph
attributed graphs. Compared with the state-of-the-art distanceelustering and analyze the computational challenges.
based attributed graph clustering algorithm [20], our algo- . .
rithm obtains significantly higher clustering quality, in terms 3.1 Notions and Notations
of both structural and attribute information, for all datasets =~ Suppose we are given a set of vertidésa set of attributed,
tested. Regarding clustering efficiency, our algorithm is con- and the number of cluste#s. Let N andT be the sizes oV and
sistently faster, from a few times in a small dataset to two A, respectively.

e We formulate the clustering problem as a probabilistic infer-
ence problem and analyze its computational difficulty. We
then take a variational approach and design an efficient ap-
proximate algorithm to solve the inference problem.



Procedure 1Generate Clustered Attributed Graph

Input: a set of verticed’, a set of attributed, and the number of

clustersiK’
Output: a sample of clustered attributed gra@, Y, Z)

1. Choosex ~ Di ri chl et (&)
2. For each cluster € {1,2,...,K}:

vertices belonging to clustdr, and satisfies the constraints
ax € [0,1] andY>",_, i, = 1. For now, let us assume the
parametery (and alsd, ¢ below) is given. Later on, we will
show how to sample: from a Bayesian prior distribution.

2. Given the cluster labef; for vertexwv;, we then sample the
attribute values of this vertex (Step 3(b)). Specifically, we

(a) For each attribute’:
e Choosd)}, ~ Di ri chl et (%)
(b) For each clustdre {k,k+1,...,K}:
e Choosepr; ~ Bet a(u, v)
3. For each vertex; € V:
(a) ChooseZ; ~ Mul ti nomi al («)
(b) For each attribute®:
e ChooseY;’ ~ Ml ti nomi al (6%,)
(c) For each vertex; € V with i > j:
e ChooseX;; ~ Bernoul l'i (¢z,z;)

e An adjacency matrixX = [X;;] is anN x N symmetric
random matrix. Each elemeid;; is a binary random vari-
able that takes valu&or 1, which indicates whether there is
an edge between verticesanduv;.

e An attribute matrixY = [Y'] isanN x T random matrix.

Each element}’ is a categorical random variable that takes

value fromdom(a'), which denotes the value of attributé
associated with vertex;.

e A clustering of verticeZ = [Z;] isanN x 1 random vec-
tor. Each elemeng; is a categorical random variable that
takes value from{1,2, ..., K}, which denotes the label of

sample the valu&;’ of each attribute’ from a multinomial
distribution defined as

p(Yy =ml|0y,) =0%,,,, m=12,....,M". (2

The parameter of the distribution is\d‘-vectorf,, = (6%,
0%,2: - 0%, ), WhereM " is the size of the domaidom (a*).
The elemem‘?tzim denotes the proportion of vertices in clus-
ter Z; that take then-th value indom (a"). It satisfie®, ,,, €

0,1 and 32", 0%, = 1.

As indicated by its subscrigf; of Gtzi, the multinomial dis-
tribution is specific to clusteZ;. In other words, all vertices
belonging to the same cluster share a common multinomial
distribution, while the distributions can differ across differ-
ent clusters. The idea is that vertices in the same cluster are
similar to each other. Therefore, they should exhibit a similar
pattern in their attribute values.

3. Given the cluster labelg; and Z; for vertex pairv; andvy,

we finally sample the indicatak;; which denotes whether
there is an edge between andv; (Step 3(c)). X;; is a
binary variable taking value 0 or 1. We sample it from a
Bernoulli distribution defined as

p(Xij‘qSZiZj) = (1 - ¢Zz:Zj)17Xij (¢ZiZJ)XU . (3)

the cluster that vertex; belongs to.

By enumerating the values & andY, we can exhaust all pos-

sible attributed graphs ovér. Every instantiation oX andY

leads to a unique graph. Therefore, we can equivalently represent
an attributed graph as a pdiX,Y). Suppose we further know
the value ofZ. In this case, we have a clustering (or partition) of
the vertex seV’. Therefore, we refer to the tupl&,Y,Z) as a

clustered attributed graph

3.2 A Generative Process

Procedure 1 outlines a generative process for clustered attributed
graphs. The process takes as input a set of verficea set of
attributesA, and the number of clustefs. It outputs a sample from

all possible clustered attributed graphs, denote@yY, Z).

We start by discussing Step 3, the core step of this process. Steps
1 and 2 are for the Bayesian treatment of the model parameters. We

will elaborate on them in Section 3.2.2.

3.2.1 Generatin,Y, Z

The parametesz, z, denotes the edge occurrence probabil-
ity between clusters; and Z;, and satisfie®z, z, € [0,1]
and¢z,z;, = ¢z;z;-

Note that the parametelrz, z, depends on the cluster labels
Z; andZ;. The implication is as follows. Consider two ver-
ticesv; andv;. Suppose we are generating the indicators
Xir and X, for these vertices with respect to a common
third vertexvy,. If v; andv; come from the same cluster, i.e.,
Z; = Z;, we sampleX;;, and X5 from the same Bernoulli
distribution. Otherwise, we use different Bernoulli distribu-
tions for sampling. This is reasonable because vertices from
the same cluster should be similar to each other, and they
should have the same chance to connect with other vertices.
On the other hand, for vertices from different clusters, the
chance may diverge.

3.2.2 Generating, 6, ¢

In order to generate a sample of clustered attributed graphs, we SO far we assume that the parameters, and¢ are given in the

need to determine (1) an adjacency malix= [X;;], (2) an at-

tribute matrixY = [Y;], and (3) a clustering of verticés = [Z;].
At Step 3 of Procedure 1, we generate them as follows:

1. We first sample the cluster lab8} of each vertexy; from

a multinomial distribution independently (Step 3(a)). The

multinomial distribution is defined as

p(Z; =kla) =ar, k=1,2,...,K. @)

The distribution is parameterized bys&avectora = (a1, az,
...,ax). The elemeniy; denotes the proportion of the

generative process. However, the behavior of the process depend
on the choice of these parameters. We now discuss how to specify
the parameter values.

We take a Bayesian approach to address this issue. Instead of
presuming a fixed value for each parameter, we tredt, and¢
themselves as random variables and plapga distribution over
them. By doing so, we explicitly model the intrinsic uncertainty in
the values ofy, 6, and¢. We essentially take all possible values
into consideration rather than sticking to a single hypothetic value.
We will discuss more about the benefits of the Bayesian treatment
in Section 3.4.



To obtain the values at, 6, and¢ required by Step 3 of Proce-
dure 1, we sample those values from the prior distribution (Steps 1
and 2 of Procedure 1) as follows.

1. We place a Dirichlet distribution over, from which we sam-
ple the value ofn. at Step 1. The density function of the
Dirichlet distribution is defined as

r(Sig) K
TIE T (&)

whereI'(-) is the Gamma function. The distribution is pa-
rameterized by a positive reBl-vector = (&1,&2,. ..,k ).
We refer tof as ahyper-parameteof the generative process
in order to distinguish it from the parameter

The choice of the Dirichlet distribution fak (and also the
distributions forf, ¢ below) is not arbitrary. We will elabo-
rate on this point at the end of this subsection.

palg) = 4)

H&kl

k=1

. We place a Dirichlet distribution ovéf, for each attribute’
and each clustek, defined as

]\/It

MY oy
Hm 1
(717’727

Mt

H On)™ " )
m=1

... ;yMt) is a positive real//*-

p(Oly') =

Similar to¢, v =

vector and is a hyper-parameter of the generative process.

Note that there is one dedicated hyper-paramgtéor each
attribute a*. This is because the domains of different at-
tributes are different.

On the other hand, one may notice thhtloes not depend on
the cluster labek, which means that a common set of hyper-
parameters are shared by all tReclusters. This should not

be interpreted as that the parametrdor different clusters

are tied to the same value, and thus vertices in different clus-
ters are confined to the same pattern of attribute values. In
fact, at Step 2(a) of Procedure 1, we sample the pararfigter
for each clustek independently. Therefore, the valuesdgf
vary across different clusters. This allows us to accommo-
date the inter-cluster heterogeneity of attribute values.

. Finally, we place a Beta distribution ovey,;, from which
we sample the value afy; for each cluster paifk, 1),k <1
independently (Step 2(b)). The Beta distribution is a special
case of Dirichlet distribution with only two components, and
is defined as
F(M + V) L —1
p(Prilp,v) = o (1
) = Tt )
Herep andv are the hyper-parameters of the generative pro-
cess.

— )"t (6)

As aforementioned, the choices of Dirichlet and Beta as the prior
distributions ofx, 6, ¢ are not arbitrary. Recall that we samXe
Y, Z from multinomial and Bernoulli distributions parameterized
by a, 6, ¢. Mathematically, the Dirichlet and Beta distributions are
known as theconjugate priorsfor multinomial and Bernoulli dis-
tributions, respectively [3]. It means that, if the prior distributions
of «, 0, ¢ are Dirichlet and Beta, then after we observe an instan-
tiation of X, Y, Z (or equivalently, a clustered attributed graph)
the posterior distributions aof, 0, ¢ are still Dirichlet and Beta.
This will give rise to a closed-form expression for the posterior and

v, eV

Figure 1: A graphical representation of the proposed model.

In the generative process, all the hyper-parameters are fixed at
a predefined value. In this paper, we follow the convention in
Bayesian statistics and set the value at 1, which leads to the well
known non-informativepriors [3]. In this case, the Dirichlet and
Beta priors overa, 0, ¢ are equivalent to uniform distributions.
They assign equal probabilities to all possible valuesxof, ¢.
Intuitively, it reflects that our prior belief has no preference on any
parameter value over the others.

3.3 Model Definition

In the previous subsection, we described a generative process
for clustered attributed graphs. Each run of this process generates
a sample of the parameters, ¢ and a sample of clustered at-
tributed graphgX,Y,Z). It essentially draws samples from an
underlying joint probability distribution ovet, 6, ¢, X, Y,Z. In
this subsection, we formally define a Bayesian model that repre-
sents this underlying distribution.

We first note that the generative process implicitly makes a num-
ber of conditional independence assumptions angongu, v, «, 6,
¢,X,Y,Z. Mathematically, two random variablet and B are
conditionally independent given a third varialdlef and only if

p(A, B|C) = p(A|C)p(B|C).

Instead of enumerating the assumptions, we give a compact graph-
ical representation in Figure 1. Each node in the graph corresponds
to one random variable. Each rectangle denotes the repetition of the
enclosed structure, where the number of repetitions is indicated by
the subscript/superscript of the rectangle. For example, the rect-
angle encompassing the nodg means that there ar€ nodes

Y, Y32, ..., YT, each of which has 2 parent nodeandZ;. Note

that the structure of the graph is constructed according to the flow
of the generative process.

The set of conditional independence assumptions can be readily
read off the graph. Specifically, a node is independent of all its
non-descendants given its parent nodes [12]. For exar#pis,in-
dependent of, v, ., v, 0, ¢ givena. This is because the generation
of Z; depends only om (see Step 3(a) of Procedure 1). Similarly,

Z; and Z; are conditionally independent given This is because
the cluster labels for different vertices andv; are sampled inde-
pendently.

Given the hyper-paramete¢s~, u, v, we decompose the joint

thus mathematical convenience when we derive an attributed graphdistribution overa;, 6, ¢, X, Y, Z using the probability chain rule

clustering algorithm later.

and apply the conditional independence assumptions encoded in



Figure 1. This leads to our Bayesian probabilistic model for clus-  We have described how to perform clustering based on the pro-

tered attributed graphs: posed Bayesian model. Before closing this section, we would like
to emphasize the significance of the Bayesian treatment to the clus-
ple 0,6, X, Y, ZI¢, 7, p,v) tering method. This can be clearly seen from how we calculate the
= p(a|€)p(0]7)p(|p, v)p(Z|e)p(X|Z, ¢)p(Y|Z,0), posteriorp(Z|X,Y) in Equation (8). By treating the parameters
where a, 0, ¢ as random variables, we model the intrinsic uncertainty in
P their values. We essentially consider all possible values, 6f ¢,
p(Oly) = H Hp(%wt), and take average over them by integration. In this way, the esti-
k=1t=1 mation ofp(Z|X,Y) is more reliable, which thus leads to more
% robust clustering results.
@l v) =[] p(drluv),
k=1 4. A VARIATIONAL ALGORITHM
N .
p(Zla) = T[p(Zia), 4.1 The BaswT !dea N .
i=1 We develop an efficient variational algorithm to solve the proba-
N bilistic inference problem. The basic idea is to approximate the dis-
p(X|Z,¢) =[] p(Xijlézz2,), tributionp(a, 0, ¢, Z| X, Y) defined in Equation (9) usingwaria-
i,j<:,1 tional distributiong(«;, 0, ¢, Z) that is tractable for the maximiza-
7 tion overZ and integration ovet, 8, ¢ in Equations (7) and (8).
A 10t Specifically, we restrict the variational distribution to a family of
p(Y[Z,0) = j_l_IltUIP(Y" 192.), distributions that factorize as follows:
and p(Zi|). p(Y16%,), p(Xuldzz,), p(ale), pOLH), 0(0,0:.2) = a(@a@a(@) [[a(z)- a0
p(ori| s, v) are defined in Equations (1)—(6), respectively.
For brevity, we will omit the conditional part of the joint distribu- We then find the distribution within this family that is the most
tionp(a, 0, ¢, X, Y, Z|¢, v, u, v) and abbreviate it tp(«, 8, ¢, X, similar to the truttp(a, 0, ¢, Z|X,Y) as the approximation. Given

Y, Z) in the rest of this paper. The same applies to all the con- this approximationg(c, 6, ¢,Z), we can approximate the MAP
ditional and marginal distributions that are derived from this joint clusteringZ* as follows:

distribution. One should however always bear in mind that all these
distributions are conditioned on the hyper-paramegess i, v. Z*

3.4 Model-based Clustering of Attributed Graph

The Bayesian model proposed in the previous subsection defines

= argmax p(Z|X,Y)

= argmzax///p(a,@, ¢, Z|X,Y)dadfde

a joint distributionp(«, 0, ¢, X, Y, Z). Based on this model, the N
problem of clusterin(g agiven attribu)ted graX, Y) can be trans- ~ooaremgx /// a(2, 0, ¢, Z)dadfds
formed into a standard probabilistic inference problem, namely,
finding themaximum a posterioMAP) configuration [12] of the = aremax /// a(a)q(¥)a(#) I—ICI(Zi)dO‘dedqs
clusteringZ conditioning onX, Y. That is to find ’
= argmaxHq(Zi)
7" = arg mzaxp(Z|X,Y), 7) z =

wherep(Z|X,Y) is the posterior distribution oZ given X,Y = [argrr;}xq(Zl),argrrgzxq(ZQ%~.~7argrrzlixq(ZN) .
(and§, v, 1, v). Intuitively, Z* gives the most probable clustering (11)
of the vertex sel/ that best explains the attribute valu¥sand
edge patternX of the given graph. o Due to the factorization of(c, 0, ¢, Z), the integrals over, 6, ¢

Despite its conceptual simplicity, the probabilistic inference prob- giminish and the global maximization ov&rreduces to local max-
lem is notoriously hard. There are two major difficulties. imizations over eacl#; independently.

The first difficulty is the maximization over th¥ variablesZ = Two questions remain: (1) how to define the family of variational
{21,2>,..., Zn}. ForlargeN, the global maximization is com-  gjstributions, and (2) how to find the best distribution from this
putationally prohibitive. family that is the closest tp(«, 6, ¢, Z|X,Y). We address these

The second difficulty lies in the calculation of the posterior dis- o questions in Sections 4.2 and 4.3, respectively.
tribution of Z,
4.2 Parametric Family of Variational Distri-
p(ZX.Y) = [[[ pla0,0. 21X Yydadoas, @) butions

We have put a general restriction on the family of variational
distributions in Equation (10). We further require the distributions
9) in this family to take the following parametric form:

(e, 0,0, ZIE,7, 1,7, B) = q()€)a(017)a (ol iz, ) HQ(ZiIBi),

where
ple,0,¢,X,Y,Z)
Sz [ p(a,0,6,X,Y,Z)daddde’

p(a7 97 ¢7 Z‘X7 Y) =

Due to the integrals over the parameter®, ¢, there is no closed-
form expression fop(Z|X,Y).

In the next section, we develop an efficient approximate algo-
rithm to address both problems. q(al€) = Dirichlet(€),

where



fiki, volves the termp(a, 8, ¢, Z|X, Y), which is exactly what we strive
H q(Prtlitrt, Pri), m(a, 0, ¢, Z| ) y

G ) to approximate in the first place.

k<l Instead of directly minimizing the KL divergence, we solve an

q(kilfiny, 7)) = Beta(fiw, Pri), equivalentmaximizationproblem. The objective function of this
K T maximization problem is defined as
a0l = T Ta6r0), - 0,6,X,Y,Z

i £ =3 [[[ d(0.6.6.2) 10g 028 T2 B daagao,
a(6fI3,) = Dirichlet(3}), z rene )
a(Zi|Bi) = Multinomial(5;). The equivalence between these two optimization problems can be

Here¢, 7, i, 7, B are thevariational parametersThe distributions §§§!¥a§]ﬁen by noticing that their objective functions sum up to a

in this family can be exhausted by enumerating the instantiations of _
these parameters. Each instantiation specifies a unique distribution. KL(q|lp) + L(q) = logp(X,Y).
This definition of the family of variational distributions is not
arbitrary. In fact, the distributiong(a|£), ¢(¢|i, ), ¢(]7), and 4.3.2 Stationary Points adf(q)
q(Z:| ;) take exactly the same parametric formg@s|¢), p(¢|u, v), In order to maximize the objective functidn(q), we first char-

p(0]v), andp(Z;|a) in our Bayesian model (see Section 3.3). There acterize its stationary points. Specifically, we take the derivatives
are only two differences. The first is that the variational parameters gf E(q) with respect to the variational parametérs, ji, 7, 3, and

&%, i1, v, 8 are free to vary, while the hyper-parameters;, u, v set these derivatives to zeros

are fixed throughout the clustering process. -~~~
The second difference is betweg(Z; |3:) andp(Z;|a). We Vig) = oL 0L 9L 9L 0L} _

introduce a variational parametgf to replace the parameter. 9E’ 0y’ O’ IV’ 9B

This is because we require the variational distribution to factorize o o _ o
according to Equation (10). Therefot&, should no longer depend ~ Plugging in the definitions of.(¢q) andq(«, 0, ¢, Z) and simpli-
on o with respect to the distribution. fying the formulas, we arrive at the following system of equations

For simplicity, we will omit the conditional parts of thg-) dis- thaté, 4, i, 7, 3 must satisfy at the stationary points bfg). For
tributions. For example, we will abbreviajén, 6, ¢, Z|¢, 5, i, 7, 5)  clarity, we put all the derivations in Appendix A.
andq(Z|B) to q(«, 0, ¢, Z) and ¢(Z), respectively. One should

N
however always bear in mind that thé) distributions are condi- & = &+ Z Bik (15)
tioned on the variational parametetsy, ji, 7, 5. ;
Before closing this subsection, we Would like to point out a con- N
sequence of the definitiaf(Z). Because/(Z;) is multinomial dis- o= A+ Bud (V) (Y, ar) (16)
tribution, the MAP clusteringZ* in Equation (11) can be further i=1
simplified as follows: N
frke = p+ Z BirBirXij a7)
7" = [arg max q(Z1),arg max q(Z2), ..., arg max q(ZN)] ij=1
Z1 Zg ZN 1<j
~ ~ ~ N
= [arg max Bik,arg max Bok, - .. ,arg max /BNk} . (12) P = vt Z szé]k(l —X,;) (18)
S A i,j=1
4.3 Optimizing Variational Parameters i<j
Recall that our goal is to find the variational distribution in the L~
family that is the closest to the true posteridry, 6, ¢, Z|X~,Y). Pkl = pt Z BirBiXij (19)
This is now equivalent to optimize the variational paramegefs i, Zf#l
U, 5 with respect to some distance measure. In the following, we N
define a distance measure and present an iterative optimization pro- = v+ Z BirBi(1 — Xij) (20)
cedure. i=1
i#j

4.3.1 The Objective Function X
To measure the distance between a variational distribution Bik x exp{ {1& (ék) — <Z Ekﬂ
q(a, 0, ¢,Z) and the true posterigi(«, 6, ¢, Z|X,Y), we adopt

the Kullback-Leibler (KL) divergence [2] that is commonly used in T M Mt
information theory and machine learning. It is defined as + Z Z 8V ab) | ¢ (Fhm) — ¥ o
t=1 m=1 m=1
4(0,0,6,2) N K
KL(q||p /// a,0,¢,Z)log —————"——"———dadfde. ~ B B
(dllp) Z p(a,0,6,Z|X,Y) +> > B [ i () + (1= X )Y (Fr1)
(13) j_;l_ =1
JF1

Note that the KL divergence is a function of the variational pa- 5 .
rameters, 7, i, 7, 8. Our problem is thus to find the optimal vari- — (it + ”kl)} }7 (21
ational parameters that minimize the KL divergence. However, this
optimization problem is infeasible because the KL divergence in- forall: =1,2,... ,N;k=1,2,... K;l=k+1,k+2,..., K,



Algorithm 2 Iterative Optimization of.(g)

Input: an initial value3®, a threshold, a limit on the number of
iterationsnmax _

Output: &, 7, f1, v, B

1.n+<0
2. repeat
(a) Given3™, update ("1 5+ 5
according to Equations (15)—(20)
(b) Given§~<"+1>,?y(”“>, ﬂ("H), ,;(n+1>’ B(n)' update
B+ according to Equation (21)
Cn+n+1

Until z gq(n)) — z (q(n—l)) < €0IN > Nmax
3.return £, () ) 55

(n+1) D(n+1)

t=1,2,...,T;andm =1,2,..., M". Here,
1 Vi — gt

) =40 el

0’ )/;:#GTVL

is the Kronecker delta function(-) is the Digamma function
which is the logarithmic derivative of the Gamma functiof),

_ dlogT'(z) _ ()
dz I(z) "

The Digamma function can be efficiently approximated by series
expansion and standard implementations exist in popular mathe-
matical libraries such as Matlab.

4.3.3 Iterative Optimization Procedure

Based on the stationary point equations, we present an iterative
procedure for maximizin@(q) in Algorithm 2. It takes as input
an initial vaIueB(O), a thresholds, and a limit on the number of
iterationsnmax. It outputs the optimized variational parameters
¢, 4, i, U, B. Recall that giverB, we can easily find the cluster-
ing Z* of the vertices according to Equation (12). ~

Intuitively, Algorithm 2 starts with an initial guess ¢f, and
repeatedly enforces the stationary point conditions. Therefore, it
should persistently improve the objective functiB(q). This intu-
ition is formalized by the following proposition.

¥(z)

PropPosSITION 1. Foralln =0,1,..

7 (q(n>) <T (q<n+1>) ’

For clarity, we defer the proof to Appendix B.

Because the value df(q) is finite, an immediate corollary of
Proposition 1 is that the iterative maximization procedure is guar-
anteed to converge with a finite number of iterations. In particular,
it will converge to a local maximum of.(q). BecauseL(q) is
non-concave, it can have multiple local maxima. The quality of the

and execute Step 2(b) multiple times in each iteration. The key ob-
servation is that the stationary point equationg ., ji, 7 depend
only on 8. Therefore, updatingg more frequently should bring
about more improvement ﬁ(q) and thus fasten the convergence.

5. EXPERIMENTAL STUDY

We evaluate the performance of our algorithm, comparing with
the state-of-the-art distance-based attributed graph clustering algo-
rithm, Inc-Cluster{20]. Both algorithms were implemented in Mat-
lab and tested on machines with Linux OS, Intel Xeon 2.67GHz
CPUs, and 12GB and 256GB of RAM.

5.1 Datasets

We use the three real attributed graphs that are used in the evalu-
ation ofInc-Cluster[20].

e Political Blogs. The dataset hak 490 vertices and 9, 090
edges. Each vertex represents a webblog on US politics and
each directed edge represents a hyperlink from one webblog
to another. Each vertex is associated with an attribute, indi-
cating the political leaning of the webblotiperal or con-
servative Since we only consider undirected graphs in this
work, we ignore the edge directions in this dataset, which
results inl16, 715 undirected edges.

DBLP10K. The dataset is a co-author network extracted from
the DBLP Bibliography data. Each vertex represents a scholar
and each edge represents a co-author relationship between
two scholars. The dataset contaih®, 000 scholars who
have published in major conferences in four research fields:
database, data mining, information retrieval, and artificial in-
telligence. Each scholar is associated with two attributes,
prolific andprimary topic The attribute “prolific” has three
values: “highly prolific” for the scholars witkr 20 publica-
tions, “prolific” for the scholars with> 10 and < 20 publi-
cations, and “low prolific” for the scholars witk 10 publi-
cations. The domain of the attribute “primary topic” consists
of 100 research topics extracted by a topic model [5] from a
collection of paper titles from the scholars. Each scholar is
then assigned a primary topic out of th@0 topics.

DBLP84K. This dataset is a larger DBLP co-author network.

It contains84, 170 scholars inl5 research fields. In addition

to the four research fields used DBLP10K eleven fields

are further included: machine learning, computer vision, net-
working, multimedia, computer systems, simulation, theory,
architecture, natural language processing, human-computer
interaction, and programming language. This dataset also
has two vertex attributes, which are defined in a similar way
as inDBLP10K

Table 1 summarizes the characteristics of the three datasets, in-
cluding the number of vertice$’|, the number of edged|, and
the domain size of each of the attributeim (a’)|. Among the
three datasets, tHeolitical Blogsdataset is the smallest, while the
other two datasets are much larger. The larger DBLP dataset, i.e.,

local maximum that the iterative process converges to depends onDBLP84K, allows us to see some scalability issue of the algorithms

the choice of the initial valug®). We will discuss the initialization
issue in the experiments.

At each iteration of Algorithm 2, we alternate between two steps.
At Step 2(a), we updatg 7, i, 7 based orB. At Step 2(b), we up-
date 8 based or¢, 4, i, 7. To speed up the convergence of the
algorithm, in practice, we choose to perform asynchronous update

(e.g.,Inc-Clusteruses 60GB of memory for this dataset).

5.2 Experimental Settings

We detail the experimental settings in this subsection, including
the algorithm for comparison, the measures we use to assess the
quality of the clustering, as well as the initializations of parameters.



wherepl, is the fraction of vertices in clustéf, that take thes-th
Table 1: Datasets Phs e

value indont(a®).
Vi |E] [dom(a)] | [dom(a?)] ; : .
Political Blogs | 1,490 | 16,715 > NIL We then define the entropy of an attributewith respect to the
DBLPI10K | 10,000 27,867 3 100 clustering{Vi,--- ,Vk} as
DBLP84K | 84,170 201,334 3 100 X
Vi
entropya’) = ) %entrop)(aﬂ Vi),
k=1

5.2.1 Algorithm for Comparison o _
We compare our model-based clustering algorithm, denoted aswh'Ch is the average entropy &f clusters weighted by the cluster

BAGC (Bayesian Attributed Graph Clustering), to the state-of-the- lele V. Tthe va.Iugi oftentropr)]y fhalls(;/wthln th? range tm Oo).‘ th
art distance-based clustering algorithm, denotdd@a<€luster [20]. ower entropy Indicates a higher degree of consistency In the
In order to design a distance measure that considers both structur ttrlbute_ value_s associated W'T[h the \_/er_tlcgs in the same cluster and
and attributes, Inc-Cluster constructs an augmented graph, which hus a higher intra-cluster attribute similarity.

introduces an artificial node for each attribute value and links a ver-

; , o . 5.2.3
tex in the inputG to the artificial node if the vertex takes the corre-
sponding attribute value. A unified distance measure is defined as
the random walk score computed from the augmented graph. The
k-medoids algorithm is then applied to cluster vertices with the de-
fined distance measure.

Initializations of Parameters

For the fairness of comparison, BAGC uses the same initial clus-
tering as in Inc-Cluster to initializ8. Since both algorithms adopt
the same initialization process, we report the running time and
memory consumption of the optimization process only, by exclud-
ing the initialization part to reflect the pure performance of the clus-
5.2.2 Clustering Quality Assessment tering algorithms. We note that other initialization methods such as

Since our objective is to cluster attributed graphs, we assess therandom initialization and spectral methods can also be applied in

quality of the clustering in two aspecttructureandattribute our algorithm. _ _

We usemodularityas a quality measure for structure. Modularity All hyperparameters in BAGC are set tofor all expggloments.
[11] is popularly used in graph clustering to measure the strength The threshold for the objective functiori(g) is settol0~"". The
of division of a graph into vertex clusters (i.e., communities). limit on the number of iterationsu,... is set to3 for the small

To define modularity, we first introduce the following notions. dataset Political Blogs, andl for larger datasets DBLP10K and
Given a clusteringV, - - , Vi }, let By, (k # 1) be the setof ~ DBLP84K.
inter-cluster edges betweén, andV;, and Ey;, the set of intra- 53 Performance Results

cluster edges ivi. Then the fraction of intra-cluster edgesli )
We report and discuss the performance results of both BAGC and

is defined asfvr = ZEl and the fraction of inter-cluster edges
S 5] g Inc-Cluster, for each of the three datasets as follows.

betweenV,, andV; (k # 1) is defined asfu = fix = ‘jgl‘
(There are| E| edges in the denominator because an edge is shared 5.3.1  Clustering Performance on Political Blogs

by fx and fix). By counting both intra-cluster and inter-cluster  For the Political Blogs dataset, we set the number of clusters,
edges, the fraction of edges incident to clustgris defined as K = 4,6,8, and10, respectively.

o = ZzK:1 fkl-. ] ] We first examine the quality of clustering with respect to struc-
The modularity is then defined as tural information. Figure 2(a) reports the modularity of the cluster-
K ing by BAGC and Inc-Cluster. The result shows that according to

modularity(Vi,- -, Vi) = Z (fur —a). the modularity values (the higher the better), BAGC achieves sig-

nificantly higher quality clustering than Inc-Cluster, since a value
- ) o of nearly 0.3 is a big difference in modularity [10].

Intuitively, if edges were distributed A random, the expected  The modularity values of the clusterings by Inc-Cluster are in
fraction of intra-cluster edges ili; is a. By subtracting this — fact all negative, meaning that the clustering computed by Inc-
expected fraction (i.e4;,) from the true fraction of intra-cluster  cjyster has a lower quality than a clustering obtained by randomly
edges invj, (i.e., fxr), modularity reflects the concentration of ver-  gistributing edges to different clusters. Note that when the cluster-
tices within clusters compared with random distribution of edges ing is formed by random chance, the value of modularity is 0. The
between all vertices regardless of clusters. The value of modular- hoor performance of Inc-Cluster is mainly because it is a distance-
ity falls within the range of—1, 1]. A positive value indicates that  ha5ed method with the objective of optimizing the intra-cluster dis-
the number of intra-cluster edges exceeds the number expected oRgnce. Their distance measure, i.e., the random walk score, may not
a random basis. Therefore, a clustering result with high modular- g 5 good reflection of community structures.
ity has dense yertex connect.lons within the same cluster and sparse Next we assess the quality of clustering with respect to attribute
vertex connections across different clusters. information. Figure 2(b) reports the attribute entropy of the clus-
~ For attributes, we usentropyas a quality measure. ENtropy  tering by BAGC and Inc-Cluster on the Political Blogs dataset. On
is a well acpepted measure, which quantn‘le_s the uncertainty of @average, BAGC improves the attribute entropy of Inc-Cluster by
random variable. In the problem of clustering _attrlbu_ted graphs, 40.6%. The much lower entropy value of BAGC shows that BAGC
entropy can be used to measure the degree of inconsistency of thetains a much higher degree of consistency in intra-cluster attribute

k=1

attribute values in each cluster. o values, which indicates a much higher attribute similarity than Inc-
Given a clusterind V1, - - - , Vi }, for each attribute:’, the en- Cluster.
. b
tropy ofa” in clusterV}, is defined as Our method is able to obtain low attribute entropy because in

|dom(at)| our generative model, the attribute value of the vertices in the same
entropy(a’, Vi) = — Z . logpt., cluster is d'rav.vr.w from the same multinomial dIStrIbutI-On. '_I'hg pro-
- cess of optimizing.(q) favors more skewed multinomial distribu-
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Figure 2: Clustering Performance on Political Blogs

tion and thus achieves a low attribute entropy in clustering results.
On the other hand, Inc-Cluster converts attribute values to artifi-

of time for the range of< from 50 to 100, then there is a sudden
increase in running time a& increases to 200, and then the run-

cial nodes and their links to original vertices to form an augmented ning time remains stable again for the range from 200 to 300. We
graph. This increases the vertex connectivity with additional paths examined the Inc-Cluster algorithm and found that the number of
through artificial nodes. However, it may not lead to consistent at- iterations in its optimization process increases in a step-wise man-

tribute values in the clusters. For example, two verticendv are
both connected to an artificial node of an attribute valuemean-
ing that bothu andv take the attribute value,. Then suppose is
structurally connected to another vertexandw takes a different
attribute valueu,. Inc-Cluster may put:, v, w in the same cluster

ner asK increases, and the running time is mainly determined by
the number of iterations. We also found that Inc-Cluster uses 3 it-
erations forK € [50..100] and 5 iterations fo#X € [200..300],

which explains the trend shown in Figure 3(d). However, as shown
in Figure 3(d), the magnitude of increase in the running time of

since their random walk scores can be high due to the paths throughinc-Cluster is significantly more rapid than the linear increase in

a1, even thoughy, v, w do not exhibit high attribute consistency.
For different values of tested, the clustering quality of Inc-
Cluster is stable. But for BAGC, the modularity becomes slightly

that of BAGC.
5.3.3 Clustering Performance on DBLP84K

smaller (worse) and the entropy also becomes smaller (better) when For the largest dataset, DBLP84K, we use a wider range of val-

K increases. This indicates that for different valuesgfBAGC
is able to leverage the clustering quality in terms of structure and
attribute in order to achieve a stable overall performance.

We now report the running time, i.e., the elapsed time in seconds,
of clustering Political Blogs by both algorithms, as shown in Figure
2(c). The result shows that BAGC is approximately 2 to 3 times
faster than Inc-Cluster on average. Therefore, both efficiencg-wis
and quality-wise, the results show that BAGC is a clear winner.

5.3.2 Clustering Performance on DBLP10K

For the DBLP10K dataset, we set the number of clust&rss
50, 100, 200, and300, respectively.

Figure 3(a) shows that BAGC obtains high quality clustering as
the modularity for all values oK is constantly over 0.4. Accord-
ing to Newman [10], a modularity value of 0.3 already indicates a
significant community structure, i.e., a high quality clustering. On
the contrary, Inc-Cluster records a low modularity for all values
of K. The difference in the modularity value between BAGC and

Inc-Cluster also becomes greater in this larger dataset than in the

smaller Political Blogs dataset.

Figures 3(b) and 3(c) report the entropy values of each of the two
attribute$ of DBLP10K. The results show that BAGC attains con-
siderably lower entropy values for both attributes than Inc-Cluster,
demonstrating the advantage of BAGC over Inc-Cluster in attaining
a higher quality clustering with respective to attribute information,
in addition to structural information.

Figure 3(d) reports the running time of BAGC and Inc-Cluster.
The result shows that BAGC is two orders of magnitude faster than
Inc-Cluster. AsK increases, the running time of BAGC also in-
creases linearly witti( (the same trend is also observed in Figures
2(c) and 4(d)). However, for the running time of Inc-Cluster, we
observe a different trend. Inc-Cluster uses almost the same amoun

INote that the entropy value of Attributieis significantly lower than that
of Attribute 2 because the domain size of Attributés significantly smaller
than that of Attribute2, as shown in Table 1.

ues of K, with K = 150, 300, 600 and1200, respectively.

As reported in Figure 4(a), the modularity value of BAGC for
this largest dataset is the highest among three datasets, and is con-
sistently over 0.5, implying a very high quality clustering. The
difference in the modularity value between BAGC and Inc-Cluster
also further widens as the modularity value of Inc-Cluster remains
low. The result thus shows that the quality of clustering obtained
by BAGC improves over larger datasets.

Figures 4(b) and 4(c) further show that BAGC consistently at-
tains lower entropy values for both of the attributes than Inc-Cluster.
Thus, the result again demonstrates that BAGC obtains higher qual-
ity clustering with more consistent intra-cluster attribute values than
Inc-Cluster for large datasets as well.

Finally, Figure 4(d) again shows a huge gap between the running
time of BAGC and that of Inc-Cluster. As explained for Figure
3(d) in Section 5.3.2, the running time of BAGC increases linearly
as K increases. On the contrary, the running time of Inc-Cluster
increases in a step-wise manner, with a significantly greater mag-
nitude in the increase. Thus, the result shows that BAGC is more
scalable in clustering large datasets than Inc-Cluster.

5.3.4 Conclusions on Performance Comparison

In conclusion, the results in Sections 5.3.1 to 5.3.3 show that
BAGC consistently attains high quality clustering in terms of both
structure quality and attribute quality. Compared with the state-of-
the-art distance-based attributed graph clustering algorithm, Inc-
Cluster [20] (an improved version of SA-Cluster [19]), the clus-
tering obtained by BAGC has significantly higher modularity and
lower entropy for all datasets and all values gt In addition,
BAGC is also consistently faster than Inc-Cluster, where the speed-
up in time is up to two orders of magnitude for the two larger
fatasets. The results further show that BAGC is much more scal-
able for clustering larger datasets with larger value&of

We did not show the details of memory consumption of the algo-
rithms in Sections 5.3.1 to 5.3.3, but report here that Inc-Cluster re-
quires significantly more memory than BAGC. Inc-Cluster uses ap-
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Figure 4: Clustering Performance on DBLP84K

proximately 460MB, 4GB, and 60GB of memory, while our method
uses 320MB, 680MB, and 4GB of memory for Political Blogs,
DBLP10K, and DBLP84K, respectively. The memory consump-
tion, especially a huge difference of 56GB for DBLP84K, also re-
veals that our method is more scalable than Inc-Cluster when the

mented graph. In the distance measure, different weights are as-
signed to structure and attributes, which can be tuned automatically
by their algorithm. The K-mediods algorithm is then applied to find
the clustering. In order to efficiently compute the distance mea-
sure, they further proposed an approximate distance computation

input dataset becomes large. Note that due to the high memory con-in SA-Cluster-Opt [1] and an incremental distance computation in

sumption of Inc-Cluster for DBLP84K, we ran all the experiments
of DBLP84K for both Inc-Cluster and BAGC on a computer with
256GB of RAM.

To summarize, with the remarkably higher clustering efficiency
(in terms of both time and memory consumption), and the signif-
icantly better clustering quality (in terms of both structure and at-
tribute), our model-based approach is evidentially a more promis-
ing solution to attributed graph clustering than existing distance-
based approaches.

6. RELATED WORK

The algorithms for attributed graph clustering can be mainly cat-
egorized into two typedlistance-basedndmodel-based

Most existing works on attributed graph clustering fall into the
category of distance-based approaches. The main idea is to desig
a distance/similarity measure for vertex pairs that combines both
structural and attribute information of the vertices. Based on this

measure, standard clustering algorithms like k-medoids and spec-

tral clustering are then applied to cluster the vertices.
Neville et al. [9] proposed a weighted adjacency matrix as the

similarity measure. The weight of each edge is defined as the num-

ber of attribute values shared by the two end vertices. They then
applied three existing graph clustering algorithms on the weighted

adjacency matrix to perform clustering. Steinhaeuser and Chawla

[16] proposed a similar measure as in [9] to handle categorical at-
tributes, and also a new measure for continuous attributes.

The state-of-the-art distance-based approaches are the SA-CIustgr-

proposed by Zhou et al. [19] and its extended versions, SA-Cluster-

Inc-Cluster [20]. In this paper, we compared our algorithm with
Inc-Cluster and as evidenced by the experimental results, our ap-
proach significantly outperforms Inc-Cluster in terms of both clus-
tering quality and efficiency.

Although the distance-based approach has been extensively stud-
ied, little has been done on the model-based approach to attributed
graph clustering. We are only aware of two existing works [18,
4] in this category. [18] adopts a similar generative process as
ours, and also proposes a probabilistic model to cluster attributed
graphs. However, there are two major differences between [18]
and our work. First, their work targets on continuous attributes,
and cannot deal with categorical attributes as in our approach. Sec-
ond, their work treats model parameters as fixed values, while we
take a Bayesian treatment on the model parameters. Our Bayesian
model essentially considers all possible parameter values and leads

"% more robust clustering results. [4] applies the Latent Dirich-

let Allocation (LDA) to graph clustering. The proposed method
is based on a different Bayesian framework from ours and it deals
with edge attributes rather than vertex attributes.

In literature, the term “attributed graph clustering” sometimes
refers to another clustering problem, in which a set of attributed
graphs is given and the task is to group the graphs into clusters [14,
13, 15, 8, 6]. Their problem is different from ours since the objects
to be clustered there are smagthphs while those to be clustered
in our problem are theerticesin a single attributed graph.

CONCLUSIONS
We studied the problem of clustering attributed graphs. Unlike

Opt [1] and Inc-Cluster [20]. In their work, an augmented graph the existing works that define artificial distance measures to fuse
is constructed by linking all vertices that share the same attribute the structural and attribute information, we proposed a natural and
value to a common artificial node. They then defined the distance principled model-based approach to attributed graph clustering. We
measure as the random walk score [17] computed from the aug-devised a Bayesian model to seamlessly leverage the structural and



attribute information in clustering an attributed graph, and trans-
formed the clustering problem into a standard probabilistic infer-

ence problem. We then developed an efficient variational algorithm [14]

to solve the probabilistic inference problem.
Our experiments on real-world attributed graphs verified both the

effectiveness and efficiency of our method. First, the experimen- [15]

tal results show that our algorithm attains high clustering quality
both structure-wise and attribute-wise, both of which being sig-
nificantly superior to the currently best known algorithm for this

task, Inc-Cluster [20]. Second, our algorithm is up to two orders 16]

of magnitude faster and consumes substantially less memory than
Inc-Cluster. The results particularly show that our algorithm is far

function-described graphs. International Conference on
Pattern Recognitionpages 6022—-6025, 2000.

D. S. Seong, H. S. Kim, and K. H. Park. Incremental
clustering of attributed graphEEE Transactions on
Systems, Man and Cyberneti28(5):1399 -1411, 1993.

F. Serratosa, R. Alquézar, and A. Sanfeliu. Synthesis of
function-described graphs and clustering of attributed
graphsinternational Journal of Pattern Recognition and
Artificial Intelligence 16(6):621-656, 2002.

K. Steinhaeuser and N. V. Chawla. Community detection in a
large real-world social network. 18ocial Computing,
Behavioral Modeling, and Predictiopages 168—175. 2008.

more scalable in clustering large attributed graphs than Inc-Cluster. [17] H. Tong, C. Faloutsos, and J.-Y. Pan. Fast random walk with

Model-based clustering methods are commonly considered slow
and hard to scale up. Nonetheless, this work shows that our model-
based method is far more efficient than the state-of-the-art distance-
based method. Given the promising results, we hope that our work
can attract more attention to model-based methods and stimulate
the development in this line for large-scale data mining.
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Our starting point is the equation

We first simplify L(q) as follows:
p(a, 0,6, X, Y, Z|§, v, 1, v)
XZ:///q(a,O,qS, Z) log 2@ 0. 5.2) dadfde
= Eg¢llogp(a)] + E5[logp(0)] + Ep,s[log p(¢)] + Ef 5(log p(Z|a)]
+E; 5 5llogp(X|Z, )] + E5 5llogp(Y|Z,0)] — Egllog g(a)]

L) =

N
—E5[log ¢(6)] — Ep,sloga(9)] — > Eg, [loga(Zy)]-
=1

i

The expectations are taken with respect to the variational distri-
bution ¢(+|-) and the subscripts denote the variational parameters
involved in the expressions. For example,

Bellogp(a)] = [ aald)log p(a)da.

‘We now derive the partial derivatives one by one, starting with
9L For simplicity, we collect the terms involvingin L(q), and

og
denote the sum as
L = Egllogp(a)]+ B sllog p(Z|a)] — Egllog q()]
= log {Hg_l el (gk) }
r (ZkK=1 gk)

+ é}l (fk —ét XN)ﬁik) {w (&) - v (kz: 5,” @)

=1
Thus, forallk =1,2,..., K,

8l~’78i~5 = (gkfékJer:Bik)w/(fk)

E T g i=1
-2

~ N ~ K ~
(51 -&+ Zﬁu) Y’ <Z€L> .
=1 =

i=1



Setting% = 0 for all k, we arrive at Equation (15)

i@

The stationary point equations for the other variational parame-
ters can be derived similarly. Fé§r we have

Ly = Esllogp(®)] + B 5llog p(Y|Z,0)] — E5[log q(6)]
T K Mmt ~t
_ Zzlog{ mlF(%m)}
t=1k=1 (Zm l’ykm
T K M? N
+>3 [ —&im+2ﬂik6(Yf,aiﬂ)}
t=1k=1m=1 =1
Mt
|:¢ (:Yltwn) - w ( :ylf;rn>:| .
m=1
Settingag’f = ;’i = 0 forall ¢, k, m, we obtain Equation (16)
N
hom = Z w8 (Yioal,)

For i andz, we have

subject o}, Bix = 1. Introducing Lagrange multipliek and

. =~ K 5 . .
then settlng%m [Léi + A Bik — 1)} = 0 for all 7, & will
lead to Equation (21)

oo+ ()

+Zi5;zxia‘ [w(ﬁkl) — ¥ (i + 17’“)]

i l=1

Bik

X

+Zi5ﬂ(1 - Xij) [d)(f’kz) — ¢ (jirs + l_/kl)i|

i l=1
Mt
¥ (5m) =% [ 22 Fhm
m=1

T Mt

+3° 3 6l al,

t=1m=1

I}

B. PROOF SKETCH FOR PROPOSITION 1

As described in Algorithm 23("*%) is obtained fromy™ by a
sequence of variational parameter updating:

1. Updatg+) 5t 5t 541 gecording to Equations
(15)—-(20);

2. Update3™*1) according to Equation (21).
In order to provel (q(”)) <L (q("“)), we only need to show

Lps = Easllogp(d)]+ B, ; 5llogp(X|Z, )] — Ep,s[log q(6)] Z
that none of the updating will decrease the valué obDue to space
Ar) T (P) 9 . S i .
= > log {m} limit, we only prove this for updating™*? in the following. The
bt other cases can be shown similarly.
X . . o .
+3 [ Gk + nggjkxij} [w(ﬂm) — (i + Dkk):| As shown in Appendix A, the objective functiah can be de-
k=1 i<y composes into two parts,
K ~ ~
+Z |:V—ka+zﬁfkﬁgk (1- 17)} [w(f/kz) _¢(ﬂkl+l~’kl):| L:Lé—’_c'
k=1 i<j ~ -~
o Here,L; is a function of as defined in Equation (22), whiteis a
31X ) — " D i - Lo~ ~
P [M flwt ; Pirbsn ’} [w(”“) Wik + VM)} constant with respect § Because updatingonly affectsZ;, we
Liny < Linin -
+ [V — Ukl + Zﬁlkﬁjz (1- z]):| [ (Pr1) — Y(frr + f’kl):| ‘Only need tO. ShOVI’g( ) = L.g( +1 . .
k<l Py Rearranging the expression bf in Equation (22), we get
. 9L oL; 5 . . - -
Setting 52+ = S+ = 0 for all k < I, we obtain Equations Le = —KL (q(a|§)||p/(a)) flogC
(17)-(20)
R where
ke = B+ Z BixBirXij,
1<j /
o p'(a) = = exp {logp(a) + Bz [log p(Z|a)]}
7 —— V+Zﬁikﬁjk(lfxij)y c ’
i<j
Are = p+t ; BirBiiXij, C = /exp {10gp(a) + Eé(n) [10gp(Z|Oz)}} da.
i#£j
D = v+ BB (1 —Xij). Note thatK L(q||p’) is nonnegative and attains its minimum value
i#j

For 3, we have

=
s.l

™
~
>

K
ék>:| - Z Bir log Bix
k=1

>
Il
-

M=
M=

+

BixBji1Xi;

x

Il

=

Il

m
—

Y (fin) — o (W + f/kl)]

‘Tj;

+
M=
™

M=

ik B (1 — Xij) [w(ﬂkl) — ¥ (e + Dkl):|

M?t Mt
Z (Y:1 a:n) |:71/) (;?Iiwn) -9 ( Z ’?Itc'm) :| ’
n=1 m=1
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A
o~
a
Il
A
Il
i

Mq
nbgw

o
It
-

zero if and only ifg = p. Therefore,L; will be maximized at*

that satisfies
¢ (al€") = p'(@).
Simplifying the above equation, we arrive at
~ N ~
=1

k=1, K

Note this is exactly the updating equation£6F ). Consequently,
we have



