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ABSTRACT
Graphs are prevalently used to model the relationships be-
tween objects in various domains. With the increasing usage
of graph databases, it has become more and more demand-
ing to efficiently process graph queries. Querying graph
databases is costly since it involves subgraph isomorphism
testing, which is an NP-complete problem. In recent years,
some effective graph indexes have been proposed to first ob-
tain a candidate answer set by filtering part of the false
results and then perform verification on each candidate by
checking subgraph isomorphism. Query performance is im-
proved since the number of subgraph isomorphism tests is
reduced. However, candidate verification is still inevitable,
which can be expensive when the size of the candidate an-
swer set is large.

In this paper, we propose a novel indexing technique that
constructs a nested inverted-index, called FG-index, based
on the set of Frequent subGraphs (FGs). Given a graph
query that is an FG in the database, FG-index returns the
exact set of query answers without performing candidate
verification. When the query is an infrequent graph, FG-
index produces a candidate answer set which is close to the
exact answer set. Since an infrequent graph means the graph
occurs in only a small number of graphs in the database,
the number of subgraph isomorphism tests is small. To
ensure that the index fits into the main memory, we pro-
pose a new notion of δ-Tolerance Closed Frequent Graphs
(δ-TCFGs), which allows us to flexibly tune the size of the
index in a parameterized way. Our extensive experiments
verify that query processing using FG-index is orders of mag-
nitude more efficient than using the state-of-the-art graph
index.

Categories and Subject Descriptors: H.2.4 [Database
Management]: Systems - Query processing

General Terms: Algorithms, Experimentation, Performance

Keywords: Graph Databases, Graph Indexing, Graph Query-
ing, Frequent Subgraphs
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1. INTRODUCTION
Graphs play an important role in representing and under-

standing objects and their relationships in various domains.
In the scientific domain, graphs are used to model the molec-
ular structures of chemical compounds, the food chains be-
tween various organisms within a specific ecotope, the social
networks between human beings, and so on. Particularly
in the field of computer science, graphs are popularly used,
such as the E-R diagrams in database design, the automaton
in the theory of computing, the graphical models in artifi-
cial intelligence, the UML diagrams in software engineering,
and so on. In addition, rapidly increasing Web sites and
XML documents can also be modelled as graphs. There-
fore, it is evident that graph databases will become more
and more prevalently used in the near future. As a result,
efficient query processing on graph databases has become
increasingly demanding.

Let D = {g1, g2, . . . , gN
} be a graph database that con-

tains N graphs. A typical graph query can be described as
follows: given a graph q, retrieve all gi ∈ D such that gi

is a supergraph of q. Due to the diversity of graphs, graph
queries are in general complex, since any part (subgraph) of
a query is a predicate that needs to be satisfied in the query
evaluation. For example, many XML path queries with com-
plex predicates can be expressed as graphs. Processing the
graph query by a sequential scan on D to check whether q
is a subgraph of each gi is infeasible, since subgraph isomor-
phism testing is known as an NP-complete problem [7].

In recent years, some effective indexes on graph databases
[17, 24] are proposed. Query processing using these indexes
is performed in two fundamental steps: filtering and can-
didate verification. First, the filtering step uses the index
to eliminate part of the false results and produces a can-
didate answer set. Then, the candidate verification step
verifies whether the query is indeed a subgraph of each can-
didate. Since the candidate answer set is in general much
smaller than the entire graph database, query processing
using the indexes is significantly more efficient than the se-
quential scan approach. However, due to the high complex-
ity of subgraph isomorphism testing (either by a conven-
tional approach [19, 24] or by checking path embeddings
[17]), candidate verification is still very expensive since the
size of the candidate answer set is at least that of the exact
answer set.

“Can we avoid the expensive candidate verification in query-
ing graph databases?” In this paper, we provide an encour-
aging answer to this question. We propose a novel index-
ing technique that constructs a nested inverted-index, called



FG-index, based on Frequent subGraphs (FGs) [13, 15, 22]
proposed by the data mining community. An FG is a graph
that is a subgraph of at least (σ · |D|) number of graphs in
D, where σ (0 ≤ σ ≤ 1) is a user-defined threshold.

Query processing using FG-index has the following bene-
fits. If a query is an FG in the database, FG-index returns
the exact set of query answers without performing any can-
didate verification. Otherwise, that is, q is an infrequent
subgraph, FG-index produces a candidate answer set which
is close to the exact answer set. Intuitively, an infrequent
subgraph means it is the subgraph of only a small number
of graphs in the database; thus, the number of subgraph
isomorphism tests is small.

Our work achieves a tremendous improvement over the
existing work [17, 24]. First, for the existing work, process-
ing a query with a large answer set implies performing can-
didate verification on an even larger candidate answer set.
However, having a large answer set actually implies that the
query has a high probability of being an FG, which can be
very efficiently processed using the FG-index without any
candidate verification. Second, in the case when the query
is not an FG, the candidate answer set obtained from the
FG-index is as small as the exact answer set and hence the
number of candidate verifications is minimal.

Apart from candidate verification, the size of the index
is also important for efficient query processing. Thus, a
challenge in our approach is that the set of FGs can be large
for a small σ and hence the index built on the FGs can be
too large to fit into the main memory. In this case, the
query performance will be degraded, since the processing
needs to access the disk frequently. Inspired by the work on
compressing the set of frequent patterns [21, 4], we propose
a new notion of δ-Tolerance Closed Frequent subGraphs (δ-
TCFGs) for compressing the set of FGs. The notion of
δ-TCFGs allows us to flexibly tune the size of FG-index in
a parameterized way. Each δ-TCFG can be regarded as a
representative supergraph of a cluster of FGs. In this way,
FG-index builds an outer inverted-index on the set of δ-
TCFGs, which is resident in the main memory. Then, an
inner inverted-index is built on the cluster of FGs of each
δ-TCFG, which is resident in the disk.

A comprehensive set of experiments verifies that FG-index
is an effective index for processing queries that are both
FGs and non-FGs. FG-index significantly outperforms the
state-of-the-art graph index, gIndex [24], on both index
construction and query processing. In particular, the query
processing using FG-index is orders of magnitude faster than
that using gIndex for a wide range of queries. The results
also verify that the concept of δ-TCFGs is effective in con-
trolling the size of the memory-resident portion of the index.
In addition, FG-index is also shown to have a good scala-
bility on the database size, the graph size and the graph
density.

Organization. This paper is organized as follows. Section 2
defines the preliminary concepts. Section 3 gives the back-
ground on mining FGs and defines the notion of δ-TCFGs.
Section 4 presents the framework of FG-index and Section 5
discusses in detail the construction of FG-index and query
processing. Section 6 reports the experimental results. Fi-
nally, Section 7 discusses the related work and Section 8
concludes the paper.

2. PRELIMINARIES
In this paper, we restrict our discussion on undirected,

labelled connected graphs, while our method can be easily
extended to process directed and unlabelled graphs. Here-
after, we simply call an undirected labelled connected graph
a graph.

A graph g is defined as a 4-tuple (V, E, L, l), where V is
the set of vertices, E is the set of edges, L is the set of
labels and l is a labelling function that maps each vertex
or edge to a label in L. We define the size of a graph g as
size(g) = |E(g)|.

Given a set of graphs G, a distinct edge in G is defined as
a 3-tuple, (lu, le, lv), where le is the label of an edge (u, v)
in a graph g ∈ G, and lu and lv are the labels of u and v
in g. Given a distinct edge e and a graph g in G, we define
the count of e in g, denoted as count(e, g), as the number of
occurrences of e in g.

We define subgraph isomorphism as follows.

Definition 1. (Subgraph Isomorphism) Given two
graphs, g = (V, E, L, l) and g′ = (V ′, E′, L′, l′), a subgraph
isomorphism from g to g′ is an injective function f : V →
V ′, such that ∀(u, v) ∈ E, (f(u), f(v)) ∈ E′, l(u) = l′(f(u)),
l(v) = l′(f(v)), and l(u, v) = l′(f(u), f(v)).

A graph g is called a subgraph of another graph g′ (or g′

is a supergraph of g), denoted as g ⊆ g′ (or g′ ⊇ g), if there
exists a subgraph isomorphism from g to g′. The graph g is
called a proper subgraph of g′, denoted as g ⊂ g′, if g ⊆ g′

and g + g′.
Let D = {g1, g2, . . . , gN

} be a graph database that contains
a set of N graphs. A query graph is a graph that has at least
one edge. Processing a query graph with a single vertex is
trivial and thus not discussed. Given a query graph q, the
graph query processing studied in this paper is to find the set
of all graphs in D that are supergraphs of q. We denote the
answer set of q as Dq = {g: g ∈ D, q ⊆ g}. In the subsequent
discussions, a query graph is simply called a query.

3. δ-TOLERANCE CLOSED FREQUENT
SUBGRAPHS

In this section, we first introduce several concepts related
to frequent subgraph mining and explain how the data min-
ing technique can be applied in graph indexing. Then, we
define δ-tolerance closed frequent subgraphs.

3.1 Frequent Subgraph Mining
Given a graph database D and a graph g, the frequency

of g in D, denoted as freq(g), is defined as |{g′ : g′ ∈ D, g′ ⊇
g}|. A graph g is called a Frequent subGraph (FG) [13, 15,
22] if freq(g) ≥ (σ · |D|), where σ (0 ≤ σ ≤ 1) is a user-
specified minimum frequency threshold.

Let F be the set of all FGs that are mined from D. A
graph g is called a Maximal Frequent subGraph (MFG) [12]
if g ∈ F and ∄g′ ∈ F such that g′ ⊃ g. A graph g is called a
Closed Frequent subGraph (CFG) [23] if g ∈ F and ∄g′ ∈ F
such that g′ ⊃ g and freq(g′) = freq(g).

Example 1. Figure 1 shows 13 FGs, f1, · · · , f13, mined
from a graph database, where a, b, c represent three distinct
edges. Figure 2 organizes the FGs according to their size and
represents each FG as a node, where the number following
“:” is the frequency of the FG. (These two figures are used



throughout the paper. Thus, the number on each edge in
Figure 2 will be introduced in other examples.)

Among the FGs, f8, f9 and f13 are MFGs since they have
no proper supergraphs. All the FGs, except f12, are CFGs.
The FG f12 is not a CFG since f13 ⊃ f12 and freq(f13) =
freq(f12). �
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Figure 1: Frequent Subgraphs
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Figure 2: Frequent Subgraphs and Their Frequency

3.2 An Analysis on FG-Based Graph
Indexing

Assume that Dg is available for every FG g ∈ F . Given
a query q, if q ∈ F , we can search F to obtain the query
answer set Dq without candidate verification. However, it is
non-trivial to index all FGs since the number of FGs can be
very large when σ is small.

Yan et al. [24] propose an index, called gIndex, on a
set of discriminative FGs, denoted as Fd. Fd is a sub-
set of F and is substantially smaller than F . A query
q is processed by first obtaining a candidate answer set
Cq = (

⋂

f∈Fd∧f⊆q
Df ). Dq is then obtained by verifying

whether each g ∈ Cq is a supergraph of q. However, this
means that at least |Dq | subgraph isomorphism tests are
needed in the verification process.

The cost of query processing using gIndex can be de-
scribed by the cost model defined in Equation (1), where

Tresponse is the response time of processing a query q, Tsearch

is the time taken to compute Cq using the index, TI/O is
the I/O time taken for fetching a candidate graph from the
disk, and TisSubG is the time taken for testing subgraph iso-
morphism between q and each candidate graph.

Tresponse = (Tsearch + |Cq | × TI/O + |Cq | × TisSubG) . (1)

Since subgraph isomorphism testing is an expensive oper-
ation, (|Cq| × TisSubG) occupies a large portion of Tresponse

of gIndex. In fact, a moderate sized Cq can result in a long
query response time, as evidenced by our experimental re-
sults.

In this paper, we investigate the possibility of designing an
index on F so that a query q ∈ F can be answered without
candidate verification. This is a tremendous reduction on
the query response time since if q ∈ F , then |Dq | is large
and hence |Cq| is also large. The challenge is, however, how
to index F when F is large.

To address this problem, we propose a new notion of δ-
Tolerance CFGs (δ-TCFGs). The set of δ-TCFGs, denoted
as T , is a concise representation of F . Based on T , F can
be classified into |T | disjoint partitions. Each g ∈ T is
associated with a partition, which contains a set of FGs that
are subgraphs of g. The size of T is substantially smaller
than that of F . Thus, we can build an index on T , which is
to be resident in the main memory. Then, we build a nested
index on the partition of FGs associated with each g ∈ T .
These nested indexes consist of the majority of FGs and are
resident in the disk.

Query processing using our index is done in a reverse di-
rection as gIndex; that is, given a query q, we search in the
index for q’s supergraph, whose partition contains q. Thus,
the search space narrows down quickly as each partition is
local.

In order to answer queries that are not in F , our index
also incorporates a set of infrequent distinct edges. Together
with the index built on T , we are able to obtain Cq as small
as Dq , for a query q /∈ F .

In the rest of this section, we define the notion of δ-
TCFGs, which is used to build our index in Section 5.

3.3 The Notion of δ-TCFGs
We define the notion of δ-TCFGs as follows.

Definition 2. (δ-Tolerance Closed Frequent sub-
Graph) A graph g is a δ-Tolerance Closed Frequent sub-
Graph ( δ-TCFG) if and only if g ∈ F and ∄g′ ∈ F such that
g′ ⊃ g and freq(g′) ≥ ((1− δ) · freq(g)), where δ (0 ≤ δ ≤ 1)
is a user-specified frequency tolerance factor.

We can define CFGs and MFGs by δ-TCFGs as follows.

Lemma 1. A graph g is a CFG if and only if g is a 0-
TCFG.

Proof. IF: Let g be a 0-TCFG. By Definition 2, g ∈ F
and ∄g′ ∈ F such that g′ ⊃ g and freq(g′) ≥ ((1 − 0) ·
freq(g)). Thus, we have freq(g′) ≥ freq(g). But g′ ⊃ g
implies freq(g′) ≤ freq(g). It follows that freq(g′) = freq(g).
We thus conclude that g is a CFG, since ∄g′ ∈ F such that
g′ ⊃ g and freq(g′) = freq(g).

ONLY IF: Let g be a CFG. It follows that g ∈ F and
∄g′ ∈ F such that g′ ⊃ g and freq(g′) = freq(g). By Defini-
tion 2, g is also a 0-TCFG.



Lemma 2. A graph g is an MFG if and only if g is a
1-TCFG.

Proof. IF: Let g be a 1-TCFG. By Definition 2, g ∈ F
and ∄g′ ∈ F such that g′ ⊃ g and freq(g′) ≥ ((1 − 1) ·
freq(g)) = 0, which simply means that g ∈ F and ∄g′ ∈ F
such that g′ ⊃ g. Thus, g is an MFG.

ONLY IF: If g is an MFG, it is trivial that g is also a
1-TCFG according to Definition 2.

Corollary 1. Let Tδ be the set of δ-TCFGs, C be the set
of CFGs, and M be the set of MFGs. Then, M ⊆ Tδ ⊆ C.

Proof. It follows directly from Lemmas 1 and 2.

Corollary 1 gives the upper bound and the lower bound on
the size of Tδ . The following example illustrates the concept
of δ-TCFGs.

Example 2. Consider the 13 FGs in Figure 2. The num-
ber on each edge in Figure 2 is computed as de = (1 −
freq(fi)/freq(fj)), where fi is the smallest proper super-
graph of fj that has the greatest frequency. If de ≤ δ,
according to Definition 2, fj is not a δ-TCFG; otherwise,
fj is a δ-TCFG. Let δ = 0.04, then the set of 0.04-TCFGs
is {f1, f4, f5, f8, f9, f13}, i.e., the set of bold nodes in Fig-
ure 2. For example, f1 is a 0.04-TCFG since f1 does not
have a proper supergraph that has frequency greater than
((1 − 0.04) × 157) ≈ 150. The FG f6 is not a 0.04-TCFG
since we have freq(f9) > ((1 − 0.04) × freq(f6)).

The set of 0.15-TCFGs is {f4, f8, f9, f13}. The set of 1-
TCFGs, i.e., the set of MFGs, is {f8, f9, f13}; while the set
of 0-TCFGs (i.e., CFGs) contains all FGs except f12. �

For simplicity, in the rest of the paper, we use the lighter
notation T to represent Tδ when δ is clear in the context.

Since a query q can be in (F − T ), in the following we
define the connection between the graphs in T and those in
(F − T ).

Let G be a set of graphs and N = {1, 2, . . . } be the set of
natural numbers. Let h : G → N be an injective function
that assigns a unique ID n ∈ N to each graph g ∈ G. We
define a total order on G as follows.

Definition 3. (Graph Set Order) Given a set of graphs
G, a graph set order � on G is a total order defined as fol-
lows. Let g1, g2 ∈ G, g1 � g2 if one of the following three
statements is true.

1. size(g1) < size(g2).

2. size(g1) = size(g2) and freq(g1) > freq(g2).

3. size(g1) = size(g2), freq(g1) = freq(g2), and h(g1) ≤
h(g2).

We further define g1 ≺ g2 if g1 � g2 and g1 6= g2.

Definition 4. (Closest δ-TCFG Supergraph) Given
gt ∈ T and g ∈ (F − T ), gt is called the closest δ-TCFG
supergraph of g if gt ⊃ g and ∄g′

t ∈ T such that g′
t ⊃ g and

g′
t ≺ gt.

Definition 5. (Closure of a δ-TCFG) Given gt ∈
T , the closure of gt, denoted as CLOS(gt), is defined as
CLOS(gt) = {g : gt is the closest δ-TCFG supergraph of g}.

Lemma 3. For each g ∈ (F − T ), the closest δ-TCFG
supergraph of g is unique.

Proof. It follows directly from Definitions 3 and 4.

Lemma 3 ensures that, based on the graph set order de-
fined by �, a query q ∈ (F − T ) must have a unique closest
δ-TCFG supergraph, g, and q can be located in the closure
of g. We illustrate the concept of closure by the following
example.

Example 3. Referring to Figures 1 and 2, the set of FGs
is ordered according to the graph set order �, where the ID
of each fi is assigned as i. We have f1 ≺ f4 since size(f1) <
size(f4); while for f1 and f2 which are of the same size,
f1 ≺ f2 since freq(f1) > freq(f2).

When δ = 0.04, f13 is the closest δ-TCFG supergraph of
f7, f10, f11 and f12; in other words, CLOS(f13) = {f7, f10,
f11, f12}. Similarly, CLOS(f4) = {f2}, CLOS(f5) = {f3},
and CLOS(f9) = {f6}. �

4. FRAMEWORK OF GRAPH QUERY
PROCESSING USING FG-INDEX

We give the framework of the FG-index-based graph query
processing as follows.

1. Index Construction.

FG-index consists of the following two parts: the core
FG-index and Edge-index.

First, we construct the memory-resident inverted-index
on the set T . Then, a disk-resident inverted-index is
built on the FGs in the closure of each δ-TCFG. In
the same way, if the closure is too large, a local set of
δ-TCFGs can be computed from the set of FGs in the
closure and a further nested inverted-index can be con-
structed. The core FG-index consists of the memory-
resident and all the disk-resident inverted-indexes.

To ensure that any query can be answered, we include
in FG-index another index, called Edge-index, which
is built on the set of infrequent distinct edges1 in D.
For each infrequent distinct edge e in Edge-index, we
associate De with e.

2. Query Processing.

Given a query q, we first search it in the core FG-index.
If q is a δ-TCFG, we can directly retrieve q and Dq

from the memory-resident core FG-index. Otherwise,
we first find q’s closest δ-TCFG supergraph, g. Then,
g’s disk-resident index is loaded to locate q and retrieve
Dq .

If q cannot be found in the core FG-index, then q /∈ F .
In this case, we use the core FG-index to find a set of
q’s subgraphs, Score , and then retrieve Dg for each g ∈
Score . If q consists of a set of infrequent distinct edges,
Sedge , then for each e ∈ Sedge , De is also retrieved from
Edge-index. Then, we compute Cq as the intersection
of all Dg for g ∈ Score and all De for e ∈ Sedge . Finally,
we obtain Dq by verifying whether each g ∈ Cq is a
supergraph of q.

1A distinct edge can be regarded as a graph with only one
edge. Thus, an infrequent distinct edge is simply an infre-
quent subgraph.



In the next section, we discuss the construction and query
processing of FG-index. Referring to Equation (1), our sub-
sequent discussions reveal the following benefits of using FG-
index.

1. The size of FG-index can be tuned in a parameterized
way to reduce the search space and hence Tsearch.

2. If q ∈ F , then TisSubG can be completely eliminated
and TI/O is minimized since Cq = Dq.

3. If q /∈ F , then |Cq | ≈ |Dq |. Note that |Dq | < (σ · |D|).
When σ is small, |Dq | is small and hence |Cq| is also
small. In other words, Tresponse can be controlled by
σ.

5. FG-INDEX
In this section, we discuss in detail the development of

FG-index including the index construction, the query pro-
cessing, the maintenance of the index, as well as the limita-
tion and opportunity of FG-index.

5.1 Structure of FG-Index
We first define the structure of the inverted-index in FG-

index.

Definition 6. (Inverted-Graph-Index) Given a set
of graphs G, an Inverted-Graph-Index (IGI) constructed on
G consists of the following components:

• An array, called the Graph Array (GA), stores G. Let
GA[i] be the i-th entry in the GA. The graph stored in
GA[i] is assigned an ID i. If G is a set of δ-TCFGs,
then each GA[i] also keeps the location of the nested
IGI that is built on CLOS(g), where g is the δ-TCFG
stored in GA[i].

• An array, called the Edge Array (EA), stores the set
of distinct edges in G.

• Each distinct edge e in the EA is associated with a
list of ID-entries. Each ID-entry consists of a list of
arrays called ID-arrays.

Each ID-array consists of a set of IDs, which are the
IDs of a set of graphs, G′ ⊆ G, such that ∀g1, g2 ∈ G′,
size(g1) = size(g2) and count(e, g1) = count(e, g2).

Let n = size(g) and m = count(e, g) for a graph g ∈ G.
The ID-array that consists of the ID of g is called an
m-edge ID-array, and the corresponding ID-entry that
consists of the ID-array is called a size-n ID-entry.
For simplicity, we denote IDA(m,n, e) as the m-edge
ID-array in the size-n ID-entry of e.

The first level of the core FG-index is an IGI constructed
on T . For each g ∈ T , if CLOS(g) 6= ∅, then a nested
IGI is constructed on CLOS(g). If the size of CLOS(g) is
still large, a local set of δ-TCFGs, Tlocal , can be computed
from CLOS(g). Then, for each g′ ∈ Tlocal , a nested IGI is
constructed on CLOS(g′). An example of an IGI is shown
as follows.

Example 4. Referring to the FGs in Figures 1 and 2, let
δ = 0.04, then T = {f1, f4, f5, f8, f9, f13}. Figure 3 shows
the corresponding IGI constructed on T . For example, the

size-3 ID-entry of the distinct edge c has two ID-arrays: the
1-edge ID-array, denoted as IDA(1, 3, c), containing one ID
4, and the 2-edge ID-array, denoted as IDA(2, 3, c), contain-
ing one ID 5. The two IDs correspond to f8 and f9 in GA[4]
and GA[5], respectively.

As shown in Figure 1, f9 is of size 3, count(b, f9) = 1
and count(c, f9) = 2. In the IGI shown in Figure 3, f9 is
stored in GA[5]. Thus, we have ID 5 in IDA(1, 3, b) and
IDA(2, 3, c). �
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Figure 3: Inverted-Graph-Index of Example 4

5.2 Index Construction
The algorithm for our index construction, BuildIndex, is

shown in Algorithm 1, which is divided into three parts:
the computation of T (Lines 1-9), the construction of the
core FG-index (Lines 10-18), and the creation of Edge-index
(Lines 19-20).

Algorithm 1 BuildIndex

Input: Graph Database D, the set of FGs F , and the fre-
quency tolerance factor δ.
Output: The core FG-index and Edge-index.

1. Sort F s.t. ∀g1, g2 ∈ F , g1 is ordered before g2 if g1 ≺ g2;
2. Let T = F and Ti be the set of FGs that consist of i edges;
3. for each i = 1, 2, . . . do

4. for each g ∈ Ti do

5. for each g′ ∈ Ti+1 do

6. if (g ⊂ g′)
7. if (freq(g′) ≥ (1 − δ) · freq(g))
8. T ← T − {g};
9. break; /∗ go to Line 10 ∗/
10. if (g ∈ T )
11. Store g in the first free entry in the GA;
12. for each distinct edge e in g do

13. if (e /∈ EA)
14. Add e to the EA;
15. Add the ID of g to IDA(count(e, g), size(g), e);
16. for each g ∈ (F − T ) do
17. Find g’s closest δ-TCFG supergraph, g′;
18. Add g to the nested IGI of g′;
19. for each infrequent distinct edge e in D do

20. Add e and De to Edge-index;

BuildIndex first sorts F (note that the sorting does not
involve any expensive graph operation). Based on the order
defined by ≺, the first g′ ∈ F , where g′ ⊃ g, has the greatest
frequency among all other g′′ ⊃ g. Thus, if freq(g′) < ((1 −
δ) · freq(g)), then ∀g′′ ⊃ g, freq(g′′) ≤ freq(g′) < ((1 − δ) ·
freq(g)). This implies that, in order to check whether g is a



δ-TCFG, we only need to find the first supergraph of g that
has one more edge than g (Lines 5-9). If the first supergraph
of g, g′, is found (Line 6), and freq(g′) ≥ ((1 − δ) · freq(g))
(Line 7), then g is not a δ-TCFG by Definition 2. Thus, g
is removed from T (Line 8). Otherwise, if freq(g′) < ((1 −
δ) · freq(g)) or g has no supergraph, then g is a δ-TCFG. In
implementation we initially assume all g ∈ F are δ-TCFGs
by setting a flag for each g, and then unset the flag when g
is found not to be in T .

Lines 10-15 of Algorithm 1 construct an IGI on T . For
each g ∈ T , the ID of g is assigned as the position in the GA
where g is stored. For each distinct edge e in g, if e is not
in the EA, we add e to the EA; then, the ID of g is added
to the end of the array IDA(count(e, g), size(g), e). Thus,
the IDs in each ID-array are automatically sorted. We use
a hashtable to access each distinct edge in the EA.

After the first level of the core FG-index is constructed,
BuildIndex builds a nested IGI on the closure of each δ-
TCFG (Lines 16-18). Each nested IGI is constructed in a
similar way as described in Lines 11-15. In Line 17, BuildIn-
dex finds g’s closest δ-TCFG supergraph, g′. Since now we
have already constructed the IGI on T , we can use the IGI
to efficiently find g′, which will be discussed in Algorithm 2
when we process a query using the IGI.

The core FG-index only covers the queries that are FGs.
To ensure that all queries can be answered using FG-index,
we also create an Edge-index as part of the FG-index to
include the set of infrequent distinct edges in D (Lines 19-
20). These edges are also accessed via the same hashtable
used for the EA, where a flag is used to indicate whether an
edge is frequent or not.

Efficiency of Index Construction. The construction of an
IGI for the core FG-index is straightforward and involves
no expensive operation (Lines 10-15 in Algorithm 1). Edge-
index can be generated by scanning the database once (it
can actually be obtained almost free from the FG mining
process). The computation of T (Lines 1-9 in Algorithm 1)
is more expensive since it needs to find the first supergraph
of a graph g in F . Fortunately, the order imposed by ≺
allows us to narrow down the search to only those graphs
with one more edge than g. Moreover, before performing
the subgraph isomorphism test between g and its possible
supergraph g′, some effective checking can be first performed
on g and g′, such as the checking on their frequency, the
number of their distinct edges, the number of vertices and
the degree of the vertices.

5.3 Query Processing
The processing of a query q using FG-index can be clas-

sified into two cases: q ∈ F and q /∈ F .

5.3.1 Query is an FG
When q ∈ F , Algorithm 2 outlines how Dq is obtained

from the core FG-index. Let E be the set of distinct edges
in q. The algorithm, FG-Query, processes only those graphs
that contain all edges in E. It starts with the graphs that
have the same size as q (Line 2) until a supergraph of q is
found (Lines 7-11).

Let i denote the size of the graphs that FG-Query is cur-
rently processing. For each e ∈ E, FG-Query first obtains
C(e), which is the set of IDs of graphs that are of size i and
have at least count(e, q) occurrences of e, as shown in Line

4. The IDs in each C(e) are then sorted in ascending order
(Line 5). Then in Line 6, C(e) are intersected for all e in
order to find a supergraph of q. According to the order in
which each graph is added to the GA (i.e., the way that the
ID of each indexed graph is assigned), the first supergraph
of q, whose ID is obtained by the intersection, must be ei-
ther q or the closest δ-TCFG supergraph of q. Thus, we
either output Dq (the graphs are retrieved from the disk),
or continue to find q by recursively invoking FG-Query to
process on the nested IGI of q’s closest δ-TCFG supergraph
(Lines 9 and 11). If the intersection of C(e) does not ob-
tain any ID or no supergraph of q is found for the current i,
FG-Query increments i by 1 (Line 2) and continues a new
round of iteration to search a supergraph of q.

Algorithm 2 FG-Query

Input: The IGI in the core FG-index and a query q.
Output: Dq .

1. Let E be the set of distinct edges in q;
2. for each i = size(q), size(q) + 1, . . . do

3. for each e ∈ E do

4. C (e)←
(
⋃

j≥count(e,q) IDA(j, i, e)
)

;

5. Sort C (e) in ascending order;
6. Intersect C (e), ∀e ∈ E, until an ID is obtained;
7. if (g in GA[ID] is a supergraph of q)
8. if (g = q)
9. Return Dg;
10. else
11. Return FG-Query with g’s nested IGI and q as input;
12. else

13. Go to Line 6 and continue the intersection;

Example 5. Referring to the IGI in Example 4, let q =
f11. We demonstrate how Dq is obtained by FG-Query.
Since size(f11) = 3, we start search IGI from Size-3 ID-
arrays, that is, i = 3. Since count(a, f11) = 2, we have
C(a) =

⋃

j≥2 IDA(j, 3, a) = ∅. Similarly, since count(b, f11) =

1, C(b) =
⋃

j≥1 IDA(j, 3, b) = IDA(1, 3, b) = {4, 5}. The

intersection terminates immediately since C(a) = ∅. There-
fore, FG-Query proceeds to i = 4 in Line 2. Now C(a) =
IDA(3, 4, a) = {6} and C(b) = IDA(1, 4, b) = {6}. There-
fore, intersecting C(a) and C(b) obtains an ID “6”. Since
GA[6] = f13 is a supergraph of q = f11, i.e., f13 is the clos-
est δ-TCFG supergraph of f11, Line 11 invokes FG-Query
to process on the nested IGI of f13. The recursive call of
FG-Query finally returns Df11

(details omitted). �

Response Time Analysis for FG-Query. The efficiency of
the intersection of C(e) for all e ∈ E depends on the size of
C(e). The IDs in each C(e) belong to a local set of δ-TCFGs
that are of a specific size and contain at least count(e, q)
occurrences of e. Thus, the size of C(e) is small, because the
size of the whole set of δ-TCFGs is small as controlled by δ.
In most cases (in almost all cases in our experiments), the
first ID returned by the intersection is the ID of q or the ID
of q’s closest δ-TCFG supergraph and hence the intersection
terminates early. In fact, the time taken for the intersection
is negligible compared to the I/O time if the nested IGI is
resident in the disk. However, the nested IGI is also small
and we only need to load the portion of the IGI related to
distinct edges in q into the main memory.



Therefore, Tsearch for processing q ∈ F is in general much
smaller than TI/O used in retrieving Dq from the disk, which
is inevitable unless the main memory is large enough to keep
the whole database. The advantage of using FG-index is
that we minimize TI/O since Cq = Dq . More importantly,
we completely eliminate the large TisSubG since candidate
verification is not required. The following equation shows
the response time of processing a query by FG-Query.

Tresponse = (Tsearch + |Dq | × TI/O) ≈ (|Dq| × TI/O) . (2)

5.3.2 Query is not an FG
When FG-Query returns no result, then q /∈ F . In this

case, IFG-Query, as shown in Algorithm 3, is called to ob-
tain Dq . IFG-Query consists of two parts: Lines 1-10 process
on the set of frequent distinct edges E (if any) in q, while
Lines 11-12 handle the set of infrequent distinct edges (if
any).

First in Lines 1-10, IFG-Query uses the core FG-index to
find a small set of subgraphs of q that are indexed. Then
for each subgraph g found, Dg is retrieved and added to
Score. Then in Lines 11-12, IFG-Query retrieves De for each
infrequent distinct edge e of q from Edge-index and includes
all De in Sedge. Finally in Lines 13-15, IFG-Query generates
Cq by intersecting all ID sets (i.e., Dg or De) that are in Score

and Sedge, and produces the answer set Dq by verifying if
g ⊇ q for each g ∈ Cq.

Algorithm 3 IFG-Query

Input: The core FG-index, Edge index, and a query q.
Output: Dq .

1. Let E be the set of distinct edges in q,
except the infrequent distinct edges;

2. for each i = size(q)− 1, size(q) − 2, . . . , 1 do

3. C ←
(
⋃

1≤j≤count(e,q) IDA(j, i, e)
)

, ∀e ∈ E;

4. Sort C in descending order;
5. for each ID in C do

6. if (g in GA[ID] has edges in E and g ⊂ q)
7. Retrieve Dg, and add Dg to Score;
8. Remove all distinct edges in g from E;
9. if (E = ∅)
10. go to Line 11;
11. for each infrequent distinct edge e in q do

12. Retrieve De from Edge-index, and add De to Sedge;
13. Cq ←

(
⋂

S∈(Score∪Sedge) S
)

;

14. for each g ∈ Cq do
15. Include g in Dq if g ⊇ q;

We now explain how to search for the subgraphs of q that
are indexed in the core FG-index. Unlike the search for
the supergraph of q in FG-Query, the search for subgraphs
moves in the reverse direction starting with those indexed
graphs that have one fewer edge than q (Line 2). Then,
the IDs of the graphs (stored in C) are sorted in descending
order (Line 4), since for graphs of the same size, a larger ID
implies a smaller frequency of g and hence a smaller Dg .

Line 6 performs a subgraph isomorphism test between g
and q to ensure g is a subgraph of q before using Dg to
produce Dq . Since the ID set C is the union instead of
the intersection of all IDA(j, i, e), processing all IDs in C
may be costly (Line 5). To save the number of subgraph

isomorphism tests in this step, we obtain only a smaller
number of maximal subgraphs of q (Line 8 removes all dis-
tinct edges in a found subgraph from E, while Line 6 checks
whether a graph contains edges in E that do not appear in
any found subgraphs). Here, if g is a maximal subgraph of
q, then ∄g′ ⊃ g such that g′ ⊂ q. Using maximal subgraphs
of q is effective to reduce the size of Cq because ∀g′ ⊂ g,
Dg′ ⊇ Dg. Note that we do not obtain all maximal sub-
graphs of q in the index but stop the search when all edges
in E are covered (Line 9), since obtaining all those missing
maximal subgraphs does not further reduce the size of Cq

substantially.

Response Time Analysis for IFG-Query. Tsearch mainly
consists of the time taken to perform the subgraph isomor-
phism testing when searching for the maximal subgraphs of
q (Line 6) and the I/O time to retrieve Dg (the graph IDs)
from the disk (Line 7). Since we only require a small number
of maximal subgraphs of q, Tsearch is small compared with
the rest part of Tresponse.

In mining frequent patterns, including FGs, it is well-
known that the frequency of a pattern is closest to that
of its largest sub-pattern or smallest super-pattern. Thus,
the Dg of a maximal subgraph g of q is close to Dq . In ad-
dition, the maximal subgraphs of q obtained by IFG-Query
have the smallest frequency among other indexed subgraphs
of q. Therefore, we can deduce |Cq | ≈ |Dq | in most cases.
Thus, we obtain the response time of processing a query by
IFG-Query as follows.

Tresponse = Tsearch + |Cq | × (TI/O + TisSubG)

≈ Tsearch + |Dq | × (TI/O + TisSubG) . (3)

Since q is an infrequent subgraph, |Dq | is bounded by
(σ · |D|). In fact, when q contains any infrequent edge e, we
have |Cq | ≤ |De| ≤ (σ · |D|). Thus, we can control Tresponse

using σ. Although the number of FGs can be large when
σ is small, the FGs are indexed into the nested IGIs whose
sizes are controlled by δ. In practice, we do not need to
use a very small σ that returns a set of FGs needed to be
indexed for more than two levels of IGIs.

5.4 Memory and Disk Residence
The IGI at the first level of the core FG-index, the δ-

TCFGs, and Edge-index are resident in the main memory.
All the other parts of FG-index are resident in the disk.

The Dg for each indexed graph g is stored in the disk.
Given two graphs g and g′, if g ⊃ g′, then (Dg ∩ Dg′) = Dg

and hence a large number of graph IDs are duplicates. We
keep the exact set of Dg for each g ∈ T . Then, we construct
a tree on CLOS(g) as follows. The root of the tree is g. For
each g′ ∈ CLOS(g), if ∄g′′ ∈ CLOS(g) such that g′′ ⊃ g′,
g′ is connected as a child of the root. For each of the rest
g′ ∈ CLOS(g), and for a graph gp in the tree, if gp ⊃ g′

and ∄g′′ ∈ CLOS(g) such that g′′ ⊃ g′ and g′′ ≺ gp, then
g′ is added as a child of gp. Then, given gp and its child
g′, Dg′ = (Dg′ − Dgp). Thus, only Dg is exact, while the
duplicate IDs in Dg′ are removed and can be recovered by
traversing from g′ up to the root g.

5.5 Insert and Delete Maintenance
We discuss briefly the update maintenance of FG-index.



Let g be a new graph to be inserted into D. For each
g′ ⊆ g, we locate g′ in the core FG-index and add the ID of
g to Dg′ . If an infrequent distinct edge e or a new distinct
edge e′ is found in g, we add the ID of g to De or add e′ to
Edge-index.

Let g ∈ D be deleted from D. For each g′ ⊆ g, we locate
g′ in the core FG-index and delete the ID of g from Dg′ .
For any infrequent distinct edge e in g, we delete the ID of
g from De in Edge-index.

If size(g) is large, g may contain a large number of sub-
graphs. However, we do not actually search each subgraph
of g one by one. When we find the closest δ-TCFG super-
graph, gt, of some g′ ⊆ g, if gt ⊆ g, then we only need to
add/remove the ID of g to/from Dgt and skip searching all
g′′, where g′ ⊆ g′′ ⊂ gt. The update for all such g′′ can
be skipped because the duplicate graph IDs are removed for
each graph in the closure of gt, as discussed in Section 5.4.
So we only need to update Dgt , while Dg′′ can be recovered
from Dgt . Therefore, the number of searches and updates is
approximately the number of δ-TCFGs that are subgraphs
of g, which is small since the total number of δ-TCFGs is
small.

5.6 Discussions
A limitation of FG-index is that the index construction

cost depends largely on the cost of mining FGs and the ef-
ficiency of our algorithm for computing T mainly depends
on the size of F . Although many efficient FG mining al-
gorithms [22, 20, 15] have been proposed in recent years,
a more promising way of improving the performance of the
construction of FG-index is to mine the set of δ-TCFGs di-
rectly from the database.

In Algorithm 1, we compute the set of exact δ-TCFGs.
However, for the purpose of indexing, we do not require an
accurate set of δ-TCFGs. Instead, an approximate set of
δ-TCFGs is sufficient, as far as the number of δ-TCFGs is
small enough for the main memory to hold the memory-
resident portion of FG-index. The following lemma states
that FG-index constructed on an approximate set of δ-TCFGs
can be used to answer any query q ∈ F without candidate
verification.

Lemma 4. Let T be a set of FGs randomly selected from
F such that T ⊇ M. For each g ∈ (F − T ), the closest
δ-TCFG supergraph of g exists and is unique.

Proof. Since T ⊇ M, by the definition of MFGs and
Definition 4, the closest δ-TCFG supergraph of g ∈ (F − T )
must exist. While the uniqueness follows directly from Def-
initions 3 and 4.

Lemma 4 ensures the correctness of query processing us-
ing FG-index even if T is a randomly selected set of FGs
that violates the definition of δ-TCFGs. In Lemma 4, the
set of MFGs, M, is included in T to make sure all q ∈ F
can be answered without candidate verification. Thus, going
without this constraint only means that some queries in F
may need to go through candidate verification. If we further
relax this constraint in computing the δ-TCFGs, it is highly
possible that a more efficient algorithm can be designed to
mine an approximate set of δ-TCFGs. In mining condensed
frequent patterns, a very efficient approximate algorithm is
proposed in [4]. It is interesting to study whether the con-
cept of their work can be applied to mine δ-TCFGs, which
is considered as future work.

6. PERFORMANCE EVALUATION
In this section, we verify the efficiency of index construc-

tion and query processing of FG-index by comparing it with
the state-of-the-art graph index, gIndex [24]. The set of
FGs, which is the input to the construction of FG-index, is
mined using gSpan [22]. We run all experiments on an AMD
Opteron 248 with 8GB RAM, running Linux 64-bit.

We use the real dataset that is used in the evaluation of
gIndex [24]. It is an AIDS antiviral screen dataset contain-
ing 43K graphs. We denote this dataset as AIDS in our
experiment.

To test the scalability of FG-index on database size, graph
size and graph density, we design a synthetic graph dataset
generator based on the IBM synthetic transaction genera-
tor [1], which allows us to specify the number of graphs in
the dataset, the average density and size of each graph, the
number of distinct node/edge labels, etc. (see details in
graphGen2).

We set δ = 0.1 for FG-index in all experiments except in
Section 6.1.2 when we assess the effect of δ on the perfor-
mance of FG-index. The settings of gIndex are the same as
suggested in [24], that is, the maximum size of a discrimi-
native FG is 10 and the minimum frequency threshold for a
discriminative FG of size 10 is (0.1 × |D|).

6.1 Performance on Real Graph Dataset
We assess the performance of FG-index on the AIDS dataset

for different choices of σ and δ.

6.1.1 Effect of σ

Table 1 reports the index construction time and memory
consumption for AIDS, where the time of FG-index is repre-
sented as (FG mining time + FG-index construction time).
In the table, |T | is the number of δ-TCFGs indexed in FG-
index and |Fd| is the number of discriminative FGs indexed
in gIndex.

Table 1: Index Construction Performance for AIDS
FG-index FG-index gIndex
(σ = 0.1) (σ = 0.01)

Time (sec) 10.03 (10+0.03) 1085 (627+458) 217
Memory (MB) 2 95 107
|T | or |Fd| 195 21893 3276

The time of constructing FG-index for AIDS at σ = 0.1 is
20 times smaller than that of gIndex, but that at σ = 0.01 is
5 times larger. The tremendous variation in the construction
performance of FG-index is because the number of FGs at
σ = 0.1 is significantly smaller than that at σ = 0.01 (455
vs. 59120). As a result, the number of indexed graphs and
the memory consumption at σ = 0.1 are also significantly
smaller than those at σ = 0.01. The result also shows that
the time for mining FGs occupies a large portion of the total
index construction time for FG-index.

Although constructing FG-index is costly at smaller σ, the
construction of FG-index at σ = 0.1 performs better than
that of gIndex. More importantly, we next show that query
performance of FG-index at σ = 0.1 is as efficient as that at
σ = 0.01.

To evaluate the query performance of FG-index, we use
the six query sets tested in gIndex [24], denoted as Q4, Q8,
2http://www.cse.ust.hk/graphgen/



Q12, Q16, Q20, Q24, where each Qi contains 1000 queries
and each query in Qi consists of i edges.

Figure 4 reports the average response time of processing
a query in each Qi. The result shows that query process-
ing using FG-index is over two orders of magnitude faster
than that using gIndex for Q4, and about an order of mag-
nitude faster for other sets of queries. We find that, for both
σ = 0.1 and σ = 0.01, most of the large-size queries (almost
all queries with 12 or more edges) are not FGs and hence
candidate verification is also needed for FG-index. There-
fore, the improvement of FG-index over gIndex is smaller
for queries of larger size. However, the result reveals an
advantage of using FG-index, that is, even for processing
queries that are not FGs, the performance of FG-index is
also significantly better than that of gIndex.
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Figure 4: Response Time on Varying Query Sizes

This experiment also shows that FG-index at σ = 0.01 is
only better than that at σ = 0.1 for processing Q4. This is
because smaller σ results in more queries in Q4 to become
FGs. More specifically, setting σ = 0.01 allows 30% more
queries in Q4 to be answered without candidate verification
than setting σ = 0.1. However, when the size of the queries
increases, the number of FGs in other Qi is almost the same
for both σ = 0.1 and σ = 0.01. In this case, the time spent
on candidate verification is almost the same and Tsearch be-
comes the major factor for query performance. As a result,
FG-index at σ = 0.01 is worse because it has a larger search
space than FG-index at σ = 0.1.

The peak memory consumption of query processing using
FG-index is about 1.8 MB and 13 MB at σ = 0.1 and σ =
0.01 for all Qi, while that of gIndex is on average 30 MB.

Analysis on the Cost of Candidate Verification. The high
cost of candidate verification can be inferred from several as-
pects of the experimental results. First, FG-index performs
the best for Q4 since more queries are FGs and fewer candi-
date verifications are performed than for other Qi. On the
contrary, gIndex performs the worst for Q4 since each query
q ∈ Q4 has a larger Dq, which results in a greater number of
candidate verifications. Second, for queries with size greater
than 4, the performance of both FG-index and gIndex im-
proves when the size of the queries increases. The perfor-
mance improvement comes from the smaller number of can-
didate verifications required for queries of larger size, even
though in general subgraph isomorphism testing is more ex-
pensive for larger graphs.

More Tests on Query Performance. Since the size of the
queries in each Qi is very regular, we test the query perfor-
mance on another two sets of queries. We first mine the set

of FGs on the AIDS dataset at σ = 0.005 and then randomly
select 1000 FGs as queries. In this way, the selected query
set contains both frequent and infrequent graphs with differ-
ent sizes. Among the 1000 queries, 85% of them are not FGs
at σ = 0.01 and almost all of them (only two exceptions)
are not FGs at σ = 0.1.

Table 2: Query Performance for AIDS
FG-index FG-index gIndex
(σ = 0.1) (σ = 0.01)

Response Time (sec) 0.031 0.040 0.57
Memory (MB) 2 14 47

Table 2 reports the average response time and the peak
memory consumption for processing a query. Although most
of the queries are not FGs, processing a query using FG-
index for both σ = 0.1 and σ = 0.01 is over an order of
magnitude faster than that using gIndex. The memory con-
sumption of FG-index for both σ = 0.1 and σ = 0.01 is
also significantly smaller than that of gIndex, even though
the number of δ-TCFGs in FG-index at σ = 0.01 is much
larger than the number of discriminative FGs in gIndex, as
reported in Table 1.

6.1.2 Effect of δ

We assess the effect of δ on the performance of FG-index
at σ = 0.1 using AIDS dataset. We choose δ at values of 0,
0.05, 0.1, 0.2 and 1. We skip δ between 0.2 and 1 to show a
clear effect of increasing δ on the query performance.

Table 3: Index Construction Performance on δ
δ=0 δ=0.05 δ=0.1 δ=0.2 δ=1

Time (sec) 10.03 10.03 10.03 10.03 10.03
Memory (MB) 2 2 2 2 2
|T | 455 255 195 156 92

Table 3 shows that the index construction performance
is very stable for all values of δ. The time recorded is 10
seconds for mining FGs and 0.03 second for constructing FG-
index in all cases. The number of 0.05-TCFGs drops to half
that of 0-TCFGs (i.e., CFGs), while the number of 1-TCFGs
(i.e., MFGs) is only 20% that of 0-TCFGs. The memory
consumption is consistently 2 MB, which does not decrease
with the decrease in the number of δ-TCFGs because the
input to the index construction is the set of FGs.

We use the query sets Q4, Q12 and Q24, as well as a set of
1000 queries randomly selected from the set of FGs mined
at σ = 0.05, denoted as Qrs in Figure 5.

Figure 5 shows that the response time increases steadily
with the increase in δ. The increase in response time is be-
cause the number of δ-TCFGs that are indexed and resident
in memory is smaller for a larger δ and hence more I/O time
is needed to access the disk-resident index. However, the in-
crease in response time is small since the search time is only
a small portion of the total response time. We observe that
the increase in the response time for δ from 0.2 to 1 is much
greater for Q12 and Q24. The reason is analyzed as follows.
If a query q is not an FG, then Cq is computed from the
intersection of the Dg of a set of maximal subgraphs of q,
where each Dg is retrieved from the disk. Thus, a query
with a larger size is likely to have more maximal subgraphs
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that are indexed and hence more disk accesses to retrieve
their Dg. As a result, the increase in the response time of
processing Q12 and Q24 is greater than that of Q4. Since Qrs

contains queries of both small and large sizes, the increase
in the response time is in-between that of Q4 and Q12.

The memory consumption decreases with increasing δ for
all queries, which matches with the decrease in the number
of δ-TCFGs, since the memory-resident index is built on
the δ-TCFGs. We omit detailed figures since the decrease is
small (from 1.9 MB at δ = 0 to 1.6 MB at δ = 1).

6.2 Performance on Synthetic Graph Dataset
In the following set of experiments, we use the synthetic

datasets to test the scalability of FG-index on different data-
base sizes, graph sizes and graph density.

6.2.1 Effect of Database Size
We generate six synthetic datasets to assess the perfor-

mance of FG-index on different database sizes from 10K to
100K graphs. The average number of graph edges in each
dataset is 30, the number of distinct labels is 30, and the
average graph density is 0.15. We build FG-index on the set
of FGs at σ = 0.01.

Figure 6(a) reports the index construction time. We also
show the time of mining the set of FGs at σ = 0.01, de-
noted as “gSpan” in Figure 6(a). The line for gSpan almost
coincides with the line for FG-index, which means that the
time of mining FGs dominates the total construction time
of FG-index. We are not able to construct gIndex for the
datasets with 40K or more graphs. For the datasets that
consist of 10K and 20K graphs, Figure 6(a) shows that the
index construction time of gIndex is twice larger than that
of FG-index. The memory consumption of constructing FG-
index, which includes the memory used to mine FGs, is also
lower than that of constructing gIndex, as reported in Figure
6(b).

We randomly select 1000 queries from the set of FGs
mined from each dataset at σ = 0.005. About 40% of the
selected queries are not FGs at σ = 0.01. Figure 7(a) shows
that processing a query using FG-index is almost three or-
ders of magnitude faster than using gIndex.

Figure 7(b) shows that the memory consumption of query-
ing using FG-index is also significantly smaller than that us-
ing gIndex, which implies that the memory-resident portion
of FG-index is smaller than that of gIndex. We also find
that the memory usage of FG-index is very stable and is not
affected by the increase in the database size. This is because
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Figure 7: Query Performance on Varying Database

Sizes

the number of δ-TCFGs is very stable for different database
sizes, which verifies that the concept of δ-TCFGs is effec-
tive in controlling the size of the memory-resident portion
of FG-index.

The results of this experiment thus demonstrate that FG-
index is more scalable on the database size than gIndex.



6.2.2 Effect of Graph Size and Density
For this experiment, we generate 10 datasets, which are

classified into two sets of five datasets. We vary the average
size of the graphs in each of the five datasets from 20 to
100. The graphs in the first set of datasets have an average
density of 0.1 while those in the second set have an average
density of 0.2. Other settings of the synthetic datasets are
the same as those in Section 6.2.1, except that the database
size is fixed at 10K. We construct FG-index from the set of
FGs mined at σ = 0.05.
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Figure 8: Index Construction Performance on Vary-

ing Graph Sizes and Graph Density

Figure 8(a) reports the index construction time, which
again shows that the time of mining FGs dominates the to-
tal construction time of FG-index. Compared with gIndex,
the construction time of FG-index is significantly less in all
cases and up to two orders of magnitude less when the size
of the graph becomes larger. The memory consumption of
constructing FG-index is also significantly less as reported
in Figure 8(b). For the same graph size, a larger density re-
sults in a larger number of FGs in the database. Therefore,
the construction cost of both FG-index and gIndex increases
when the graph density d increases from 0.1 to 0.2. However,
the increase rate of FG-index is much smaller than that of
gIndex because the effect of graph density is smaller on the
number of δ-TCFGs than that on the number of FGs. When
d = 0.2, we are not able to construct gIndex on graphs with
80 or more edges. The effect of graph size is also smaller on
the construction cost of FG-index than that of gIndex, as
indicated by the slope of the lines.

We prepare 10 sets of queries for testing each dataset.
Each query set contains 1000 queries randomly selected from
the set of FGs mined from the corresponding dataset at
σ = 0.025. About 80% of the queries in each query set are
not FGs at σ = 0.05, except that almost all the queries in
the two query sets derived at graph size 20 are FGs.
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Figure 9: Query Performance on Varying Graph

Sizes and Graph Density

As shown in Figure 9(a), processing a query using FG-
index is over two orders of magnitude faster than that using
gIndex in all cases. Figure 9(a) also shows that, for graph
sizes over 40, the query performance of FG-index increases,
but only slightly, with the increase in the graph size, while
that of gIndex is recorded a larger variation over different
graph sizes. The query processing of FG-index at graph
size 20 is extremely fast because all the queries derived at
graph size 20 are FGs, which can be processed by FG-index
without candidate verification. Figure 9(b) shows that the
memory consumption of using FG-index is small and stable,
and is significantly less than that of using gIndex.

In addition to the remarkable and stable performance over
different graph sizes, the results of this experiment also show
that the performance of FG-index is more stable on the
graph density than gIndex.

7. RELATED WORK
There have been a number of studies on developing in-

dexing models on graph databases. Due to the diversity of
graph models as well as the complexity of graph processing,
most of the existing graph indexes are designed for specific
applications. For example, Daylight [2] and AnMol [18] are
indexes on molecular structures. DataGuides [10], T-index
[16], Index Fabric [8], APEX [5], F&B-index [14], and D(k)-
index [3] are for semi-structured data and XML. Most of
these indexes are based on path or subtree structures.

For the indexing techniques that are developed for more
general graph models, GraphGrep [17] is a path-based ap-
proach to index graph databases. However, the set of paths
in a graph database is huge and hence may affect the perfor-
mance of the index. To address the weakness of the path-
based approach, gIndex [24] is proposed as a graph-based
indexing approach and it is reported in [24] that gIndex sig-



nificantly outperforms GraphGrep. We have discussed and
compared with gIndex in Sections 3.2 and 6. Apart from
the query processing on a database that consists of a collec-
tion of graphs, searching subgraphs in a single large graph
is studied in GraphDB [9] and SUBDUE [6, 11].

The concept of δ-TCFGs is inspired by that of the com-
pressed frequent patterns [21, 4]. The goal of their work is
to reduce the number of frequent patterns and δ also de-
fines the accuracy of the estimated frequency of a recov-
ered pattern. We apply the concept of compression to index
graph databases, which is a challenging problem in an en-
tirely different context, and our use of δ does not involve the
frequency estimation of a graph.

8. CONCLUSIONS
In this paper, we propose FG-index, which is an effec-

tive index for supporting efficient query processing on graph
databases. A distinguished feature of FG-index is that queries
that are FGs are answered by FG-index without performing
candidate verification, while queries that are not FGs are
answered with minimal number of candidate verifications.
Thus, our work achieves a significant improvement over ex-
isting work on graph indexing [17, 24] that requires candi-
date verification for all queries. Although the set of FGs,
upon which FG-index is built, can be large when the mini-
mum frequency threshold σ is small, we propose a new com-
pression technique which effectively condenses a large set of
FGs into a small set of representative FGs, called δ-TCFGs.
Our experiments verify the effectiveness of δ-TCFGs in com-
pressing the set of FGs as well as the efficiency of FG-index
in query processing. For a wide range of graph datasets,
our experimental results show that FG-index significantly
outperforms the state-of-the-art graph index, gIndex [24],
on both index construction and query processing. In par-
ticular, we show that not only for queries that are FGs, but
also for queries that are not FGs, the query processing using
FG-index is up to orders of magnitude faster than gIndex.
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