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ABSTRACT

Correlation mining has gained great success in many ap-
plication domains for its ability to capture the underlying
dependency between objects. However, the research of cor-
relation mining from graph databases is still lacking despite
the fact that graph data, especially in various scientific do-
mains, proliferate in recent years. In this paper, we propose
a new problem of correlation mining from graph databases,
called Correlated Graph Search (CGS). CGS adopts Pear-
son’s correlation coefficient as a correlation measure to take
into consideration the occurrence distributions of graphs.
However, the problem poses significant challenges, since ev-
ery subgraph of a graph in the database is a candidate but
the number of subgraphs is exponential. We derive two nec-
essary conditions which set bounds on the occurrence prob-
ability of a candidate in the database. With this result, we
design an efficient algorithm that operates on a much smaller
projected database and thus we are able to obtain a signif-
icantly smaller set of candidates. To further improve the
efficiency, we develop three heuristic rules and apply them
on the candidate set to further reduce the search space. Our
extensive experiments demonstrate the effectiveness of our
method on candidate reduction. The results also justify the
efficiency of our algorithm in mining correlations from large
real and synthetic datasets.

Categories and Subject Descriptors: H.2.8 [Database
Management|: Database Applications - Data Mining

General Terms: Algorithms

Keywords: Correlation, Graph Databases, Pearson’s Cor-
relation Coefficient

1. INTRODUCTION

Correlation mining is recognized as one of the most impor-
tant data mining tasks for its capability of identifying the
underlying dependency between objects. It has a wide range
of application domains and has been studied extensively on
market-basket databases [5, 13, 15, 24, 23, 29|, quantita-
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tive databases [11], multimedia databases [16], data streams
[20], and many more. However, little attention has been
paid to mining correlations from graph databases, in spite
of the popularity of graph data model pertaining to various
domains, such as biology [4, 10], chemistry [2], social science
[3], the Web [17] and XML [1].

In this paper, we study a new problem of mining cor-
relations from graph databases. We propose to use Pear-
son’s correlation coefficient [21] to measure the correlation
between a query graph and an answer graph. We formu-
late this mining problem, named Correlated Graph Search
(CGS), as follows. Given a graph database D that consists
of N graphs, a query graph ¢ and a minimum correlation
threshold 6, the problem of CGS is to find all graphs whose
Pearson’s correlation coefficient wrt q is no less than 6.

Pearson’s correlation coefficient is shown to be one of the
most desirable correlation measures in [21] for its ability to
capture the departure of two variables from independence.
It has been widely used to describe the strength of correla-
tion among boolean variables in transaction databases [21,
23, 29]. This motivates us to apply the measure in the con-
text of graph databases. However, graph mining is a much
harder problem due to the high complexity of graph oper-
ations (e.g., subgraph isomorphism testing is NP-complete
[7]). The difficulty of the problem is further compounded
by the fact that the search space of CGS is often large, since
a graph consists of exponentially many subgraphs and each
subgraph of a graph in D can be a candidate graph. Thus,
it poses great challenges to tackle the problem of CGS.

How can we reduce the large search space of CGS and
avoid as many expensive graph operations as possible? We
investigate the property of Pearson’s correlation coefficient
and derive two necessary conditions for the correlation con-
dition to be satisfied. More specifically, we derive the lower
bound and upper bound of the occurrence probability (also
called support), supp(g), of a candidate graph g. This ef-
fectively reduces the search space to be the set of Frequent
subGraphs (FGs) [12] in D with the support values between
the lower and upper bounds of supp(g).

However, mining FGs from D is still expensive when the
lower bound of supp(g) is low or D is large. Moreover, we
still have a large number of candidates and the solution is
not scalable. Thus, we need to further reduce the number of
candidates as well as address the scalability problem. Our
solution to this problem is as follows.

Let Dg be the projected database of D on ¢, which is the
set of all graphs in D that are supergraphs of q. We prove

that, the set of FGs mined from D, using W



as the minimum support threshold is complete wrt the an-

swer set. Since Dy is in general much smaller than D while

W is greater than lowerbound(supp(g)), our

finding not only saves the computational cost for generating
the candidate set, but also significantly reduces the number
of candidates. Furthermore, we develop three heuristic rules
to be applied on the candidate set to identify the graphs that
are guaranteed to be in the answer set, as well as to prune
the graphs that are guaranteed to be false positives.

In addition to the formulation of the new CGS problem
and its efficient solution, the significance of our work also
lies in its close connection to graph similarity search, which
is an important research area of graph querying. There are
two types of similarity: structural similarity (i.e., two graphs
are similar in structure) and statistical similarity (i.e., the
occurrence distributions of two graphs are similar).

Existing work [8, 18, 27, 22] mainly focuses on struc-
tural similarity search. However, in many applications, two
graphs that are structurally dissimilar but always appear to-
gether in a graph in D may be more interesting. For exam-
ple, in chemistry, isomers refer to molecules with the same
chemical formula and similar structures. The chemical prop-
erties of isomers can be quite different due to different posi-
tions of atoms and functional groups. Consider the case that
the chemist needs to find some molecule that shares similar
chemical properties of a given molecule. Structural similar-
ity search is not relevant, since it mostly returns isomers of
the given molecule that have similar structures but different
chemical properties, which is undesirable. On the contrary,
CGS is able to obtain the molecules that share similar chem-
ical properties but may or may not have similar structures
to the given molecule. Therefore, our proposed CGS solves
an orthogonal problem of structural similarity search.

Our extensive experiments on both real and synthetic
datasets show that our algorithm, called CGSearch, achieves
short response time for various queries with relatively small
memory consumption. Compared with the approach whose
candidate set is generated from the whole database with a
support range, CGSearch is orders of magnitude faster and
consumes up to 41 times less memory. The effectiveness of
the candidate generation from the projected database and
three heuristic rules is also demonstrated.

Contributions. The specific contributions of the paper are
stated as follows.

e We formulate the new problem of correlation search in
graph databases, which takes into account the occur-
rence distributions of graphs using Pearson’s correla-
tion coefficient.

e We derive theoretical bounds for the support of a can-
didate graph, which reduces the search space consid-
erably.

e We propose to generate the candidate set by mining
FGs from the projected database of the query graph.
Three heuristic rules are developed to further reduce
the size of the candidate set.

e We present an efficient algorithm to solve the problem
of CGS. We also prove the soundness and completeness
of the query results returned by the algorithm.

e A comprehensive set of experiments is conducted to
verify the efficiency of the algorithm, and the effec-

tiveness of the candidate generation and the heuristic
rules.

Organization. We give preliminaries in Section 2. We de-
fine the CGS problem in Section 3. We propose the effective
candidate generation from a projected database in Section
4. We present the algorithm, as well as the three heuristic
rules, in Section 5. Then, we analyze the performance study
in Section 6. Finally, we discuss related work in Section 7
and conclude our paper in Section 8.

2. PRELIMINARIES

In this paper, we restrict our discussion on undirected, la-
belled connected graphs (or simply graphs hereinafter), since
most of the interesting graphs in practice are connected
graphs; while our method can be easily extended to process
directed and unlabelled graphs.

A graph g is defined as a 4-tuple (V, E, L,1), where V is
the set of vertices, F is the set of edges, L is the set of
labels and [ is a labelling function that maps each vertex
or edge to a label in L. We define the size of a graph g as
size(g) = | E(g)].

Given two graphs, g = (V, E,L,l) and ¢’ = (V',E', L' 1),
a subgraph isomorphism from g to g’ is an injective func-
tion f: V — V', such that V(u,v) € E, (f(u), f(v)) € E’,
() = U'(f(u)), i) = U'(f(v)), and I(u,v) = I'(f(w), {(v)).
The subgraph isomorphism testing is known to be an NP-
complete problem [7].

A graph g is called a subgraph of another graph g’ (or g’
is a supergraph of g), denoted as g C g’ (or g’ D g), if there
exists a subgraph isomorphism from g to g'.

Let D ={g1,92,...,95 } be a graph database that consists
of N graphs. Given D and a graph g, we denote the set of
all graphs in D that are supergraphs of g as D, = {g' : ¢’ €
D, g’ D g}. We call D, the projected database of D on g. The
frequency of g in D, denoted as freq(g; D), is defined as |Dy|.
The support of g in D, denoted as supp(g; D), is defined as

%. A graph g is called a Frequent subGraph (FG) |9,
12, 25] in D if supp(g; D) > o, where o (0 < o < 1) is a user-
specified minimum support threshold. For simplicity, we use
freq(g) and supp(g) to denote the frequency and support of
g in D when there is no confusion. Given two graphs, g and
g2, we define the joint frequency, denoted as freq(g1,g2), as
the number of graphs in D that are supergraphs of both g1
and g, i.e., freq(gi,g2) = |Dg; N Dy,|. Similarly, we define
the joint support of g1 and g2 as supp(g1, g2) = %.
The support measure is anti-monotone, i.e., if g1 C g,
then supp(g1) > supp(g2). Moreover, by the definition of
joint support, we have the following property: supp(g1,g2) <

supp(g1) and supp(g1,g2) < supp(gz)-

EXAMPLE 1. Figure 1 shows a graph database, D, that
consists of 10 graphs, g1, ..., gi0. For clarity of presentation,
all the nodes are of the same label (not shown in the figure);
while the characters a, b and ¢ represent distinct edge labels.

The graph gs is a subgraph of g2. The projected database
of gs, i.e., Dgg, is {g2,93,96,97,9s}. The frequency of gs
is computed as freq(gs) = |Dgg| = 5. The support of gs

is supp(gs) = THE

{g6,97,99}. The joint frequency of gs and go is computed
as freq(gs, o) = |Dgs N Dyg| = [{gs,97}| = 2. The joint

support of gs and go is supp(gs, go) = % =02. N

= 0.5. As for g9, we have Dy, =
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Figure 1: A Graph Database, D

3. PROBLEM DEFINITION

We first define Pearson’s correlation coefficient [19] for two
given graphs. Pearson’s correlation coefficient for boolean
variables is also known as “¢ correlation coefficient” [28].

DEFINITION 1. (PEARSON’S CORRELATION COEFFICIENT)
Given two graphs g1 and g2, the Pearson’s Correlation Co-
efficient of g1 and g2, denoted as ¢(g1,g2), is defined as fol-
lows:

supp(g1, g2) — supp(g1)supp(gz2)

é(g1,92) =

When supp(g1) or supp(gz2) is equal to 0 or 1, ¢(g1, g2) is
defined to be 0.

The range of ¢(g1, g2) falls within [—1,1]. If ¢(g1,92) is
positive, then g1 and g2 are positively correlated; otherwise,
g1 and g2 are negatively correlated. In this paper, we focus
on positively correlated graphs defined as follows.

DEFINITION 2. (CORRELATED GRAPHS) Two graphs gi
and g2 are correlated if and only if ¢p(g1,g92) > 0, where 0
(0 < 6 < 1) is a user-specified minimum correlation thresh-
old.

We now define the correlation mining problem in graph
databases as follows.

DEFINITION 3. (CORRELATED GRAPH SEARCH) Given a
graph database D, a correlation query graph g and a min-
imum correlation threshold 0, the problem of Correlated
Graph Search (CGS) is to find the set of all graphs that
are correlated with q. The answer set of the CGS problem
is defined as Aq = {(g,Dy) : ¢(q,9) > 6}.

For each correlated graph g of ¢, we include Dy in the
answer set in order to indicate the distribution of g in D.
We also define the set of correlated graphs in the answer set
as the base of the answer set, denoted as base(Aq) = {g :
(9,Dg) € Ag}. In the subsequent discussions, a correlation
query graph is simply called a query.

Table 1 gives the notations used throughout the paper.

 supp(gr)supp(g2) (1 — supp(91)) (1 — supp(g2))

Table 1: Notations Used Throughout

Notation [ Description |
D a graph database
q a query graph
4 a minimum correlation threshold, 0 < 6 <'1
9(q,9) Pearson’s correlation coefficient of ¢ and ¢
a the answer set of ¢
base(Ay) the base of the answer set

the projected database of D on graph g
the frequency/support of g in D
freq(q, g), supp(q, g) the joint frequency/support of ¢ and g in D
freq(g; Dq), supp(g; Dy) the frequency/support of g in D,
freq(q, 9; Dq), supp(q, g; Dy) | the joint frequency/support of ¢ and g in D,
lower(g), upper(g) the lower/upper bound of supp(g)
lower(q, g), upper(q, g) the lower/upper bound of supp(q, g)

freq(g), Zupp(g)

4. CANDIDATE GENERATION

A crucial step for solving the problem of CGS is to ob-
tain the set of candidate graphs. Obviously, it is infeasible
to test all subgraphs of the graphs in D because there are
exponentially many subgraphs. In this section, we discuss
how to effectively select a small set of candidates for a given

query.

4.1 Support Boundsof Correlated Graphs

We begin by investigating the bounds on the support of a
candidate graph, g, with respect to the support of a query
q. We state and prove the bounds in Lemma 1.

LEMMA 1. If q and g are correlated, then the following
bounds of supp(g) hold:

supp(q) supp(q)
0—2(1—supp(q))+supp(q) < supp(g) < 62 (1—supp(q))+supp(q) *

PrOOF. By the definition of the joint support, we have
supp(q,g) < supp(g) and supp(q, g) < supp(q).

Since ¢ and g are correlated, ¢(q,g) > 0. By replacing
supp(q,g) with supp(g) in ¢(g, g), we have:

supp(g) — supp(q)supp(g) >0
V/supp(q)supp(g) (1 — supp(q))(1 — supp(g))
supp(q)

= supp(g) > 0-2(1 — supp(q)) + supp(q)

Similarly, by replacing supp(q, g) with supp(q) in ¢(q, g),
we obtain the upper bound:

supp(q)
1 — supp(q)) + supp(q)”

supp(g) < o3 (
O

For simplicity, we use lower(g) and upper(g) to denote the
respective lower and upper bounds of supp(g) with respect
to g, as given in Lemma 1. The above lemma states a nec-
essary condition for a correlated answer graph. Thus, a
candidate graph should have support within the range of
[lower(g), upper(g)].

With the result of Lemma 1, we can obtain the candi-
date set by mining the set of FGs from D using lower(g) as
the minimum support threshold and upper(g) as the max-
imum support threshold. However, according to the anti-
monotone property of the support measure, the graphs with



higher support are always generated before those with lower
support, no matter adopting a breadth-first or a depth-first
strategy. As a result, the maximum threshold upper(g) is
not able to speed up the mining process. Therefore, generat-
ing the candidates by mining the FGs from D with a support
range is still not efficient enough, especially when lower(g)
is small or D is large. This motivates us to devise a more
efficient and effective approach to generate the candidates.

4.2 Candidate Generation From a Projected
Database

From Definition 1, it follows that if ¢ > 0, then supp(q,g) >
0. This means that ¢ and g must appear together in at least
one graph in D. This also implies that Vg € base(Aq), g
appears in at least one graph in the projected database of
g, Dy. Since Dy is in general much smaller than D, this
gives rise to the following natural question: can we mine the
candidate set more efficiently from D, instead of D?

The challenge is that, however, we need to determine a
minimum support threshold that can be used to mine the
FGs from Dy, so that no correlated answer graph is missed.
Obviously, we cannot use a trivial threshold since it is too
expensive. In this subsection, we derive a minimum support
threshold which enables us to efficiently compute the can-
didates from D,. Our solution is inspired by the following
important observation as stated in Lemma 2.

LEMMA 2. Given a graph g, supp(g; Dq) = supp(q,g;Dq) =

supp(4,9)
supp(q) *

PRrROOF. By the definition of the projected database, every
graph in D, must contain ¢q. Therefore, every graph in D,
that contains g must also contain g. Thus, supp(g; Dq) =
supp(q, g; Dq) holds. Since the number of graphs contain-

ing both ¢ and g in D is the same as that in Dy, that is,

supp(q, Te s D
freq(q, 9) = freq(q, g; Dy), we have *2iig) — [eala)/ Dl —

T ,9;D,
L(ﬁ:i 2 = supp(q,g; D). O

Lemma 2 states that the support of a graph g in D,
is the same as the joint support of ¢ and g in D,;. This
prompts us to derive the lower bound and upper bound for
supp(q, g; Dy), given that g is correlated with g. Then, we
can use the bounds as the minimum and maximum support

thresholds to compute the candidates from Dj.
supp(q,9)
supp(q)
derive the bounds for supp(q, g).
First, by the definition of the joint support, we obtain the

upper bound of supp(q, g) as follows:

Since supp(q,g;Dy) = by Lemma 2, we try to

supp(q, g) < supp(q). (1)

Then, we construct a lower bound for supp(q, g) from Defi-
nition 1. Given ¢(q, g) > 0, we have the following inequality:

supp(q, g) > f(supp(g)), (2)

where

f(supp(g)) = 0+/supp(q)supp(g)(1 — supp(q))(1 — supp(g))
+ supp(q)supp(9g)-
The lower bound of supp(q, g) stated in Inequality (2) can-

not be directly used, since it is a function of supp(g), where g
is exactly what we try to get using supp(q, g). However, since

we have obtained the range of supp(g), i.e., [lower(g), upper(g)]

as stated in Lemma 1, we now show that this range can be
used in Inequality (2) to obtain the lower bound of supp(q, g).

By investigating the property of the function f, we find
that, f is monotonically increasing with supp(g) in the range
of [lower(g), upper(g)]. Therefore, by substituting supp(g)
with lower(g) in Inequality (2), we obtain the lower bound
of supp(q, g). We state and prove the bounds of supp(q, g)
in the following lemma.

LEMMA 3. If ¢ and g are correlated, then the following
bounds of supp(q, g) hold:

supp(q)
0=2(1 — supp(q)) + supp

ProOOF. The upper bound follows by the definition of the
joint support.

To show that the lower bound holds, we need to prove
that the function f is monotonically increasing within the
bounds of supp(g) given in Lemma 1. This can be done
by applying differentiation to f with respect to supp(g) as
follows:

@ < supp(q,g) < supp(q).

™ _ 0 supp(q)(1 — supp(q))(1 — 2 - supp(g))
Jloupp(s) 2+/supp(q) supp(g)(1 — supp(q))(1 — supp(g))
+ supp(q).

Thus, we need to prove that within [lower(g), upper(g)],
f'(supp(g)) > 0 or equivalently the following inequality:

1-2-supp(g) 2
V/supp(g)(1 — supp(g)) ~ ¢

First, if supp(g) < upper(g) < 0.5, then (1—2-supp(g)) >
0 and hence f’(supp(g)) > 0.

Now we consider the case when upper(g) > supp(g) > 0.5.
Since the left hand side of Inequality (3) is less than 0, we
take square on both sides of Inequality (3) and obtain:

(1—2-supp(g))® 4 - supp(q)
supp(g)(1 — supp(g)) — 02(1 — supp(q))
& a-(supp(9))® —a - supp(g) + 0°(1 — supp(q)) <0, (4)

where a = 402 (1 — supp(q)) + 4supp(q).

The left hand side of Inequality (4) is a quadratic func-
tion, which is monotonically increasing within the range
of [0.5,00]. Since 0.5 < supp(g) < upper(g), we replace
supp(g) with upper(g) in this quadratic function:

supp(q)
1 — supp(q)’ ®)

a - (upper(g))® — a - upper(g) + 6°(1 — supp(q))
= 6*(1 — supp(q))(—4 - upper(g) + 1)
< (1 — supp(q))(—4 x 0.5+ 1)
< 0.

(Since upper(g) > 0.5)

Therefore, when 0.5 < supp(g) < upper(g), Inequality (4)
holds and hence f’(supp(g)) > 0.

Thus, f is monotonically increasing within the range of
[lower(g), upper(g)]. By substituting supp(g) with lower(g)
in Inequality (2), the lower bound of supp(q, g) thus follows:

supp(q,g) > f(supp(g))
supp(q)
= f(9‘2(1 — supp(q)) + suzop(q))
supp(q)

0=2(1 — supp(q)) + supp(q)”
O



We use lower(q,g) and upper(q,g) to denote the lower
and upper bounds of supp(q, g) with respect to ¢, as given
in Lemma 3.

With the results of Lemmas 2 and 3, we propose to gener-
ate the candidates by mining FGs from Dy using %
the minimum support threshold. A generated candidate set,
C, is said to be complete with respect to g, if Vg € base(Aq),
g € C. We establish the result of completeness by the fol-
lowing theorem.

THEOREM 1. Let C be the set of FGs mined from Dy with
lower(q,g)

. Then, C is com-
supp(q)

the minimum support threshold of
plete with respect to q.

PROOF. Let g € base(Ag). Since ¢(gq,g) > 6, it follows
that lower(q, g) < supp(q, g9) < upper(q,g) by Lemma 3. By

dividing the inequality by supp(q) on all the expressions,
lower(q,g) supp(q,9)
supp(q) —  supp(q)

< supp(g; Dq) < 1. The result g € C follows, since

we have < 1. By Lemma 2, we have

lower(q,g)
supp(q)

C is the set of FGs mined from D, using % as the

minimum support threshold. []

The result of Theorem 1 is significant, since it implies that
we are now able to mine the set of candidate graphs from

a much smaller projected database Dy (compared with D)

d lower(q,g)
supp(q)
pared with lower(g) which is equal to lower(q, g), as shown

in Lemmas 1 and 3).

with a greater minimum support threshol (com-

5. CORRELATED GRAPH SEARCH

In this section, we present our solution to the CGS prob-
lem. The framework of the solution consists of the following
four steps.

1. Obtain the projected database Dy of q.

2. Mine the set of candidate graphs C from D,, using
lower(q,g)

supp(a) 28 the minimum support threshold.

3. Refine C by three heuristic rules.

4. For each candidate graph g € C,

(a) Obtain Dy.

Step 1 obtains the projected database of q. This step can
be efficiently performed using any existing graph indexing
technique [26, 6] that can be used to obtain the projected
database of a given graph.

Step 2 mines the set of FGs from D, using some existing
FG mining algorithm [12, 25, 14]. The minimum support
threshold is determined by Theorem 1. The set of FGs forms
the candidate set, C. For each graph g € C, the set of graphs
in D, that contain g is also obtained by the FG mining
process.

In Step 3, three heuristic rules are applied on C to further
prune the graphs that are guaranteed to be false positives,
as well as to identify the graphs that are guaranteed to be
in the answer set.

Finally, for each remaining graph g in C, Step 4(a) obtains
Dy using the same indexing technique as in Step 1. Then
Step 4(b) checks the correlation condition of g with respect

to g to produce the answer set. Note that, the joint sup-
port of ¢ and g, which is needed for computing ¢(q, g), is
computed as (supp(g; Dq) - supp(q)) by Lemma, 2.

In the remainder of this section, we present three heuristic
rules and our algorithm, CGSearch, to solve the problem of
CGS.

5.1 Heuristic Rules

To check whether each graph g in C is correlated with g,
a query operation to obtain Dy is needed for each candidate
(Step 4(a)). The step can be expensive if the candidate set
is large. Thus, we develop three heuristic rules to further
refine the candidate set.

First, if we are able to identify the graphs that are guar-
anteed to be correlated with g before processing Step 4, we
can save the cost of verifying the result. We achieve this
goal by Heuristic 1.

HEeuRrISTIC 1. Given a graph g, if g € C and g 2 q, then
g € base(Ay).

PROOF. Since g D ¢, we have supp(q, g) = supp(g). More-
over, since g € C, we have supp(g,q;Dq) > %. By
Lemma 2, we further have supp(q, g) > lower(q, g).

By replacing supp(q, g) with supp(g) in ¢(q,g), we have

1 — supp(q supp(g
#(a.9) = ). !
supp(q) 1 — supp(g)
Now, ¢ is monotonically increasing with supp(g), and
supp(g) = supp(q,g) = lower(q,g). We replace supp(g)
with its lower bound of lower(q,g) = supp(q)

6~ 2(1—supp(q))+supp(q)
in ¢(q, g). Then, we have the following:

#(q,9) > \/1 — supp(q) \/ 62 supp(q)

supp(q) 1 — supp(q)

> 0.
Therefore, g € base(Aq). O

Based on Heuristic 1, if we find that a graph g in the
candidate set is a supergraph of ¢, we can add (g, Dy) into
the answer set without checking the correlation condition.
In addition, since g is a supergraph of ¢, D, can be obtained
when g is mined from the projected database Dj.

We next seek to save the cost of unrewarding query opera-
tions by pruning those candidate graphs that are guaranteed
to be uncorrelated with ¢g. For this purpose, we develop the
following two heuristic rules.

Before introducing Heuristic 2, we establish the following
lemma, which describes a useful property of the function ¢.

LEMMA 4. If both supp(q) and supp(q,g) are fized, then
@(q, g) is monotonically decreasing with supp(g).

PROOF. Since both supp(q) and supp(q, g) are fixed, we
first simplify ¢ for clarity of presentation. Let = = supp(g),

a = supp(q,g), b = supp(q), and ¢ = supp(q)(1 — supp(q)).
Then we have

a—b-x

Ve z(l—x)

The derivative of ¢ at x is given as follows:

¢’(x):i. (2a—b)x —a

Ve 2z(1—z)y/z(1—x)

¢(z) =




Since 0 < z < 1, we have (1 — ) > 0. Thus, the sign of
¢'(z) depends on the sign of ((2a — b)z — a). Since ((2a —
b)z —a) is a linear function, we can derive its extreme values
by replacing 0 and 1 of x into the function. The two extreme
values of ((2a — b)x — a) are (—a) and (a —b), both of which
are non-positive, since a > 0 and a < b. Therefore, we have
((2a — b)z — a) <0 and ¢'(x) < 0. It follows that ¢(q, g) is
monotonically decreasing with supp(g). O

HEURISTIC 2. Given two graphs g1 and g2, where g1 2 g2

and supp(g1,q) = supp(g2,q), if g1 ¢ base(Ay), then g2 ¢
base(Aq).

PROOF. Since g1 2 g2, we have supp(g1) < supp(g2).

Since supp(g1,q) = supp(gz, q) and supp(q) is fixed, by Lemma

4, we have ¢(q, g1) > ¢(q,g2). Since g1 ¢ base(Ay), we have
¢(q,91) < 0. Therefore, ¢(q,92) < ¢(q,91) < 0. Thus, we
have g2 ¢ base(Aq). [

By Lemma 2, if supp(g1,q) = supp(g2,q), then we have
supp(g1; Dg) = supp(g2; Dg). Thus, Heuristic 2 can be ap-
plied as follows: if we find that a graph g is uncorrelated
with ¢, we can prune all the subgraphs of g that have the
same support as g in Dy.

We now use the function f again to present the third
heuristic:

= 0+/supp(q
+ supp(q )SUPP(91)~

J(supp(g1))

HEURISTIC 3. Given two graphs g1 and g2, where g1 2 g2,
if supp(g2,q) < f(supp(g1)), then ga ¢ base(Aqg).

PROOF. Since g1 2 g2, we have supp(g1) < supp(g2). By
Lemma 1, the necessary condition for ¢(gq,g2) > 0 is that,
supp(gz) should fall within the range [lower(gz), upper(gz2)].
As shown in the proof of Lemma 3, the function f is mono-
tonically increasing within the range [lower(g2), upper(g2)].
Therefore, we have supp(g2, q) < f(supp(g1)) < f(supp(g2)).
By replacing supp(gz,q) with f(supp(g2)) in ¢(q,g2), we
have the following derivations:

f(supp(g2)) — supp(q)supp(g2)

)
a92) V/supp(q)supp(g2)(1 — supp(q))(1 — supp(g2))

)(1 — supp(q))supp(g1)(1 — supp(g1))

0/ supp(q) supp(g2) (1 — supp(q))(1 — supp(g2))

/supp(q) supp(g2)(1 — supp(q)) (1 — supp(gz))
0

Therefore, we have g2 ¢ base(Ag).

Note that, supp(g2,q) < f(supp(g1)) also implies g1 ¢
base(Aq). This is because g1 2 g2 implies supp(gi,q) <
supp(gz, q). Therefore, we have supp(g1,q) < f(supp(g1)).

Similarly, by replacing supp(g1,q) with f(supp(g1)) in ¢(g, g1),

we can have ¢(q, g1) < 0 and thus g1 ¢ base(Ay). O

By Lemma 2, we have supp(gz,q) = supp(g2; Dq)- supp(q)-
Thus, if supp(g2,q) < f(supp(g1)), then supp(gz2;Dq) <

w. Thus, Heuristic 3 can be applied as follows: if
pp(q)

we find that a graph g is uncorrelated with ¢, we can prune

all the subgraphs of g that have support values less than
(supp((q))) in D,.
supp(q

5.2 CGSearch Algorithm

Now, we present the CGSearch algorithm. As shown in
Algorithm 1, after we obtain the candidate set C from the

projected database Dy (Lines 1-2), we process each candi-
date graph in C according to the descending order of the
graph sizes. Then, Lines 4-5 applies Heuristic 1 to include
the supergraphs of g € C directly into the answer set with-
out performing the query operation (as in Line 7). For other
graphs in C, if they are verified to be correlated with g, we in-
clude them in the answer set (Lines 8-9); otherwise, Heuris-
tic 2 (Lines 11-12) and Heuristic 3 (Lines 13-14) are applied
to further reduce the search space so that the unrewarding
query costs for false-positives are saved.

Algorithm 1 CGSearch

Input: A graph database D, a query graph ¢, and a corre-
lation threshold 6.
Output: The answer set A,.

1. Obtain Dg;
Mine FGs from D, using %}f&{’f) as the minimum
support threshold and add the FGs to C;

N

3. for each graph g € C in size-descending order do

4. if(g24q)

5. Add (g, Dy) to Ag;

6. else

7. Obtain Dgy;

8. if (¢(q,9) > 0)

9. Add (g,Dy) to Ag;

10. else

11. Hy —{g' €C:g Cg,supp(g';Dy) = supp(g; Dq)};
12. C «— C - HQ;

13. Hs —{g €C:9g Cg,supp(q’;Dy) < fi:;?(g))}
14. C — C — H3;

We now prove the soundness and completeness of the re-
sult returned by CGSearch algorithm. In other words, we
prove that CGSearch is able to precisely return A, with
respect to a given q.

THEOREM 2. The answer set, Aq, returned by Algorithm
1, is sound and complete with respect to q.

PrOOF. We first prove the soundness. V(g,Dy) € Aq,
(9,Dg) is added to Ag in either Line 5 or Line 9. For the
case of Line 5, we have proved in Heuristic 1 that g is cor-
related with g¢; while for the case of Line 9, the soundness is
guaranteed in Line 8. Thus, the soundness of 4, follows.

It remains to show the completeness. By Theorem 1, the
candidate set, C, produced in Line 2 of Algorithm 1 is com-
plete. Vg € C, if g is not included in A, then ¢(q,g) is
checked to be less than 6 (Line 10) or g is pruned by Heuris-
tics 2 or 3 (Lines 11-14). For all cases, g is proved to be
uncorrelated with ¢ and thus is not in A,. Therefore, the
completeness of A, follows. []

EXAMPLE 2. Consider the graph database in Figure 1
and the query ¢ in Figure 2(a). Let § = 0.6. CGSearch
(Line 1) first obtains Dy = {g1,92,93,94}. Thus, we have
supp(q) = 0.4 and lower(q,g) = 0.19. Then, CGSearch
(Line 2) mines FGs from D, using %12 = 0.475 as the min-
imum support threshold and obtalns 9 candidates, which
are shown in Figure 2(b). The number following “” in the
figure is the support of each candidate in D,.

Since the candidates are sorted in descending order of
their size, CGSearch first processes c¢;. Since c¢; is a super-



graph of ¢, (c1, De, ) is directly included into .A4 by Heuristic
1. Note that D.; = {g1, g2} can be obtained in the process
of mining the candidates from Dy, since c; is a supergraph
of q.

Then, CGSearch processes ¢z to obtain D., = {g2, g3, g6, g7 }-

0.5x0.4-0.4%04 " _ " ]7
6. Then, CGSearch computes Ho = {cg} since ¢ C c2
and supp(ce; Dq) = supp(cz;Dy) = 0.5. CGSearch fur-
ther computes Hs = {ca,co} since ca C c2, co C c2, and
supp(ca; Dq) = supp(co; Dg) = 0.75 < 0.76 = %ﬁg;?»,
Therefore, after processing ca,

Therefore, we have ¢(q,c2) =

as shown in Figure 2(b).
C= {CS, Cs, C7, 08}~

Similar to ¢;, CGSearch finds that c3 is a supergraph of
q and (c3,Dc,) is directly included into .44 by Heuristic 1.
For c¢s, after obtaining D.,, CGSearch computes ¢(cs,q) =
0.61 > 0, so (¢5, D.,) is added into Ag4. Finally, by querying
cr and cs, since ¢(c7,q) = 0.4 < 0 and ¢(cs,q) = 0.82 > 0,
CGSearch adds (cs, Deg) into A,.

Therefore, Ay = {(c1,Dc,), (¢3,Dey ), (¢5, Des ), (c8, Deg ) }-
Among the 9 candidates, 5 of them do not need to perform
correlation verification by applying Heuristics 1 to 3.

When carrying out the exhaustive search, there are 40
subgraphs for such a small and simple graph database. If
we generate the candidate set by mining FGs from D using
lower(g) = 0.19 and upper(g) = 0.64 as support thresholds,
there are still 16 graphs in the candidate set. This clearly
illustrates that the candidate generation from the projected
database indeed significantly reduces the search space. W

(a) An Example Query ¢

entalely

(c,: 0.5) (c,: 0.5) (cs 1) (c,: 0.75) (cs: 0.5)
c
a b c
c o—=0 o—-=0 o——=0
(cg 0.5) (c: 1) (cg: 1) (cy: 0.75)

(b) Candidate Set, C, of ¢

Figure 2: An Example Query and Its Candidate Set

5.3 Discussions

To apply the three heuristic rules in our algorithm, we
need to obtain supergraphs or subgraphs of a given graph
(Lines 4, 11 and 13 of Algorithm 1) by testing subgraph
isomorphism. However, subgraph isomorphism testing is an
expensive operation and we want to avoid it as much as pos-
sible. We find that the number of subgraph isomorphism
testings can be effectively reduced by using a depth-first
FG mining algorithm (such as ¢gSpan [25]) for the candidate
generation. For a depth-first mining process, the FGs gen-

erated can be organized by a prefix tree, in which a child is
a supergraph of its parent. Thus, by following the root-to-
leaf paths (simply called path) in the prefix tree, we are able
to determine the subgraph-supergraph relationship without
performing subgraph isomorphism testing.

If we only follow a path in the prefix tree and do not
check the relationship of the graphs that appear in different
paths, we are not able to identify all the graphs in H> and
Hs, as well as all the supergraphs of q. However, we note
that there is a trade-off here. On the one hand, if we fully
apply the three heuristic rules by cross-checking the graphs
in different paths to find all the subgraph-supergraph rela-
tionships, more subgraph isomorphism testings have to be
performed but less candidates are needed for verification of
correlation condition. On the other hand, if we only par-
tially apply the three heuristic rules by simply following the
paths in the prefix tree, no subgraph isomorphism testing
is needed but more candidates are required for verification.
We demonstrate further this trade-off in our experiments.

6. PERFORMANCE EVALUATION

We evaluate the performance of our solution to the CGS
problem on both real and synthetic datasets.

6.1 Experimental Settings

The real dataset contains the compound structures of can-
cer and AIDS data from the NCI Open Database Com-
pounds’. The original dataset contains about 249K graphs.
By preprocessing and removing the disconnected graphs, we
randomly select 100K graphs for our experiments. On aver-
age, each graph in the dataset has 21 nodes and 23 edges.
The number of distinct labels for nodes and edges is 88.

To test the scalability of CGSearch on graph size, we de-
sign a synthetic graph generator (see details in GraphGen?).
We generate four synthetic datasets by varying the average
number of edges in a graph from 40 to 100. Each synthetic
dataset has 100K graphs. The number of distinct labels is
30 and the average graph density is 0.15.

We use FG-indez [6] to obtain the projected database of
a graph. In all experiments, we set the minimum support
threshold and the frequency tolerance factor in FG-index to
be 0.03 and 0.05, respectively. We use gSpan [25] to mine the
FGs for generating the set of candidates. All experiments
were run on a linux machine with an AMD Opteron 248
CPU and 1 GB RAM.

The efficiency of CGSearch is based on the effective candi-
date generation from the projected database and the three
heuristic rules. Since there is no existing work on mining
correlations from graph databases, we mainly assess the ef-
fects of the candidate generation method and the heuristic
rules on the performance of our algorithm.

To justify the effect of the candidate generation from the
projected database on speeding up the mining process and
on reducing the search space, we implement the approach
whose candidates are mined from the whole database with
a support range. Furthermore, to show the effect of the
heuristic rules on refining the candidate set, we make three
variants of our algorithm: CGSearch-P, CGSearch_F and
CGSearch_N. Among them, CGSearch_ P and CGSearch_F
are implemented based on the different strategies of apply-

"http://cactus.nci.nih.gov/ncidb2/download.html
2http:/ /www.cse.ust.hk /graphgen



ing the heuristic rules as discussed in Section 5.3. Table 2
summarizes the algorithms tested in our experiments.

Table 2: Algorithms Tested

Description

Name

Range Generate the candidate set from D using
[lower(g), upper(g)] as a support range.
CGSearch_P | Partially apply the heuristic rules in CGSearch.
CGSearch_F | Fully apply the heuristic rules in CGSearch.
CGSearch_N | Do not apply the heuristic rules in CGSearch.

6.2 Performance on Real Dataset

Since the complexity of the CGS problem mainly depends
on the support of the query, we randomly generate four sets
of queries, Fi, Iy, F3, and F4, each of which contains 100
queries. The support ranges for the queries in Fy to Fy are
[0.02,0.05], (0.05,0.07], (0.07,0.1] and (0.1, 1), respectively.

6.2.1 Effect of Candidate Generation

Figure 3 reports the performance of CGSearch_P and Range
on the real dataset when varying the support of the queries.
Figures 3(a-b) show the running time and memory consump-
tion per query. On average, CGSearch_P is two orders of
magnitude faster and consumes 10 times less memory than
Range. For both CGSearch_P and Range, the time taken
by the candidate generation dominates. We observe that,
CGSearch_P is slightly slower for the query set Fi and Fj.
This is because the time for generating the candidates not
only depends on the size of the projected database (i.e.,
supp(q)), but also depends on the minimum support thresh-
old (i.e., %). Although the minimum support thresh-
old of Fj is the highest among all the query sets, its pro-
jected database is the largest, which increases the mining
time slightly. While for F}, its low minimum support thresh-
old results in slightly longer processing time. Compared
with Range, the running time of CGSearch_P is much more
stable. For all support ranges, CGSearch_P takes 2 to 4
seconds for each query, while the running time of Range is
largely influenced by the support of the query. With the
decrease in the support of the query, the running time of
Range increases rapidly from 100 seconds to 400 seconds.

We show the size of the candidate sets of CGSearch_P
and Range in Figure 3(c). The size of the answer set is
also shown as a reference. It is obvious that the size of the
candidate set produced by CGSearch_P is much closer to
that of the answer set. Compared with Range, the candidate
set of CGSearch_P is over an order of magnitude smaller.

6.2.2 Effectof 0

Figure 4 reports the performance of CGSearch_P and Range
when varying the minimum correlation threshold 6 from 0.6
to 1. We test all query sets on the real dataset for both
CGSearch_P and Range. For clarity of presentation, we only
present Fy for Range. But we remark that Range performs
the best on F; among all the query sets, which means that
the performance of Range on Fj is the lower bound.

As shown in Figure 4, for all values of 6, CGSearch_P is
over an order of magnitude faster and consumes 6.5 times
less memory than Range on Fy. Given a query, with the
decrease in 6, the minimum support threshold used to gen-
erate the candidates also decreases for both CGSearch_P and
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Range. Hence, the processing time of both CGSearch_P and
Range increases with the decrease in #. We find that, when
varying 6, the running time of CGSearch_P on F; and F3 is
less stable than that on F3 and F4. We also observe similar
phenomenon for Range on Fy and F> (not reported in the
figure). This is because the small minimum support thresh-
old results in a large number of candidates. In this case, the
time taken by candidate generation no longer dominates the
total processing time. Instead, much more time is spent on
querying the candidates by FG-index to verify the correla-
tion condition. For example, for the query set Fi, when
0 = 1, only 3% of the total time is spent on querying the
candidates; while when # = 0.6, more than 60% of the total
time is spent on querying the candidates. This explains the
trend of the running time for queries of low support.

6.2.3 Effect of Heuristic Rules

In order to show the effect of the heuristic rules clearly,
we get rid of the time taken by the candidate generation and
only present the time for querying candidates and checking
the correlation condition.

Figure 5 shows the time on Fj for the three variants
of CGSearch at different values of §. When 6 = 0.6, the
number of candidates is large. Therefore, CGSearch_F per-
forms the best, since the cost for querying the candidates
is much larger than the cost for fully applying the heuristic
rules. In this case, CGSearch_P is slower than CGSearch_F
since partially applying the heuristic rules is not able to fur-
ther reduce the number of candidates as effectively as does
CGSearch_F. However, with the increase in 6, and hence
the decrease in the size of candidate set, CGSearch_P out-
performs CGSearch_F. This is because, given the smaller
number of candidates, the full application of the heuristic
rules which involves subgraph isomorphism testings is more
costly than querying the candidates by FG-index. This sug-
gests a good strategy for applying the heuristic rules: when
the number of candidates is large, we can use CGSearch_F
to reduce the search space as much as possible; when the
number of candidates is relatively small, we can simply use
CGSearch_P.

In most of the cases, CGSearch_N is the worst, since all the
candidates need to go through the verification of correlation
condition. However, if the number of candidates is small, it
is possible that CGSearch_F is even slower than CGSearch N
due to too many subgraph isomorphism testings performed
when fully applying the heuristic rules. Therefore, it can
be seen from Figure 5 that the time of CGSearch F is al-
most the same as that of CGSearch_N for high values of 6.
However, in general, CGSearch_P outperforms CGSearch_N,
since the partial application of the heuristic rules requires
no subgraph isomorphism testing due to the prefix tree, as
discussed in Section 5.3.

6.3 Performanceon Synthetic Dataset

Since the graphs in the real dataset are of small size (av-
eragely 23 edges per graph), we use the synthetic datasets
to test the scalability of CGSearch and Range on different
graph sizes.

Similar to the experiments on the real dataset, we gener-
ate four sets of queries, F1 to Fy, with the same setting of
support ranges as in Section 6.2.

For clarity of presentation, we only show the results of Fi
and Fy, which are of the largest and the smallest support
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Figure 5: Effect of Heuristic Rules

ranges, respectively. Figure 6 reports the performance of
CGSearch_P and Range. For F, CGSearch_P is up to four
orders of magnitude faster and consumes 41 times less mem-
ory than Range. While for F4, CGSearch_P is still over an
order of magnitude faster and consumes 6 times less memory
than Range. The smaller improvement on the performance
of CGSearch_P over Range for Fj is because the average
number of candidates of Range for Fj is over three orders of
magnitude smaller than that of Range for Fy (111,955 for
Fy and 795 for Fy). Figure 6 also shows that, CGSearch_P
is much more stable on resource usage than Range when
varying graph sizes.
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7. RELATED WORK

There have been a number of studies on mining corre-
lations from various types of databases. Pearson’s correla-
tion coefficient, as well as its computation form for binary
variables, ¢ correlation coefficient, are prevalently used as
a correlation measure. Sakurai et al. [20] use Pearson’s
correlation coefficient to define the lag correlation between
two time sequences. Xiong et al. [23] apply ¢ correlation
coefficient to define the strongly correlated pairs in transac-
tion databases. An upper bound of ¢, as well as monotone



properties of the upper bound, are identified to facilitate the
efficient mining process. Recently, Zhang and Feigenbaum
[29] also adopt ¢ correlation coefficient to measure the corre-
lated pairs in transaction databases. An efficient algorithm
that uses min-hash functions as the pruning method is de-
veloped. To the best of our knowledge, our work is the
first application of ¢ correlation coefficient in the context of
graph databases.

In literature, many other correlation measures are pro-
posed for different applications. For market-basket data,
correlation measures include x? [5], interest [5], all-confidence
[13, 15], bond [15], h-confidence [24], and so on. For multi-
media data, Pan et al. [16] use random walk with restart to
define the correlation between the nodes in the graph that
is constructed from a multimedia database. For quantita-
tive databases, Ke et al. [11] utilize mutual information and
all-confidence to define the correlated patterns.

For similarity searching techniques developed for general
graph models, Holder et al. [8] use the minimum descrip-
tion length principle for inexact graph matching. Raymond
et al. [18] propose an efficient algorithm, called MCES, to
perform similarity search measured by maximum common
subgraphs. Yan et al. [27] develop a structural filtering al-
gorithm, called Grafil, to filter graphs without performing
similarity computations. Recently, Williams et al. [22] pro-
pose an indexing technique that adopts graph decomposition
methods to facilitate similarity search on graph databases.
However, all of them focus on structural similarity search as
indicated by their graph similarity measures, while our work
captures statistical similarity defined by Pearson’s correla-
tion coefficient.

8. CONCLUSIONS

We formulate the problem of correlated graph search, which
takes into account the occurrence distributions of graphs us-
ing Pearson’s correlation coefficient. By deriving the theo-
retic bounds for the support of a candidate graph, we pro-
pose to efficiently generate the candidate set by mining FGs
from the projected database of the query graph. We de-
velop three effective heuristic rules to further reduce the
size of the candidate set. We propose an efficient algorithm,
CGSearch, to solve the problem of CGS. The soundness and
completeness of the query results returned by CGSearch are
also formally proved. The experimental results justify the
efficiency and effectiveness of the candidate generation and
the heuristic rules. Compared with the approach that gen-
erates the candidates directly from the database by a sup-
port range, our solution is orders of magnitude faster and
consumes much less memory. More importantly, CGSearch
achieves very stable performance when varying the support
of the queries, the minimum correlation threshold, as well
as the graph size.
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