

International Journal of Virtual Reality, 2006, 5(3):1-10

1

Abstract—This work presents an approach to render
appropriate shadows with Image Based Lighting in Augmented
Reality applications. To approximate the result of environment
lighting and shadowing, the system uses a dome of shadow casting
light sources. The color of each shadow is determined by the area
of the environment behind the casting light source. As a result it is
possible that changes in the lighting conditions immidiately affect
the shadow casting of virtual objects on real objects.

Keywords— Augmented Reality, Image Based Lighting,
Real-Time, Soft Shadows

1. INTRODUCTION
Photorealistic rendering in Augmented Reality (AR)

applications is still one of the most challenging research topics
in AR. Bimber et al. postulate in [1] a consistent lighting
situation between real and virtual objects to achieve a
convincing Augmented Reality application. Sugano et al. and
Madsen et al. underline the importance of consistent shadows
in an AR scenario [2], [3]. Shading and shadows in both worlds
must match to achieve a natural merge [4], [5]. Thus the
shading and the shadows of the virtual lights have to be
consistent with the real world. Agusanto et al. present in [6] the
seamless integration of virtual objects in an AR environment
using Image Based Lighting (IBL) techniques and environment
illumination maps. They postulate a consistent and a coherent
virtual world with respect to the real environment.

Image Based Lighting is an efficient technique to illuminate
objects with textures of the real environment [7]. It can be seen
as a combination of the techniques of Reflection Mapping [8]
and Illumination Mapping [9]. While Image Based Lighting
alone is well suited for real-time applications, problems arise
when it comes to shadowing. Casting shadows requires light
sources at distinct positions. Those are not available when
lighting is done with textures.

This paper describes a technique to generate shadows for
scenes lit with Image Based Lighting. The shadows are
sensitive to any changes in the ubiquitous lighting. If the light
source changes its size, the softness of the shadow adapts
accordingly. Moreover, the color of the shadow depends on the
color of the light source. Shadows add the level of realism to a
rendered image. As described in [5], shadows are a very
essential factor for the 3D impression of a scene. The seamless
merging of the virtual world and the real world is a challenging

topic in current Augmented (Mixed) and Virtual Reality
research.

2. RELATED WORK
Fournier et al. were one of the first researchers, who

combined real video images with computer generated content
focusing on the problems of common viewing parameters,
common visibility, and common illumination [10]. Global
lighting models (e.g. progressive radiosity) are still not suitable
for AR applications, because they require a complete scene
description. Saito et al. present a method for measuring a
radiance distribution of the real scene [11]. By using an
omnidirectional stereo algorithm, they first create a geometric
model of the scene. The radiance of the scene is computed from
a sequence of omni-directional images taken with different
shutter speeds and mapped onto the constructed geometric
model. A similar algorithm is presented by Gibson et al. [12].
They use a large number of fixed pre-calculated light sources,
and allow rendering of impressive quality at interactive frame
rates. In contrast, Kakuta et al. [13] use a large amount of fixed
light sources to render objects under changing lighting
conditions. The objects are nevertheless pre-processed and
cannot be moved during run-time.

A large amount of research in Image Based Lighting is done
by Debevec [7], [14], [15]. He suggests a division of the
environment map in areas of equal integrated brightness to find
positions of virtual light sources for shadow creation in offline
rendering [16]. The achieved rendering results are more than
impressive. Nevertheless most of the results are not rendered in
real-time. Agusanto et al. demonstrate in [6] a real-time IBL
technique, where they mainly focus on improving lighting
results without taking into account shadows.

Only few researchers are focusing on real-time shadows for
AR-based scenerios [2], [5]. In our first prototype, we
combined shadows of real objects with virtual objects and vice
versa using shadow volumes [17]. However, shadow volumes
seem to be too complicated to be used for achieving good
results with high performance. Soft shadow maps in
combination with Image Based Lighting techniques seem to be
a good way to achieve better results. Karlsson and Selegard
[18] integrated soft shadows in an AR scenario using IBL
techniques. However, they only allow one fixed shadow.
Unlike previous work, our system benefits from the following
features:

Image Based Shadowing in Real-Time
Augmented Reality

Peter Supan, Ines Stuppacher, Michael Haller
Digital Media, Upper Austria University of Applied Sciences

Hagenberg, Austria

International Journal of Virtual Reality, 2006, 5(3):1-10

2

- Seamless integration of a virtual scenario: Virtual and real
shadows always fall into the same direction with the same color
and intensity.

- Image Based Shadowing: Shadows are controlled by an
image of the environment. There are no limitations in the
number and shape of real light sources in the environment.

- Presentation of three setups: We demonstrate three
different AR scenarios using a single-camera setup with a
gazing sphere, and two multi camera setups combined with a
mirrored sphere and a fisheye lens for capturing the
environment.

- No pre-processed data: Our approach does not rely on
pre-processed data and thus allows changes of the light
situation and changing of object positions during runtime.
Nevertheless, this comes at the cost of higher computation.

3. SETUPS

(a)

(b)

Fig. 1. In picture (a) the setup with two cameras and a mirrored sphere is
visible. Notice that in the single-camera setup, we just use the left camera for
tracking both the environment and the mirrored sphere. Picture (b) shows the
setup with two cameras and a fisheye lens, which is simpler and faster to
assemble.

We implemented three different setups to test our approach

 (cf. fig. 1). In the first scenario, we had a single-camera setup
in combination with a mirrored (gazing) sphere. The same
camera captures both the real scene and the mirrored sphere in
the scene. The sphere is in a fixed position relative to the origin
of the tracking system (e.g. ARToolKit) and is cropped out of
the video image.

The advantage of this setup is that we only have to use one
camera. Conversly, the resolution of the environment map
depends on the size of the mirrored sphere in the camera image.
Since both the marker and the mirrored sphere have to be
visible in the camera image at any time, the size of the sphere in
the camera image is often very small. As a result the resolution
of the sphere map is very low. Furthermore, it often happens
that the mirrored sphere gets out of the camera image, which
causes that the environment cannot be updated.

The second setup was a two-camera setup with a mirrored
sphere. One camera captures the real scene and the other (at a
fixed position) tracks the mirrored sphere. Since the mirrored
sphere is captured by a separate camera, it is not possible that
the sphere is outside of the camera image. Furthermore, the
resolution of the environment map does not depend on the
distance of the camera, since we always have the same distance
from the camera to the mirrored sphere. Notice that both
cameras have to be calibrated well, so that the environment map
matches the image of the scene camera. Otherwise the cameras
often have different white-balance and exposure setting which
usually causes a mismatch of lighting of real and virtual
objects.

Finally, in the third scenario, we used a two-camera setup in
combination with a fisheye lens (180°). The mirrored sphere is
replaced by the camera with the fisheye lens which captures the
real environment. Thus the setup becomes simpler and easier to
calibrate, since there is no mirrored sphere. However, a fisheye
lens usually has a smaller field of view than the mirrored
sphere. Consequently, a smaller part of the environment is
visible in the map.

4. IMAGE BASED SHADOWING PIPELINE

Fig. 2. Overview of the Image Based Shadowing pipeline.

An overview of our algorithm is depicted in fig. 2.

Depending on the setup, the images of one or two cameras are
used as input to the pipeline. From these images the position of
the camera in world space is extracted. Moreover, the image of
the mirrored sphere is cropped and copied into a texture. This

International Journal of Virtual Reality, 2006, 5(3):1-10

3

texture, the Reflective Environment Map, is then blurred to
create a diffuse Irradiance Map. Since both the original
Reflective Environment Map and the Irradiance Map are in
Sphere Map format, they are converted to cube maps. In what
follows the resulting cube maps are used for lighting while
rendering the virtual objects.

The specular lighting is realized with reflection mapping [8].
The diffuse lighting is done as described in [9], where the
surface normal of a point is used for a texture lookup into an
environment map. Shadowing is performed by creating a
reasonable amount of light sources around the scene which cast
shadows with shadow maps. Each of these light sources
determines its intensity and color from the area of the
environment map behind the light source, as seen in fig. 3.

Fig. 3. The color of every light source depends on the average color of an area
of the Environment Map behind the light source.

Similar to environment mapping, we assume that the
environment is far away from the rendered scene. With this
assumption, we can ignore the distance of light-emitting areas,
which alleviates rendering. Our algorithm performs best when
we simulate soft shadows cast from relatively large direct or
indirect light sources far away in the environment. Our
approach although fails to simulate a hard shadow cast by point
lights or light sources located very near or inside the scene, due
to the limited number of light sources.

5. ALGORITHM
Our algorithm for shadowing a scenario is based on three

steps, which can be defined as follows:
1) Creating the Shadow Maps: We create the Shadow Map

by rendering the scene from the view of every light source
(in our setup we used up to 64 light sources
simultaneously) and storing the depth buffer in a separate
texture. Since the rendering of many shadow maps for each
frame can become very expensive, we only update one
shadow map (of only one light source) in each frame.

2) Creating the Shadow Buffer: Next, we create a texture
called Shadow Buffer containing the accumulated shadows
of all light sources. To create this texture we render the
scene from the view of the camera. The shadows of all
light sources are rendered and the results added (see
section 5.2). The color of each shadow is determined by

the environment map (cf. section 5.3).
3) Rendering with the Shadow Buffer: Finally, we render the

scene from the point of view of the camera. The Shadow
Buffer created before is projected on the scene. At every
pixel the value stored in the Shadow Buffer is subtracted
from the diffuse lighting value of the pixel to realize
shadowing (see section 5.4).

5.1 Calculating the Shadow Maps
The scene is rendered from the view of the light source. The

color writing flag is disabled so that only depth values are
written into the buffer. Next, we copy the depth values to a
depth texture, where one depth texture is stored along with
every light source.

5.2 Calculating the Shadow Buffer
In step two of our algorithm, the shadow intensity of every

light source is determined. Fig. 3 shows a cross section of the
used scene. In theory each point P on the surface receives light
from every visible light source. This means that the incident
light on P equals the accumulated light from every light source
not casting a shadow on P. If the surface is lit by Lambert’s law,
the influence I of every light is calculated as follows

I C N L S= ⋅ • ⋅ , (1)

where C is the color of the light source, N is the normal of the

surface and L is the normalized vector from the rendered point
P to the light source. The shadowing factor S equals 0.0 if the
light casts a shadow on the rendered point and 1.0 if the point is
in light. The illumination IL on every point is therefore
calculated as the sum of all light intensities

0

n

i i
i

IL C N L S
=

= ⋅ • ⋅∑ , (2)

where n is the number of all light sources. In our application
there are objects which are already lit (e.g. the ground plane,
which receives shadows from virtual objects but does not
receive light from virtual light sources). To deal with these
objects, we do not calculate the radiance a point receives from
any light source but the radiance R a point does not receive
because of shadowing. R is determinded by calculating the
illumination as described in equation 2, but with inverted
shadowing factor S:

0
(1)

n

i i
i

R C N L S
=

= ⋅ • ⋅ −∑
 (3)

5.3 Acquiring the Light Color and Shadow Value
Notice that for equation 2 the color of the light source has to

be calculated. This color depends on the color of the area of the
environment map behind the light source. To achieve it, we
simply ”downsample” the cube environment map to a low
resolution (4x4 or 8x8 texels per face as depicted in fig. 4(c)).
As a result, every texel now ”contains the average” of all
surrounding texels in the original high resolution cube map
(like fig. 4(b)). Now the positions of the light sources are set in

International Journal of Virtual Reality, 2006, 5(3):1-10

4

a way that every light source lies in the center of one cube map
texel (see fig. 4(a)). The color of every light source is set to the
color of the texel behind it.

The shadowing factor S is the result of the Shadow Map
texture lookup and tells if a point is lit by the currently
calculated light source or if it is in shadow. In fig. 3 and 4(a) S
is shown by the fill color of the light source symbols.

(a)

(b) (c)

Fig. 4. The final color of the light source is determined by performing a lookup
into a downsampled Cube Environment Map.

5.4 Combining Shadows and Lighting
Once the Shadow Buffer is ”finished”, the final lighting can

be realized. Specular lighting is calculated by performing a
lookup in the Reflective Environment Map at the direction of
the reflected eye vector. In contrast, diffuse lighting is
calculated by a lookup in the Irradiance Map at the direction of
the surface normal of the rendered point. The received value is
the amount of diffuse light the point receives if the whole
environment is visible.

The amount of light which does not receive the rendered
point, because it was blocked by another object, is stored in the
Shadow Buffer. This amount has to be subtracted from the
diffuse lighting value to achieve correct lighting, as illustrated
in fig. 5. Thererfore, at every pixel, lighting is calculated as
follows:

()I d s sp= − + , (4)

where I is the light intensity, d is the calculated diffuse

lighting value, s is the value from the Shadow Buffer and sp is
the calculated specular lighting value.

Fig. 5. First the Shadow Buffer is created in several passes with eight light
sources each. Then the result is fed into the lighting pass and affects the diffse
lighting value.

In our setup, real object should not receive lighting but shall
receive shadows from virtual objects. We call these objecs
Phantom Objects (cf. [19]). An example is the ground plane.
For these objects, the lighting calulations are omitted (because
they are already lit by real light). Finally, the value in the
Shadow Buffer is subtracted from the original color value to get
the impression of cast shadows (although correct results are
only achieved for diffuse objects).

6. IMPLEMENTATION DETAILS
The algorithm described above is implemented in OpenGL

using the Cg shading language. It is split into several render
passes.
1) Environment map processing steps:

Cropping the Sphere Map: We render a quad with the video
image of the camera. The texture coordinates are chosen so that
only the picture of the mirrored sphere is visible.

Creating the Irradiance Map: We render a quad with the
Sphere Map and perform a seperable 2D-Gaussian blur on the
map.

Converting to cube maps: We convert the sphere maps to
cube maps by rendering six quads. Each quad corresponds to
one face of the Cube Map and each pixel of the quad becomes a
texel in the Cube Map. Notice that the texture coordinates of the
quads are chosen in a way that the texture coordinates of every
rendered pixel equal to the 3D-vector into space the Cube Map
texel will represent. In the fragment shader, this 3D-vector is

International Journal of Virtual Reality, 2006, 5(3):1-10

5

converted to a 2D-vector for a simple texture lookup in the
sphere map.

Although sphere maps of the environment would be instantly
available after capturing the mirrored sphere, we use cube maps
in the setups with two cameras. The reason is that with two
cameras the camera for the real scene and camera for the
environment map will look into different directions. Sphere
maps are view dependent and must be taken from the same
view direction as the camera which uses them for rendering.
Cube maps are better suited for this task due to their view
independency.

2) Creating the Shadow Map: We generate the Shadow
Map by rendering the scene and copy the depth buffer into a
GL_DEPTH_COMPONENT texture.

3) Creating the Shadow Buffer: The Shadow Buffer is
created by rendering the scene from the point of view of the
camera. To get the shadowing value for every pixel, a depth
texture comparison has to be performed for every light source
in the scene. The necessary texture coordinates are calculated in
the vertex shader.

Since only eight texture coordinate sets can be transfered
from vertex to fragment shaders in common shader profiles, not
all light sources can be calculated in one pass. On the contrary
the Shadow Buffer is created in several passes with eight light
sources each. The results of these passes are accumulated with
additive blending (see fig. 5).

To get the color of the light source a higher mip level of the
environment cube map is sampled. As texture coordinates the
positions of the light sources are used.

After all passes are finished, the Shadow Buffer is copied to
a texture.

4) Rendering with lighting and shadows: We render the
scene from the point of view of the camera. The texture with the
Shadow Buffer is projected so that it fills the whole screen.
This is done by mapping from screen coordinates S (in the
range [−1.0,1.0]) into texture coordinates T (in the range
[0.0,1.0]):

0.5 0.5.T S= ⋅ + (5)

7. RESULTS
All the images and performance measurements in the

following section were generated on an Intel Pentium IV with 3
GHz and an nVidia GeForce 7800 GT graphics card with a
screen resolution of 800×600.

7.1 Performance Results
Table 1 shows the frame rate of the same scene with different
numbers of light sources.

Number of Shadows fps
0 35
8 32
48 21
64 15

Table 1. Frame rates with different number of shadows. Notice that the frame
rate slows down using more than 8 shadows simultaneously.

As more light sources result in more rendering passes during
creation of the Shadow Buffer, performance if heavily affected.

(a)

(b) (c) (d)

Fig. 6. Comparison of renderings with different number of shadows. Image (a)
is rendered with 8 shadows, (b) with 48 and for image (c) 64 shadows are used.

On the other hand, the quality of the shadow increases with

more light sources, because the single shadows become
invisible. Fig. 6 depicts a comparison of a scene with 8, 48 and
64 shadows.

7.2 Rendering Results
The proposed algorithm offers shadows which change

dynamically under varying lighting conditions. Fig. 7 shows a
scene with different lighting. A strong light source is located at
the upper right of the scene. Note the changing in the shadows
of the virtual cola can and the teapot. The real lighting affects
the shadow casting of the virtual objects. The resulting
shadows are very soft and appropriate to simulate the
shadowing caused by environments with a large amount of
indirect light and large light sources.

(a)

International Journal of Virtual Reality, 2006, 5(3):1-10

6

(b)

Fig. 7. The rendered scene under different lighting conditions. In (a) there is a
strong light source at the upper right of the scene. (b) If the light source is
relatively small, the virtual shadow ends up too soft.

If there is a small, bright light source in the environment, the

shadows tend to be too soft (cf. fig. 7(b)). The reason for this is
that the virtual shadow is actually a combination of many
shadows from fixed light sources. If a real light source is placed
between two virtual light sources, the shadow is simulated by
two or more blended virtual shadows, which causes a softening
effect.

(a) (b)

(c) (d)

Fig. 8. If the light source is relatively small, the virtual shadow ends up too soft.
In the reflection of the teapot in figures (a) and (b) the marker is visible on the
left hand side, although in reality it is at the right hand side. In images (c) and
(d) camera and object are at the same position, the reflection is therefore correct.

Notice that in both setups (using the mirrored sphere or the
fisheye lens), the reflection gets calculated wrong. Fig.s
8(a)-(d) depict a scenario, where the marker, on which we
placed the can, gets rendered wrong on the teapot’s surface.

During our tests, we observed that people often do not
recognize this effect. However, it will be recognized, once we
go too close to the virtual object. Notice also that objects
behind the camera are not seen by the fisheye lens.

8. CONCLUSIONS AND FUTURE WORK
The algorithm proposed in this work presents an Augmented

Reality setup, where virtual objects are rendered
photo-realistically adapted to the real environment. Our system
is based on both vertex and pixel shaders to achieve interactive
frame rates. In addition, we focused on the implementation of
soft shadows. We allow the movement of light sources during
run-time which results in a perceptually correct shadowing.

In terms of future work, we want to investigatemore
advanced rendering techniques for simulating objects with
different surfaces. Our results would also be improved by the
combination of BRDF (used for the environment map) with
high dynamic range images and occlusion mapping. A website
featuring videos of this work can be seen at
http://www.officeoftomorrow.org.

REFERENCES
[1] Bimber, O., Grundhoefer, A., Wetzstein, G., Knoedel, S.: Consistent

illumination within optical see-through augmented environments. In:
IEEE/ACMInternational Symposium on Mixed and Augmented Reality
(ISMAR 2003), IEEE Computer Society (2003) 198–207

[2] Sugano, N., Kato, H., Tachibana, K.: The effects of shadow representation
of virtual objects in augmented reality. In: IEEE/ACM International
Symposium on Mixed and Augmented Reality (ISMAR 2003), IEEE
Computer Society (2003) 76–83

[3] Madsen, C.B., Sørensen, M.K.D., Vittrup, M.: The importance of
shadows in augmented reality. In: Proceedings: 6th Annual International
Workshop on Presence, Aalborg, Denmark. (2003) (4 pages) To appear.

[4] Naemura, T., Nitta, T., Mimura, A., Harashima, H.: Virtual Shadows -
Enhanced Interaction in Mixed Reality Environment. In: IEEE Virtual
Reality (VR’02). (2002)

[5] Naemura, T., Nitta, T., Mimura, A., Harashima, H.: Virtual shadows in
mixed reality environment using flashlight-like devices. Trans. Virtual
Reality Society of Japan 7(2) (2002) 227–237

[6] Agusanto, K., Li, L., Chuangui, Z., Sing, N.W.: Photorealistic rendering
for augmented reality using environment illumination. In:
IEEE/ACMInternational Symposium on Mixed and Augmented Reality
(ISMAR 2003), IEEE Computer Society (2003) 208–216

[7] Debevec, P.: Image-based lighting. IEEE Computer Graphics and
Applications 22 (2002) 26–34

[8] Blinn, J., Newell, M.: Texture and reflection in computer generated
images. In: Communications of the ACM 19(10). (1976) 542–547

[9] Miller, G.S., Hoffman, C.R.: Illumination and reflection maps: Simulated
objects in simulated and real environments. In: Course notes for
Advanced Computer Graphics Animation, SIGGRAPH 84. (1984)

[10] Fournier, A., Gunawan, A.S., Romanzin, C.: Common illumination
between real and computer generated scenes. Technical report,
Vancouver, BC, Canada, Canada (1992)

[11] Sato, I., Sato, Y., Ikeuchi, K.: Acquiring a radiance distribution to
superimpose virtual objects onto a real scene. IEEE Transactions on
Visualization and Computer Graphics 5(1) (1999) 1–12

[12] Gibson, S., Howard, T., Hubbold, R.: Rapid shadow generation in
real-world lighting environments. In: Proceedings of the Eurographics
Symposium on Rendering. (2003)

[13] Kakuta, T., Oishi, T., Ikeuchi, K.: Shading and shadowing of architecture
in mixed reality.In: Proceedings of ISMAR 2005. (2005)

[14] Reinhard, E., Ward, G., Pattanaik, S., Debevec, P.: High Dynamic Range
Imaging. 1. edn. Morgan Kaufmann (2006)

[15] Debevec, P., Tchou, C., Gardner, A., Hawkins, T., Poullis, C., Stumpfel,
J., Jones, A., Yun, N., Einarsson, P., Lundgren, T., Fajardo, M., Martinez,

International Journal of Virtual Reality, 2006, 5(3):1-10

7

P.: Estimationg surface reflectance properties of a complex scene under
captured natural illumination. Technical Report ICTTR-06.2004,
University of Southern California Institute for Creative Technologies
Graphics Laboratory (2004)

[16] Debevec, P.: A median cut algorithm for light probe sampling. Technical
Report 67, USC Institute for Creative Technologies (2005)

[17] Haller, M., Drab, S., Hartmann, W., Zauner, J.: A real-time shadow
approach for an augmented reality application using shadow volumes. In:
ACM Symposium on Virtual Reality Software and Technology, Tokyo,
Japan (2003)

[18] Karlsson, J., Selegard, M.: Rendering realistic augmented objects using
an image based lighting approach. Master’s thesis, Linkpings
Universitet, Department of Science and Technology, Sweden (2005)

[19] Fuhrmann, A., Hesina, G., Faure, F., Gervautz, M.: Occlusion in
collaborative augmented environments. Computers and graphics 23(6)
(1999) 809–819 http://www.cg.tuwien.ac.at/research/vr/occlusion.

Peter Supan is a researcher at the department Digital Media of the Upper
Austria University of Applied Sciences, Austria. His research interests include
augmented and virtual reality, real-time computer graphics and rendering, and
multimodal human-computer interaction. Supan received a MSc. in engineering
from the Upper Austria University of Applied Sciences, Austria. Contact him at
peter.supan@fh-hagenberg.at.

Ines Stuppacher is a researcher at the department Digital Media of the Upper
Austria University of Applied Sciences, Austria. Her research interests include
real-time computer graphics and rendering, multimodal human-computer
interaction, games, and augmented and virtual reality. Stuppacher received a
MSc. in engineering from the Upper Austria University of Applied Sciences,
Austria. Contact her at ines.stuppacher@fh-hagenberg.at.

Michael Haller is a researcher developing innovative computer interfaces that
explore how virtual and real worlds can be merged to enhance and improve
computer systems. Currently, he is working at the department of Digital Media
of the Upper Austria University of Applied Sciences and responsible for
computer graphics, multimedia programming, and augmented reality. In 2004,
he received the Erwin Schroedinger fellowship award presented by the Austrian
Science Fund for his stay at the HITLabNZ, University of Canterbury (New
Zealand) and the IMSC, University of Southern California (USA). Contact him
at haller@fh-hagenberg.at

