
A real-time shadow approach for an Augmented Reality
application using shadow volumes

Michael Haller
Upper Austria University of

Applied Sciences
Media Technology and Design

Hagenberg, Austria

haller@fh-hagenberg.at

Stephan Drab
Upper Austria University of

Applied Sciences
Media Technology and Design

Hagenberg, Austria

stephan.drab@fh-
hagenberg.at

Werner Hartmann
Institute for Applied

Knowledge Processing
JK University of Linz

Linz, Austria

wh@faw.uni-linz.ac.at

ABSTRACT
Shadows add a level of realism to a rendered image. More-
over, they are used as visual clues to determine spacial rela-
tionships and real-time shadows will gain importance in cur-
rent real-time computer graphics applications for this rea-
son. Twenty-five years ago, Crow published the shadow vol-
ume approach for determining shadowed regions of a scene.
In this paper we present a modified real-time shadow vol-
ume algorithm that can be used in an Augmented/Mixed
Reality application. Finally, the proposed concepts provide
a novel sense of visual output of an AR application.

Keywords
Shadow volumes, Augmented Reality

1. INTRODUCTION
The seamless merging of the virtual world and the real world
that we live in is a challenging topic in current Augmented
(Mixed) and Virtual Reality research. There are a great
deal of key issues that enhance the immersive feeling of the
user. In this paper we want to focus more on the problem
of shadows related to an Augmented Reality world. Need-
less to say that in an Augmented Reality system a number
of problems need to be solved. One of the most important
tasks is, of course, that superimposed objects have to be
placed on the exact position as they really would exist in
the real world. As mentioned by Naemura et. al. [15], the
consistency of geometry, time (synchronized world to facil-
itate smooth interaction), and illumination is an important
issue for Augmented Reality applications. In this paper we
want to focus on the consistency of illumination and pro-
pose a technique for shadows in a superimposed Augmented
Reality application. Shading and shadows in both worlds
must match to achieve a natural merge [16]. Our approach
supports rendering the shadows of real objects onto virtual

objects and shadows of virtual objects onto real/virtual ob-
jects. Consistency between the real light and the virtual
world would be very useful to enhance the realistic impres-
sion of virtual objects. A real-time estimation of the position
and the direction of the real light source is required to cal-
culate the right shading and shadows of the virtual objects
(cf. inconsistent virtual shadow in image 16).

Shadows are essential for the improvement of visual percep-
tion. Moreover, they enhance the 3D impression in that the
users get a better immersive 3D feeling - We believe that
shadows are important in the same way as 3D stereo HMD,
because users can sense more exactly the distance between
two virtual objects. As a result, the interaction and manip-
ulation of objects is enhanced [13].

Until now virtual worlds (computer games, VR applications)
use shadows for enhancing the 3D impression. Although
these virtual environments can animate and render the world
with near photo-realism in real-time, we cannot say the same
about the rendering of Augmented Reality applications. We
investigated in methodologies for computing real-time shad-
ows of real/virtual objects onto real/virtual objects. These
methodologies also cope with virtual and real objects that
change their position/orientation over time.

2. RELATED WORK
Raskar et al. [20] use projectors to graphically augment neu-
tral physical objects of the real world. The neutral object is
geometrically identical with a real object (with the excep-
tion of an occasional scale to decrease the size of the neutral
object for indoor usage) but its surface does not contain any
color or texture. Those features are projected onto the sur-
face of the neutral object by projectors, so called ”Shader
lamps”. These shader lamps take into account the orienta-
tion and distance between the neutral object and the pro-
jector and the geometry of the neutral object. The system
also visualizes shadows within the neutral object.

Naemura et al. [15] and [16] propose concepts of virtual
lights and virtual shadows with the aim of achieving a Mixed
Reality environment focused on shadows. The virtual shad-
ows are subdivided into four categories according to the in-
volvement of real and virtual objects. These categories are
”real to virtual shadows for rigid objects”, ”real to virtual

fzhang
Note
Marked set by fzhang

shadows for non-rigid objects”, ”image-based virtual to vir-
tual shadow” and ”virtual to real shadow”. Shadows of the
first and third category can be generated by a virtual light
consisting of a stick that is a substitute for a flashlight and
a 3D sensor that measures orientation and position of the
virtual flashlight. The rigid real objects are also equipped
with a 3D sensor to measure their position and orientation.
The tracking information of both the rigid object and the
virtual flashlight permits the calculation of the shadows of
virtual objects and rigid real objects. To display the shad-
ows of non-rigid real objects, a virtual flashlight has a cam-
era attached that records the image in front of the virtual
flashlight. Shadows of non-rigid real objects are calculated
by first capturing the silhouettes of the non-rigid real ob-
jects. The capturing takes advantage of the illumination
conditions of CAVE-like VR/MR applications. It is assumed
that the non-rigid real object is not directly lighted, and its
background is the screen that shows the VR-scene. Thus,
the non-rigid real object and its silhouette can easily be dis-
tinguished from the background. Using a tracked projector
as light source creates Virtual onto real shadows. The pro-
jector projects the shadow of the virtual object at the real
scene. Thus, without wearing HMDs, the user would only
perceive the shadow of the virtual object, but not the object
itself. The virtual object can only be seen through HMDs.

Debevec [2] presents a method that creates photo realis-
tic augmentations of real images and videos. The method
partitions the scene into a distant scene, a local scene and
synthetic objects that augment the real scene. The distant
scene contains objects relatively far away from the synthetic
objects, whereas the local scene c are
near to the synthetic objects. It
mination changes of the distant
scene or the synthetic objects, are
garded. This eases the computati
model. Nevertheless, the method
applications.

Loscos et al. [11], [12] present
remodelling and relighting real sc
sets of photographs of real scenes
of the geometry and the lightnin
The first set of photographs cons
taken from different viewpoints. T
to reconstruct the geometry. The
consists of images of the scene tak
with a real light source at differen
are used to calculate the initial li
The system permits interactive
geometry, including removing obj
or removing light sources. The sy
phase to calculate the lighting mo
it is not suitable for real-time usa

Everitt et al. [4] present a robust
for hardware accelerated renderin
umes. The method addresses the
arise from shadow volume polygo
intersect with objects and thus
The method uses ”depth clampin
new graphic accelerators that mo
to infinity.

MIND-WARPING is an augmented reality based multi-user
game presented by Starner in [22]. The game uses an in-
frared camera and a set of infrared emitters which can inde-
pendently be switched on and off by the system. The system
analyzes the shadows that are cast by the object when it is
illuminated by different infrared emitters and estimates the
geometry of the object from the cast infrared shadows.

Nishino et al. [18] [19] present a method called Eigen-
Texture method that synthesizes 3D models of real objects
from sequences of range images and color images. The method
uses the color images of the object, which are aligned and
pasted to the surface of the 3D model of the object. The
proposed method is capable to generate realistic images of
objects under complicated illumination conditions.

3. PROPOSED METHOD
In Mixed Reality and Augmented Reality applications we
can see both virtual and real objects simultaneously.

R

R

V

V

R V R V

ontains all objects that

is assumed that the illu-

scene, caused by the local
very low and can be disre-
on of a global illumination
is not usable for real-time

a system for interactively
enes. The system uses two
to estimate a calculation

g model of the real scene.
ists of images of the scene,
hese photographs are used
second set of photographs
en from one viewpoint but
t positions. These images
ghting model of the scene.
modification of the scene
ects and adding, changing
stem needs a preparation
del of the real scene, thus
ge.

and artifact-free technique
g of stencilled shadow vol-
problem of artifacts that

ns that do not completely
are clipped ”at infinity”.
g”, a feature provided by
ves the far clipping plane

R V R V

Figure 1: We distinguish four possibilities of shadow
casts. The last figure shows the shadow cast in an
Augmented Reality application.

Based on [16] figure 1 shows in the first two pictures the
shadow cast in a real world and in a virtual world. The
third picture depicts a complete but isolated shadow cast of
real objects onto real objects (the same for virtual objects).
Finally, the last image shows the shadow cast in an Aug-
mented Reality scenario. Given one light source, a virtual
object can cast a shadow onto a real and onto a virtual ob-
ject. In contrast, a real object supports shadows onto virtual
objects.

3.1 General Method of shadow volumes
In this section we give a short overview of the general shadow
volume algorithm for virtual objects. The algorithm consists
of two basic steps. First, the volumes of the shadows that are
cast must be computed. Then, the shadows can be rendered.
This is done by determining the intersection between the
scene geometry and the shadow volumes. Shadows must be
rendered on those parts of the geometry that intersect with
shadow volumes.

3.1.1 Generation of shadow volumes
In 1977 Crow introduced the shadow volume approach in [1],
where a shadow volume defines a region of space that is in

the shadow of a particular occluder with a given light source
(cf. figure 2) [4]. The front- or back-facing orientations of
the rendered shadow volume polygons with respect to the
viewer indicate the enters into and exits out of shadowed
regions [4]. Heidmann proposes a time-saving solution by
using the stencil buffer for counting the entries and exits
[6]. The stencil buffer is incremented wherever a front-facing
polygon of the shadow volume is drawn. In contrast, the
stencil buffer is decremented wherever a back-facing polygon
of the shadow volume is rendered. Finally, the whole scene
is rendered again depending on the stencil bit. If the counter
of the stencil buffer is greater than zero, then a pixel is in
the shadow, and therefore it is not drawn - otherwise it is
not in the shadow and it has to be rendered.

Light

Eye

Shadow
volumes

Figure 2: Principle of the shadow volume algorithm.

The first step of the algorithm is devoted to finding the
silhouette of those objects that are potential candidates for
a shadow volume with one given light source. With the given
silhouette we extrude the shadow volume that is used for the
algorithm. The silhouette of the objects can be calculated
with the OpenGL Utility 1.2 library’s boundary tessellation
routine (gluTesselator).

After the calculation of the silhouettes we extrude the shadow
volumes. Indeed, each object generates its own shadow vol-
ume. Therefore, an overlapping of shadow volumes is pos-
sible. Everitt and Kilgard presented a very robust solution
in [4] for the problem that the side polygons of the shadow
volume are not sufficient for the shadow volume algorithm.
In our approach the shadow volume is limited to a given
radius that can be modified in a configuration file. In the
future, the radius should be calculated based on the distance
between two objects. Usually, the radius does not have to
be too big. Imagine a small circle far away from the object
that is caught by the circle shadow. In general these shad-
ows are no longer visible and therefore a limitation of the
radius makes sense.

A second problem is depicted in figure 3, where the user’s
ray intersects the front face of a shadow volume, but it never
exits the back face. In this case, the shadow volume algo-
rithm sets the stencil buffer to one - which, in fact would
be wrong. As a result, we have to guarantee even a top
face and a base face of the shadow volume (it has to become
a closed ’frustum’), to allow for a correct execution of the

C

¥

1

0

1

R

L

C

¥

1

0

0

R

Figure 3: The first figure shows a scenario in which
the user’s ray does not intersect the object. How-
ever, the stencil bit is set to 1 - even if we are out-
side of the shadow volume. Consequently, we see a
shadow. In the second scenario, the stencil volume
is limited in its size and it decrements the stencil
bit, even when the ray leaves the stencil volume on
the base face. In contrast to the first scenario, we
have no shadow from the sphere.

shadow volume algorithm (as depicted in figure 3).

3.1.2 Rendering algorithm for shadow volumes
Figure 2 gives a general (and short) overview of the ren-
dering algorithm and describes the steps of the rendering
process for the shadows. A closer description of the shadow
volume algorithm can be found in [6] [14], and [21].

Draw objects into color buffer
and Z-buffer

Draw shadow volumes into the stencil
buffer

Draw shadows onto the objects

Color

buffer

Stencil

buffer

Z-

buffer

OO

S

S

OO

OO
S

Legend:
O Object
S Shadow mask
OSShadowed object

Figure 4: Overview of the shadow volume algorithm
including the snapshots of the different buffers.

First of all, the color buffer, the stencil buffer, and the depth
buffer are cleared. Afterwards, the ambient scene is drawn
into the color buffer and its depth information is drawn into
the Z-buffer. Next, both buffers, the color buffer and the
Z-buffer are set to read only. Then the front-facing shadow
volumes polygons are drawn (using the depth test). During
this process, the values of the stencil buffers are incremented
whenever a polygon is drawn. Then, the algorithm starts
drawing the back-facing polygons of the shadow volumes. In
this case, the values of the stencil buffers are decremented,
whenever a polygon (in this case we are drawing the back
face polygon) is drawn. Finally, the entire scene is ren-
dered again, but only where the value of the stencil buffer
is 0. In this case the location is illuminated by the light
source. Moreover, when we render the scene, the material is
switched to specular and to diffuse settings.

Figure 5: The first snapshot shows the silhouettes
of three objects. In this case the silhouettes match
the objects. Their extrusion is depicted in the next
image. Finally, the result, the casted shadow, is de-
picted in the last figure. The yellow point in the cen-
ter of the objects represents the virtual light source.

3.2 Modified Method in an AR environment
The presented shadow algorithm using shadow volumes works
perfectly in a virtual environment. But if we want to use it
in an augmented reality environment, we have to make some
modifications in the sense that it works for both, virtual and
real objects. Therefore, the shadow volume approach of sec-
tion 3.1 has to be modified accordingly.

The correct order of the instructions is essential, otherwise
the algorithm does not work correctly in an AR environ-
ment. In any case, our approach consists of two different
rendering passes. In the first pass all real objects (including
the shadows for the virtual objects) are rendered. Then, the
second pass renders all virtual objects. In the following sub-
sections we give a closer description of the modified shadow
volume algorithm approach we used in our AR application.

3.2.1 Generation of shadow volumes

First of all, we have to calculate the shadow volumes de-
pending on the objects that potentially cast a shadow. Real
objects are represented by virtual objects that are invisi-
ble for the user. We call these objects phantom objects (cf.
figure 6). The phantom model becomes important for the
shadow volume calculation. As described later in section
4, it is not necessary to have the exact phantom model for
each real object in the world. However, the user usually does
not recognize if the phantom object does not match the real
object exactly. Next, we can start to calculate the silhou-
ette of both kinds of objects (virtual and real) and extrude
the shadow volume. The implementation of the silhouette
calculation and the extrusion of the shadow volume can be
easily implemented with the same method as used in the
general shadow volume algorithm of section 3.1.1.

Figure 6: Not only the torus, but also the real tin
exists as a virtual object (phantom).

Figure 6 shows a possible scenario of two objects that gen-
erate shadow volumes. The first object, the tin, is a real
object and the second one, the torus is virtual.

3.2.2 Rendering algorithm for shadow volumes
Figure 7 gives a short overview of the modified shadow vol-
ume algorithm from section 3.1.2.

As shown in figure 1, the algorithm has to work for all cases,
for real/virtual objects that cast shadows onto real/virtual
objects. Consequently, the four different cases are rendered
in the following three steps:

• Step 1: Real objects cast their shadows onto real ob-
jects

• Step 2: Virtual objects cast their shadows onto real
objects

• Step 3: Real and virtual objects cast their shadows
onto virtual objects

Step 1 and step 2 are different from the shadow volume
algorithm described above. The final step is comparable to
the well known rendering algorithm of section 3.1.2.

Copy framegrabber image of the
webcam into the color buffer

Draw virtual shadow volumes into
the stencil buffer

Color

buffer

Stencil

buffer

Z-

buffer

Legend:
R Real object
V Virtual object
R Real object with real shadow

R Real object with real and virtual shadow
R

RV

STEP 1

Draw real objects into the Z-buffer

Draw virtual shadows onto real
objects

STEP 2

Draw the shadow volumes into
the stencil buffer

Draw virtual objects into the color
buffer and Z-buffer.

Draw virtual shadows onto the virtual
objects

STEP 3

R

R

R V

VR

R V

VR

R
R

R
R

R
R

R
RV

R V
R

R

R S
V

R

S
RV

R V

R V

R V

R V
RV

S
RV

R V
RV RV

R Virtual object with real and virtual shadow

S Mask of real shadow

S Mask of real and virtual shadow

RV

V

RV

S
V

S
V

Figure 7: Overview of the modified shadow volume
algorithm for an Augmented Reality application.

R V

VR

Figure 8: First, the shadows that real objects cast
on real objects is drawn.

In the first step we have to realize the shadow cast onto real
objects, see figure 8. There is nothing special in this case.
Our AR system works with a normal webcam. Therefore,
we can easily copy the picture of the real world that we
grab from the webcam into the color buffer. Figure 7 shows
the modified algorithm including the different buffers (color
buffer, Z-buffer, and stencil buffer) and their actual content
depicted on the right side. As a result of the first step, the
grabbed webcam content is drawn into the color buffer. As a
result of the first step, all real objects are in the color buffer
(including their shadows on the other real objects; cf. figure
9).

In the following step we augment the shadow cast by vir-

Figure 9: The real content is shadowed by real ob-
jects.

R V

VR

Figure 10: The virtual shadow is casted on the real
objects.

tual objects onto real objects (cf. figure 10). This pro-
cess consists of three sub-steps: First, the phantoms (virtual
3D models of the real objects) are drawn into the Z-buffer.
There are two reasons for this step. Firstly, it permits the
execution of a depth-test of the real objects and the virtual
objects (a virtual object should appear in front of a real ob-
ject in the case that the real object is in the background and
behind the virtual object). Secondly, we need the depth-
information for the shadow volume algorithm. Next, the
shadow volumes of the virtual objects (cf. SV of step 2 in
figure 7) are drawn into the stencil buffer. We do not have
to do the same for the shadow volume of the phantom ob-
jects that represents the real objects. The reason for this
is that all real objects already cast their shadows onto real
objects (cf. step 1 of figure 2). Finally, we draw the virtual
shadow onto the real objects. For this reason, we render
the shadow that is in the stencil buffer. As a consequence
of the missing material information from the real world, we
use black and transparent shadow polygons that are blended
over the parts of the the real scene (real image) that corre-
spond to a virtual shadow. This concludes the procedure
that generates shadows that are cast by virtual objects onto
real objects.

Finally, we have to implement the shadow cast from real/vir-
tual objects onto virtual objects (cf. figure 12). Similarly to
the standard shadow volume algorithm, we distinguish three
sub-steps. In this step we have to draw the entire scene
(phantoms and virtual objects) into the color buffer and
the Z-buffer. In contrast to the traditional shadow volume
algorithm, for which we used only ambient and emission

Figure 11: In this step both, the real and virtual
objects are rendered.

R V

VR

Figure 12: Next, the real/virtual shadows are casted
onto the virtual objects.

components, we use diffuse and specular components. The
reason for that is the first step of the algorithm, in which we
already render the real scene. Next, we have to generate the
shadow volumes for both virtual and real objects and draw
the shadow volume polygons into the stencil buffer (cf. SRV

of step 2 in figure 7 and figure 13). Indeed, the shadow
volumes of step 2 (cf. SV) that are in the stencil buffer have
to be overwritten, because we also need the shadow volumes
of the real objects. Again, the stencil value is increased
wherever a front-facing polygon is drawn and it is decreased
wherever a back-facing polygon is drawn. Finally, the whole
scene is rendered wherever the stencil value is 0. In contrast
to section 4, the whole scene is rendered with only ambient
and emission components (cf. figure 14).

4. EXPERIMENTS
The results of shadowAReality were quite convincing and
impressive. Figure 16 shows one of the four possibilities,
in which a virtual torus casts its shadow onto a real house.
Similarly, figure 15 depicts a real house casting its shadow
onto a virtual torus.

In both scenarios, the real house exists as a phantom model.
In fact, the real scene has to be implemented as a 3D model.
However, it is sufficient if the 3D model (we used 3ds loader
based on [3]) corresponds approximately to the real object.
The position and orientation tracking of the real object is ac-
complished by using ARToolKit as marker detection system.
The configuration of an AR scene (including the marker def-
inition and the assignment of the corresponding markers) is

Figure 13: The shadows of both the real and virtual
objects are drawn into the stencil buffer.

Figure 14: Finally, the entire scene is drawn based
on the content of the stencil buffer.

defined in a simple configuration file. Both the phantoms
and the virtual objects have been modelled in advance by
using 3DStudioMax. Next, the models are placed into the
scene by using the configuration file. Similarly, the light has
to be placed into the scene. Therefore, the authoring of a
new scene can be done quickly, but at the moment, this con-
figuration has to be done manually. Currently, the virtual
light position and its properties are independent of the real
light conditions. Moreover, the current prototype is limited
to one light source. But an extension to more light sources
is planned for the next version.

As mentioned before, the real object and the corresponding
phantom do not have to match exactly one to one. In addi-
tion, an approximation of the 3D model (a coarse model of
the real object with less polygons) is enough for the shadow
volume algorithm (see figure 18).

Figure 15: The real house casts its shadow onto the
virtual torus.

Figure 16: The virtual torus casts its shadow onto
the real house.

We have not yet included any animated objects. Animated
objects would be very simple as virtual objects, but could
problematic as real objects (more precisely for their phan-
tom objects). In the case of a real object, we have to observe
the position/orientation of each frame of each motion. Con-
sequently, we have to put a marker on each movable object to
be able to recognize the movements (cf. figure 19). Finally,
the corresponding phantoms have to be moved accordingly.
Indeed, the shadow volume has to be recalculated whenever
the objects change their silhouettes (in relation to the light
source).

In our prototype, the shadow of the real/virtual objects
casted onto the real/virtual objects was achieved by shad-
ing the scene with black-transparent color blending. In the
beginning we worried about the problems with the real shad-
ows onto the real objects. Much to our surprise we found
that this did not become a problem. The ’virtual’ shadows
(casted by virtual/real objects) onto virtual/real objects did

Figure 17: The first figure shows a virtual shadow
cast onto a real tin. The second figure depicts the
shadow of the tin onto the torus. Next, we have two
virtual objects (sphere and torus) casting a shadow
onto the tin and finally, the tin casts a shadow onto
the torus and onto the sphere depicted in the last
snapshot.

Figure 18: Phantoms can be rendered with a lower
resolution.

not interfere with the real environment. In most situations,
users do not even recognize the differences between real and
virtual generated shadows (cf. figure 17).

Finally, we performed some tests with real objects for which
no phantoms were available. For example, we tested moving
the user’s hand into the scene depicted in figure 20. The
phenomenon was that even if we did not have any phantom,
it happens very often, that the user often interferes with the
shadow volumes of the scene. As a result, the shadow is
casted onto the user’s hand.

Figure 19: The user can move the marker and the
shadow of the virtual torus is casted correctly onto
the real object (in this case the marker).

Figure 20: Even if the model does not exist (i.e. the
hand), the results are often impressive.

5. CONCLUSIONS AND FUTURE WORK
In this paper we proposed the concepts for real-time shad-
ows for Augmented Reality applications using shadow vol-
umes. These concepts have been realized in the proof-of-
concept prototype, shadowAReality, with very convincing
results. The augmented shadows enhance the real scene a
great deal and they offer the user a more intuitive and very
photorealistic world. Similarly, the 3D interaction and ma-
nipulation possibilities of augmented scenes are improved by
using shadows. Users can more easily measure the distance
of two objects and the interaction/manipulation does not
seem to be a big problem. In other words, the presented al-
gorithm provides new opportunities for Augmented Reality
applications and it allows new means of expression in an AR

environment.

Our approach was implemented on the ARToolKit frame-
work and should become available under LGPL. As described
in [4] the shadow volume algorithm can be improved by us-
ing Portals, BSP, occlusion, and view frustum culling tech-
niques that avoid the rendering of unnecessary shadow vol-
umes. Moreover, we want to improve the shadow volume
algorithm by using nVIDIA’s shading language Cg [5] [10].
In addition, the proof-of-concept should be integrated into
various AR applications to improve the immersive feeling of
the users and finally more effort should be invested into the
improvement of the shadows (e.g. soft shadows, etc.)

6. ACKNOWLEDGEMENTS
Special thanks to Jeremiah Diephuis for re-reading the last
version of the paper and for his suggestions about possible
improvements.

7. ADDITIONAL AUTHORS
Additional authors: Juergen Zauner, Upper Austria Univer-
sity of Applied Sciences, email: jzauner@fh-hagenberg.at).

8. REFERENCES
[1] F. Crow. Shadow Algorithms for Computer Graphics.

In Proceedings of SIGGRAPH 77, pages 242–248,
1977.

[2] P. E. Debevec. Rendering Synthetic Objects into Real
Scenes: Bridging Traditional and Image-Based
Graphics with Global Illumination and High Dynamic
Range Photography. pages 189–198, July 1998.

[3] DigiBen. GameTutorials, URL:
http://www.gametutorials.com/TermsOfUse.htm,
2001.

[4] C. Everitt and M. J. Kilgard. Practical and Robust
Stenciled Shadow Volumes Hardware-Accelerated
Rendering. nVIDIA Corporation, March 2002.

[5] R. Fernando and M. J. Kilgard. Cg Tutorial, The:
The Definitive Guide to Programmable Real-Time
Graphics. Addison-Wesley, 2003.

[6] T. Heidmann. Real shadows, real time. Iris Universe,
(18):23–31, 1991.

[7] M. Kanbara and N. Yokoya. Geometric and
Photometric Registration for Real-time Augmented
Reality. In International Symposium on Mixed and
Augmented Reality (ISMAR’02), 2002.

[8] A. Katayama, Y. Sakagawa, and H. Tamura. A
method of shading and shadowing in image-based
rendering. In Int. Conference on Image Process,
volume 3, pages 26–30. IEEE, 1998.

[9] H. Kato, M. Billinghurst, B. Blanding, and R. May.
ARToolKit. 1999.

[10] D. Kirk. CG Toolkit, User’s Manual. nVIDIA
Corporation, Santa Clara, CA, 2002.

[11] C. Loscos, G. Drettakis, and L. Robert. Interactive
modification of real and virtual lights for augmented
reality. In Siggraph technical sketch: SIGGRAPH’98
(Orlando, FL). ACM SIGGRAPH, New York, Jul
1998.

[12] C. Loscos, M.-C. Frasson, G. Drettakis, B. Walter,
X. Granier, and P. Poulin. Interactive virtual
relighting and remodeling of real scenes. In
D. Lischinski and G. Larson, editors, Rendering
techniques ’99 (Proceedings of the 10th Eurographics
Workshop on Rendering), volume 10, pages 235–246,
New York, NY, Jun 1999. Springer-Verlag/Wien.

[13] M. D. McCool. Shadow volume reconstruction from
depth maps. ACM Transactions on Graphics,
19(1):1–26, 2000.

[14] T. A. Moeller and E. Haines. Real-Time Rendering. A
K Peters, Natick, Massachusetts, 2002.

[15] T. Naemura, T. Nitta, A. Mimura, and H. Harashima.
Virtual Shadows - Enhanced Interaction in Mixed
Reality Environment. In IEEE Virtual Reality
(VR’02), 2002.

[16] T. Naemura, T. Nitta, A. Mimura, and H. Harashima.
Virtual shadows in mixed reality environment using
flashlight-like devices. Trans. Virtual Reality Society
of Japan, 7(2):227–237, 2002.

[17] U. Neumann, S. You, Y. Cho, J. Lee, and J. Park.
Augmented reality tracking in natural environments,
1999.

[18] K. Nishino, Y. Sato, and K. Ikeuchi. Appearance
compression and synthesis based on 3d model for
mixed reality. In Proceedings of IEEE ICCV’99,
volume 1, pages 38 – 45, September 1999.

[19] K. Nishino, Y. Sato, and K. Ikeuchi. Eigen-texture
method: appearance compression based on 3d model.
In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition (CVPR’99), volume 1,
pages 618 – 624, June 1999.

[20] R. Raskar, G. Welch, K. Low, and D. Bandyopadhyay.
Shader Lamps: Animating Real Objects with Image
Based Illumination. In Eurographics Workshop on
Rendering, June 2001.

[21] S. Roettger, A. Irion, and T. Ertl. Shadow Volumes
Revisited. In Proceedings of the 10-th International
Conference in Central Europe on Computer Graphics,
Visualization and Computer Vision (WSCG’02),
pages 373–379, 2002.

[22] T. Starner, B. Leibe, B. Singletary, and J. Pair.
Mind-warping: towards creating a compelling
collaborative augmented reality game. In Proceedings
of the 5th international conference on Intelligent user
interfaces, pages 256–259. ACM Press, 2000.

APPENDIX
A. IMPLEMENTATION OF THE RENDER-

ING PROCEDURE
We developed our prototype, shadowAReality, by using Open-
GL and ARToolKit as a marker detection system [9]. To
make the algorithm of section 3.2.2 more concrete, the fol-
lowing section provides a pseudo-code like description of the
major parts of the algorithm including relevant OpenGL
commands.

Clear the color buffer and depth buffer.

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

Render the real scene shadowed by the real objects only.
Consequently, the content of the camera picture is copied to
the color buffer. This is accomplished with two ARToolKit
functions.

argDrawMode2D();
argDispImage(frameBuffer, 0, 0);

Render the real objects into the depth buffer. The objects
should not be drawn into the color buffer. Therefore, the
color mask sets the bit to GL FALSE.

glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);
renderRealObjects();

Next, render the shadow volumes of the virtual objects into
the stencil buffer. The stencil value is increased whenever a
front facing polygon is drawn. In the same way, the sten-
cil value is decreased when a back facing polygon has been
found.

glDepthMask(GL_FALSE);
glStencilOp(GL_KEEP, GL_KEEP, GL_INCR);
renderShadowVolumes(VIRTUAL_OBJECT_FLAG);
glCullFace(GL_FRONT);
glStencilOp(GL_KEEP, GL_KEEP, GL_DECR);
renderShadowVolumes(VIRTUAL_OBJECT_FLAG);
glCullFace(GL_BACK);

Finally, the last sub-step of step 2 draws all virtual shadows
onto the real objects.

glStencilFunc(GL_NOTEQUAL, 0, ~0);
glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
renderPlane();

Next, we render the shadows of the real/virtual objects onto
the virtual objects (cf. standard shadow volume algorithm).
First, we reset the stencil buffer and we render the virtual
objects (virtual and real objects (phantoms)) into the color
buffer and Z-buffer.

glStencilFunc(GL_ALWAYS, 0, ~0);
glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
glDepthMask(GL_TRUE);
renderRealVirtualObjects();

Then, we render the shadow volumes of the real and virtual
objects. Based on the front-facing and back-facing poly-
gons, we increment and decrement the stencil buffer value
accordingly.

glDepthFunc(GL_LEQUAL);
glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);
glDepthMask(GL_FALSE);
glStencilFunc(GL_ALWAYS, 0, ~0);
glStencilOp(GL_KEEP, GL_KEEP, GL_INCR);
renderShadowVolumes(REAL_VIRTUAL_OBJECT_FLAG);
glCullFace(GL_FRONT);
glStencilOp(GL_KEEP, GL_KEEP, GL_DECR);
renderShadowVolumes(REAL_VIRTUAL_OBJECT_FLAG);
glCullFace(GL_BACK);

Finally, we render the whole scene based on the stencil
buffer.

glStencilFunc(GL_NOTEQUAL, 0, ~0);
glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
glDepthFunc(GL_EQUAL);
renderRealVirtualObjects();

