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Placement Constraints in Floorplan Design
Evangeline F. Y. Young, Chris C. N. Chu, and M. L. Ho

Abstract—In floorplan design, it is common that a designer will
want to control the positions of some modules in the final packing
for various purposes like datapath alignment and I/O connection.
There are several previous works focusing on some particular
kinds of placement constraints. In this paper, we will present a
unified method to handle all of them simultaneously, including
preplace constraint, range constraint, boundary constraint,
alignment, abutment, and clustering, etc., in general, nonslicing
floorplans. We have used incremental updates and an interesting
idea of reduced graph to improve the runtime of the method. We
tested our method using some benchmark data with about 1/8 of
the modules having placement constraints and the results are very
promising. Good packings with all the constraints satisfied can be
obtained efficiently.

Index Terms—Floorplanning, optimization, physical design,
placement constraints, very large scale integration (VLSI) com-
puter-aided design (CAD).

I. INTRODUCTION

FLOORPLAN design is an important step in physical de-
sign of VLSI circuits to plan the positions of a set of cir-

cuit modules on a chip, in order to optimize the circuit perfor-
mance. In this floorplanning step, it is common that a designer
will want to control the positions of some modules in the final
packing for various reasons. For example, a designer may want
to restrict the separation between two modules if there are many
interconnections between them, or he may want to align them
vertically in the middle of the chip for bus-based routing. This
will also happen in design reuse, in which a designer may want
to keep the positions of some modules unchanged in the new
floorplan. The analog designers will also be interested in a par-
ticular kind of placement constraint called symmetry, and some
recent literature on this problem can be found in [1] and [2].
However, an effective method to control the absolute or relative
positions of the modules in floorplanning is nontrivial and this
inadequacy has limited the application and usefulness of many
floorplanning algorithms in practice.

Several previous works have been done to handle some par-
ticular kinds of placement constraints. The floorplanners in [3],
[8], and [12] can handle preplace constraint in which some mod-
ules are fixed in position. In [5], [7], and [14], the work on
boundary constraint in which some modules are constrained
to be placed along one of the four sides of the chip for I/O
connection. In [13], they generalize the approach in [12], in
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order to handle range constraint in which some modules are re-
stricted to be placed within some rectangular ranges. The floor-
planner in [10] can handle alignment constraint which may arise
in bus-based routing. Different approaches are used to handle
different kinds of constraints and there is no unified method that
can handle all of them simultaneously.

In this paper, we will present a unified method that can
handle different kinds of placement constraints simultaneously,
including preplace constraint, range constraint, boundary
constraint, alignment, abutment, and clustering, etc., in general
nonslicing floorplans. Users can input a mixed set of constraints
and our floorplanner will be able to address all of them simul-
taneously. (It is reasonable to assume that the input constraints
are not contradictory to each other; however, we can also
handle inconsistent user requirements by generating a packing
that satisfies the requirements as much as possible.) We make
use of constraint graphs to handle the constraints and can thus
be used with any kind of floorplan representation that computes
the module positions by constraint graphs, e.g., sequence pair,
BSG, O-Tree, CBL, Q-seq, TBS, etc. In a constraint graph,
every module is represented by a vertex and the weighted
directed edges represent the minimum displacement between
two modules. We can find the and positions of a module by
computing the longest path from a source to that module in the
constraint graphs. In our approach, we modify the constraint
graphs to enforce the required constraints in the resultant
packing. This is done by augmenting the graphs with positive,
negative or zero weighted edges. These augmented edges will
restrict the modules to be placed correctly according to the
requirements. This technique of adding edges to constraint
graphs has been used before for layout compaction [6] and
packing of rectilinear blocks [4]. In this paper, we apply and
generalize this method to handle different kinds of placement
constraints in floorplan design. In addition, we have devised
an interesting idea of reduced graph to improve the runtime of
the algorithm. A direct implementation of the method is very
expensive computationally and is thus impractical. It will take

time for each iteration of the annealing process where
is the number of modules. We improved this runtime by

reducing the size of the constraint graphs and by updating the
constraint graphs incrementally. The time complexity of our
algorithm is now on average for each iteration of the
annealing process where is the number of modules having
placement constraints.

We tested our method with some MCNC benchmarks (ami33,
ami49, and playout) and a randomly generated data set with
100 modules. Sequence pair representation [9] is used in our
implementation. The results are promising and a tight packing
with all the constraints satisfied can be obtained efficiently. In
Section I–III, we will first describe the problem and have a brief
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Fig. 1. Notations h(A;B) and v(A;B).

review of the sequence pair representation and constraint graph.
Section IV will give a detailed explanation of our approach. Sec-
tion V will explain the techniques to reduce the size of the con-
straint graphs and to update them incrementally. Experimental
results will be shown in Section VI.

II. PROBLEM DEFINITION

In floorplanning, we are given the information of a set of
modules, including their areas and interconnection and our goal
is to plan their positions on a chip to minimize the total chip area
and interconnect cost. In this paper, we address this floorplan-
ning problem with placement constraint, i.e., besides the module
information, we are also given some constraints in placement
between the modules and our goal is to plan their positions on a
chip such that all the placement constraints can be satisfied and
the area and interconnect cost are minimized.

We consider two general kinds of placement constraints, ab-
solute and relative. For relative placement constraint, users can
restrict the horizontal or vertical distance between two modules
to a certain value, or to a certain range of values. We use the no-
tation to denote the horizontal displacement from ’s
lower left corner to ’s. Note that this value is positive if ’s
lower left corner is on the right hand side of ’s and is negative
otherwise. We use to denote the vertical displacement
from ’s lower left corner to ’s. Similarly, this value is pos-
itive if ’s lower left corner is above ’s and is negative oth-
erwise. Fig. 1 illustrates these definitions. A relative placement
constraint between two modules and can be written as

where and . When , we are restricting
the distance between the two modules to a single value and we
will write them simply as or , re-
spectively.

Absolute placement constraint is specified similarly except
that one of the two modules in the relationship is a boundary
of the chip. We use , , , and to denote the left,
right, bottom and top boundary of the chip, respectively. There-
fore, notations and denote the horizontal
distances of the lower left corner of from the left and the right
boundary of the chip respectively. Similarly, we use

Fig. 2. Notations h(LL;A), h(A;RR), v(BB;A) and v(A;TT ).

and to denote the vertical distances of the lower left
corner of from the top and the bottom boundary of the chip re-
spectively. Fig. 2 illustrates these definitions. An absolute place-
ment constraint of a module can be written as

or

or

or

where and . If , we are restricting the
distance between the module and the boundary to a certain value
and we will simply write it as , ,

or , respectively.
These two types of specifications are general enough to ex-

press all common types of placement constraints. For example,
if we want to restrict the placement of module , and such
that they all align horizontally, we can specify the following rel-
ative placement constraints:

As another example, if we want to restrict the placement of
module at the lower right corner of the chip, we can specify
the following absolute placement constraints:

where is the width of . We can now define our floorplan-
ning problem with placement constraint, FP/PC, as follows:

Problem FP/PC: Given the information of a set of mod-
ules including their areas and interconnection, a set
of relative placement constraints and a set of absolute
placement constraints, the goal is to pack the modules in
a rectangular region such that all the given placement con-
straints are satisfied and the area and interconnect costs are
minimized.
We assume that the input set of placement constraints will

not be contradictory to each other, i.e., there exists a feasible
packing in which all the constraints can be satisfied simultane-
ously. However if the input requirements are inherently incon-
sistent, our floorplanner will still generate a packing that satis-
fies the requirements as much as possible.
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Fig. 3. Example of sequence pair {abcd, bacd}.

III. PRELIMINARIES

A. Sequence-Pair [9]

We use sequence-pair in our implementation to represent a
general nonslicing floorplan. A sequence-pair of a set of mod-
ules is a pair of combinations of the module names. For ex-
ample, is a sequence-pair of the module set

. We can derive the relative positions between the
modules from a sequence-pair by the following rules:

• If , then module is on the right
of module .

• If , then module is below
module .

Fig. 3(a) shows a packing for the sequence pair .

B. Constraint Graph

We can use a pair of constraint graphs to represent the hori-
zontal and vertical relationships between the module positions
imposed by a sequence pair. A horizontal (vertical) constraint
graph for a set of modules is a directed graph with
vertices, and the vertices represent the modules and the edges
represent the horizontal (vertical) relationships between the
module positions. We will have an edge from to labeled
in where is the width of if and only if module is on
the right hand side of module . Similarly, we will have an edge
from to labeled in where is the height of if and
only if module is above module . We can build these graphs
directly from a sequence-pair representation as follows:

• Insert an edge from to in labeled if and only if
.

• Insert an edge from to in labeled if and only if
.

Fig. 3(b) shows the constraint graphs without edge labels for the
sequence pair .

We can compute the minimum area packing corresponding to
a sequence pair efficiently by using the constraint graphs. In a
horizontal constraint graph, a weight on an edge means
that “ should be at least units to the right of .” Similarly, in
a vertical constraint graph, a weight on an edge means
that “ should be at least units above .” The minimum area
packing can thus be obtained by putting the and coordinate
of a module as the length of the longest path from a source to

in the horizontal and vertical constraint graph, respectively.

IV. HANDLING PLACEMENT CONSTRAINTS IN

CONSTRAINT GRAPHS

There are two kinds of placement constraints, relative and ab-
solute. A relative placement constraint describes the relation-
ship between two modules, while an absolute placement con-
straint describes the relationship between a module and the chip.
We will first discuss the approach to handle relative placement
constraint and will later discuss how this approach can be used to
handle absolute placement constraint by making a simple mod-
ification to the constraint graphs.

A. Relative Placement Constraint

In relative placement constraint, users can restrict the hor-
izontal or vertical distance between two modules to a certain
range of values. For example, users can specify that

(or ) where and
meaning that is at a distance of to on the right hand side
of ( is at a distance of to above ). When , we
are restricting the distance to a certain value. Notice that both
and can be zero, positive, negative, or . (It is trivial
to have and , so we assume that this will
not happen.) In order to realize the required constraints in the
final packing, we will add a single edge or a pair of edges to the
corresponding constraint graph as described below. We use

to denote the weight of an edge .

Case 1) If , insert an edge into with
.

Case 2) If , insert an edge into with
.

Case 3) Otherwise, insert two edges and
into s.t. and .

The correctness of the above steps follows from Theorem 1
which is proved by making use of Lemma 1 and Lemma 2.

Lemma 1: If there is an edge from to labeled in ,
.

Proof: According to the definition of horizontal constraint
graph, if there is an edge from to labeled in the graph,
the lower left corner of is at a distance of at least from that
of horizontally to the right, i.e., which is
equivalent to .

Lemma 2: The conditions and
are equivalent.

Proof: The condition is equiva-
lent to . We can then write as

, which is equivalent to
.
Theorem 1: The relative placement constraint

(or ) can be achieved in the final packing
by inserting edges into the horizontal (vertical) constraint graph
as described in the above cases if the packing is feasible.

Proof: Without loss of generality, we only prove the cor-
rectness for the horizontal direction. The proof for the vertical
direction follows similarly. To prove the correctness of these
steps, we need to show that if the packing is feasible after in-
serting these edges, the constraint will be sat-
isfied in the packing. In the following, denotes the horizontal
constraint graph and denotes the -coordinate of the lower
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left corner of module . Assume that the packing is feasible, i.e.,
both constraint graphs have no positive cycles (a positive cycle
in a weighted directed graph is a directed cycle in the graph
with positive total weight) and the position of each module can
be found by computing the longest path from a source to its cor-
responding vertex in the two constraint graphs.

Consider the three different cases for the constraint
.

Case 1) , i.e., we want to lie in
. According to Lemma 2, this condition is equiva-

lent to , which, by Lemma
1, can be achieved by inserting an edge from to
labeled .

Case 2) , i.e., we want to lie in .
According to Lemma 1, this can be achieved by in-
serting an edge from to labeled .

Case 3) , i.e., we want to lie
in the range . Notice that the
range is equivalent to the range

. The first con-
dition can be achieved by inserting an edge from

to labeled . The second condition
is equivalent to

according to Lemma 2 and can be achieved
by inserting an edge from to labeled . There-
fore we need to insert a pair of edges, one from to

labeled and the other one from to labeled
.

B. Absolute Placement Constraint

Absolute placement constraint restricts the absolute place-
ment of a module with respect to the whole chip. Users can re-
strict the placement of a module such that its distance from the
boundary of the chip is within a certain range of values. We can
handle these kinds of constraints using a method similar to that
for relative placement constraints, i.e., by inserting a single edge
or a pair of edges to the constraint graphs. To achieve this, we
augment the horizontal and vertical constraint graphs each with
two extra nodes. For the horizontal constraint graph, we add two
nodes: one is a source with zero weighted out-going edges to all
the other nodes, and the other one is a sink with zero weighted
in-coming edges from all the other nodes. The source represents
the left boundary and the sink represents the right boundary of
the final packing. Similarly, we add two nodes to the vertical
constraint graph: one is a source with zero weighted out-going
edges to all the other nodes and one is a sink with zero weighted
in-coming edges from all the other nodes. The source represents
the bottom boundary and the sink represents the top boundary
of the final packing.

In the following, we use and to denote the two additional
nodes in the horizontal constraint graph: represents the left
boundary and represents the right boundary. Similarly, we use

and to denote the two additional nodes in the vertical con-
straint graph: represents the top boundary and represents
the bottom boundary. After adding these nodes, we can handle
absolute placement constraint easily as described below. Notice

Fig. 4. Examples of alignment constraint.

that there is no such cases as , ,
or in the following and and are nonnegative num-
bers because we will not consider packing modules outside the
boundary of the chip:

• :
If , insert an edge in with

;
else, insert edges and in
with and .

• :
If , insert an edge in with

;
else, insert edges and in
with and .

• :
If , insert an edge in with

;
else, insert edges and in
with and .

• :
If , insert an edge in with

;
else, insert edges and in
with and .

The proof of correctness of these steps for absolute placement
constraint follows directly from that for relative placement con-
straint and we will not repeat it here.

C. Examples of Some Commonly Used Placement Constraint

Using the above specifications for absolute and relative place-
ment constraint, we can describe many different kinds of place-
ment constraints. In this section, we will pick a few commonly
used ones and show how each can be specified using a combi-
nation of the relative and absolute placement constraints. In the
following, we use and to denote the and coor-
dinates of the lower left corner of module A, respectively, and
we use and to denote the height and width of A, respec-
tively.

1) Alignment: To align module , , , and horizontally
(Fig. 4), we can impose the following constraints:
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Fig. 5. Examples of abutment constraint.

Fig. 6. Examples of preplace constraint.

We restrict the vertical distances between these modules to be
zero, they will thus all align horizontally. Six additional edges
will be inserted into the vertical constraint graph.

2) Abutment: To abut module , and horizontally
(Fig. 5), we can impose the following constraints:

where and are the widths of module and , respec-
tively. In this formulation, the vertical distances between these
modules are zero, so they will align horizontally. On the other
hand, is restricted to be on the right hand side of by
units and on the right hand side of by units, so they
will be abutting with each other horizontally. Four additional
edges will be inserted into each constraint graph.

3) Preplace Constraint: To preplace module with its
lower left corner at (Fig. 6), we can impose the following
constraints:

We restrict to be units from the left boundary and to
be units from the bottom boundary, so will be preplaced with
its lower left corner at in the final packing. Two additional
edges will be inserted into each constraint graph.

4) Range Constraint: To restrict the position of to within
the range (Fig. 7), we can
impose the following constraints:

Fig. 7. Examples of range constraint.

Fig. 8. Examples of boundary constraint.

In this formulation, we restrict to be to units from
the left boundary and to be to units from the bottom
boundary, so A will lie in the required rectangular region

. Two additional edges will
be inserted into each constraint graph.

5) Boundary Constraint: To place module at the upper
right corner of the final packing, and place along the top
boundary (Fig. 8), we can impose the following constraints:

In this formulation, we restrict the horizontal distance between
and the right boundary to be the width of and the vertical

distance between and the top boundary to be the height of
, so module will be placed at the upper right corner in the

final packing. Besides, is restricted to be units from the
top boundary, so will abut with the top boundary as required.
We need to insert two edges into the horizontal constraint graph
and four edges into the vertical constraint graph.

6) Clustering: To cluster module , and around at
a distance of at most units away vertically or horizontally
(Fig. 9), we can impose the following constraints:
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Fig. 9. Examples of clustering constraint.

Fig. 10. Example of an arbitrarily set of mixed constraints.

In this formulation, we restrict the horizontal and vertical dis-
tances of , and from to be at most units in both di-
rections, so they will cluster around at a distance of at most
units away. Six additional edges will be inserted into each con-
straint graph.

7) General Placement Constraint: We can use combina-
tions of the above relative and absolute placement constraints
to specify different kinds of mixed constraints in general. For
example, to restrict the placement such that module and
align with each other horizontally and they cluster around at
a distance of at most 20 units away (Fig. 10), we can impose
the following constraints:

The first constraint aligns and horizontally and the next
four cluster and around to within a distance of 20 units
away. We need to add four additional edges to the horizontal
constraint graph and six to the vertical constraint graph.

V. ALGORITHM AND IMPLEMENTATION

We use simulated annealing with sequence pair representa-
tion. In each step of the annealing process, we will generate a
new packing and compute its area and interconnect cost. We
use the vertical and horizontal constraint graphs to compute the
position of each module. In order to satisfy the given placement

constraints, we will augment the graphs with edges as described
in the above section. We call these edges constraining edges. If
the packing is feasible after adding these edges, i.e., no posi-
tive cycle exists in the constraint graphs, we will compute the
position of each module as usual and all the constrained mod-
ules will be placed at the correct positions. However it is pos-
sible that some constraints cannot be satisfied after adding those
constraining edges, the packing is then infeasible (note that a
packing can be infeasible because the input set of placement
constraints are inherently contradictory to each other or the rel-
ative positions implied by the sequence pair are contradictory
to the input set of constraints). Feasibility of a packing can be
checked by detecting positive cycles in the constraint graphs. If
a packing is infeasible, we will pack the modules as if there is
no placement constraint and compute a penalty term in the cost
function to penalize the violations. This strategy ensures that all
feasible solutions are reachable, and can drive the packing solu-
tion to one that satisfies the constraints as much as possible in
case the user requirements are inherently inconsistent. We ob-
served a stable convergence in the annealing process using this
scheme and all the placement constraints can be satisfied at the
end of the annealing process in all our experiments. We will de-
scribe the algorithm in details in the following sections.

A. Detecting Positive Cycles by Reduced Graphs

After augmenting those constraint graphs with constraining
edges, we need to test their feasibility by detecting positive cy-
cles in them. A direct implementation of some classical algo-
rithm (e.g., the modified Floyd-Warshall algorithm [11] to check
positive cycles will take time where is the total number
of modules. In order to improve the runtime, we will reduce the
size of the constraint graphs before checking for cycles. This is
possible because of the following lemma and theorem. We use

and to denote the original horizontal and
vertical constraint graphs obtained from a sequence pair, respec-
tively. and are obtained from and ,
respectively, by adding the constraining edges.

Lemma 3: Any cycle in must contain some edges in
.

Proof: The original constraint graphs and obtained
from a sequence pair representation must be acyclic. Therefore,
any cycle in and must contain at least one constraining
edge.

From this lemma, we can infer that any cycle in
must contain at least two modules which have placement con-
straints. Therefore, instead of detecting positive cycles in
and , we will construct two reduced graphs and

from and , respectively, where is the
set of all modules with placement constraints, is the set of
all edges { a path from to in } and

is the set of all edges { a path from
to in }. For any edge ,

where denotes the longest path from to in , and,
similarly, for any edge , where

denotes the longest path from to in . The con-
straining edges will be inserted into and to give and

, respectively. We will then check for positive cycles in
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and and this is equivalent to checking cycles in and
according to the following theorem.

Theorem 2: A positive cycle exists in if and only if
a positive cycle exists in .

Proof: Without loss of generality, we will only prove for
the horizontal constraint graph. The proof for the vertical con-
straint graph follows similarly.

“If” condition: If there exists a positive cycle in , the
edges in must either be a constraining edge or an edge in .
However every edge in actually corresponds to a se-
quence of edges in (the longest path from to in ). Since

is obtained from by inserting the constraining edges, a
positive cycle must also exist in .

“Only if” condition: If there exists a positive cycle
in where the for are vertices in

, at least two of these vertices must correspond to modules
with placement constraint according to Lemma 3. Denote these
vertices corresponding to modules with placement constraint by

where and
for all . Note that also
exist in because they correspond to modules with place-
ment constraints. Consider the path along from to

where . This path will either be a single
constraining edge or a sequence of edges from . If is a
single constraining edge, this edge will also exist in since

is obtained from by inserting the constraining edges.
If is a sequence of edges from , there must also be an
edge in such that is not less than the
total weight of the path . It is because the weight of the edge

in is computed as the longest path from
to in and it must be at least as long as the path

which runs from to along the cycle in .
This edge will also exist in since is ob-
tained from by inserting the constraining edges. Therefore,
every path from to on the cycle in where

will correspond to an edge from to
in and the weight of the edge is not less than the total weight
of the path . We can conclude that a positive cycle must also
exist in .

Constructing and takes time where is
the total number of constraining edges and is number of mod-
ules with placement constraints. Notice that the number of con-
straining edges is usually much smaller than , so the con-
struction time for and is . The construction can
be done by performing a single-source-longest-path algorithm
in and once for each where . Checking cycles
in and by the modified Floyd-Warshall algorithm [11]
takes time because is an upper bound on
the number of edges in and . This time complexity can be
further reduced in practice by performing incremental updates
as described in the following.

B. Moves and Incremental Updates

In every iteration of the annealing process, we will modify
the sequence pair by one of the following three kinds of moves:

[M1] Change the width and height of a module.

[M2] Exchange two modules in both sequences.
[M3] Exchange two modules in the first sequence.

The constraint graphs will not change much after each move, so
we do not need to reconstruct them once in every iteration. We
can take advantage of this incremental updates in two different
places: the construction of and , and the construction of

and .
1) Incremental Updates of and : In move M1, a

module is picked and changed in its width and height, so the
structures of the constraint graphs will remain the same except
that all the out-going edges from will have their weights
changed. In our implementation, the weights on the edges are
stored at the source vertices because all the edges out-going
from the same vertex will have the same weight. Therefore,
we only need to update the weight of vertex in both and

after M1 and this will take constant time. In move M2, two
modules and are picked and switched in position in both
sequences. The structure of the constraint graphs will again
remain the same except that the vertices corresponding to
and will be switched in position. This will affect the weights
of the out-going edges from these two vertices. Therefore we
only need to update the weights in these two vertices in both

and and this will again take constant time. In move M3,
two modules and are picked and switched in position in
the first sequence. The structure of the constraint graphs will
change after this move. However, only those modules lying
between and in the first sequence will be affected and
there are of them on average. Besides, each update can be
done very efficiently (either an edge in is deleted and
a new edge is inserted into , or an edge in
is deleted and a new edge is inserted into . Therefore,

and can be updated very efficiently in time.
2) Incremental Updates of and : and are ob-

tained from and by keeping only those vertices with
placement constraints. The weight of an edge in
is the longest path from to in . After move M1, M2
or M3 of the annealing process, the edge weights in and
may change because the longest path between two vertices in

and will have changed. Fortunately this will only affect
a fraction of the edges in and .

In move M1, a module is selected and changed in width
and height. The weight of an edge in or will be
affected if can reach in the constraint graphs or . This
happens if is lying before in the second sequence and there
are of them on average. We need to perform once the
single-source-longest-path algorithm in or for each of
them and update the weights of all the edges in or
for all . In M2 and M3, two modules and are selected
and switched in position in the sequence pair. Similarly, an edge

in or will be affected if can reach or in
or before or after the move. This happens if is lying before

or in the second sequence and there are about
of them on the average. Similarly, we need to perform once the
single-source-longest-path algorithm for each of these affected
modules and update the weights of the corresponding edges in

and . Therefore updating and takes time
on average.
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C. Time Complexity

In each iteration of the annealing process, we modify the
sequence pair by performing move M1, M2 or M3. After the
move, we need to update , , and . Updating and

takes as explained above. Updating and takes
time on average. After updating these graphs, we need

to check for positive cycles in and which are obtained
from and , respectively, by inserting the constraining
edges. The cycle checking step takes time. There-
fore the total time taken per iteration is
on average, i.e., , since the number of constraining edges

is usually much smaller than .

D. Annealing Schedule and Cost Function

The temperature schedule of the annealing process is of the
form for all . At each temperature step,
enough number of moves are attempted until the total number
of moves exceeds a certain number where is a user de-
fined constant. The temperature is initialized to a large value
at the beginning and the annealing process terminates when the
temperature is low enough. The best solution found will then be
used to go through a “final baking” process in which only better
solutions will be accepted.

The cost function is defined as where is
the total area of the packing. In our current implementation,
is the half perimeter estimation of the interconnect cost but this
term can be replaced by other more sophisticated interconnect
cost estimations. is a penalty term which is zero when all the
placement constraints are satisfied, and is otherwise the sum of
the squares of each violation, where a violation is measured by
the distance the constrained module is from its desired position.
This penalty term will be discussed in more details in the fol-
lowing paragraph.

E. Handling Infeasible Packings

If a packing is infeasible, i.e., positive cycles exist in the
constraint graphs, we will pack the modules as if there is no
constraint and compute a penalty term . For example, if
an edge labeled is inserted into the horizontal
constraint graph because of a given placement constraint,
the penalty term due to this edge in case of an infeasible
packing will be . This gives a
good estimation of how far the modules are from their desired
positions. Notice that we need to accept infeasible intermediate
solutions in the annealing process because it may happen in
some cases that a good feasible solution can only be reached
from an initial starting point with some infeasible intermediate
solutions in between during the searching process. (If the input
set of placement constraints are inherently contradictory to
each other, there will always be positive cycles in the constraint
graphs. The floorplanner will then pack the modules as if there
is no constraints and the penalty term will drive the result
toward one that satisfies the requirements as much as possible.)
The convergence of the annealing process is very stable using
this scheme and all the placement constraints can be satisfied
at the end of the process in all our experiments.

TABLE I
RESULTS FOR AMI33, AMI49, PLAYOUT AND RANDOM100

VI. EXPERIMENTAL RESULTS

We tested our floorplanner on a set of MCNC benchmark data
(ami33, ami49 and playout) and a randomly generated data set
with 100 modules.1 Ami33, ami49 and playout were chosen be-
cause they are the largest (with 33, 49 and 62 modules, respec-
tively) among all the MCNC benchmarks. For each experiment,
the temperature is set to initially and is lowered at a
constant rate of 0.95 to 0.98 until it is below . The
number of iterations at one temperature step is 80. in the cost
function is set such that the costs of the wirelength and total area
are approximately equal. is set at a high value (30 to 40) to en-
sure that all the placement constraints can be satisfied at the end.
All the experiments were carried out on a 400-MHz Sun Ultra
IIi.

We tested our floorplanner using the benchmark data and
a randomly generated data set (random100) by imposing dif-
ferent combinations of placement constraints to the modules.
The results are shown in Table I. The result reported in each
row is an average obtained by running the experiment six times
using three different sets of placement constraints. Notice that
the number of constraints refers to the number of constraining
edges in the graphs. We can see from the table that the algorithm
is very efficient. The percentage deadspace ranges from 5.9% to
8.4% and all the placement constraints can be satisfied in all the
experiments. Besides, we can see that the changes in deadspace
area and total wirelength in order to handle the placement con-
straints are very small. Figs. 11–15 show five resultant packings

1The data sets are available in http://www.cse.cuhk.edu.hk/~fyyoung/data.
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Fig. 11. Modules 4–10 cluster at the lower left corner of the chip.

Fig. 12. Modules 6–12 align horizontally.

Fig. 13. Modules 10, and 12–15 cluster around module 11.

for ami33, ami49, and playout. (Notice that the origin (0,0) is at
the upper right corner in all these packings.)

We have also compared our results with [13] that focuses
on handling range constraint in slicing floorplan. We repeated
the same experiments on range constraint using our new uni-
fied method and the results are shown in Table II. The result
reported in each row is an average obtained by running the ex-
periment five times using the benchmark data, ami33, ami49

Fig. 14. Modules 4–9 almost align horizontally. Modules 10–13 align
vertically.

Fig. 15. Module 24 is placed at y = 20 and modules 24, 25, 31, 33, 39, 40,
46, and 51 align horizontally.

TABLE II
COMPARISONS WITH THE RESULTS IN [13]

and playout. The scaled runtimes in the fourth column were ob-
tained by dividing the original runtimes from [13] by a factor
of 2.46, the ratio between the speeds of floating point com-
putation of the two machines used. We can see that the per-
formance of the two methods are very similar in both runtime
and deadspace. The floorplanner in [13] was a little bit faster
because it considered slicing floorplans only. Our floorplanner
could give smaller deadspace although the floorplanner in [13]
have actually allowed the modules to be very flexible in shape
(with aspect ratio in the range of [0.25,4.0]), while we consid-
ered a discrete number of shapes for each module only in our
experiments. However, the most important difference is that un-
like the method in [13] which focuses on only one particular
kind of placement constraint, our method is more general and
can handle different kinds of placement constraints simultane-
ously. We have also tried another data set from the paper [14],
which can handle boundary constraint in slicing floorplan. A re-
sultant packing is shown in Fig. 16. The amount of deadspace
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Fig. 16. A resultant packing of the data set ami49-bc1 from [14] in which
module 6, 18, 20 and 23 are required to be on the left, module 17, 36, 45 and 48
on the right, module 0, 4, 8 and 47 at the top, and module 2, 9, 10 and 30 at the
bottom. The deadspace obtained in [14] was 1.51%.

Fig. 17. An input set of infeasible constraints that requires module 5 to be
placed along the left boundary, and on the right-hand side module 4 at the same
time.

obtained in [14] is smaller because optimal shaping was done in
their slicing floorplanner.

In order to demonstrate the effects of an input set of infea-
sible constraints, we performed an experiment in which the re-
quired set of constraints were contradictory to each other. The
resultant packing is shown in Fig. 17. In this example, we re-
quire module 5 to be packed along the left boundary, and on
the right-hand side of module 4 at the same time. These contra-
dictory requirements will always lead to positive cycles in the
constraint graphs. The floorplanner will then pack the modules
as if there is no constraints and the penalty term will drive the
result toward one that satisfies the requirements as much as pos-
sible, as we can see from the example in Fig. 17. Fig. 18 shows
the growth in runtime with respect to the number of placement
constraints and we can see that the relationship is almost linear.

VII. CONCLUSION

In this paper, we presented a method to handle different kinds
of placement constraints in floorplanning simultaneously. In

Fig. 18. Relationship between runtime and the number of placement
constraints.

this method, placement constraints are handled by augmenting
the constraint graphs with edges of positive, negative or zero
weights. We have used incremental updates and an interesting
idea of reduced graph to improve the runtime of the algorithm.
Several benchmark data are used for testing and the results are
very promising. Good packings with all the constraints satisfied
can be obtained efficiently.
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