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1. INTRODUCTION

Interconnects are dominating the performance of VLSI circuits, and consum-
ing an increasingly large portion of power in VLSI systems. Scaling of wires
[Ho et al. 2001] implies that global interconnect is becoming the bottleneck of
system power and performance. New technologies such as three-dimensional
integration are a possible solution to reduce interconnect length and to keep
the continuation of Moore’s law in the nano era. By adding a dimension in
current 2-D VLSI circuits, we can greatly enhance integration density and re-
duce interconnect wire length, thus resolving the largest bottleneck. Ideally, by
using n-layer circuit we reduce the interconnect length by a factor of

√
n. Mean-

while, the added dimension may also bring higher complexity and difficulty in
design, CAD tools, and fabrication. To fully exploit the advantages of the third
dimension in 3-D ICs, we need to measure and understand the complexity it
brings, and estimate the hardness in optimization problems for designing 3-D
circuits.

Floorplanning and placement can be a design phase that will become much
more difficult when migrating from 2-D to 3-D, as the basic blocks change from
rectangles to cuboids, and the design space gains a dimension. Regarding the
circuit building blocks, there are two classes of 3-D circuits discussed in the
literature. Currently 3-D circuits and system-on-chips [Lim 2005] are usually
achieved by die stacking, which is a stack of layers of 2-D circuits with identical
thickness. This type of placement is also called 2.5-D placement [Deng and Maly
2003] since it does not really contain full 3-D structures. Previous works like
Goplen and Sapatnekar [2007] and Yu et al. [2006] also discuss this 2.5-D type.

Full 3-D floorplan and placement representations have been explored in sev-
eral works since Yamazaki et al. [2000]. Full 3-D means the circuit blocks are
cuboids placed freely in a 3 dimensional space with no distinguishable layers.
Though we have as yet no 3-D cell library to support this class of 3-D IC de-
sign, there are full 3-D applications in reconfigurable field programmable gate
arrays (FPGAs) [Wu et al. 2001] where time is regarded as another dimen-
sion. It is discovered that most of the floorplan representations effective in 2-D
do not have an equally effective extension in 3-D, for example, the extension
from sequence-pair (2-D) to sequence-triple (3-D) [Yamazaki et al. 2000]. The
intrinsic complexity in 3-D structures is a possible reason for these results.
Since a representation is virtually a data structure from which a floorplan can
be recovered, we try to explore this complexity through a general type of data
structure—graph.

In this work, we discuss the complexity of the two classes of 3-D floorplans
through a cuboidal dual problem in a most basic formulation. Given a graph
G = (V, E), can we find a set of cuboids as V with contact relations as E?

The problem is similar to the rectangular dual problem in Kozminski and
Kinnen [1984] and Kant and He [1997], except that our problem is in 3-D
and allows empty space in solutions, while in Kozminski and Kinnen [1984]
a solution must be a full rectangular dissection. Although the size of each
cuboid is not limited, which means the set of cuboids is not naturally a place-
ment of circuit modules, the solution still has practical meanings in the initial
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Table I. k-Dimensional Cuboidal Dual Problems

Floorplan Dimensions Number of Layers Hardness of Problem
2-D 1 P

2.5-D 2 open
2.5-D ≥ 3 NP-complete

Full 3-D undefined NP-complete

floorplanning stage of physical design. For example, if a pair of circuit blocks
bi, bj are heavily connected, we let (vi, v j) ∈ E to make them closer; or if the two
blocks both have high heat density, we make (vi, v j) /∈ E. More importantly, this
problem differentiates the 2-D and 3-D structures as in following paragraphs.

A 2-D rectangular dual can be decided by a set of conditions in Kozminski
and Kinnen [1984] or Kant and He [1997] and can be efficiently generated in
linear time by algorithms in Bhasker and Sahni [1986] or Kant and He [1997].
For cuboidal duals, while the 2-D case can be solved with a similar approach,
we find the 3-D cases are fundamentally harder in terms of computational com-
plexity. Just as the 2-colorability problem is easy but 3-colorability is NP-hard,
one extra color or dimension brings a fundamentally higher level of complexity.
In fact we prove the 3-D cuboidal dual problem is NP-complete just by reduc-
ing 3-colorability to it. For the 2.5-D case of the cuboidal dual, although the
problem looks very similar to the 2-D case, we find it also to be NP-complete
when the number of layers reaches 3. The difficulties of all the cases are listed
in Table I.

These results imply that the complexity of circuit floorplanning and place-
ment design can be greatly increased when we extend the circuit to the third
dimension, even if we limit the extension to just a few layers. To achieve prac-
tical 3-D ICs, we are facing a serious challenge of design complexity, thermal
behavior, and manufacturing issues.

The rest of this article discusses the details of all the indicated results and
the corresponding proofs. Section 2 introduces the basic problem formulation
and the difficulty of the upper-bound. Section 3 proves the general 3-D cuboidal
dual problem is hard. Section 4 shows that although finding a 2-D cuboidal dual
is easy, finding a 2.5-D cuboidal dual with 3 layers is hard. Finally Section 5
gives comparisons and conclusions on these cases.

2. PRELIMINARIES AND FORMULATIONS

Traditional 2-D floorplanning is to place a set of rectangles in a designated area
to meet certain requirements. The basic constraint is that no common area can
be shared by two or more rectangles. For 3-D, the problem becomes placing a
set of cuboids in a space without common space shared by cuboids. A 2-D case
can be regarded as a 3-D case with all the cuboids placed on the floor.

An adjacency graph can be constructed from a floorplan by assigning a ver-
tex to each cuboid and adding on edge (vi, v j) when the two corresponding
cuboids are contacting on surfaces. While this construction is easy, the reverse
construction from graph to floorplan is not trivial. In Kozminski and Kinnen
[1984] there is a set of necessary and sufficient conditions for a graph to be an
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Fig. 1. Graph-floorplan relations.

Fig. 2. 7-vertex gadget and part of its cuboidal dual.

adjacency graph of a rectangular dissection. The dissection is called a rectan-
gular dual of the graph. For 3-D, we define a problem based on graph cuboidal
duals.

A general 3-D cuboidal dual of an n-vertex graph G = (V, E) is defined as a set
of axis-parallel cuboids, where each cuboid, Ci, corresponds to a vertex, vi ∈ V .
No two cuboids share a common space. Ci and Cj are adjacent (contacting on a
surface by a non-zero area) if and only if (vi, v j) ∈ E. Figure 1 shows a 6-vertex
graph and one of its cuboidal duals, and a 5-vertex clique, which has no cuboidal
duals.

A 2.5-D cuboidal dual is defined as a 3-D cuboidal dual with the additional
constraint that every cuboid has height interval [l − 1, l], where l is an integer
indicating the layer this cuboid is in.

A 2-D cuboidal dual is defined as a 2.5-D cuboidal dual with only one layer,
that is, every cuboid is placed in height interval [0,1]. It is different from a
rectangular dual [Kozminski and Kinnen 1984] in that the set of cuboids can
be a subset of a space dissection, so empty space is allowed.

Our basic problem is to find a cuboidal dual of a given graph, G. For any
of the 2-D, 2.5-D or 3-D cases, the problem is trivially in NP, because it takes
polynomial time to verify whether a given set of cuboids is a solution. For
example, we check each pair (i, j) to determine whether (vi, v j) ∈ E ⇔ Ci and
Cj are contacting on surfaces, which can be done in O(n2) time.

3. 3-D CUBOIDAL DUAL OF GENERAL GRAPHS

To decide whether a graph has 3-D cuboidal dual is NP-hard. We prove this by
reducing the 3-colorability problem to a 3-D cuboidal dual. It is well known that
3-colorability is NP-complete [Karp 1972]. We construct G from a 3-colorability
instance, G3C = (W, E′). In the first step, we introduce a gadget of 7 vertices
for each vertex in W , as shown in Figure 2.
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The 7 vertices together with the edges form an octahedron composed of 8
small tetrahedrons. There is a cuboidal dual of this graph, and the contact
surfaces between different pairs of cuboids are not independent of each other.

LEMMA 1. In the cuboidal dual of the 7-vertex gadget, the cuboids of two
opposite vertices on the octahedron (e.g. v1, v4) are on opposite sides of the central
cuboid (the cuboid of v0).

PROOF. Since cuboid v0 and cuboid v1 are adjacent, they are contacting on a
common plane (we denote this plane as p01). Their contacting area on p01 must
be a rectangle, denoted as R, as pointed to by the arrows in Figure 2. Since
rectangle R is the only common part of the two cuboids, by the convexity of
cuboids, another cuboid (such as v2) contacting both v0 and v1 must be on the
boundary of R. Cuboids v2, v3, v5, v6 are four such cuboids in the gadget, with
a closed loop v2 − v3 − v5 − v6 − v2 of edges. The only way to place v2, v3, v5, v6 is
surrounding the boundary of R, because R’s inside area is occupied by v0 and
v1.

Now we project all seven cuboids onto p01. We have v2, v3, v5, v6 surrounding
rectangle R. Since v4 is adjacent to these four vertices, the projection of cuboid
v4 on p01 must overlap with the area surrounding R—the projection of v4 covers
rectangle R. So on cuboid v0’s six surfaces, cuboid v4:

—cannot be on the same surface as v1 because v4’s projection on p01 overlaps
with R (which is part of v1’s projection);

—cannot be on the four adjacent surfaces of v1’s side because v4’s projection on
p01 overlaps with R (which is part of v0’s projection).

In conclusion, cuboid v4 can only be on the surface of v1’s opposite side.

Lemma 1 implies that the contacting directions of v1 → v0 and v0 → v4 are
same; we denote this direction as d1,4.

Definition 1. For a 7-vertex gadget N, d1,4(N) denotes the axis (among x,
y, z) whose orthogonal plane has overlapping projections from cuboids v1 and
v4.

In the same manner as Lemma 1, the other two pairs of vertices (v2, v5)
and (v3, v6) also have cuboids on opposite sides of v0. Another conclusion from
Figure 2 is that the cuboids of v1, v2, · · · , v6 cover all 6 surfaces of cuboid v0;
proved as follows.

LEMMA 2. In the cuboidal dual of the 7-vertex gadget, the six cuboids of
v1, · · · , v6 each entirely covers one surface of cuboid v0.

PROOF. Cuboid v2 is contacting cuboid v4, which by Lemma 1 is on the
opposite side of cuboid v1’s surface. By the convexity of a cuboid, v2 cannot be
on the same surface as v1. The same holds for v3, v5, and v6. Thus, cuboid v1 does
not share v0’s surface with any other cuboid. By the symmetry of the gadget,
the six cuboids do not share any of v0’s six surfaces, so each covers one. And
since each cuboid is contacting four neighbors on adjacent surfaces, it must
reach the four edges of its side of v0; therefore it entirely covers the surface.
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Fig. 3. Enforcing 2 gadgets in different directions.

Fig. 4. 13-vertex gadget and its cuboidal dual.

Regarding the coordinate axis that d1,4(N) is parallel to, it has three pos-
sible directions: x, y, and z. These directions can be used as the 3 possible
colors in the 3-colorability problem, where a gadget N, representing a ver-
tex w, in G3C = (W, E′), is colored as d1,4(N). The constraint of 3-colorability
is that for edge (w,w′) ∈ E′ in G3C , the two vertices cannot share the same
color. This constraint can be implemented as a bi-clique connection between
v1 and v4, of two gadgets N and N′. As Figure 3 shows, we look at an axis
parallel to direction d1,4(N), where v1 occupies interval [a1, b1] and v4 occu-
pies interval [a4, b4]. If there is a bi-clique connection between {v1, v4} and
{v′

1, v
′
4}, then both v′

1 and v′
4 must cover the interval between v1 and v4,

which is [b4, a1] on the axis, because the cuboids of v′
1 and v′

4 are contact-
ing v1 and v4. So the two cuboids of v′

1 and v′
4 have an overlapping interval

on this axis, which means d1,4(N′) must be in a different direction, and thus
d1,4(N′) 	= d1,4(N).

To complete the reduction from 3-colorability, we need to construct G based
on the gadget nodes. We add 6 more vertices to the 7-vertex gadget to further
restrict the directions of contacting surfaces among the cuboids of v1, · · · , v6.

LEMMA 3. (Figure 4) Adding 3 pairs of vertices to the 7-vertex gadget:
pair 1 connected to {v1, v2, v4} and {v1, v5, v4},
pair 2 connected to {v2, v3, v5} and {v2, v6, v5},
pair 3 connected to {v3, v1, v6} and {v3, v4, v6},

then cuboids v1 and v4 have the same width as cuboid v0 (along d3,6),
cuboids v2 and v5 have the same height as cuboid v0 (along d1,4),
cuboids v3 and v6 have the same length as cuboid v0 (along d2,5).
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PROOF. As Figure 4 shows, we already know from Lemma 1 and Lemma 2
that the six cuboids of v1, · · · , v6 are each placed with pairs (v1, v4), (v2, v5),
(v3, v6) on opposite sides of cuboid v0, and the six surfaces of cuboid v0 are
covered by v1, · · · , v6. In this coordinate system, d1,4 of the gadget is parallel to
axis z.

Consider the cuboid of v7 contacting three cuboids of v1, v2, and v4. It must
contact cuboid v2 on the +y side, because:

—cuboid v2 and v7 are contacting both v1 and v4, so on their projections to axis
z (or d1,4), v7 overlaps with v2, which means v7 cannot be at +z or −z side of
v2;

—if cuboid v7 is contacting cuboid v2 on the −y side, without loosing generality
we assume it is on the +x side of cuboid v3, v0, and v6. To make cuboid v7

contact cuboid v1 and v4, we need x1,+ ≥ x3,+ and x4,+ ≥ x3,+ (denoting xk,+ as
the x coordinate of cuboid k’s +x surface). Cuboid v8 is contacting cuboid v2,
v3, and v5, we have x5,+ ≥ x3,+. So in the projection on the xy plane, rectangle
v3 is completely contained in rectangle v1 and rectangle v4. Thus, cuboid v3

has only the +x surface not covered. But it is impossible to make cuboid v9

on v3’s +x surface while also contacting cuboid v1 and v6, which leads to a
contradiction;

—if cuboid v7 is contacting cuboid v2 on the +x direction (the case for the −x
direction is symmetric), then cuboid v2 cannot protrude among cuboids v1

and v4 on the +x direction, that is we have x2,+ ≤ x1,+ and x2,+ ≤ x4,+. So
when cuboid v8 is contacting cuboids v2, v3, and v5, it cannot be contact-
ing the +z or −z surfaces of v3, so it must be contacting v3’s +x surface,
which leads to x2,+ ≥ x8,− = x3,+, and therefore we have x1,+ ≥ x3,+ and
x4,+ ≥ x3,+. Hence, rectangle v3 is also completely contained in rectangle v1

and rectangle v4 in the projection on the xy plane, which leads to the same
contradiction.

By symmetry, cuboid v9 must be on the −y side of cuboid v5, cuboid v8 must
be on the +x side of cuboid v3, cuboid v11 must be on the −x side of cuboid v6,
cuboid v9 must be on the +z side of cuboid v1, and cuboid v12 must be on the −z
side of cuboid v4. Thus, the contacting surfaces among the cuboids of v1, · · · , v6

must be in exactly the same topology as in Figure 4.

By constructing this 13-vertex gadget, the original 7-vertex gadget has a
definite shape, and we can easily align multiple gadgets in the same direction
with some additional vertices in G as follows.

In Figure 5 we use a simplified octahedron to represent each 13-vertex gad-
get, and add two vertices, vA and vB. Consider their connections with gadget N′

on the right. Since vA is simultaneously contacting v′
1, v′

2, and v′
3, by Lemma 3

and Figure 4, cuboid vA must be on the corner formed by the 3 cuboids, and is
therefore contacting v′

2 from above. Similarly, vB is contacting v′
4, v′

2, and v′
3, so

cuboid vB must be on the corner and contacting v′
2 from below. As a result, the

direction vA → vB is the same as d1,4(N′).
The same conclusion can be found on gadget N: the direction vA → vB is the

same as d1,4(N). Thus, with two additional vertices we make d1,4(N) = d1,4(N′).
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Fig. 5. Two 13-vertex gadgets, N and N′, with d1,4(N) and d1,4(N′) aligned to the same direction
(2-alignment).

Fig. 6. 2-alignment and 3(complete)-alignment.

Besides the alignment of d1,4, we also need an alignment such that the 3
directions d1,4, d2,5, and d3,6, of the two gadgets, are all in parallel.

Figure 6(a) is the simplified notation of the alignment illustrated in
Figure 5, where only the directions of d1,4(N) and d1,4(N′) are parallelized.
We call this a 2-alignment. In Figure 6(b) there are 3 additional vertices (called
3-alignment), the result is d2,5(N) = d2,5(N′) and d3,6(N) = d3,6(N′), which also
implies d1,4(N) = d1,4(N′). So in a 3-alignment, the two gadgets are aligned in
every direction.

Also notice that the direction of displacement from one gadget to the other
in a 2-alignment is along d2,5(N) or d3,6(N), while the displacement in a
3-alignment must be along d1,4(N). These two cases of alignment enable the
alignment of a pair of 13-vertex gadgets, N and N′, along any of the {x, y, z}
axes, and always guarantee d1,4(N) = d1,4(N′). Based on these cases, we can
construct large sets of 13-vertex gadgets, all aligned in the same direction,
each set acting as a single vertex in G3C = (W, E′), which helps to complete the
reduction from 3-colorability.
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Fig. 7. Construction of cuboidal dual from G when G3C is 3-colorable.

THEOREM 1. 3-colorability reduces to 3-D cuboidal dual.

PROOF. We use the 13-vertex gadget as a vertex cluster node in our con-
struction of G. Given a graph of 3-colorability G3C = (W, E′) with n vertices
denoted as w1, w2, · · · , wn, for each vertex wi, we construct n 13-vertex gadget
nodes in G, denoted as si,1, · · · , si,n, sequentially connected by 2-alignments.
Then for each gadget node si, j , construct 4 auxiliary gadgets as follows: si, j

2-aligns with t1,i, j , t1,i, j 3-aligns with t2,i, j , t2,i, j 2-aligns with t3,i, j , and finally
t3,i, j 2-aligns with ui, j .

For each edge (wi, w j) ∈ E′, we pick gadget nodes ui, j and uj,i, connect v1 and
v4 of ui, j with v1 and v4 of uj,i, so that the two gadgets ui, j and uj,i are enforced
in different directions (as in Figure 3). In this way, graph G has a cuboidal dual
if and only if G3C is 3-colorable.

The “if and only if” holds because of the gadget sets in G constructed from
the vertices of G3C . Assume G3C has n vertices. On each vertex, wi, of G3C , we
put 5n gadgets si,1 ∼ si,n, t1,i,1 ∼ t1,i,n, t2,i,1 ∼ t2,i,n, t3,i,1 ∼ t3,i,n, and ui,1 ∼ ui,n. The
d1,4 directions of all these gadgets are the same, because they are connected
by either 2-alignments or 3-alignments. Denote these 5n gadgets as set Si, and
the direction d1,4(Si) has 3 choices x, y, or z, just like the color of vertex wi in
G3C has 3 choices. And by enforcing ui, j and uj,i in different directions for edge
(wi, w j) ∈ E′, we also enforce sets Si and Sj in different directions.

From left to right, if graph G has a cuboidal dual, we color each vertex wi by
the d1,4 direction of gadgets in Si. By the alignments and enforcements among
gadgets in G, wi and w j have different colors whenever there is an edge between
wi and w j . Therefore, we have a valid 3-coloring on G3C .

On the other hand, if G3C is 3-colorable, then we can construct a cuboidal
dual according to Figure 7. The si, j gadgets of G3C ’s vertices w1, · · · , wn, are
placed on the xy-plane and with a top view of Figure 7. Each G3C ’s vertex wk
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Fig. 8. Connection in the cuboidal dual for an edge in G3C .

has a square area, and is assigned with a direction in {x, y, z} according to the
coloring of G3C , which decides the direction of the gadget set d1,4(Sk). Every
edge (wi, w j) in E′ has a connection through gadgets as constructed in G. We
assign a unique height (Hi, j) to every edge, so that out of the square areas of
wi and w j , at height Hi, j there are only connection cuboids between wi and
w j . Thus, we guarantee different edges can have series of gadget connections
constructed without conflict. Details of the gadgets’ placement are revealed in
Figures 7 and 8, explained as follows.

(1) If d1,4(si,1) is parallel to z, the auxiliary gadgets {t1,i, j} can be placed along
a 45◦ line, and by 3-alignments, each t2,i, j is leveraged to the height of Hi, j ;

(2) otherwise d1,4(si,1) is parallel to x or y, then each t1,i, j is leveraged to the
height of Hi, j , and by 3-alignments the gadgets of {t2,i, j} are by top view placed
along a 45◦ line.

Therefore, by the layout of Figure 7, auxiliary gadgets {t2,i, j} can always be
placed along a 45◦ line by top view. Then for any (i, j) such that there is an edge
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(wi, w j) ∈ E′ with d1,4(si,1) 	= d1,4(sj,1), we can always construct t2,i, j → t3,i, j →
ui, j along x, t2, j,i → t3, j,i → uj,i along y, or vice versa. These gadgets are on the
height of Hi, j , which prevents conflicts with other edges. So as shown in Figure
8, ui, j and uj,i can finally make a connection at the intersecting point and form
the biclique of {v1(ui, j), v4(ui, j)} and {v1(uj,i), v4(uj,i)}. In this way we construct
the edge connections, and the cuboidal dual construction of G is complete.

The reduction is thus proved. This is a polynomial reduction, because for
each vertex in G3C , we construct 5n gadgets in G, therefore graph G’s size is on
O(n2) scale of G3C ’s size.

COROLLARY 1. The problem of finding a graph’s 3-D cuboidal dual is NP-
complete.

4. LAYERED 3-D (2.5-D) CUBOIDAL DUAL OF LAYERED GRAPHS

In the last section we showed that general 3-D cuboidal dual is hard. Now we
look at the 2.5-D version of the problem, which looks less complex. We start
with the basic single-layer cuboidal dual of a planar graph G.

4.1 2-D Cuboidal Dual of Planar Graphs

The 2-D rectangular dual problem was first studied in Kozminski and Kinnen
[1984] and Bhasker and Sahni [1986]. By using a 4-completion graph, a simple
rule to decide if a graph G has a rectangular dual is Theorem 1 of Kozminski
and Kinnen [1984].

A planar graph G drawn on a plane with all triangular interior faces has a
rectangular dual if and only if there exists a 4-completion of G. A 4-completion
graph is a graph H drawn on a plane such that:

(a) the exterior face of H has 4 vertices;
(b) each interior face of H has 3 vertices;
(c) each cycle in H that is not a face has length≥ 4

A 4-completion of G is a 4-completion graph H that G can be obtained by deleting
the 4 exterior vertices of H.

On our definition of cuboidal duals, which allows empty space between
cuboids, the deciding rule becomes more general and simplified.

THEOREM 2. A graph G has a 2-D cuboidal dual if and only if G can be
drawn with no 3-vertex cycle containing interior vertex (vertices).

PROOF. Given a planar graph G drawn without non-empty 3-vertex cycles,
we add 4 exterior vertices vn, vs, vw, ve, and then add edges so that the resulting
graph H is a 4-completion graph.

Starting from the exterior 4-vertex cycle of vn, vs, vw, ve, we first make the
graph 2-connected. For any vertex or 2-connected component v inside a cycle
C1 with at least 4 vertices, (Figure 9(a)):

(1) If v is 1-connected to C1 by vertex v1, we find another vertex v2 on C1 with
no edge to v1. Such a v2 exists, otherwise every vertex is connected to v1, then
either C1 is triangular, or C1 itself is contained in a 3-vertex cycle, and both
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Fig. 9. Triangulation without producing non-empty 3-vertex cycles.

situations contradict our given condition. Add an edge (v, v2), which makes v

2-connected to C1. C1 is then decomposed into 2 smaller cycles, both with length
≥ 4 since there is no edge (v1, v2).

(2) If v is not connected to C1, pick any vertex v1 on C1 and add edge (v, v1).
v and C1 then become 1-connected, and 2-connectivity can be achieved by case
(1).

After the graph is 2-connected, every face is a cycle with no repeated vertices
and no interior vertices. We then triangulate every face with more than 3
vertices, so that every face except the outer boundary is a triangle.

As shown in Figure 9(b), for a face cycle with length ≥ 4, denote it as C2 and
pick any vertex v3 on C2. The two neighbors of v3 on C2 are denoted as v′

3 and
v′′

3.
(1) If there is vertex v4 on C2 not connected with v3, and there is no vertex

out of C2 connected with both v3 and v4, then we add edge (v3, v4), which does
not induce non-empty 3-vertex cycles.

(2) Otherwise, add edge (v′
3, v

′′
3). In this case every vertex on C2 except

{v3, v
′
3, v

′′
3} has a common neighbor with v3. If v′

3 and v′′
3 have a common neighbor

m3, then all the common neighbors of v3 and other vertices must also be m3,
and we have a 3-vertex cycle m3 → v4 → v5 → m3 containing entire C2, which
contradicts the condition. So v′

3 and v′′
3 have no common neighbor out of C2 and

adding edge (v′
3, v

′′
3) does not induce non-empty 3-vertex cycles.

Repeating this triangulation until the graph is completely triangulated, we
get a 4-completion graph H. By Theorem 1 of Kozminski and Kinnen [1984]
there is a rectangular dual of H. To obtain the 2-D cuboidal dual of the original
graph G, we remove the 4 rectangles on the outer boundary that correspond to
the 4 added vertices. For each edge (vi, v j) in H that is not in G, we add a gap
between the contacting rectangles so that they are no longer contacting, and
the final set of rectangles is the cuboidal dual of G.

The operation of adding a gap can be done individually for each (vi, v j) in H
but not in G. There are two cases, as shown in Figure 10.

(1) If vi ’s contacting edge is contained in v j ’s contacting edge, then we only
move vi ’s edge backward by ε. ε takes a value less than the minimum distance
between any pair of existing points in the rectangle set, so that the only change
in the contacting topology is between vi and v j .

(2) If neither contacting edge is contained in the other, we denote their
common edge as l with end points AB (Figure 10). For each edge on the infinite
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Fig. 10. Addins gas between rectangles for edges not in G.

Fig. 11. Empty 3-vertex cycle and operations to resolve non-empty 3-vertex cycle.

line of l, if it is above A or it is vi ’s right edge, move it leftward by ε; if it is
below B or it is v j ’s left edge, no operation. Again ε is less than the minimum
existing distance between points. The operation may involve rectangles other
than vi and v j , but still the only change in topology is between vi and v j .

Finally, if graph G unavoidably contains a non-empty 3-vertex cycle, there
is no 2-D cuboidal dual. Because as in Figure 11(a), the 3 contact surfaces of
the 3 cuboids on the cycle form a T shape on the plane without internal space,
so there is no room for the components inside the 3-vertex cycle.

When the given graph G is not drawn on a plane, the planar graph testing
and embedding algorithm in Chiba et al. [1985] can be used to test planarity
and embed G into the plane in linear time. If G is not planar, clearly there is
no 2-D cuboidal dual. Otherwise G is planar, and we draw a plane and resolve
(if possible) all the non-empty 3-vertex cycles one by one in G with following
operations.

Assuming G is connected (otherwise we run the algorithm on each connected
component), for each non-empty 3-vertex cycle C with an interior component
P, as illustrated in Figure 11(b):

(1) if P is connected to one of the vertices on the cycle (denoted vi), and there
is another face on vi with with cycle length ≥ 4, move P into that face;

(2) if P is connected to two of the vertices on the cycle (denoted vi, v j), and
there is another face F ′ containing both vi and v j with cycle length ≥ 4, there
are two cases:
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Fig. 12. From a graph to its 2-D cuboidal dual.

—if vi ’s neighbor in P and v j ’s neighbor in P are not the same vertex, move P
into face F ′;

—if vi ’s neighbor in P and v j ’s neighbor in P are the same vertex, only when
face F ′′ on the other side of edge (vi, v j) has cycle length ≥ 4, move P into
face F ′′;
(3) if P is connected to all the three vertices on the cycle (denoted vi, v j and

vk), and there is another face F ′ with cycle length ≥ 4 and containing both
edges of (vi, v j) and (v j, vk), also vi ’s neighbor in P and vk’s neighbor in P are
not the same vertex, then we can move P into face F ′.

Repeating these three operations, if all the non-empty 3-vertex cycles are
resolved, a 2-D cuboidal dual exists. Otherwise, either in case (1), (2) or (3), there
is either no adjacent face with cycle length ≥ 4 to place P, or vi → P → v j/k

form another 3-vertex cycle, there is no solution to draw G without a non-empty
3-vertex cycle, so G has no 2-D cuboidal dual.

Multiple algorithms for constructing a rectangular dual from G are intro-
duced in Kozminski and Kinnen [1984], Bhasker and Sahni [1986], and Kant
and He [1997], among which Bhasker and Sahni [1986] and Kant and He [1997]
provide the constructions in linear time. Based on these algorithms, plus the
transformation from G to a 4-completion graph, which can also be done in linear
time, a 2-D cuboidal dual can be constructed from a planar graph G in linear
time. Figure 12 shows an example of the construction flow.

COROLLARY 2. The problem of finding a graph’s 2-D cuboidal dual is in P.

4.2 2.5-D Cuboidal Dual of Layered Graphs

With the 2-D cuboid dual problem (single layer case of 2.5-D) solved, we see
how the difficulty of the problem differs from 2-D to 3-D, and the fundamental
complexity with 3-D structures. To further explore the whole set of problems,
we look at something between these two versions—a multi-layer 2-D version.
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Fig. 13. A 2-layer graph and 2.5-D cuboidal dual.

Multi-layer floorplans are usually called 2.5-D because of their characteristics
between 2-D and 3-D. For this purpose, we first define a layered graph.

Definition 2. In a k-layer graph G = (V, E, L : V → {1, · · · , k}), each vertex
is assigned with a layer between 1 and k, and each edge is either in a layer or
between two consecutive layers: (vi, v j) ∈ E ⇒ |L(vi) − L(v j)| ≤ 1.

In this problem, we are given a layered graph G = (V, E, L : V → {1, · · · , k}).
The 2.5-D cuboidal dual of G is a special 3-D cuboidal dual in which the cuboid
of vi has fixed z interval of [L(vi) − 1, L(vi)]. Figure 13 shows an example of a
2-layer graph with its 2.5-D cuboidal dual.

The added constraints on cuboids and contacts lower the freedom of con-
tacting directions. For edge (vi, v j), if vi and v j are on the same layer, their
contacting direction has 2 choices, otherwise |L(vi) − L(v j)| = 1 and the con-
tact surface must be parallel to the layer dividing planes. However, although
the gadgets used in Section 3 have no 3-dimensional freedom, we have other
gadgets making the problem harder than the single layer case.

We find that when graph G has 3 layers, deciding its 2.5-D cuboidal dual
is no less difficult than Planar 3-SAT, which is proved to be NP-complete in
Lichtenstein [1984]. 3-SAT is a basic NP-complete problem introduced in Cook
[1971]. A Planar 3-SAT instance has the same set of variables U = {u1, . . . , un}
and set of clauses C = {c1, . . . , cm} as 3-SAT. But in Planar 3-SAT, if we regard
each variable or clause as a vertex and add edge (ui, c j) if clause c j contains
variable ui, the resulting graph Gp3SAT is a planar graph.

Before we reduce Planar 3-SAT to 2.5-D cuboidal dual, we need a planar
graph’s rectilinear path embedding on a plane, which can be converted from
its Fáry embedding (straight line embedding). For convenience, we use the
straight line embedding on the (n − 2) × (n − 2) integer grid, which is from
Schnyder [1990].

LEMMA 4. Given a planar graph Gp with n vertices, we can place the set of
vertices on a (n−2)×(n−2) integer grid, such that if each vertex vi has a non-zero
diameter, then each edge (vi, v j) has a rectilinear path from vi to v j with no more
than 2n − 4 corners, and without intersections between paths.

PROOF. By Schnyder [1990], there is a straight line embedding of Gp on the
(n − 2) × (n − 2) integer grid, so that all the vertices are on the grid and edges
only intersect at end points.

Starting with this embedding, for each edge that is neither horizontal nor
vertical, we take its slope-intercept form y = mx + b, x ∈ [xl, xr]. By using
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Fig. 14. Converting a straight line embedding into a rectilinear path embedding.

the floor function (�x� is the largest integer not greater than x), we turn this
line into y = �mx + b� which is a series of horizontal segments. Connecting
these segments in order by vertical segments, the straight line is turned into a
rectilinear path. Figure 14(a→b) is an example of this step.

The rectilinear paths have the following three properties.
(1) Each path has no more than 2n − 4 corners. Because the vertices are on

an (n−2) × (n−2) integer grid, so any path from (x1, y1) to (x2, y2) goes through
|y1 − y2| ≤ n−2 vertical units. Each vertical unit segment has at most 2 corners,
therefore the total number of corners does not exceed 2n − 4.

(2) There is no crossing for any pair of paths (α, β) with x1, x2 ∈ [x−
α , x+

α ] ∩
[x−

β , x+
β ], yα(x1) < yβ(x1), and yα(x2) > yβ(x2). Because the floor function is mono-

tonic, �a� < �b� necessarily leads to a < b, so a crossing between two paths
leads to a crossing between the original straight lines, which is contradictive
to the given planar graph embedding.

(3) There are no identical paths, because each path has a unique pair of end
points.

With edges converted into rectilinear paths, we then perform the following
two operations.

(1) If a path intersects a vertex (because of y coordinates lowered by the
floor function), then the original line must be above the vertex, so we move the
horizontal intersecting segment upwards (+y) by ε. ε takes a small value (e.g.
1/n2 grid unit).

(2) If two or more paths share segment(s), then we find the diverting point
(it exists because there are no identical paths), and look at the shared segment
on this point. If the segment is horizontal, then move the segments upward
(+y) by ε on the set of paths that either turn upward or don’t turn down-
ward; if the segment is vertical, then move the segments leftward (−x) by ε

on the set of paths that either turn leftward or don’t turn rightward. Figure
14(b→c) is an example of this operation. Note if there are two diverting points,
the operations based on them are consistent because there are no crossing
paths.

Repeat these two operations, and the intersections can be all resolved. Be-
cause we only need a limited number of spacings to avoid superposition of
paths, and since the operations always move the segments towards −x or +y,
there is no dead loop in the repetition of operations.

In the end, we give each vertex a diameter to reach all its path seg-
ments that are moved upwards or leftwards; the result is a rectilinear path
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Fig. 15. Basic gadgets in 2.5-D cuboidal dual.

Fig. 16. 2-layer subgraph of a clause gadget.

embedding of Gp, with each path having no more than 2n − 4 corners and no
path intersections.

Based on Lemma 4, the reduction from Planar-3SAT to 2.5-D cuboidal dual
can be constructed. We start with two basic gadgets shown in Figure 15. In
figure 15(a), if two vertices on layer i and two vertices on layer i + 1 are
completely connected as a clique K4, then in the cuboidal dual, the contact
surface between the two cuboids in layer i must be orthogonal to the one in
layer i + 1. Because of the same reason as in Figure 3, if the two pairs have
the same direction, a complete connection is impossible. In Figure 15(b), the
diamond gadget is similar to the 7-vertex gadget in lemma 1 and figure 2,
so that the rectangles of v1 and v3 must be on opposite sides of the central
rectangle.

For a clause ci in Planar-3SAT, we can construct a 2 layer gadget as in Figure
16(a), where the white vertices are on layer 1 and the black vertices are on layer
2. Two pairs of vertices, p1, and p2, on layer 1, are enforced to have orthogonal
contact surfaces by the diamond gadget on layer 2. Meanwhile the two pairs are
also connected through three 6-vertex gadgets, which have a different property
from the diamond gadget: the contact directions of v0 → v1, v0 → v2, v0 → v3,
and v0 → v4 have more freedom than in the diamond gadget, but are still
dependent on each other. For instance, assume the direction of v0 → v4 of such
a gadget is determined like in Figure 16(b), there are two cases.
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(1) if v0 → v3 is on the same direction, that is, v3 and v4 are on the same
side of central rectangle v0, the 6-vertex gadget acts as a diamond gadget, so v1

must be on the opposite side of v0;
(2) if v3 is not on the same side of v4, since this gadget has one more vertex

than the diamond gadget, v1 has the freedom of being on either of the two sides
of v0.

LEMMA 5. The clause gadget in Figure 16(a) has a 2-layer cuboidal dual if
and only if at least one 6-vertex gadget has v0 → v3 horizontal.

PROOF. Starting from the vertical pair p1, which is connected to the hori-
zontal pair p2 through three 6-vertex gadgets, the first gadget g1 has vertical
v0 → v4 due to the orthogonality enforcements from p1. By the same enforce-
ments, v0 → v1 of g1 is parallel to v0 → v4 of g2, and v0 → v1 of g2 is parallel to
v0 → v4 of g3. Finally v0 → v1 of g3 is horizontal as enforced by vertex pair p2.

If all the 6-vertex gadgets here have v0 → v3 vertical: starting at g1, its
v0 → v3 and v0 → v4 are both vertical, so v3 and v4 must be at the same side
of v0, which makes g1 work as a diamond gadget, and v0 → v1 is also vertical.
The same situation propagates through g2 and g3, and finally vertex pair p2 is
also vertical, which leads to contradiction. Thus, the 2.5-D cuboidal dual does
not exist.

Otherwise if we have at least one 6-vertex gadget with v0 → v3 horizontal,
then we can place v0 → v1 horizontal on this gadget, and the following gadget
also has horizontal v0 → v4. Regardless of the direction of v0 → v3 on following
gadgets, we can always make v1 on the opposite side of v4, that is, v0 → v1

horizontal. By this propagation, v0 → v1 of g3 is horizontal and the 2.5-D
cuboidal dual of Figure 16(a) can be constructed.

With Lemma 5, the reduction from Planar 3-SAT becomes straightforward,
since in 3-SAT a clause is true if and only if at least one of its literals is true.

THEOREM 3. Planar 3-SAT reduces to 2.5-D cuboidal dual with 3 layers.

PROOF. We construct a 3-layer graph G = (V, E, L : V → {1, 2, 3}) from
Gp3SAT = (U ∪ C, E′). G’s overall topology is shown in Figure 17. A pair of
vertices on layer 2 defines the vertical direction, orthogonally connected with m
pairs of vertices (like Figure 15(a)) on layer 3, which are thus in the horizontal
direction. Each vertex pair on layer 3 is orthogonally connected with the lower
pair of vertices in a clause gadget ci (so that p1 is vertical and p2 is horizontal).

We create n diamond gadgets on layer 2 corresponding to variable u1, · · · , un.
For each ui, we put m pairs of vertices pi1, · · · , pim over ui ’s diamond gadget on
layer 1, which are all enforced in the same direction (as in Figure 18(a)). Then
for ui ’s each appearance in clause c j , or an edge in Gp3SAT between ui and c j ,
pij is connected to a path Ri, j consisting of a series of layer 2 diamond gadgets
interleaved with layer 1 vertex pairs, and the end of Ri, j is connected to a 6-
vertex gadget gk in clause gadget c j . k ∈ {1, 2, 3} is determined by the rectilinear
path embedding of Gp3SAT by Lemma 4, such that the paths connected to g1,
g2, g3 are in clockwise order. For example, in the instance of Figure 19, clause
gadget c1 can have g1, g2, g3 connected to the paths from u1, u3, u2 respectively.
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Fig. 17. Construction of a 3-layer graph G from a Planar 3-SAT formula.

Fig. 18. Variable gadget and path corner gadget.

Ri, j starts from vertex pair pij and ends at vertex pair (v0, v3) of one of c j ’s
6-vertex gadget (gk). Along Ri, j , the number of layer 2 diamond gadgets in Ri, j

is:

—2(m+ n), if ui appears in c j in non-negated form (as “ui”);
—2(m+ n) + 1, if ui appears in c j in negated form (as “ ui ”).

A layer-2 diamond gadget connects two layer-1 vertex pairs as in Figure 18(b).
This connection both enables and enforces the two vertex pairs to have orthog-
onal directions, so that a corner of a rectilinear path can be realized, regardless
whether it is a left turn or right turn. Also,

—for ui, vertex pair (v0, v3) in gk is in the same direction as pi1;
—for ui, vertex pair (v0, v3) in gk is in the orthogonal direction of pi1.

Now we prove the planar 3-SAT formula is satisfiable if and only if G has
a cuboidal dual. The main part is from left to right: if there is a set of values
assigned to u1, · · · , un to make the formula true, then there is a 3-layer cuboidal
dual of G, which can be constructed from the set of ui values.

The n variable gadgets and m clause gadgets are placed on the grid points
of Gp3SAT ’s rectilinear path embedding in Lemma 4. For each variable ui, its m
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Fig. 19. 3-layer cuboidal dual from 3-SAT formula (u1 ∨ u2 ∨ u3) ∧ (u1 ∨ u3 ∨ u4) ∧ (u1 ∨ u2 ∨ u4).

pairs of vertices p1, · · · , pm are placed horizontal if ui = 1, or vertical if ui = 0.
So by each path Ri, j connected to (v0, v3) in gk of clause gadget c j , v0 → v3

is horizontal if and only if ui or its negation evaluated to 1 in clause c j . The
clause gadgets can be constructed by Lemma 5, because assuming the formula
is evaluated to 1, each clause has at least one literal evaluated to 1, and the
corresponding gk has horizontal v0 → v3.

To make a complete 3-layer cuboidal dual, we add the layer-3 alignment
gadgets and all the Ri, j paths. As in the example of Figure 19, the vertical
layer-2 cuboid pair can be placed at bottom (−y side), from which m horizontal
layer-3 cuboid pairs connect to the m clause gadgets. By the shape of the clause
gadget, the layer-3 pairs are placed at the +x side of the grid points; and if
multiple clause gadgets exist on the same vertical line, we can make the upper
gadgets wider so that the layer-3 pairs have no conflict. The layer-1 cuboid pairs
of each path Ri, j go along the path in the rectilinear path embedding, which
needs no more than 2(m + n) − 4 corners, by Lemma 4. Consider that g1, g2,
g3 are located at the left or upper side of each clause gadget c j , this path may
need 2 more corners to go around c j . Ri, j has at least 2(m+ n) corner gadgets
(Figure 18(b)), which is enough to make the path, and redundant corners can be
placed at any corner. (For convenience, in Figure 19 we draw an even number
of corners for ui and odd number of corners for ui.) Each corner gadget has a
diamond gadget on layer 2, which is not contacting any layer-3 vertex. This is
true at the two ends of each path, since the layer-3 vertex pairs are at the +x
side of grid points, and the paths are on the grid or at the −x side of grid points
(by operation in Lemma 4). And if a path segment in the middle overlaps with
a layer-3 vertex pair, we move the path segment towards −x and resolve the
overlapping.

By this construction, the 3-layer cuboidal dual is guaranteed to exist if pro-
vided an assignment of u1, · · · , un satisfying the planar 3-SAT Boolean formula.
On the other hand, if there is a 3-layer cuboidal dual of graph G, then the 3-SAT
formula is satisfiable, because this by Lemma 5 the orientations of the n vari-
able gadgets give a solution set u1, · · · , un, which makes every clause evaluated
to 1.

In conclusion, by constructing layered graph G from the 3-SAT instance, we
reduce Planar 3-SAT to a 2.5-D cuboidal dual problem with 3 layers. This is
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a polynomial reduction, because the number of vertices and edges in G is on
O(n2) scale of Gp3SAT ’s size or the 3-SAT formula’s length.

COROLLARY 3. The problem of finding a layered graph’s 2.5-D cuboidal dual
is NP-complete if the number of layers in the graph ≥ 3.

The hardness of finding a multiple-layer cuboidal dual is also fundamentally
greater than 2-D (single-layer) cases, except that the exact hardness of the 2-
layer case is still unknown. Considering that the gadgets we introduced are all
in 2 layers, and the proof of NP-hardness only uses 2m vertices in the third
layer, the 2-layer case of this problem may also be hard.

5. CONCLUSIONS

We have looked at three cuboidal dual problems of different dimensions, and
come to the results of one efficient algorithm and two hardness proofs. Nat-
urally, the difficulty of the problem of migrating from 2-D to 2.5-D, to 3-D is
generally increasing.

A surprising finding among these results is that just a few layers of the 2-D
cases, which can be decided by a simple rule (Theorem 2, or Kozminski and
Kinnen [1984] and Kant and He [1997]), being stacked together, can make the
problem so much more complex that there exists no effective algorithm to decide
the solution (unless P = NP). The relation between topological connections and
geometrical contacts in 2-D floorplans is not inherited when extended to 3-D
structures. This may also explain why 3-D packing instances are more difficult
to encode or represent than 2-D instances.

With the much increased complexity in 3-D structures, we may expect a big
challenge for both designers and CAD tool developers in future 3-D IC design.
Human intelligence will play a more important role in the design flow and
in devising heuristic algorithms in 3-D floorplanning, placement, and routing
tools. More research in this cuboidal dual problem or other problems with
graph-geometry formulations could be helpful for us to understand the nature
of 3-D physical design problems.
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