
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 2, FEBRUARY 2011 167

Bus Matrix Synthesis Based on Steiner Graphs for
Power Efficient System-on-Chip Communications

Renshen Wang, Yulei Zhang, Student Member, IEEE, Nan-Chi Chou, Evangeline F. Y. Young,
Chung-Kuan Cheng, Fellow, IEEE, and Ronald Graham

Abstract—Power consumption and the thermal wall have
become the major factors limiting the speed of very-large-scale
integration (VLSI) circuits, while interconnect is becoming a
primary power consumer. These factors bring new demands on
the communication architecture of system-on-chips (SoCs). High
bandwidth is desired to enhance parallelism for better perfor-
mance, and the power efficiency on this bandwidth is critical to
the overall SoC power consumption. Current bus architectures
such as AMBA, Coreconnect, and Avalon are convenient for
designers but not efficient on power. This paper proposes a
physical synthesis scheme for on-chip buses and bus matrices to
minimize the power consumption, without changing the interface
or arbitration protocols. By using a bus gating technique, data
transactions can take shortest paths on chip, reducing the power
consumption of bus wires to minimal. Routing resource and
bandwidth capacity are also optimized by the construction of
a shortest-path Steiner graph, wire sharing among multiple data
transactions, and wire reduction heuristics on the Steiner graph.
Experiments indicate that the gated bus from our synthesis
flow can save more than 90% dynamic power on average data
transactions in current AMBA bus systems, which is about
5–10% of total SoC power consumption, based on comparable
amount of chip area and routing resources.

Index Terms—Algorithm, communication graph, data through-
put, physical synthesis, power efficiency, Steiner graph.

I. Introduction

AS THE FEATURE size of process technology scales
down, system-on-chips (SoCs) are capable of integrating

more components and gaining higher complexity. Since clock
frequency on single components is reaching a limit due to
power and thermal limitations, better performance will be

Manuscript received April 23, 2010; revised August 16, 2010; accepted
October 5, 2010. Date of current version January 19, 2011. This work was
supported in part by NSF CCF-0811794, CCF-1017864, and the California
MICRO Program. This paper was recommended by Associate Editor Y.-W.
Chang.

R. Wang is with the Placement and Route Division, Mentor Graphics
Corporation, San Jose, CA 95131 USA (e-mail: rewang@cs.ucsd.edu).

Y. Zhang is with the Bluetooth IC Design Group, Broadcom Corporation,
San Diego, CA 92127 USA (e-mail: y1zhang@ucsd.edu).

N.-C. Chou is with the Design Creation and Synthesis Division,
Mentor Graphics Corporation, San Jose, CA 95131 USA (e-mail:
nanchi−chou@mentor.com).

E. F. Y. Young is with the Department of Computer Science and
Engineering, Chinese University of Hong Kong, Shatin, Hong Kong (e-mail:
fyyoung@cse.cuhk.edu.hk).

C.-K. Cheng and R. Graham are with the Department of Computer Science
and Engineering, University of California-San Diego, La Jolla, CA 92093
USA (e-mail: ckcheng@cs.ucsd.edu; rgraham@cs.ucsd.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2010.2097170

mostly exploited through parallelism [1], [3]. As a result, two
factors determine that on-chip communication architectures are
becoming a critical aspect in future systems. First, the com-
munication latency and bandwidth among system components
may become a bottleneck of performance. Second, the percent-
age of power consumed on inter-component communications
in the whole system power has scaled up to a significant level
[9], [13], [15].

Industrial on-chip bus standards include AMBA [29], [31],
CoreConnect [30], Avalon [32], and so on. These existing
standards can provide an interface for IP developers and
a communication solution for system designers. Compared
to the network-on-chip [10] type of communications, buses
are small on silicon footprint, fast in terms of latency, and
easy to implement. Moreover, the implementations can be
reconfigured according to specific applications, enabling
designers to apply various optimizations for best performance
on available resources.

The advantages of simplicity make buses popular in indus-
trial SoC designs. However, current bus architectures are not
power efficient on transferring data through bus lines. And
since this part of power is scaling up as technology advances
[13], it becomes a necessity to introduce physical level opti-
mization on bus synthesis to minimize the power consumed
by inter-component communication on bus lines. When high
bandwidth is required on these buses, wire efficiency may also
become low, which ultimately limits the system bandwidth
capacity and performance.

We propose a physical synthesis scheme for on-chip buses
to eliminate the disadvantages in existing bus architectures,
but not to change the existing protocols and component
interfaces. Based on shortest-path Steiner graphs, efficiency
on bus lines is maximized without the need to redesign
system components and IP modules. Routing resource is also
reduced without compromising low power. The cost on our
new scheme is the additional silicon resource consumed by
distributed controls and switches, which is scaling down by
Moore’s law. Under technology trends, this physical synthesis
scheme is capable of bringing a large improvement on power
and performance based on current state-of-the-art on-chip
buses and bus matrices.

A. Related Work

There is a large body of work on system level communica-
tions and related power analysis and power saving techniques.

0278-0070/$26.00 c© 2011 IEEE

168 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 2, FEBRUARY 2011

For instance, [16]–[18] explored the design space of on-chip
buses on tree topologies and/or system floorplan. To evaluate
the system performance, usually a “communication constraint
graph” [16], [19] is extracted from a specific application, on
which each topology/floorplan configuration has an estimated
performance by analysis [16] or simulation [17], [18]. An
elaborate power analysis on AMBA on-chip bus is performed
in [15], where the detailed decomposition of power consumed
by system components is obtained by simulation on NEC’s
gate-level power estimator.

Power saving techniques have been explored and applied
extensively to break through the “power wall” of VLSI circuit
performance. Clock gating [5] is nowadays widely used to
reduce dynamic power, and power gating [20] is used to avoid
unnecessary static power. In bus communications, a large part
of the power is consumed on the wires of bus lines [15], which
is relatively scaling up with technology and applications [9],
[13]. Techniques of clock gating can be used on bus lines to
achieve a similar goal, which is to mask off signals wherever
they are not needed. Bus segmentation in [6] has such effect
to help reduce dynamic power, but the effect is largely
limited by tree structures topologies. Also in [18], a power-
performance tradeoff is analyzed on bus matrices, where a
bus matrix is composed of a set of tree structured buses. We
extend the structures from trees to graphs, using Steiner graph
connections for a thorough optimization of “bus gating” to
minimize the communication power.

Topologies have been mostly discussed in bus optimizations,
while the physical/geometrical information is not being em-
phasized. As the physical locations of on-chip components be-
come more and more relevant to both power and performance
of SoCs, physical optimization has become a necessity for
efficient bus architectures. On the power side, communication
power depends on the wire capacitance involved in data
transactions. And on the performance side, delay is dominated
by signal propagation distance, bandwidth is limited by routing
congestion, and ultimately by power or thermal constraints.
Physical and geometrical properties of on-chip buses are
tightly correlated with topological structures so that they need
to be co-optimized in the synthesis flow.

B. Paper Overview

In this paper, we optimize on-chip bus communications on
the tradeoffs between minimal power, maximal bandwidth,
and minimal total wire length. We use the protocols of
AMBA AHB [29] and AXI [31], since they are most popular
in industrial designs. Based on AMBA protocols, we modify
the bus structure using a “bus gating” technique, and apply
optimizations which is biased toward minimal power, but also
favors bandwidth and routing resource. Heuristics are devised
to construct a minimal shortest-path Steiner graph, and to
reduce its scale with a minimal increment on path lengths.
The overall optimization flow can be viewed as three major
steps:
Step 1: generating the shortest-path Steiner graph H

(for minimal power);
Step 2: deciding edge weights on H

(for adequate bandwidth);

Fig. 1. AMBA AHB bus.

Fig. 2. AMBA AXI full bus matrix (sketch).

Step 3: applying incremental modifications on H

(for minimal wire length).

Experiments show large reduction of wire power consumption
over existing bus architectures.

The rest of this paper is organized as follows. Section II
introduces some background information on bus gating.
Section III formulates our bus optimization problems.
Section IV shows the heuristics for minimizing power and
Section V for minimizing wire length. Experiments are illus-
trated in Section VI. Finally, Section VII gives our conclusions
on bus matrix, with comparisons to network-on-chips and
analogies to city traffic planning.

II. Bus Architectures and Bus Gating

Background

Standard on-chip buses like AMBA were designed to enable
fast and convenient integration of system components into
the SoC, where simplicity is one of the major objectives.
When the bus power consumption comes to a significant level
that we cannot afford to ignore [15], power optimization will
be desirable. We introduce a “bus gating” technique [23] to
minimize the power on bus lines with a small compromise on
design simplicity.

A. AMBA On-Chip Bus and Bus Matrix Architectures

The AMBA AHB on-chip bus [29] and bus matrix [31]
are drawn in Figs. 1 and 2. The components connected by
these buses can be classified into masters and slaves. Masters
are typically microprocessors, each can start a transaction
with one slave device at a time, where the slave is selected
by giving an address to the decoder. Slave devices respond
to masters passively. When conflicting requests come from
multiple masters, arbiters will decide the order of services.

WANG et al.: BUS MATRIX SYNTHESIS BASED ON STEINER GRAPHS FOR POWER EFFICIENT SYSTEM-ON-CHIP COMMUNICATIONS 169

The main difference between the bus and bus matrix is on
multiple access from masters. The basic bus allows one master
access at a time, while the bus matrix may allow multiple
accesses. In a full bus matrix like Fig. 2, the masters and slaves
are connected like a bi-clique, and each slave has an arbiter.
Full bus matrices have largest bandwidth capacity, typically
applied for maximum performance.

B. Power and Wire Efficiency of Gated Bus Using Steiner
Graphs

The power efficiency of a bus architecture like Fig. 1 is low
because the bus lines from masters to slaves are connecting
all the slave devices by a single large wire net. The same is
on slave-to-master connections. While the communication is
one-to-one, the signals are sent to all the receivers regardless
of whether they are needed, which results in wasted dynamic
power on bus wires and component interfaces. Moreover, this
low power efficiency is still being worsened by the technical
scaling of global wires [13] and the increasing number of
components integrated into SoCs.

Gated bus is a solution to save the wasted dynamic power.
The simplest way is to add a de-multiplexer after each mul-
tiplexer in Fig. 1, and add a de-multiplexer after each master
device in Fig. 2, so that the signals only propagate to where
they are needed. This method works in a similar way as clock
gating [5], [11], and can be even more effective because the
signal receivers here have much less complex behaviors than
in a clock tree.

For tree structured buses, distributing the multiplexer and
de-multiplexer into the wire net [Fig. 3(a)] helps to save
both power and wires. For wire length, while the single
multiplexer needs independent lines from every sender, the
lines can be shared with distributed multiplexers and form
a Steiner arborescence [7], [21], [22]. An arborescence is a
directed tree such that every root-to-leaf path is shortest. On
the receivers’ side with distributed de-multiplexers, the bus
lines change from a rectilinear Steiner minimum tree [12],
[14] to a minimum rectilinear Steiner arborescence (MRSA).
By the research in [2], this change increases the wire length
by only 2–4% on average. So the total bus wire length can
be reduced by the distributing the multiplexer/de-multiplexers,
while the dynamic power can also be reduced at the same
time. There is a small control overhead for sending the signals
over the arborescence, but compared to the bus width and data
throughput, this dynamic power overhead is negligible. Based
on the same tree topology, effective bus gating can be applied
by distributing the control over the entire tree (arborescence).

On bus matrices, however, simply adding de-multiplexers
may increase the total wire length, because when the number
of master-to-slave paths becomes large, each path will need
its own bus wires [as in Fig. 3(b)]. To reduce wire length in
the bus matrix, also to further reduce power on the basic bus,
we adopt the structures of Steiner graphs. A Steiner graph is
a generalization of Steiner trees, without the limitation of tree
structure that there is only one root placed at a certain point,
which cannot be on the shortest path of every connection.
By removing the constraint of tree topologies, we gain higher
freedom to choose shortest paths for reduced power on data

Fig. 3. Bus gating using distributed mux and de-mux. (a) On single bus. (b)
On bus matrix.

Fig. 4. Shortest-path Steiner graph G′′ and its bus implementation.

transactions, and to let the paths share wires for reduced
routing congestion.

As defined in [4], for an unweighted graph G = (V, E),
G′′ = (V ′′, E′′, ω) is a Steiner graph of G if V ⊆ V ′′ and for
any pair of vertices u, w ∈ V , the distance between them
in G′′ is at least the distance between them in G. Fig. 4
shows a Steiner graph of G with V = {s1, s2, t1, t2} and E =
{(s1, t1), (s1, t2), (s2, t1), (s2, t2)} with each edge weighted 1,
and its implementation as a bus or bus matrix. This graph is
minimal in terms of total wire length. Moreover, every edge in
E has a path in G′′ with minimum length, i.e., the path length
equals the Manhattan distance between the two vertices. In this
way, each data transaction involves minimal wires, leading to
minimal dynamic power on bus lines.

Shortest-path Steiner graphs have advantage on power ef-
ficiency as shown above. Naturally, graph structures also
have advantage on communication bandwidth over trees. Our
objective of bus gating and bus matrix synthesis is to perform
a balanced optimization on power and bandwidth even when
available routing resource is limited.

C. Design Flow with Gated Bus Synthesis

The bus gating technique may bring some additional com-
plexity in the design flow. Traditionally, physical level design
starts from gate level netlist, and goes through placement,

170 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 2, FEBRUARY 2011

routing, timing analysis, verification, and so on. With bus
gating, since the buses are usually included in the system with
wires and control units, floorplan and placement depend on
the bus connections, while the topology of the gated bus may
depend on floorplan and placement.

To resolve this loop of dependency, we need to change the
design flow by inserting the bus gating stage into placement
and routing. After the initial placement considering the bus
as a big wire net, the gated bus synthesis is performed, with
a minimal update on the netlists and placement of bus units.
Since the updates are limited to the bus or bus matrix part of
the system, the process can be controlled in small scale and
mostly automated. So provided with appropriate algorithms,
the impact of bus gating on design flows can be minimal.

III. Problem Formulations

We require the bus synthesis algorithm to generate a bus
matrix based on a given “communication constraint graph”
[16], [19] and a placement of master and slave devices. In
this way, on-chip bus matrices can be flexibly reconfigured
for different system designs and communication patterns. The
optimization is on power and wires under the bandwidth
requirement given by the graph. Here with AMBA protocols,
we can use definition 1 to model the communication graph of
bus matrices.

Definition 1: A communication graph GC = (Vs, Vt, A) is a
directed bipartite graph, where Vs is the set of source vertices,
Vt is the set of terminal vertices, and A is the set of arcs from
Vs to Vt .

We denote the set of master devices by Vs, the set of slave
devices by Vt . An arc (vi, vj) in GC means master device i

needs to access slave device j. Also given are the fixed on-chip
locations of these devices.

Definition 2: A placement on a communication graph GC

is a physical location function P : Vs

⋃
Vt �→ R2.

A. Power and Bandwidth Models

To make the objective clear and simple, the power con-
sumption on the bus matrix is estimated by average length of
communication paths. Interconnect dominance on power [9],
[13] determines that the wires involved in a data transaction
consume most of the power, which is proportional to the
involved wire capacitance Cinv and the square of supply
voltage V 2. Assume the voltage is constant, and we use the
same type of wires throughout the bus matrix, the power is
then proportional to the path lengths of data transactions.

The bandwidth capacity of a bus matrix is basically the
number of simultaneous master-slave connections it can hold.
Assume no time division multiple access or similar techniques
are used, i.e., one set of bus line supports at most one
connection at a time. Also, each master or slave device is
limited to one connection each time. In this way, we need
multiple sets of bus lines between two points u and v to
enable the same number of simultaneous connections on (u, v),
by which we define the edge weight ω((u, v)). Besides edge
weights, bandwidth capacity also depends on other factors,

Fig. 5. Example case and the ideal bus matrix graph.

including the locations of all the devices, the communication
graph, and the bus matrix topology.

B. Maximum Bandwidth Bus Matrix Formulation

To meet the demand of the communication graph GC, we
define the bus matrix graph based on a Steiner graph of GC.
Every connection path should take the shortest rectilinear path
for minimal communication power, i.e., the path from a to b

has the length of Manhattan distance ‖P(a) − P(b)‖1. Path
definition is natural (same as in [19]).

Definition 3: For communication graph GC = (Vs, Vt, A)
and placement function P : Vs

⋃
Vt �→ R2, a bus matrix graph

is a weighted graph � = (V, E, ω) with placement P ′ : V �→
R2 such that:

a) Vs ⊆ V

Vt ⊆ V ;
b) ∀ v ∈ Vs

⋃
Vt , P ′(v) = P(v);

c) For any A′ ⊆ A such that
∀ (ui, wi) �= (uj, wj) ∈ A′, ui �= uj ∧ wi �= wj ,

there is a set of paths ρ : A′ �→ � such that:
i) ∀ (u, v) ∈ A′, ρ((u, v)) ⊆ V

⋃
E;

ii) ∀ (u, v) ∈ A′,∑
(i,j)∈ρ((u,v)) ‖P(i) − P(j)‖1 = ‖P(u) − P(v)‖1;

iii) ∀ e ∈ E, |{r ∈ � : e ∈ r}| ≤ ω(e).
The objective is to find the bus matrix graph with minimal

total wire length L(�) =
∑

(u,v)∈E ω((u, v))‖P(u) − P(v)‖1.
The bus matrix graph is defined above to have the capability

of efficient communications. Constraints i) and ii) ensure that
the graph covers all the devices. Constraint iii) dictates that for
any set of disjoint arcs in A, there is a set of connection paths
�, where each path is shortest (by iii-b) and the weighted
edges in � can hold all the paths in � (by iii-c). The total
weighted edge length, i.e., total wire length is to be minimized.
So the bus matrix we are looking for should support all
possible communication patterns, consume minimal power,
and use minimal routing resources.

Fig. 5 shows an example of a bus matrix graph connect-
ing four masters s0, s1, s2, s3 and three slaves t1, t2, t3. Five
communication arcs are present: s1 may access t2 and t3,
and t1 may be accessed by s0, s2, and s3. The single weight
edges in Fig. 5 (by solid segments) are adequate for this
requirement. Notice that (s0, t1) is the only arc having more
than one shortest paths. And when its connection is on, s2 and
s3 cannot access t1 at the same time, i.e., bus lines “s2 ↔ t1”
and “s3 ↔ t1” are both open. Depending on s1’s connection,
since s1 can take at most one of “s1 ↔ s2” and “s1 ↔ s3,” the
connection from s0 can always choose the one other than s1’s
and find an open path to t1.

WANG et al.: BUS MATRIX SYNTHESIS BASED ON STEINER GRAPHS FOR POWER EFFICIENT SYSTEM-ON-CHIP COMMUNICATIONS 171

This formulation defines an ideal high bandwidth low power
on-chip communication solution, but with limited practical-
ity. Because first, minimization on the wire length of � is
computationally expensive due to the exponentially increasing
combinations of arc subset A′. And even if we pre-compute
the optimal solution, it is still impractical to store the path
sets for all the subsets, or to compute the path set � in real
time. Another problem is that, if the communication pattern
changes dynamically, when some connections are still on but
need to change paths, it may induce extra delay or timing
issues. To make a practical bus matrix achievable with fast
response, small silicon footprint and good power efficiency,
we slightly weaken the formulation as follows.

C. Practical Bus Matrix Synthesis Formulation

Given a communication graph GC and its placement, we
define another bus matrix graph with fixed paths for the arcs
in GC, i.e., each pair of master-slave connection always takes
the same path regardless of other connections.

Definition 4: For communication graph GC = (Vs, Vt, A)
and placement function P : Vs

⋃
Vt �→ R2, a bus matrix graph

is a weighted graph H = (V, E, ω) with placement P ′ : V �→
R2 and a set of fixed path ρ : A �→ � such that:

a) Vs ⊆ V

Vt ⊆ V ;
b) ∀ v ∈ Vs

⋃
Vt , P ′(v) = P(v);

c) ∀ (u, v) ∈ A, ρ((u, v)) ⊆ V
⋃

E and∑
(i,j)∈ρ((u,v)) ‖P(i) − P(j)‖1 = ‖P(u) − P(v)‖1;

d) For any A′ ⊆ A such that
∀ (ui, wi) �= (uj, wj) ∈ A′, ui �= uj ∧ wi �= wj ,

we have ∀ e ∈ E, |{a ∈ A′ : e ∈ ρ(a)}| ≤ ω(e).
In this formulation, the constraints are similar to those in

definition 3, except that the connection paths no longer depend
on the communication pattern. The same case in Fig. 5 has
a different solution here because of the reduced flexibility on
paths. Since the path from s0 to t1 is fixed, it conflicts with
either path (s1, t2) or path (s1, t3). For the objective of minimal
wire length, we should assign weight 2 on edge (s1, t3), and
arc (s0, t1) always takes path “s0 ↔ s1 ↔ s3 ↔ t1.”

We can see that the total wire length of the optimal solution
L(Hm) may be larger than that of the ideal formulation by
definition 3. However, the fixed paths can be easily stored in
bus control units, so that the entire communication protocol
can be implemented with very small consumption on area and
power. Therefore, the formulation based on definition 4 is
more preferable for practical use. Algorithms based on this
formulation are elaborated in the following two sections.

IV. Bus Matrix Graph Construction

The flow we use is to first construct a shortest-path Steiner
graph based on the given placement of Vs ∪ Vt and commu-
nication graph GC, and then decide the weight ω(e) on each
edge. The single-source case is the MRSA problem, which is
well studied in previous work such as [7] and [21]. Although it
is proved to be NP-complete in [22], heuristic algorithms can
provide close-to-optimal solutions of Steiner arborescences.

TABLE I

RSA/G Algorithm

Given a source s and n terminals t1, · · · , tn,
v1, · · · , vN are the Hanan grid nodes of {s, t1, · · · , tn}

sorted by decreasing distance to s

Q ← φ;
for i = 1 to N do

if there is tj at vi, then (TMO)
Q ← Q

⋃
{vi};

X ← Q
⋂

{vj : ‖P(s) − P(vj)‖1 =
‖P(s) − P(vi)‖1 + ‖P(vi) − P(vj)‖1};

if (|X| ≥ 2) then (SMO)
merge the nodes in X rooted at vi

Q ← (Q
⋂

X)
⋃

{vi};
return the arborescence rooted at s;

Our shortest-path Steiner graph is constructed by multiple
iterations of a revised MRSA construction.

A. k-IDeA/G Heuristic for MRSA

The RSA/G heuristic for the MRSA problem was first
introduced in [21], and is proved to be 2-approximate. Given
a single source and n terminals, the basic flow is to start
with n subtrees and iteratively merge a pair of subtree roots
v and v′ such that the merging point is as far from the
source as possible, so that the wires can be shared as much
as possible. It terminates when only one subtree remains.
For efficient implementation, the RSA/G first sorts all the
nodes on the Hanan grid [26] with decreasing distance to the
source, and visits each node while maintaining a peer set P of
subtree roots. Details are shown in the pseudo code in Table I,
where two operations are used at: terminal merger opportunity
(TMO), when a terminal is added into P as a subtree; and
Steiner merger opportunity (SMO), when |X| ≥ 2 and the
subtrees in X are merged.

The k-IDeA/G (iterated k-deletion for arborescence) al-
gorithm is developed in [7] based on the RSA/G. In each
iteration, it removes up to k nodes from v1, · · · , vN when
running the RSA/G algorithm. By removing the nodes, some
SMO merges are skipped, which in some cases can result in
a better overall solution. All the combinations of the k or
fewer skipped nodes are tried in an iteration, and the best
set of skipped nodes are marked as permanently deleted. The
iterations are repeated until no further improvement occurs.

B. Shortest-Path Steiner Graph by Multiple MRSAs

For a shortest-path Steiner graph with multiple sources
s1, · · · , sm, the idea behind single source MRSA is still valid.
In fact, our algorithm constructs the Steiner graph H just
by iteratively constructing the MRSA rooted at every source.
While a single arborescence can be optimized by the k-IDeA
heuristic, the m arborescences are individually optimized with
the same idea, plus that these arborescences also need to share
as much wire as possible to optimize the final Steiner graph.
For this purpose, we add additional heuristics based on the
RSA/G to construct multiple MRSAs one by one.

First, starting from the second MRSA construction, we can
reduce terminals by using existing wires. For each MRSA
with source si, the terminals that need connection from the

172 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 2, FEBRUARY 2011

Fig. 6. Nodes requiring connections (in dotted circles).

Fig. 7. Connecting a node into the Steiner graph.

source can be moved along existing edges of H toward si.
As the example shown in Fig. 6, with the wires of previous
aborescences, we only need to connect eight nodes instead
of the original 16 terminals to form the MRSA rooted at s2,
because all the other terminals can be reached from one of
these eight nodes by a shortest path from s2. This set of nodes
(denoted as T ′) can be obtained by checking each terminal tj ,
move from tj toward si as much as possible along existing
paths until reaching a vertex (can be a terminal or a Steiner
node) in H where no vertex closer to si can be reached, and
add this vertex to T ′. When there are multiple paths in the
graph, we pick the final vertex closest to si, so the rest part
of the path is short and likely to need less wires. Details are
in the routine “Necessitate(v)” in Table II.

Second, we construct the MRSA based on the set of
nodes T ′ using as much existing wires as possible. Compared
to the RSA/G heuristic, the TMO condition is changed to
vi ∈ T ′. The SMO condition is changed, also for the purpose
of wire reusing, from |X| ≥ 2 to |X| ≥ 2 or (|X| = 1 and
vi ∈ H). Because when vi is already in the graph, it was added
into previous MRSAs and can share wires with the node in
X like the case in RSA/G when |X| ≥ 2. As the example in
Fig. 7 shows, when X contains only one node {t2}, it should
be connected into H when vi comes to t3, and half of the
connection length can be saved using the existing horizontal
wire. The detailed algorithm is described in Table II, where
the routine “connect(u, v)” uses existing wires if applicable on
shortest connections.

The k-IDeA iterations remain unchanged here. And after
the shortest-path Steiner graph is constructed by applying k-
IDeA on the m sources, there are possibly some redundant
edges that can be removed. So the final step is to check each
edge (vi, vj) ∈ H , if H still contains all the source-to-terminal
shortest paths without (vi, vj), then remove it from H .

C. Edge Weights

With the graph topology constructed, we can decide the
weight on each edge, i.e., number of parallel bus lines along

TABLE II

Revised RSA/G’ Algorithm

Given existing Steiner graph G, source sk , terminals t1, · · · , tn,
and Hanan grid nodes v1, · · · , vN are same as in RSA/G;
Routine Necessitate(vertex v);

U ← {u ∈ G and exists a wire path from v to u of
length ‖P(sk) − P(v)‖1 − ‖P(sk) − P(u)‖1};

T ′ ← T ′ ⋃ {um ∈ U with minimum ‖P(sk) − P(u)‖1};
T ′ ← φ;
for i = 1 to n do Necessitate(ti);
Q ← φ;
for i = 1 to N do

if vi ∈ T ′ then Q ← Q
⋃

{vi}; (TMO)
X ← Q

⋂
{vj : ‖P(sk) − P(vj)‖1 =

‖P(sk) − P(vi)‖1 + ‖P(vi) − P(vj)‖1};
if (|X| ≥ 1 and vi ∈ G) then (SMO)

for each (u ∈ X) connect(vi, u);
Q ← Q

⋂
X;

Necessitate(vi);
else if (|X| ≥ 2) then (SMO)

merge the nodes in X rooted at vi

Q ← (Q
⋂

X)
⋃

{vi};
return; (the MRSA rooted at sk is added to G)

Fig. 8. Bus matrix graph and all its master-slave connections.

each edge. By the formulation in definition 4, we pick a
fixed shortest path in the Steiner graph for each connection.
When multiple shortest paths exist between a pair of source
and terminal, a random path is chosen, so that the set of
paths are less likely to congest on certain edge(s). The weight
ω(e) on each edge e is then determined by the possible
communication subset A′ in definition 4. The maximum size
of the set {a ∈ A′ : e ∈ ρ(a)} for all A′, which is used as
edge weight ω(e), can be computed as a maximum bipartite
matching [25] on the subgraph G′(e) of the communication
graph GC = (Vs, Vt, A). G′(e) contains all the arcs whose
corresponding paths go through edge e. The reason is that the
number of connections is naturally limited by the bandwidth
on each device, i.e., each master or slave has only one interface
to the bus matrix, so it can have at most one connection at
a time. With fixed path for each master-slave connection, this
maximum matching on G′(e) is the upper limit on the number
of paths going through edge e simultaneously.

In the example of Fig. 8, the communication graph is a
bi-clique between Vs = {s1, s2, s3} and Vt = {t1, t2, t3, t4, t5},

WANG et al.: BUS MATRIX SYNTHESIS BASED ON STEINER GRAPHS FOR POWER EFFICIENT SYSTEM-ON-CHIP COMMUNICATIONS 173

Fig. 9. Bipartite graphs of four edges in the bus matrix of Fig. 8.

i.e., all the |Vs| × |Vt| = 15 arcs are present. The resulting
bus matrix graph contains five Steiner nodes and 13 edges.
Every arc from a master si to a slave tj has a connection of
minimal length, and the 15 shortest paths shown in Fig. 8 are
fixed. To assign a weight on each edge, we take e = (s2, v1) as
example. Six of the 15 paths go through e, so G′(e) consists
of the six corresponding arcs (s1, t3), (s2, t1), (s2, t2), (s2, t4),
(s2, t5), and (s3, t3). The maximum matching has two edges,
because t3 can only connect to one of s1 and s3. Therefore,
ω(e) = 2 is adequate to support all communication patterns.
Fig. 9 shows the bipartite graphs of four edges on the central
horizontal line.

Despite the number of connections, most of the edges
are weighted 1. Yet this bus matrix graph is adequate for
maximum bandwidth capacity, i.e., wires will not be the
bottleneck of multiple simultaneous connections. The total
weighted wire length in this bus matrix is 108. Compared to
the total path length 266 if implemented as a full bus matrix
in Fig. 2, the Steiner graph approach saves more than half of
the routing resources.

V. Tradeoffs on Power, Wire, and Bandwidth

The bus matrix graph H constructed by the algorithm
above is optimal for minimal power on bus wires, without
considering chip area and routing resources. The area overhead
can be small because of the simple control mechanism, but
routing resource may become a bottleneck depending on other
factors in the design. Therefore, we need to explore some
tradeoffs among the objectives in order to have more flexible
choices. The objective is to achieve a balanced “shallow-light”
optimization like in [8], with both short connection lengths
(shallow) and small total wire length (light).

A. Steiner Graph Reduction

Since high bandwidth bus matrices will need significantly
more wires to support parallel communications across the
chip, routing resource may become another limitation as more
components are integrated into SoCs and interactions increase.
Especially when the components are placed in irregular place-
ment instead of cell arrays, the shortest-path Steiner graph
generated by the algorithm in Table II may contain a lot of
loops, which bring additional wire length. We look for changes
in the graph structure which can significantly reduce the wires,
while preserving the short paths at the same time.

As in Fig. 10(a), there are some long and narrow rectangles
formed by the graph edges, and the long double edges are
necessary if we want all the connections to be shortest. But

Fig. 10. Merging parallel segments in a bus matrix graph. (a) Original.
(b) Reduced. (c) Further reduced.

Fig. 11. Searching for mergeable parallel segments (in vertical direction).

when the double edges are geometrically very close to each
other, combining them into one edge only slightly increases the
length of some connections, while possibly saving much more
wire length. Fig. 10(b) and (c) shows the effect of merging
parallel segments in narrow rectangles. The total edge length
is greatly reduced, while the increment on average path length
is relatively small. Although fewer edges will generally result
in larger edge weight, the total weighted edge length (wire
length) can still be reduced by this merging operation due to
improved wire sharing among paths.

Thus, if we relax the requirement on the path length in
definition 4, from the exact Manhattan distance ‖P(u)−P(v)‖1

to within (1 + ε)‖P(u) − P(v)‖1, we can merge the double
parallel edges to save wires. Assume we have a vertical narrow
rectangle with dimensions h×w, and we merge the two vertical
edges to a single edge placed in middle. The total edge length
may be reduced by h, while the lengths of some connection
paths increase by w

2 + w
2 = w. So if the h/w ratio is high, this

operation can be very helpful on relieving routing congestion,
while preserving the low power consumption of a bus matrix.

In the wire length reduction algorithm, we repeatedly search
for pairs of parallel double lines in the bus matrix graph,
and for each pair, calculate its potential reduction �l on edge
length and possible increment �p on path lengths. The pair
with highest �l/�p ration is merged, and the modified graph
will have a new set of connection paths and edge weights.
If the added total wire length is really reduced, we keep the
merging operation and continue to the next iteration, otherwise
discard the operation. Eventually, there will be no positive
wire length reduction in the graph, and we have a series of
bus matrix graphs with decreasing wire length and increasing
path lengths, where a comprise can be chosen.

The process of searching for vertical mergeable parallel seg-
ments is illustrated in Fig. 11. (Horizontal lines are processed
in the same way with x-y coordinates switched.) First, the
vertical line segments in the Steiner graphs are sorted by their

174 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 2, FEBRUARY 2011

x coordinates, denoted as u1, u2, · · · , uk. Then for each pair of
segments ui, uj (i < j) with a common y interval [y1, y2], if
between i and j there is no other vertical segment on [y1, y2],
ui and uj are a pair of mergeable segments.

On the parallel segments ui and uj , let cl denote the count
of horizontal lines connected to the left, cr denote the count
of lines connected to the right, and cm the count of lines
connecting ui and uj in the middle. Assume cl < cr, so the
combined vertical segment may not be at the middle but have
an offset δ to the right of the midpoint.

The reduction on total edge length �l is by combining the
vertical segments of length h and changing the lengths of
related horizontal connections. The two vertical segments are
reduced to one, which reduces edge length by h. The central
cm edges of length w are totally removed. However, the lengths
of cl connections on the left are increased by w

2 + δ, and the
lengths of cr connections on the right are increased by w

2 − δ.
To sum up, �l = h+cmw−cl(w

2 +δ)−cr(w
2 −δ). On the possible

increment on path lengths, since the left vertical segment is
pushed rightward by w

2 +δ, a path may need to detour and add
�p = w + 2δ of distance. So the ratio is

�l

�p
=

h + cmw − cl(w
2 + δ) − cr(w

2 − δ)

w + 2δ

=
cr − cl

2
+

h − (cr − cm)w

w + 2δ
.

The best offset value δ can be decided by the right part
h−(cr−cm)w

w+2δ
to maximize the ratio. If the upper part h − (cr −

cm)w ≥ 0, i.e., h
w

≥ cr − cm, then let δ = 0 so that the
merged vertical segment is placed at middle. Otherwise h

w
<

cr − cm, let δ = w/2 which is the maximum offset value, and
the merged segment is at the right segment uj’s position (note
we assume cl < cr, otherwise δ is negative).

In Fig. 10, the graphs are the stages of the merging
iterations applied on a Steiner graph. First, the long and narrow
rectangles are removed, followed by wider rectangles. If we
do not require high bandwidth capability, i.e., edge weights all
set to 1, the final graph has about half total edge length of the
original shortest-path Steiner graph. On weighted bus matrix
graphs, the reduction on total wire length is usually smaller,
since the number of connections is still |A|, and the edge
weights are increased by the merging operations. Nevertheless,
we still can achieve a significant reduction on total wire length
in average cases (test cases in Section VII).

Notice that the segment merging operation also helps to
merge Steiner nodes which are generated very close to each
other. In practice, locally congested Steiner nodes can be hard
to implement, because each node needs the area for a switch
box and its control unit. Our operation does not guarantee
to resolve all closely placed nodes, since it prioritizes longer
segments, and may leave small square-shaped subgraphs un-
changed. Nevertheless, this situation can be easily resolved by
a post-processing algorithm, which scans each Steiner node
(denoted as vi), look at vi’s close neighbors within a small
d×d box and compute the density of Steiner nodes in the area.
For a box with too many nodes, we can shrink all the nodes
in that box into one, and implement it by a single switch. The

TABLE III

Bus Matrix Physical Synthesis

Given a communication graph G = (U, W, A),
and a location function P : U

⋃
W �→ R2

Routine Set Edge Weights(Steiner graph H)
For each arc a = (u, v) ∈ A,

find a shortest path ρ(a) in H from u to v;
For each edge e ∈ E in H ,

A′ ← {a ∈ A : e ∈ ρ(a)};
ω(e) ← Max matching(A′);

1. Generate shortest-path Steiner graph H0 = (V, E); (by Table II)
2. Set Edge Weights(H0);
3. k ← 0;
4. Repeat
4.1 Find all pairs of parallel segments in Hk ,

and sort them in stack D[] by decreasing �l/�p;
4.2 While (D[] is not empty)

(ui, uj) ← Pop out the segment pair in D[];
Htemp ← Hk with segment ui and uj merged;
Set Edge Weights(Htemp);
If (Htemp < Hk on total wire length)

k ← k + 1;
Hk ← Htemp;
Break the “while” loop;

Else discard Htemp;
Until (no wire length reduction found in Hk)

5. Evaluate the bus matrix graphs H0, H1, · · · by design objectives

changes on the bus matrix graph by this operation are limited
in the small box areas. The path lengths are not increased
if we use the type of crossbar switch in Fig. 13, because it
allows shortest path connections between every pair of ports.
The reason we do not implement the whole bus matrix as a
crossbar is that it brings excessive wire length, which is not a
problem in a local d × d box area.

B. Overall Optimization Flow

Combining the heuristic algorithms of graph generation
and edge merging, the overall optimization flow is shown in
Table III. Step 1 is the construction algorithm of shortest-path
Steiner graph in Table II. Step 2 is by the bipartite maximum
matching in Section IV-C. Step 4 is the iterative graph reduc-
tion process by parallel segment merging operations.

The running time of this flow is dominated by step 4, where
the maximum matching algorithm needs O(n2m) time with
n = |Vs + Vt| and m = |A|. Each edge weight is decided by a
maximum matching, and the total number of edges is bounded
by the edge count in a Hanan grid [26] which is O(n2).
Therefore, the time complexity of one iteration is bounded
by O(n4m). According to the number of devices in a system-
on-chip, the scale of running time will be acceptable for SoC
designs within near future. As for the space requirement, O(n2)
of space is adequate for all the algorithms in our flow.

The merging operation in step 4 reduces edge length, but
does not necessarily reduce the total wire length. In later stages
of the iterations, when edges are becoming sparse, merging
two edges (e1, e2) into one (e′) may result in ω(e′) = ω(e1) +
ω(e2). Because with fewer edges left in the graph, the paths
have less choices for shortest length, and tend to be congested
on critical edges. In such cases, combining e1 and e2 does
not improve wire sharing, and even increases total wire length
because of the increased path lengths.

WANG et al.: BUS MATRIX SYNTHESIS BASED ON STEINER GRAPHS FOR POWER EFFICIENT SYSTEM-ON-CHIP COMMUNICATIONS 175

Fig. 12. Control on switches in a bus matrix.

The iterations of step 4 will terminate when the edges are
sparse enough so that total wire length can no longer be
reduced. Till that point, our flow has produced a series of bus
matrix graphs optimized from device locations and communi-
cation requirements (GC). Among the series of solutions with
decreasing wire length and increasing power, designers can
choose a best compromise between power and wires, typically
the lowest power allowed by available routing resources.

VI. Bus Matrix Control Units and Wires

Apart from path lengths and data wire lengths, the control
overhead needs to be considered for a complete optimization.
Although the data lines consume the major amount of routing
resource because they are usually at least 64 bit (32 bit ×
2-way) wide, control overhead is increased compared to tradi-
tional bus architectures by adopting Steiner graphs. We need
a lot of switches at Steiner nodes to guide the on-chip traffic,
and each switch needs a certain number of control signals
depending on its node degree and edge weights.

The sketch of bus matrix control scheme is shown in Fig. 12.
Each slave device has an arbiter which handles the requests
from masters and decides the connection. The result is sent to
the central switch control unit, where all the connection paths
are stored. Depending on the set of active paths, the central
switch control sends control signals to all the switches on
each path, which together instantly create the master-to-slave
connection requested by the master device.

A. Control Wire Overhead

A bus switch is basically a crossbar plus an auxiliary
local control which remembers each path going through.
The local control handles two types of requests from the
central switch control, create connection(port1, port2) and
dispose connection(port1, port2). Typically, a Steiner node
in the bus matrix graph has degree 3, and the combinations
of (port1, port2) are (3

2) = 3, which can be distinguished by
two control signals. Plus another signal for the create/dispose
request, a 3-way switch needs three wires connected to the
central switch control.

At each slave device, there is an arbiter deciding which
master has the access, so we have �log2 m� + 1 control
signals from each arbiter to the central switch control. With a
given placement of system components and control units, our
algorithm generates the bus matrix graph with all the switches,
and the total length of control wires can then be calculated.
Compared to a typical bus width of 64 bits, the wire overhead

Fig. 13. Implementation of a crossbar switch.

for switch control is relatively low. More details are illustrated
in the tables of Section VII.

B. Power Overhead

First, we assume the power overhead on the control wires
can be ignored because of the lower activity rates of control
signals. Typically during a data transaction, the control signals
do not toggle, and the data is transmitted through the bus with
a large amount of toggling on data wires. Plus that the number
of control wires is much smaller, the power percentage on
control signals has very little impact on the total bus power. We
only estimate the power overhead coming from the switches
on Steiner nodes.

As constructed in Sections IV and V, the master-to-slave
connections are all along the shortest or near-shortest paths in
the Steiner graph. For this purpose, we need to put switches
on Steiner nodes to guide all the connections. Compared to
traditional bus architectures where the connections are by
long lines inserted with buffers, our Steiner graph structure
shortens the path length, but also adds crossbar switches which
consume more power than basic buffers.

We use a crossbar design illustrated in Fig. 13. In this exam-
ple, we have a 4-way switch at a junction of Nn +Nw +Ns +Ne

bus lines. It works like a miniaturized bus matrix, enabling
2-way connections between any pair of ports (except two ports
at the same side which never need connection). Fig. 13 shows
the wires connected to the multiplexer and demultiplexer of
port 1 on the west side, where each “M” (mux) or “D”
(demux) can select among Nn + Ns + Ne connections. Each
“M” or “D” can be realized by a binary tree consisting of
�log2(Nn + Ns + Ne)� levels, where each tree node is a basic
2-to-1 mux or demux.

In a crossbar like this, a path from porti to portj is going
through �log2(N −Ni)�+�log2(N −Nj)� muxes and demuxes,
where N is the total edge weight at the Steiner node and
Ni, Nj are the corresponding edge weights. By using small
2-to-1 muxes/demuxes in binary tree structures, the switch
power overhead is on a logarithmic scale of edge weights,
lower than that on big n-to-1 muxes/demuxes with sizes on
linear scale of edge weights. So we choose this type of
crossbar switch for its advantage of low power overhead. Due
to the advancing feature size, the overhead can be further

176 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 2, FEBRUARY 2011

TABLE IV

Power and Wire Length Results Under Maximum Bandwidth

Case(m, n)
∑

Lvs,vt Ltree Minimal Power Minimal Wire

Lpath Pswitch

∑
Lwire

∑
Wctrl Lpath Pswitch

∑
Lwire

∑
Wctrl

T0 (3, 16) 305 000 84 180 6354 5.83% 93 000 9.75% 7850 6.95% 62 000 10.39%
T1 (3, 16) 331 780 145 500 6912 8.52% 105 000 9.23% 6912 8.52% 105 000 9.23%
T2 (2, 30) 401 220 123 050 6687 7.31% 101 170 15.68% 7519 11.70% 85 850 19.35%
T3 (3, 16) 331 790 82 300 6912 8.52% 71 680 13.04% 8093 9.98% 69 850 12.94%
T4 (5, 15) 516 600 96 740 6888 11.83% 141 360 10.51% 7232 16.65% 101 080 13.83%
T5 (6, 16) 666 260 112 100 6940 12.34% 230 380 9.57% 7234 16.02% 174 600 11.22%
T6 (8, 8) 440 780 89 520 6887 10.97% 146 060 7.59% 7933 12.15% 113 240 9.84%
T7 (12, 6) 472 820 121 070 6567 10.40% 157 020 7.25% 7100 14.95% 116 770 10.57%
T8 (16, 10) 1 092 780 143 770 6830 18.92% 324 290 6.65% 7838 24.41% 207 740 9.75%
T9 (8, 16) 791 100 116 520 6180 16.52% 272 740 8.53% 6646 21.78% 187 180 11.00%
T10 (8, 16) 958 280 128 990 7487 15.66% 276 630 8.48% 8678 27.90% 163 740 12.27%
T11 (6, 12) 481 300 89 700 6685 11.51% 142 650 8.78% 6728 11.57% 129 420 10.12%
T12 (12, 12) 962 760 132 420 6686 15.85% 274 970 7.10% 7299 22.55% 186 800 11.83%

reduced to an insignificant level. Also, more details are shown
in the following section.

VII. Experimental Results

In our experiments, we implement all the related algorithms,
including the shortest-path Steiner graph generation, Steiner
graph reduction by parallel line merging, and the edge weight
maximum matching. The programs are tested on Windows
Vista platform with a 2.2 GHz Intel Core2 processor. The
running time is short on all the test cases, because the
algorithms are time/space efficient, and also because most SoC
bus matrices will not need to connect too many components
(under 32 in our cases).

The test cases we use are mostly artificial, hand made (T0

and T1), or randomly generated (T2∼12). They are the same
cases used in [23] and [24]. In each test case, the master
and slave devices are distributed over a 10 mm × 10 mm
square.

The power consumption is estimated by the driven capac-
itance of data transactions, and can be calculated as a linear
combination of path length and switches along the path. Path
lengths are minimized by the bus matrix graph construction,
since wires are the major power consumer. For the purpose
of data completeness, we add the power overhead from the
switches on Steiner nodes. According to [27] and [28], we
estimate that under 90 nm technology, each mux or demux
in crossbar switches has about the same capacitance as 25
µm of wires. So by using the switch design of Fig. 13,
the dynamic power overhead of going through a switch
(porti–portj) has the power overhead equivalent to adding
25(�log2(N − Ni)� + �log2(N − Nj)�) µm of wires.

The total wire length on data wires and control overhead
are added straightforwardly. Data wire length is the sum of
weighted edge length in the bus matrix graph. The control
overhead is estimated from Fig. 12, where the central switch
control is placed at the center of the chip, and the control
wires consist of those from slave devices to central switch
control, and those from central switch control to all switches.
We assume the data lines are 64 bit wide, and therefore the
percentage on control wires are divided by 64.

A. Maximum Bandwidth Bus Matrix

We list the bus matrix synthesis results on all the test
cases in Table IV. The unit of all length values is µm.
Case Ti(m, n) contains m master devices and n slave devices.
The communication graph GC in these cases is a bipartite
connection between the two sides with maximum bandwidth
requirement, i.e., a master device can always access any idle
slave device without being limited by the number of data lines
in the bus matrix.

The objective can be minimum power (i.e., average path
length), minimum wire length, or a combination of the two.
Table IV shows the results of two single-objective optimiza-
tions. At the top of each column:

1)
∑

Lvs,vt
is the sum of Manhattan distances on all the

master-slave pairs;
2) Ltree is the average induced path length (major dynamic

power) of master-slave connections in tree structured
AMBA AHB buses or bus matrices;

3) Lpath is the average path length (major dynamic power)
of master-slave connections in the bus matrix graph;

4) Pswitch is the added percentage of power overhead in
data transactions by the switches on Steiner nodes;

5)
∑

Lwire is the total data wire length;
6)

∑
Wctrl is the added percentage of control wire over-

head.

In the minimal power section, the average path length is
exactly

∑
Lvs,vt

/(mn), while the total wire length is about one
fourth to one third of the total connection length. Compared
to traditional bus implementation in [23], the dynamic power
saving is mostly over 90% even with the switching overhead
added. Overhead on dynamic power increases with the number
of components increasing, which requires more bandwidth
and larger switches. The percentage is generally under 20%
on random cases with under 30 components. So the overall
dynamic power here is close to optimal. On the overhead of
control wires, the percentage is mostly under 10%, because
the number of control signals required is usually very low
compared to the 64 bit wide data lines.

In the minimal wire section, the bus matrix graphs are
reduced by the parallel line merging heuristic. As a result,
the wire length on most cases is greatly reduced, except for

WANG et al.: BUS MATRIX SYNTHESIS BASED ON STEINER GRAPHS FOR POWER EFFICIENT SYSTEM-ON-CHIP COMMUNICATIONS 177

Fig. 14. Case T8’s data wires under minimal power and minimal wire.

TABLE V

Estimation of Bus Matrix Power Consumption (in Watt)

Case Ptree Minimal Power Minimal Wire

Ppath Pswitch Ppath Pswitch

T0 13.5 1.02 0.06 1.26 0.09
T1 23.3 1.11 0.09 1.11 0.09
T2 19.7 1.07 0.08 1.20 0.14
T3 13.2 1.11 0.09 1.29 0.13
T4 15.5 1.10 0.13 1.16 0.19
T5 17.9 1.11 0.14 1.16 0.19
T6 14.3 1.10 0.12 1.27 0.15
T7 19.4 1.05 0.11 1.14 0.17
T8 23.0 1.09 0.21 1.25 0.31
T9 18.6 0.99 0.16 1.06 0.23
T10 20.6 1.20 0.19 1.39 0.39
T11 14.4 1.07 0.12 1.08 0.12
T12 21.2 1.07 0.17 1.17 0.26

the highly regular case T1, which is already wire-efficient
under minimal power. The data wire length reduction is around
30%, depending on the location distribution of components.
And despite the slightly increased percentage, the control wire
length is actually reduced, because there are less switches
in the reduced bus matrix graph. Fig. 14 shows the data
wires in case T8 under minimal power and minimal wire
optimizations. The thickness of each segment indicates the
number of repeated bus lines [edge weight ω(e)].

Compared to the reduced wire length, the increase on
average path length is much lower, mostly around 10% and all
under 20%. The power overhead percentage is also increased,
because although the Steiner nodes are reduced, the switches
along each path are not reduced as much in number, but
increased in size. Still, these solutions are relatively power
efficient, and we have series of intermediate solutions between
minimal power and minimal wire are available for choice.

To see how the path lengths reflect communication power
in SoCs, we calculate the bus power consumption with a fixed
set of parameters. Assuming 1 V of power voltage, 0.2 fF/µm
of wire capacitance, 4 Gb/s of transaction bit rate, and 20%
of bus matrix activity rate, Table V lists the estimated power
on bus matrix in each of our test cases. Again we can see a
large reduction on total bus power (Ppath + Pswitch) compared
to Ptree by traditional Steiner tree structures.

B. Tradeoffs Among Power, Wire, and Bandwidth

The parallel segment merging heuristic (in algorithm in
Table III) can provide a series of bus matrix graphs with
decreasing wire length and increasing path length. Fig. 15

Fig. 15. Average path length versus total (data) wire length in case T8 and
T12.

provides detailed curves in case T8 and T12. Generally, the
paths’ length increase as wires being reduced except at a few
points. According to power and wire budgets, designers can
choose a point on the curve for the best compromise.

If allowed by the system performance requirement, band-
width capability can be added into the tradeoff. With a bipartite
communication graph, the bus matrix should have the capacity
of handling min(m, n) data transactions simultaneously. By
reducing this capacity, wires can be saved, i.e., the tradeoff
curve is pushed toward lower-left. For bandwidth capacity k,
an edge e will need min(ω(e), k) copies of bus lines. Applying
to our test cases, the wire length starts to drop when k goes
below 5. But when k > 5, the wire reduction is very low. The
reason is that the connection paths are randomly distributed
over the graph, so very few edges have ω(e) close to the
maximum bandwidth capacity min(m, n).

Moreover, provided with detailed system communication
patterns, bandwidth capacity can possibly be lowered without
compromising system performance. Because in real system
designs with different cores and peripheral devices, data trans-
actions between certain master-slave pairs may only happen
at some specific conditions. So instead of a set of arcs A

in the communication graph, we can have a series of arc
sets A1, A2, · · · , Ac, each one smaller than the original set A,
denoting a set of simultaneous connections. Using these sets
replacing A in the algorithm of Table III, the edge weight can
possibly be further reduced. In this way, more detailed system-
level behavior information can provide extra capabilities on
optimization.

VIII. Conclusion

We optimized on-chip communications referring to the
AMBA AHB bus (matrix) architecture. The weaknesses of
original bus matrices, such as low power efficiency and low
wire efficiency, are resolved by using a Steiner graph structure.
Compared to network-on-chip which has better bandwidth
flexibility, bus matrix has much less latency because of its
centralized control, consumes less power because of the short-
est (or close to shortest) paths with minimal control/packet
overhead. Therefore, we believe bus matrix architectures will
be widely applied for efficient communications in various
future systems.

178 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 2, FEBRUARY 2011

The principle of our work on reducing power is to minimize
the data movement on the chip; and that on reducing wires is
to maximize wire sharing among different connections. The
methods and results have large similarities with city traffic
planning and road construction. Like our fixed paths, most
people in a city have a fixed route between work and home,
and roads are constructed with various number of lanes (width)
depending on local traffic density. The two graphs in Fig. 14
look like roads on a map, which may not be a coincidence but
a result of similar principles and approaches.

We devised algorithms which can extensively exploit the
on-chip physical design space for a thorough optimization
on power and wire efficiency. The results show promising
potentials of bus matrices for low power and high performance
on-chip communications. More improvements can be explored
in future works on formulations, algorithms, and the overall
optimization flow.

References

[1] S. V. Adve, V. S. Adve, G. Agha, M. I. Frank, M. J. Garzarán, J. C. Hart,
W.-M. W. Hwu, R. E. Johnson, L. V. Kale, R. Kumar, D. Marinov, K.
Nahrstedt, D. Padua, M. Parthasarathy, S. J. Patel, G. Rosu, D. Roth, M.
Snir, J. Torrellas, and C. Zilles, Parallel Computing Research at Illinois:
The Upcrc Agenda. Urbana, IL: Univ. Illinois Urbana-Champaign, Nov.
2008.

[2] C. J. Alpertt, A. B. Kahng, C. N. Szet, and Q. Wang, “Timing-driven
Steiner trees are (practically) free,” in Proc. ACM/IEEE Des. Autom.
Conf., Sep. 2006, pp. 389–392.

[3] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K.
Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams,
and K. A. Yelick, “The landscape of parallel computing research:
A view from Berkeley,” Dept. Electric. Eng. Comput. Sci., Univ.
California, Berkeley, Tech. Rep. UCB/EECS-2006-183, 2006.

[4] B. Bollobás, D. Coppersmith, and M. Elkin, “Sparse distance preservers
and additive spanners,” SIAM J. Discrete Math., vol. 19, no. 4, pp. 1029–
1055, 2005.

[5] L. A. Ca, Q. Wu, M. Pedram, and X. Wu, “Clock-gating and its
application to low power design of sequential circuits,” in Proc. IEEE
Custom Integr. Circuits Conf., vol. 47. Mar. 2000, pp. 415–420.

[6] J. Y. Chen, W. B. Jone, J. S. Wang, H. I. Lu, and T. F. Chen, “Segmented
bus design for low power systems,” IEEE Trans. Very Large Scale Integr.
Syst., vol. 7, no. 1, pp. 25–29, Mar. 1999.

[7] J. Cong, A. B. Kahng, and K.-S. Leung, “Efficient algorithms for the
minimum shortest path Steiner arborescence problem with applications
to VLSI physical design,” IEEE Trans. Comput.-Aided Design, vol. 17,
no. 1, pp. 24–39, Jan. 1998.

[8] J. Cong, A. B. Kahng, G. Robins, M. Sarrafzadeh, and C. K.
Wong, “Provably good performance-driven global routing,” IEEE Trans.
Comput.-Aided Design, vol. 11, no. 6, pp. 739–752, Jun. 1992.

[9] W. Dally, “Keynote: The end of denial architecture and the rise of
throughput computing,” in Proc. ACM/IEEE Des. Autom. Conf., Jul.
2009, p. xv.

[10] W. Dally and B. Towles, “Route packets, not wires: On-chip intercon-
nection network,” in Proc. ACM/IEEE Des. Autom. Conf., Jun. 2001,
pp. 684–689.

[11] M. Donno, A. Ivaldi, L. Benini, and E. Macii, “Clock-tree power
optimization based on RTL clock-gating,” in Proc. ACM/IEEE Des.
Autom. Conf., Jun. 2003, pp. 622–627.

[12] J. Griffith, G. Robins, J. Salowe, and T. Zhang, “Closing the gap: Near-
optimal Steiner trees in polynomial time,” IEEE Trans. Comput.-Aided
Design, vol. 13, no. 11, pp. 1351–1365, Nov. 1994.

[13] R. Ho, K. W. Mai, and M. A. Horowitz, “The future of wires,” Proc.
IEEE, vol. 89, no. 4, pp. 490–504, Apr. 2001.

[14] C.-T. Hsieh and M. Pedram, “An edge-based heuristic for Steiner
routing,” IEEE Trans. Comput.-Aided Design, vol. 13, no. 12, pp. 1563–
1568, Dec. 1994.

[15] K. Lahiri and A. Raghunathan, “Power analysis of system-level on-
chip communication architectures,” in Proc. Int. Conf. Hardw.-Softw.
Codesign Syst. Synthesis, 2004, pp. 236–241.

[16] K. Lahiri, A. Raghunathan, and S. Dey, “Efficient exploration of the SoC
communication architecture design space,” in Proc. Int. Conf. Comput.-
Aided Design, 2000, pp. 424–430.

[17] S. Pasricha, N. Dutt, E. Bozorgzadeh, and M. Ben-Romdhane,
“Floorplan-aware automated synthesis of bus-based communication
architectures,” in Proc. ACM/IEEE Des. Autom. Conf., Jun. 2005,
pp. 565–570.

[18] S. Pasricha, Y.-H. Park, F. J. Kurdahi, and N. Dutt, “System-level
power performance tradeoffs in bus matrix communication architecture
synthesis,” in Proc. Int. Conf. Hardw.-Softw. Codesign Syst. Synthesis,
2006, pp. 300–305.

[19] A. Pinto, L. Carloni, and A. Sangiovanni-Vincentelli, “Constraint-drive
communication synthesis,” in Proc. ACM/IEEE Des. Autom. Conf.,
Jun. 2002, pp. 783–788.

[20] M. Powell, S. H. Yang, B. Falsafi, K. Roy, and T. N. Vijaykumar,
“Gatedvdd: A circuit technique to reduce leakage in deep-submicron
cache memories,” in Proc. Int. Symp. Low Power Electron. Design, 2000,
pp. 90–95.

[21] S. K. Rao, P. Sadayappan, F. K. Hwang, and P. W. Shor, “The rectilinear
Steiner arborescence problem,” Algorithmica, vol. 7, nos. 1–6, pp. 277–
288, 1992.

[22] W. Shi and S. Chen, “The rectilinear Steiner arborescence problem is
np-complete,” in Proc. ACM-SIAM Symp. Discrete Algorithms, 2000,
pp. 780–787.

[23] R. Wang, N.-C. Chou, B. Salefski, and C.-K. Cheng, “Low power
gated bus synthesis using shortest-path Steiner graph for system-on-chip
communications,” in Proc. ACM/IEEE Des. Autom. Conf., Jul. 2009,
pp. 166–171.

[24] R. Wang, E. Young, R. Graham, and C.-K. Cheng, “Physical synthesis
of bus matrix for high bandwidth low power on-chip communications,”
in Proc. ACM Int. Symp. Phys. Des., 2010, pp. 91–96.

[25] D. West, Introduction to Graph Theory. Englewood Cliffs, NJ: Prentice-
Hall, 1999.

[26] M. Zachariasen, “A catalog of Hanan grid problems,” Networks, vol. 38,
no. 2, pp. 200–201, 2000.

[27] L. Zhang, H. Chen, B. Yao, K. Hamilton, and C.-K. Cheng, “Repeated
on-chip interconnect analysis and evaluation of delay, power, and
bandwidth metrics under different design goals,” in Proc. Int. Symp.
Quality Electron. Design, 2007, pp. 251–256.

[28] Y. Zhang, X. Hu, A. Deutsch, A. E. Engin, and C.-K. C. J. Buckwalter,
“Prediction of high-performance on-chip global interconnection,” in
Proc. Int. Workshop Syst.-Level Interconnect Prediction, 2009, pp. 61–
68.

[29] Amba 2.0 Specification. (1999) [Online]. Available: http://www.
arm.com/products/solutions/AMBA Spec.html

[30] “Coreconnect bus architecture,” in IBM White Paper. 1999.
[31] Amba 3 Specification. (2003) [Online]. Available: http://www.arm.com/

products/solutions/axi spec.html
[32] Avalon Interface Specifications. (2008) [Online]. Available: http://

www.altera.com/literature

Renshen Wang received the B.E. degree in com-
puter science from Tsinghua University, Beijing,
China, in 2005, and the M.S. and Ph.D. degrees in
computer science from the University of California,
San Diego, in 2007 and 2010, respectively.

Currently, he is a Development Engineer with the
Placement and Route Division, Mentor Graphics
Corporation, San Jose, CA, where he focuses on
floorplanning. His current research interests include
computer-aided design algorithms on floorplanning,
chip-packaging routing, and on-chip communica-

tions.

Yulei Zhang (S’08) received the B.E. degree in elec-
trical engineering from Tsinghua University, Beijing,
China, in 2007, and the M.S. degree in electrical
and computer engineering from the University of
California-San Diego (UCSD), La Jolla, in 2009.
He is currently working toward the Ph.D. degree
from the Department of Electrical and Computer
Engineering, UCSD.

Since 2009, he has been an Intern with the Blue-
tooth IC Design Group, Broadcom Corporation, San
Diego, CA. His current research interests include

design and optimization of high-speed, low-power on-chip/off-chip intercon-
nects, and low-power clock distribution network design.

WANG et al.: BUS MATRIX SYNTHESIS BASED ON STEINER GRAPHS FOR POWER EFFICIENT SYSTEM-ON-CHIP COMMUNICATIONS 179

Nan-Chi Chou received the M.S. degree in management science from the
National Taiwan University of Science and Technology, Taipei, Taiwan, and
the M.S. and Ph.D. degrees in computer science from the University of
California, San Diego.

He is currently an Engineering Director of timing analysis and physical
synthesis with the Design Creation and Synthesis Division, Mentor Graphics
Corporation, San Jose, CA. In addition to years of working experience with
various electronic design automation companies, he is also the Co-Founder
of CLK Computer-Aided Designs, Fremont, CA, a startup specialized in
application-specific integrated circuit (ASIC)/field-programmable gate array
(FPGA) placement technologies, acquired by Mentor Graphics Corporation in
1998. His current research interests include ASIC and FPGA physical timing
analysis, optimization, and synthesis.

Evangeline F. Y. Young received the B.S. and
M.Phil. degrees in computer science from the
Chinese University of Hong Kong (CUHK), Shatin,
Hong Kong, and the Ph.D. degree from the Univer-
sity of Texas, Austin, in 1999.

Currently, she is an Associate Professor with the
Department of Computer Science and Engineering,
CUHK. She is now working actively on floorplan-
ning, placement, routing, and algorithmic designs.
Her current research interests include algorithms and
computer-aided design (CAD) of very large scale

integration circuits.
Dr. Young has served on the technical program committees of several major

conferences, including ICCAD, ASP-DAC, ISPD, and GLSVLSI, and also
served on the Editorial Board of the IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems.

Chung-Kuan Cheng (S’82–M’84–SM’95–F’00)
received the B.S. and M.S. degrees in electrical en-
gineering from National Taiwan University, Taipei,
Taiwan, and the Ph.D. degree in electrical engineer-
ing and computer sciences from the University of
California, Berkeley, in 1984.

From 1984 to 1986, he was a Senior Computer-
Aided Design Engineer with Advanced Micro De-
vices, Inc., Sunnyvale, CA. In 1986, he joined the
University of California-San Diego, La Jolla, where
he is currently a Professor with the Department

of Computer Science and Engineering and an Adjunct Professor with the
Department of Electrical and Computer Engineering. He served as a Chief
Scientist with Mentor Graphics Corporation, San Jose, CA, in 1999. He was
an Honorary Guest Professor with Tsinghua University, Beijing, China, from
2002 to 2008. His current research interests include medical modeling and

analysis, network optimization, and design automation on microelectronic
circuits.

Dr. Cheng was an Associate Editor of the IEEE Transactions on

Computer-Aided Design from 1994 to 2003. He was a recipient of the best
paper awards IEEE Transactions on Computer-Aided Design in 1997
and 2002, the NCR Excellence in Teaching Award, School of Engineering,
UCSD, in 1991, and IBM Faculty Awards in 2004, 2006, and 2007.

Ronald Graham received the Ph.D. degree in math-
ematics from the University of California, Berkeley,
in 1962.

He holds the Irwin and Joan Jacobs Endowed
Chair in Computer and Information Science with
the Department of Computer Science and Engineer-
ing, University of California-San Diego (UCSD), La
Jolla, and is currently the Chief Scientist with the
California Institute for Telecommunications and In-
formation Technology, Irvine. He joined the UCSD
Faculty in 1999 after a 37 year career with AT&T,

Dallas, TX. From 1962 to 1995, he was the Director of Information Sciences
with AT&T Bell Labs, and from 1996 to 1999 was the Chief Scientist with
AT&T Labs. He has held visiting professorships with Rutgers, Princeton, Cal-
ifornia Institute of Technology, Pasadena, Stanford, University of California,
Los Angeles, and University of California, Davis, and holds five honorary
doctorates.

Dr. Graham is the Treasurer of the National Academy of Sciences, a Fellow
of the American Academy of Arts and Sciences, a Fellow of the Associa-
tion of Computing Machinery, and a past President of both the American
Mathematical Society and the Mathematical Association of America. He won
numerous awards in the field of mathematics, including the Polya Prize in
Combinatorics and the Steele Prize for Lifetime Achievement awarded in
2003 by the American Mathematical Society.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00540068006500730065002000730065007400740069006e00670073002000610072006500200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e003000200061006e00640020006d00610074006300680020007400680065002000220053007500670067006500730074006500640022002000730065007400740069006e0067002000660069006c0065007300200066006f00720020005000440046002000730070006500630069006600690063006100740069006f006e002000760065007200730069006f006e00200034002e0030002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

