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Wire Retiming Problem With Net
Topology Optimization

Dennis K. Y. Tong, Evangeline F. Y. Young, Chris Chu, and Sampath Dechu

Abstract—In this paper, we study the retiming problem of se-
quential circuits with net topology optimization. Both interconnect
and gate delay are considered in retiming. Most previous retiming
algorithms have assumed ideal conditions for the nonlogical por-
tions of data paths, which are not sufficiently accurate to be used
in high-performance circuits today. In our modeling, we assume
that the delay of a wire is directly proportional to its length. This
assumption is reasonable since the quadratic component of a wire
delay is significantly smaller than its linear component when the
more accurate Elmore delay model is used. A simple experiment
was conducted to illustrate the validity of this assumption. We
present two approaches to solve the retiming problem, both of
which have polynomial time complexity. The first one can compute
the optimal clock period, while the second one is an improvement
over the first one in terms of practical applicability. The second
approach gives solutions that are very close to the optimal (0.06%
more than the optimal on average) but in a much shorter runtime.
The optimally retimed circuit will then be realized physically by
placing the registers and finding the net topologies. In contrast
to many previous works [Proc. IEEE Int. Conf. Comput.-Aided
Des., p. 136, 1998], [IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., 22(7) Jul. 2003] that performed simple calculations
to determine the register positions, our approach can preserve
the optimal clock period that is obtained by the retiming step
and utilize as few registers as possible. Minimization of register
number saves both area and power in register and clock loading.
Our topology optimization step is shown to be optimal for nets
with four or fewer pins, and this type of nets constitutes over
90% of the nets in a sequential circuit on average. Using the
ISCAS89 benchmark, we tested our algorithm with a 0.35-µm
complementary metal–oxide–semiconductor standard cell library.
Silicon Ensemble was used to layout the design with a row uti-
lization of 50%. Experimental results showed that our algorithm
could find the best sharing of registers for a net in most of the cases,
i.e., using the minimum number of registers while preserving
the target clock period that is obtained by the retiming step,
within a minute run on an Intel Pentium IV 1.5 GHz PC with
512 MB RAM.

Index Terms—Design automation, flip-flops, interconnect delay,
placement, registers, retiming, very-large-scale integration.
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I. INTRODUCTION

R ETIMING [3] is a useful and popular technique for per-
formance optimization of sequential circuits. It relocates

registers to reduce cycle time while preserving the function-
alities of circuits. Much effort has been made to apply this
technique in different areas such as power reduction [4], [5],
testability [6], [7], logic resynthesis [8], circuit partitioning
[9]–[11], and physical planning [12]. Some extended its ap-
plicability to large practical circuits efficiently [13]–[20]. How-
ever, most retiming algorithms have assumed ideal conditions
for the nonlogical portions of data paths, specifically ignoring
interconnect delay. As process technology gets down to deep
submicrometer, interconnect delay becomes a major factor of
path delay. Without including this delay component, existing
retiming algorithms are not sufficiently accurate to be used in
practical high-performance circuits today. Besides, it is very
important to be able to realize a retimed circuit physically to
achieve the optimal clock period that is obtained by the retiming
step. In this paper, we study the problem of retiming with both
interconnect and gate delay and propose a scheme to realize an
optimally retimed circuit physically to achieve the target clock
period.

The choice of an accurate interconnect delay model is impor-
tant. In [21] and [22], interconnect delay was incorporated into
the retiming process, but simplified assumptions were made
such that the interconnect delay between adjacent registers on
the same wire was neglected. Another approach to integrate
retiming into detailed placement was presented in [1]. After an
initial place and route, heuristics were used to estimate inter-
connect delay. Retiming and post retiming placement were then
performed to optimize the circuit performance. A recent paper
[23] of Tabbara et al. applied retiming in the deep submicrom-
eter (DSM) domain, and interconnect delay was considered. It
was done by having a lower bound on the number of registers on
each wire euv , while the delay at nodes was irrelevant. Registers
could be retimed into a node that represented a component
and affected the total area of the components. Retiming was
performed to satisfy the constraint on the number of registers on
each wire while minimizing the total area of the components.
In [15], a clock skew solution corresponding to an optimal
clock period was converted into a retiming solution, which was
guaranteed to be at most one gate delay larger than the optimal
clock period. However, their current approach to perform this
conversion considered only gate delay. Lin and Zhou [24]–[26]
have considered the retiming problem with linear interconnect
delay model, but they have formulated the problem differently
on chip level with macroblocks, etc.
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Fig. 1. Simple experiment to illustrate the relationship between wire delay
and wire length.

In our model, the delay of a wire is assumed to be directly
proportional to its length.1 When a wire is short, the quadratic
component of the wire delay is significantly smaller than its
linear component. For a long wire, buffer insertion can be
performed to break the wire into short segments. A simple
experiment was conducted to illustrate the validity of this
assumption, and the result was shown in Fig. 1. In this exper-
iment, the Elmore delay model was used, and the parameters
were based on the 0.07-µm technology. This graph shows
the relationship between wire delay (y axis) and wire length
(x axis). If the wire is shorter than 1.46 mm, the error of using
a linear approximation is at most 5.48%. If the wire is longer
than 1.46 mm, the delay can be reduced by inserting a buffer,
and the error that resulted is even less.

We present two retiming approaches in this paper, both
of which have polynomial time complexity. The first one is
extended from the mixed integer linear programming (MILP)
approach in [3] to consider both gate and wire delay and
can solve the retiming problem optimally, i.e., relocating the
registers in a circuit to give the smallest possible clock period.
The second one transforms the problem into a single-source
longest path problem and then applies a technique to reduce the
size of the graph for the longest path computation. It is an im-
provement over the first one in terms of practical applicability.
It gives solutions very close to the optimal (0.06% more than
the optimal on average) but in a much shorter runtime.

After a circuit is retimed, we need to realize it physically.
A net is represented as a branch of edges in a retiming graph
model that does not bear any information about the net topology
and register positions. It is unknown whether the clock period
that is obtained by retiming can be realized in the design. Being
able to obtain the net topologies and place the registers to
preserve the target clock period is important, or it will make

1Please note that the retiming result in Section III can also be applied to other
delay models since the result is independent of how the interconnect delay dij

between two gates i and j changes with the length of the wire from i to j.

the retiming optimization meaningless. Minimizing the number
of registers that are used is also essential, as the size of a
register is usually several times larger than that of a simple
gate, regardless of the process technology being used. There
are several previous works on postretiming register placement,
but many of them suffer from the problem of oversimplification
when wire delay dominates. For example, in [1], the authors
assume that a register is located at the geometric center of the
connected gates. A similar problem occurs in [2] in which the
authors determine the position of a register in such a way that
the sum of the net lengths that are connected to that register is
minimized.

We devised a scheme to realize a retiming solution physically
to achieve a target clock period, given the gate positions. This
problem involves two main subproblems, namely: 1) topology
finding and 2) register placement. As we have mentioned be-
fore, a net is modeled as a branch of edges in the retiming graph;
topology finding refers to the problem of finding an optimal
sharing of registers among the fan-out edges of a net given
the geometric positions of the connected gates. After topology
finding, we need to compute an appropriate position for each
register given the constraints in placement (some occupied
areas do not allow register insertion), and this problem is known
as register placement. Given a circuit with its placement (we
used standard cell design in our experiments), retiming is first
performed on the circuit to obtain the optimal clock period;
then, topology finding and register placement will be performed
to realize the retimed solution physically. Our approach can
find the optimal topology, i.e., using the minimum number of
registers while preserving the clock period, for four or fewer pin
nets. Since nets with four or fewer pins constitute, on average,
over 90% of the nets in a circuit, our proposed algorithm offered
an agreeable performance in the experiments. Nearly all the
nets had their best topologies found, and registers were inserted
successfully to achieve the target clock period.

The remainder of this paper is organized as follows: We
present the problem statement in Section II. The optimal and
the fast approaches for the retiming problem are presented in
Sections III-A and III-B, respectively. The topology finding
and register placement step are discussed in Section IV-A and
Section IV-B, respectively. Experimental results are shown in
Section V. A conclusion follows in Section VI.

II. PROBLEM FORMULATION

Given sequential circuit C and its placement ℘, we want to
retime C to obtain the optimal clock period and implement
this retimed solution in ℘ by inserting registers into ℘ and
finding the connection topologies between the gates/registers.
This problem can be divided into two parts: 1) retiming and
2) topology optimization. We will describe these two subprob-
lems in detail in the following sections.

III. RETIMING WITH INTERCONNECT AND GATE DELAY

A sequential circuit C can be represented by a directed graph
G(V,E), where each node v corresponds to a combinational
gate and each directed edge euv represents a connection from
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the output of gate u to the input of gate v, through zero or
more registers. Without loss of generality, we assume that G
is strongly connected. If not, we can add a source node s and
connect it to all primary inputs, add a target node t and connect
all primary outputs to it, and connect t to s. Then, the resulting
graph is strongly connected. If we set the delay of s, t, and all
the added edges to zero, and set the number of registers on ets
to one and that on the other added edges to zero, a retiming
solution of the modified graph will also be a valid retiming
solution of the original graph as long as ets still has one register.
Let wuv be the number of registers on edge euv . Let duv be the
interconnect delay of edge euv if all the registers are removed.
Note that the delay of an interconnect segment is assumed to
be proportional to the length of the segment. Let du be the gate
delay of node u.

Traditionally, interconnect delay is ignored during retiming.
A retiming solution can be viewed as a labeling of the nodes
r : V → Z, where Z is the set of integers [3]. The retiming
label r(v) for a node v represents the number of registers that
were moved from its outputs toward its inputs. After retiming,
the number of registers ŵuv on an edge euv is given by ŵuv =
r(v) + wuv − r(u).

As interconnect delay is dominating in the Very DSM tech-
nology, the exact position of each register will affect the clock
period. A retiming solution should specify both retiming label
r(v) for each node v and the exact positions of the ŵuv registers
on each edge euv . Retiming should be formulated as a problem
of determining a feasible retiming solution, i.e., a retiming
solution in which the number of registers ŵuv on each edge euv
is nonnegative, such that the clock period of the retimed circuit
is minimized. In the following, we show how to check whether a
particular clock period T can be achieved by a feasible retiming
solution. The minimum achievable clock period Topt can then
be found by binary search.

A. Exact Approach

This approach is extended from the MILP approach in [3].
In the original formulation, only gate delay is considered,
and there is thus no differences between having one or more
than one registers on a wire. Their technique can be extended
to solve the problem with both gate and interconnect delay
optimally by modifying some of the constraint formulation. In
order to formulate the problem as a MILP, for each gate v,
we need to define a term a(v) that represents the maximum
arrival time at the output of gate v. An example to illustrate this
definition is shown in Fig. 2. We can then formulate the problem
as the following MILP:

dv ≤ a(v) ∀v ∈ V (1)

a(v) ≤T ∀v ∈ V (2)

r(v)+wuv−r(u) ≥ 0 ∀euv ∈ E (3)

a(v) ≥ a(u)+duv+dv

−T (r(v)+wuv−r(u)) ∀euv ∈ E

(4)

Fig. 2. Example to illustrate the meaning of a(v).

where T is the clock period that we want to check whether it is
achievable. Since a(v) is the longest delay to the output of gate
v from a register that is connected directly to an input of v, this
delay must be at least the delay of gate v, so dv ≤ a(v), as stated
in (1). Besides, this delay cannot exceed clock period T , as
required in (2). Constraint (3) is needed for a feasible retiming
solution. Constraint (4) is to ensure that enough registers are on
each edge euv to achieve a clock cycle T . As the largest possible
delay between two adjacent registers is T , the right-hand side
of constraint (4) is reduced by T for each register on edge euv .
Note that this constraint also captures the scenario when there
is no registers on edge euv . In that case, the arrival time at node
u contributes directly to the arrival time at node v. In [3], wire
delay is not considered, so we only need to differentiate the
cases when a wire has zero or nonzero registers on it. Therefore,
the inequality (4) is written as a(v) ≥ a(u) + d(v) whenever
euv ∈ E and r(u) − r(v) = w(euv), i.e., whenever an edge
euv ∈ E has no registers on it.

By introducing a variable R(v) at each node v that is defined
as a(v)/T + r(v), the preceding set of constraints (1)–(4) can
be rewritten as a set of difference constraints as follows:

R(v) − r(v) ≥ dv
T

∀v ∈ V (5)

R(v) − r(v) ≤ 1 ∀v ∈ V (6)

r(u) − r(v) ≤wuv ∀euv ∈ E (7)

R(v) −R(u) ≥ duv
T

+
dv
T

− wuv ∀euv ∈ E. (8)

Notice that (5)–(8) is a set of difference constraints involving
both integer and real variables. There are |V | real vari-
ables R(v), |V | integer variables r(v), and 2|V | + 2|E| con-
straints. This can be solved in polynomial time of O(|V ||E| +
|V |2 lg |V |) if Fibonacci heap is used as the data structure [27].

If the preceding set of constraints is solvable, the values of
r(v) and a(v) for all v ∈ V are known. We can then find the
exact position of each register on a wire one by one as follows:
For each edge euv , if there are registers that are retimed on it,
i.e., r(v) + wuv − r(u) > 0, the first register on this edge will
be placed at a distance of delay T − a(u) from the output of
gate u. Other registers are then placed as far from each other
as possible, i.e., at a distance of delay T from the previous one,
until reaching gate v. All the remaining registers on this edge
are then placed right before v.
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B. Fast Approximate Approach

In this approach, we first replace each gate by a wire of the
same delay and then solve the problem with only interconnect
delay optimally and efficiently. Those registers that are retimed
“into” a gate are moved either to the input or the output
wires of the gate. The exact positions of the registers on the
wires are then determined by a linear program to minimize the
clock period. The solution that is obtained by this approach
is very close to the optimal, on average, as shown by the
experimental results. In the following, we first show how the
retiming problem with interconnect delay only can be solved
optimally. Then, we describe in detail how gate delay can be
handled simultaneously.
1) Retiming With Interconnect Delay Only: In this section,

we assume that dv = 0 for all v ∈ V . This problem with zero
gate delay is the same as the maximum cycle ratio problem,
which has been studied in many previous works [28]–[31]
before. We first show that the clock period feasibility problem
can be reduced to a single-source longest path problem. We then
present a fast algorithm to solve the longest path problem. We
solve the set of constraints (5)–(8) with the help of the following
lemma.
Lemma 1: Assume that dv = 0. Given R(v) for all v ∈ V

satisfying constraint (8), we can obtain a solution to constraints
(5)–(8) by setting r(v) = �R(v)	 for all v ∈ V .

Proof: It is clear that 0 ≤ R(v) − �R(v)	 < 1 for all
v ∈ V . Therefore, (5) and (6) are satisfied. For any euv ∈ E,

r(u) − r(v) ≤R(u) − r(v) as r(u) ≤ R(u)

≤
(

duv
T

+ R(u)
)
− r(v) as

duv
T

> 0

≤ (wuv + R(v)) − r(v) by constraint (8)

<wuv + 1 as R(v) − r(v) < 1.

As r(u) − r(v) is an integer, it must be less than or equal to
wuv . Hence, constraint (7) is also satisfied. �

Lemma 1 implies that we can first solve constraint (8) to find
R(v), and it is then easy to find r(v) to satisfy the other three
constraints. Notice that if dv 
= 0 for some v ∈ V , Lemma 1
does not hold as constraint (5) is not satisfied. This technique
is similar to that used in [30] to find an approximately optimal
retiming in a nonunit-delay circuitry with gate delay only. The
problem of finding R(v) for all v ∈ V to satisfy constraint (8)
can be viewed as a single-source longest path problem on G
with length luv equals duv/T − wuv for each euv ∈ E. As G
is strongly connected, we can pick an arbitrary node as the
source node s.2 Note that edge lengths can be positive. If G
has a positive cycle, the set of constraints has no solutions. It
means that clock period T is infeasible.

The single-source longest path problem in Section III-B1
can be solved by the Bellman–Ford algorithm [32], and the
time complexity is O(|V ||E|). This algorithm may still be slow
in practice. An interesting idea of using small feedbacks to
speed up the Bellman–Ford algorithm is found in [33] with

2If the original circuit is not strongly connected, a source node s has already
been added.

Fig. 3. Example to illustrate the transformation to a DAG. (a) Original
graph G. (b) DAG G′.

time complexity O(|E||E−|), where E− is the set of edges in
G with negative weights. In this section, we present a single-
source longest path algorithm, which is faster in practice. The
basic idea is to reduce the size of G by compacting some paths
into edges before the Bellman–Ford algorithm is applied. The
details are given here. We first transform graph G(V,E) into
a directed acyclic graph (DAG) G′(V ′, E′) by performing a
depth-first traversal [32] starting from the source node s. The
depth-first traversal defines a tree in G. Those nontree edges
running from a node u to an ancestor v of u are called back
edges. If we point all incoming back edges of a node v to an
extra node v′, the resulting graph will be a DAG because every
simple cycle in G involves at least one back edge. Formally,
we use Eb to denote the set of back edges and Vb to denote
the set of nodes with an incoming back edge. For each node
v in Vb, we introduce an extra node v′. The back edge euv
is removed from the graph, and the edge euv′ is added. The
resulting DAG is G′(V ′, E′), where V ′ = V ∪ {v′|v ∈ Vb} and
E ′ = (E − Eb) ∪ {eu,v′ |eu,v ∈ Eb}. We set length luv′ of edge
euv′ to luv . To illustrate the transformation, consider graph
G in Fig. 3(a) with source node A. Suppose that the depth-
first traversal visits the nodes in the order ACDEFB. Then,
Eb = {eDA, eCA, eFC , eFA}, and Vb = {A,C}. We introduce
two extra nodes A′ and C ′, and replace the four edges eCA,
eDA, eFA, and eFC with the edges eCA′ , eDA′ , eFA′ , and eFC′ ,
respectively. The resulting DAG is shown in Fig. 3(b).

We then construct graph H with node set Vb. The edge set
EH contains edge euv for u, v ∈ Vb if there exists a path from
u to v in G with either no back edge or one back edge at the end.
The length of edge euv in H(lHuv) is the longest path distance
among those paths. Note that the longest path distance from
u to v in G with no back edge (respectively, with one back
edge at the end of the path) equals the longest path distance
from u to v (respectively, from u to v′) in G′. Hence, lHuv for
all u, v ∈ Vb can be computed by solving |Vb| single-source
longest path problems in G′ for different source nodes in Vb.
As G′ is a DAG, each single-source longest path problem can be
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solved in linear time by visiting the nodes in topological order.
The time complexity to construct H is therefore O(|Vb||E|).

It is obvious that every path in H corresponds to at least one
path in G of the same length. Therefore, if H contains a positive
cycle, G will also contain a positive cycle. On the other hand,
if G contains a positive cycle, the cycle can be broken up into
a set of paths p1, p2, . . . , pk such that both endpoints of each
path pi are in Vb. Notice that each path pi corresponds to an
edge in H of at least the same length. So, H must also contain
a positive cycle. Therefore, we can solve the positive cycle
detection problem on H instead of on G. If H has no positive
cycles, R(v) for all v ∈ Vb can be found from H . R(v) for all
v ∈ V − Vb can then be found in linear time by propagating
R(v) for all v ∈ Vb through G′ in topological order.

The most time-consuming steps are steps 7 and 8 inside the
binary search loop. Step 7 can be done in O(|Vb||E|) time as
discussed previously. Step 8 can be done in O(|Vb||EH |) time
by the Bellman–Ford algorithm. As Vb contains much fewer
nodes than V and EH usually contains comparable or fewer
edges than E, this technique is usually more efficient than
applying the Bellman–Ford algorithm to G directly. The to-
tal time complexity is O(|Vb|max{|E|, |EH |} lg(K/(εTopt))),
where ε is the error bound for the binary search, K is the
difference between the upper and lower bounds of the clock
period initially, and Topt is the optimal clock period. Notice
that the number of iterations in the binary search, i.e., the
logarithmic term, can be reduced by finding the maximum
delay-to-register ratio, which is a lower bound to the minimum
clock period [30].

Algorithm I-Retiming()
/∗ Retime a sequential circuit with interconnect delay
only to ∗/
/∗ achieve the minimum possible clock cycle with an error∗/
/∗ bound ε.∗/
Input: A sequential circuit C with interconnect delay only
Output: An optimally retimed circuit of C
1. Build graph G(V,E) from C
2. Build DAG G′ by DFS(G)
3. Cup = a feasible clock, Clow = an infeasible clock
4. Do
5. T = (Cup + Clow)/2
6. Update edge lengths of G′ according to T
7. Build graph H(Vb, EH) with

EH = {euv|u ∈ anc(v) ∪ anc(v′) in G′}
by finding single-source longest paths in G′

8. If H does not have any positive cycle then
9. Cup = T
10. Else
11. Clow = T
12. while (Cup − Clow)/Cup > ε
13. T = Cup //Cup is always a feasible clock period
14. Compute R(v) and r(v) for each node v ∈ V
15. Compute the exact position of each register on a wire

2) Retiming With Interconnect and Gate Delay: In this sec-
tion, we discuss how to consider interconnect and gate delay
simultaneously based on the preceding algorithm for intercon-

Fig. 4. Representation of gates by wires. (a) Original graph G. (b) Trans-
formed graph G̃.

nect delay only. To consider gate delay, we first represent gate
v with delay dv by a wire ev1v2 with delay dv1v2 = dv . This
transformation for the circuit in Fig. 3(a) is shown in Fig. 4(b).
We can then obtain an optimal retiming on this transformed
circuit G̃ using the algorithm in Section III-B-1. However, the
retiming solution that is obtained on G̃ may not be feasible for
the original circuit G because some registers may be retimed
into a wire that represents a gate. Therefore, we need to perform
a postprocessing step to get back a feasible retiming solution
for G from the optimal retiming solution for G̃. This is done by
linear programming.

First, we move the registers in a gate either backward to the
input wires or forward to the output wires of the gate, depending
on which direction has a shorter distance. An example showing
the relocation of registers is given in Fig. 5. After this relocation
step, the number of registers ŵuv on each edge euv is fixed.
A linear program is used to determine the exact positions of
the registers on the edges. Alternatively, the method in [26]
can be used to minimize the clock period when the r values
are unchanged in O(|V |2|E|) time. The objective of the linear
program is to minimize the clock period T subject to the
constraints in register count on each edge. In the following,
we use xkuv to denote the delay from the kth register to the
k + first register of the wire from node u to node v in G for
k = 0, 1, . . . , ŵuv . Notice that, when ŵuv = 0, x0

uv is the delay
of the whole wire and, when k = 0 and k = ŵuv > 0, xkuv are
the delays of the wire from node u to the first register and from
the last register to node v, respectively. The linear program is
formulated as follows:

Minimize T

Subject to
∑ŵuv

k=0
xkuv = duv ∀euv ∈ E (9)

xŵuv
uv + dv ≤ a(v) ∀euv ∈ E s.t. ŵuv > 0 (10)

a(u) + x0
uv ≤ T ∀euv ∈ E s.t.ŵuv > 0 (11)

a(u) + duv ≤ a(v) ∀euv ∈ E s.t. ŵuv = 0. (12)
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Fig. 5. Relocation of registers retimed into a gate. (a) Retimed solution in G̃.
(b) Registers are relocated in G.

For the circuit in Fig. 5(b), example constraints are x0
CD +

x1
CD = dCD for type (9), x1

CD + dD ≤ a(D) for type (10),
a(C) + x0

CD ≤ T for type (11), and a(B) + dBD ≤ a(D) for
type (12). We can solve this linear program to obtain the best
possible clock period T ∗ under the register count constraint
on each edge. Notice that this linear program can solve the
subproblem of finding the best possible position of each register
on a wire to optimally minimize the clock cycle only when the
register count on each edge is fixed, but the overall approach of
handling both interconnect and gate delay is not optimal. The
overall algorithm IG-Retiming() to handle both interconnect
and gate delay is summarized as follows:

Algorithm IG-Retiming()
/∗ Retime a sequential circuit with both interconnect
and gate∗/
/∗ delay to achieve a clock cycle very close to the
minimum. ∗/
Input: A sequential circuit C with both interconnect and
gate delay
Output: A retimed circuit of C
1. Build graph G from C
2. Build G̃ by replacing each gate in G by a wire of the

same delay
3. Solve the retiming problem of G̃ by I–Retiming()
4. Move registers away from wires that represent gates
5. Set up a linear program based on the register count on

each edge
6. Solve the linear program to obtain a feasible retiming

solution and the smallest possible clock period T ∗

IV. FLOP TOPOLOGY OPTIMIZATION

After retiming, we need to realize the circuit physically, so
that the optimal clock period that is obtained by retiming can be
achieved. Given a retiming solution of the circuit (i.e., a target
clock period T , a retiming label r(v) at each gate v, and the
maximum arrival time a(v) at the output of gate v) and
the positions of its gates, we want to find the topologies of

Fig. 6. Graph model of a four-pin net obtained after retiming in which each
edge has a register.

the nets and place the registers to realize the circuit, preserving
the target clock T as much as possible.

Now, consider a net N(s,D,L) in the retimed circuit, where
s denotes the driving gate, D denotes the set of all driven gates,
and L denotes the set of interconnections between s and each
of the gates di ∈ D. Obviously, {s} ∪D ⊆ V and L ⊆ E. For
each edge esdi

∈ L, we have a value ŵr(s, di) representing the
number of registers along edge esdi

after retiming. The problem
is to insert the minimum number of registers for this net into the
circuit such that the target clock period is preserved as much
as possible. This problem comprises two main subproblems
known as topology finding and register placement. Topology
finding is the problem of finding a topology ΥN of a net N
given the exact geometric positions of the gates such that the
minimum number of registers will be used and the target clock
period will be preserved. Register placement is the problem of
finding a position for each register given the topology ΥN of
net N .

Topology ΥN = (P,K) is a tree (an acyclic graph with no
designated root yet) that describes the structure of net N on the
plane. Each node p ∈ P corresponds to either a combinational
gate or a register, and each edge kuv ∈ K represents a physical
connection between gate/register u and gate/register v. Each
node p ∈ P that has only one adjacent node in ΥN , i.e.,
deg(p) = 1 represents a combinational gate, while an inter-
nal node p ∈ P that has more than one adjacent nodes, i.e.,
deg(p) > 1, represents a register. In Fig. 6, an example of a
four-pin net in which each source-to-sink edge has a register
after retiming is shown. There are five possible register sharing
topologies in this example: 1) all the edges share a single regis-
ter (maximum sharing), as shown in Fig. 7(a); 2) each edge has
its own register (no sharing), as shown in Fig. 7(b); and 3) for
the rest of the three equivalent cases, two edges share a single
register, while the other one has a separate register, as shown
in Fig. 7(c).

Although we can always identify the topology tree that has
the maximum sharing of registers for a net, it is not always
possible to place the registers on a chip using that topology
while preserving the target clock period. Using case (a) in Fig. 7
as an example, suppose that the clock period that resulted from
retiming T equals 1.5 units and the positions of the gates u, a,
b, and c are (0, 0), (−3, 0), (0, 3), and (3, 0), respectively, as
depicted in Fig. 8. Obviously, it is impossible to share a single
register among the three edges without clock violation. Three
separate registers have to be allocated and inserted exactly at
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Fig. 7. Five possible register sharing topologies. The topology tree of each
configuration is shown on the right. (a) Single register is shared between the
edges (maximum sharing). (b) Each edge has a separate register (no sharing).
(c) Two edges share a register, while the other edge has a separate one.

Fig. 8. Situation in which the registers cannot be shared in order to preserve
the clock period T = 1.5 units.

(−1.5, 0), (0, 1.5), and (1.5, 0) for edge eua, eub, and euc,
respectively, in order to achieve the optimal clock period T .

Even if we have a feasible topology tree, it can happen that
the suggested position for a register has been occupied, and we
have to look for another appropriate position. The following
sections will address how a feasible topology tree can be found
and how the positions of the registers can be obtained.

A. Topology Finding

In this section, an algorithm is proposed to find the topol-
ogy of a net given the constraints in placement such that the
maximum sharing of registers is achieved and the clock period
is preserved. This method can find the optimal topology for a

Fig. 9. (a) Retiming graph model and (b) the corresponding best possible
topology ΥNopt of a four-pin net example.

net with four or fewer pins and can give near-optimal solution
for a net with five or more pins according to the experimental
results.

Given a net N(s,D,L), a clock period T , and the maximal
arrival time at the output of gate v, i.e., a(v), we can obtain
a feasible topology tree of N , i.e., ΥN , as follows. First,
we construct the best possible topology ΥNopt for N , i.e., a
topology having the minimum number of internal nodes (an
internal node represents a register). Obviously, the number
of internal nodes in ΥNopt equals Q = maxdi∈D{ŵr(s, di)},
where ŵr(s, di) denotes the number of registers on edge esdi

after retiming. We label each internal node as fi representing
the ith register on the net counting from source s for 1 ≤ i ≤ Q.
An example of the retiming graph model and the corresponding
best possible topology ΥNopt for a four-pin net is shown
in Fig. 9.

We call the region on the plane where a register f can be
placed the candidate region of f and is denoted by D(f). For
consistency, the candidate region D(v) of a combinational gate
v is the position of v itself, i.e., its coordinates (xv, yv), since
v is already fixed in the placement. An δ-extended region of
region �, which is denoted by R+δ(�), is the region on the
plane at distance δ or less from some point in �, assuming that
the distance between two points is measured by their shortest
Manhattan distance.

Besides, we define an adjacent-gate region for each node
p in a topology tree, which is denoted by A(p), as an
δ-extended region from its candidate region D(p), i.e., A(p) =
R+δ(D(p)), where δ is defined differently for different types of
nodes. The physical meaning of A(p) refers to the region on the
plane that encompasses all the possible positions of an adjacent
gate of p. The value δ for the A(p) of a node p is described
as follows. If node p is an internal node, δ equals T . If node p
represents a driven gate, δ equals a(p) − dp. Otherwise, node p
represents a driving gate, and we set δ to T − a(p). Notice that
all these regions are 45◦-rotated rectangles on the rectilinear
plane because of the Manhattan distance measurement.

Starting from the best possible topology ΥNopt , we will
modify the topology tree incrementally until an optimal feasible
topology ΥN is obtained for net N . First, we choose the node
that represents driving gate s as the root in ΥNopt and direct all
the edges away from s. Then, we will process each internal node
fi in ΥNopt from i = Q to i = 1, i.e., from the furthest register
to the closest one, in the following manner. For each internal
node fi with a set of children q1, . . . , qm, find a minimal set of
the overlapping regions between A(qj) for 1 ≤ j ≤ m, which
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Fig. 10. Example illustrating the SetY and ChangeTree process.

is denoted by Ymin = {y1, . . . , yk}, such that the union of the
elements in Ymin covers at least one point from each region
A(qj). For each yl in Ymin, we call the number of regions that
has at least one point in yl as the size of yl, which is denoted
by s(yl). An example is show n in Fig. 10(a). The elements in
Ymin are then sorted in a nonascending order of their sizes. The
set Ymin can be found by the following procedure SetY :

Algorithm SetY (fi,ΥN )
/∗ Find the Ymin of an internal node fi in a topology
tree ΥN .∗/
Input: An internal node fi with children q1, . . . , qm in ΥN

Output: Ymin

1. Ymin = ∅
2. Add A(q1) to Ymin, i.e., y1 = A(q1)
3. For j = 1 to m
4. overlapped = false
5. For l = 1 to |Ymin|
6. If (yl ∩A(qj) 
= ∅)
7. yl = (yl ∩A(qj)
8. Sort the elements in Ymin in a nonascending order

of their sizes
9. overlapped = true
10. Break
11. End if
12. End for
13. If (overlapped = false)
14. Increment |Ymin| by 1
15. Add A(qj) to Ymin at the end, i.e., y|Ymin| = A(qj)
16. End if
17. End for

Notice that the union of the elements in Ymin covers at least
one point from each region A(qj) for 1 ≤ j ≤ m. Next, we can
remove all the edges from fi to its children q1, . . . , qm in ΥNopt

and split node fi into k new internal nodes n1, . . . , nk, where
node nl corresponds to element yl in Ymin for 1 ≤ l ≤ k. In
addition, we will assign region yl as the candidate region of
nl, i.e., yl = D(nl), for 1 ≤ l ≤ k. Starting from the yl with
the largest size in Ymin, an edge is added from nl to each qj
that has no parent node yet and has A(qj) covered by yl. This
step is repeated until all the yl’s have been processed. Finally,
an edge is added from the parent node of fi to every newly
created internal nodes nl, and fi will then be removed from

the topology tree. An example is shown in Fig. 10(b). The pre-
ceding operations are described by the procedure ChangeTree
as follows:

Algorithm ChangeTree(fi, Ymin,ΥN )
/∗ Modify a topology tree ΥN by replacing an internal node
fi by several other nodes.∗/
Input: An internal node fi in ΥN and the corresponding Ymin

Output: A modified topology tree
1. Remove all the edges from fi to its children q1, . . . , qm

in ΥN

2. Instantiate k new internal nodes n1, . . . , nk, where
k = |Ymin|

3. Assign region yl as the candidate region of nl, i.e.,
yl = D(nl)∀1 ≤ l ≤ k

4. For l = 1 to k
5. For j = 1 to m
6. If (yl ∩A(qj) 
= ∅ and qj has no parent node yet)
7. Add an edge from nl to qj
8. End if
9. End for
10. Add an edge from the parent node of fi to nl

11. End for
12. Remove fi
13. Output(ΥN )

After visiting all the internal nodes fi in ΥNopt and modify-
ing the topology as described previously, we will get a new
topology tree ΥN at the end. The whole algorithm of topology
finding of net N is described in the following procedure
TopTree.

Algorithm TopTree(N)
/∗ Construct a feasible topology tree ΥN of a net N .∗/
Input: A net N in a circuit
Output: A topology tree ΥN for N
1. Construct the best possible topology tree ΥNopt for net N
2. ΥN = ΥNopt

3. For i = Q to 1 where Q is the number of internal nodes
in ΥNopt

4. Ymin = GetY (fi,ΥN )
5. ΥN = ChangeTree(fi, Ymin,ΥN )
6. End for
7. Output(ΥN )

To prove the correctness of the above algorithm, i.e., the
statement of Theorem 1, we need to prove the following three
lemmas first.
Lemma 2: Given a set of n 45◦-rotated rectangles

R1, . . . , Rn on a rectilinear plane, if R1 ∩ · · · ∩Rn 
= ∅, then
R+x(R1) ∩ · · · ∩R+x(Rn) 
= ∅, where x is a nonnegative real
number.

Proof: Since R1∩· · ·∩Rn⊆R+x(R1)∩· · ·∩R+x(Rn),
the argument follows. �
Lemma 3: Given a set of n 45◦-rotated rectangles

R1, . . . , Rn−1 and S on a rectilinear plane, if S ∩Ri 
= ∅ for
1≤ i≤n− 1 and R1 ∩ · · · ∩Rn−1 
= ∅, then S ∩ (R1 ∩ · · · ∩
Rn−1) 
= ∅.
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Fig. 11. Four possible ways that two 45◦-rotated rectangles overlap.

Proof: It can be proven by induction. For the base
case when n = 3, consider three 45◦-rotated rectangles R1,
R2, and S on a rectilinear plane. If R1 ∩R2 
= ∅, there are
only four ways that R1 and R2 overlap with each other, as
shown in Fig. 11. It is easy to see that, in each case, if
S ∩R1 
= ∅ and S ∩R2 
= ∅, S ∩R1 ∩R2 
= ∅. When n > 3,
let R′

n−2 = R1 ∩ · · · ∩Rn−2 
= ∅. By the inductive hypothe-
sis, S ∩R′

n−2 
= ∅. Since S ∩Rn−1 
= ∅ and R′
n−2 ∩Rn−1 
=

∅, we can conclude that S ∩R′
n−2 ∩Rn−1 
= ∅, i.e., S ∩

(R1 ∩ · · · ∩Rn−1) 
= ∅, following a similar argument as in the
case for n = 3. �
Lemma 4: Given two 45◦-rotated rectangles A and B on a

rectilinear plane, we denote the n times T -extended regions of
A and B as An and Bn, respectively, i.e., An = R+(n×T )(A)
and Bn = R+(n×T )(B). Suppose that A ∩B = RAB 
= ∅, we
denote the n times T -extended region of RAB by (RAB)n, i.e.,
(RAB)n = R+(n×T )(RAB). It is claimed that if there exists a
point x ∈ An ∩Bn, x ∈ R+T ((RAB)n−1) for all n ≥ 1.

Proof: We prove by induction on n.
Base case: Consider the case when n = 1. Suppose that

x ∈ A1 ∩B1, the T -extended region from the position of
x is given by R+T (x). Obviously, R+T (x) ∩A0 
= ∅ and
R+T (x) ∩B0 
= ∅ because x ∈ A1 ∩B1. Since A0 ∩B0 
= ∅
(because A0 = A, B0 = B and A ∩B 
= ∅), R+T (x) ∩ (A0 ∩
B0) 
= ∅ by Lemma 3. Therefore, x ∈ R+T ((RAB)0), and the
claim is true.
Inductive Step: Assume that the claim is true for n =

j − 1, where j is a positive integer ≥ 2, i.e., if there exists
a point x ∈ Aj−1 ∩Bj−1, x ∈ R+T ((RAB)j−2). Consider the
case when n = j. Given a point x ∈ Aj ∩Bj , the T -extended
region from x is denoted by R+T (x). Obviously, R+T (x) ∩
Aj−1 
= ∅ and R+T (x) ∩Bj−1 
= ∅ because x ∈ Aj ∩Bj . By
Lemma 2, since A0 ∩B0 
= ∅, Aj−1 ∩Bj−1 
= ∅. Therefore,
R+T (x) ∩ (Aj−1 ∩Bj−1) 
= ∅ by Lemma 3. By the induc-
tion hypothesis, if R+T (x) ∩ (Aj−1 ∩Bj−1) 
= ∅, R+T (x) ∩
R+T ((RAB)j−2) 
= ∅. Therefore, x ∈ R+T ((RAB)j−1). �
Theorem 1: The proposed algorithm TopTree() can find a

topology that maximizes the sharing of registers for an i-pin net,
where 2 ≤ i ≤ 4, and the target clock period T is preserved.

Proof: We prove the three possible cases one by one.
Case 1: i = 2—This case is trivial because there is only

one source s, one sink t1, and one edge est1 in a two-pin
net, and there are no other edges to share registers with. The
algorithm will start from the furthest internal node fQ and take
the adjacent-gate region of t1 A(t1) = R+(a(t1)−dt1 )(D(t1))
as the candidate region of fQ, i.e., D(fQ) = A(t1). Next, the
algorithm will process node fQ−1 and take the adjacent-gate
region of fQ, A(fQ) = R+T (D(fQ)) as the candidate region
of fQ−1, i.e., D(fQ−1) = A(fQ).

By substitution, D(fQ−1) can be represented as an ex-
tended region from the position of the sink t1, D(fQ−1) =
R+((a(t1)−dt1 )+T )(D(t1)). The algorithm repeats the preceding
steps until it reaches the first internal node f1, where D(f1) =
R+((a(t1)−dt1 )+(Q−1)×T )(D(t1)). Since the retiming solution
is valid, the interconnect delay between s and t1 will not ex-
ceed (T − a(s)) + ((Q− 1) × T ) + (a(t1) − dt1). Therefore,
the algorithm can find the candidate region for every register
and return the best possible topology when it terminates.
Case 2: i = 3—Given a three-pin net, let s be the source

and t1 and t2 be the two sinks. Let ŵr(s, t1) and ŵr(s, t2) be p
and q, respectively, where 1 ≤ p ≤ q. Suppose that there exists
a topology tree of maximum register sharing for the three-pin
net such that the first k registers, where 1 ≤ k ≤ p, are shared
(notice that if the kth register can be shared, the hth register can
also be shared, where 1 ≤ h ≤ k) but that the algorithm cannot
find such a topology.

Since the algorithm cannot find that optimal topology, it
must fail to find an overlapping region for the kth reg-
ister to be shared. At the point of failure, the algorithm
should find that the regions R+((a(t1)−dt1 )+T×(p−k−1))(t1) and
R+((a(t2)−dt2 )+T×(q−k−1))(t2) do not overlap. However, these
two regions encompass all the possible positions for the kth
register from t1 and t2, respectively, such that clock period T
will not be violated. Therefore, should the kth register be able
to be shared as assumed, it must lie within these two regions,
and the algorithm must be able to find it. Contradiction occurs.
Case 3: i = 4—Given a four-pin net, let s be the source

and t1, t2, and t3 be the three sinks. Let ŵr(s, t1), ŵr(s, t2),
and ŵr(s, t3) be p, q, and r respectively, where 1 ≤ p ≤
q ≤ r. Suppose that the algorithm is attempting to share
the kth register, where 1 ≤ k ≤ p, i.e., it is trying to find
a minimal subset of the overlapping regions such that it
covers all the extend regions R+((a(t1)−dt1 )+T×(p−k−1))(t1),
R+((a(t2)−dt2 )+T×(q−k−1))(t2), andR+((a(t3)−dt3 )+T×(r−k−1))

(t3), which are denoted by A, B, and C, respectively. Notice
that we only consider when k ≤ p and assume that the three
paths from s to t1, t2, and t3 are not merged yet (i.e., no sharing
of registers from k + 1 to r). Otherwise, the situation will fall
into case 1 or case 2, as discussed previously.

There are four distinct subcases. First, A, B, and C are
disjoint. It means that the kth register cannot be shared and the
algorithm will introduce three new internal nodes to represent
the registers and continues with the next internal node fk−1.
Second, A, B, and C overlap with each other. It means that the
kth register can be shared among t1, t2, and t3. The algorithm
will introduce a single internal node to represent the register and
continues. The correctness of the algorithm in these two cases
is trivial and will not be elaborated.

The third subcase is, without loss of generality, that A ∩B 
=
∅ and B ∩ C 
= ∅, but A ∩ C = ∅. Denote the region A ∩B as
RAB and the region B ∩ C as RBC . There are three possible
options that the algorithm can choose from when evaluating the
kth register: 1) It does not share the kth register and introduces
three different registers for the sinks. 2) It shares the kth register
between t1 and t2 but a separate one for t3. 3) It shares the
kth register between t2 and t3 but a separate one for t1. Our
algorithm will choose arbitrarily between options 2) and 3)
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(since RAB and RBC have the same size and their order in Ymin

is arbitrary), but it will never choose option 1). We assume that
the algorithm chooses option 2) in the following analysis.

First, we compare the choices of options 1) and 2). Notice
that option 1) can be better than option 2) only when the three
separate paths can be merged together at a subsequent step
when register h is being processed where 1 ≤ h < k, while
the combined path of t1 and t2, and the path of t3 cannot be
merged at the hth register. We are going to show that this will
not happen.

If we choose option 1), suppose that there exists a point x
on the plane such that x ∈ Aj ∩Bj ∩ Cj , where Aj , Bj , and
Cj represent the j times T -extended regions of A, B, and C,
respectively, during a subsequent step when register h is being
processed where 1 ≤ h < k. By Lemma 4, it is shown that
x ∈ R+T ((RAB)j−1), where (RAB)j−1 is the (j − 1) times
T -extended region from RAB . This means that, if it is possible
to share the hth register among the three edges without sharing
the kth register at the first place, by choosing option 2), i.e., to
share the kth register between t1 and t2, the algorithm will also
be able to share the hth register among the edges. Therefore,
option 2) is better than option 1) by sharing more registers.

Next, we compare the choices of options 2) and 3) simi-
larly. Consider, at a subsequent step, when register h is being
processed where 1 ≤ h < k. Suppose that we choose option 3)
and there exists a point x on the plane such that x ∈ Aj ∩
(RBC)j , where Aj and (RBC)j represent the j times T -
extended regions of A and RBC , respectively. Obviously, there
exists a point y that is covered by Aj ∩Bj ∩ Cj , i.e., y ∈
Aj ∩Bj ∩ Cj . By Lemma 4, y ∈ R+T ((RAB)j−1), i.e., y ∈
R+T ((RAB)j−1) ∩ Cj , so the hth register can also be shared
among the three edges by choosing option 2). Therefore, option
2) is no worse than option 3). As a result, the algorithm will find
the optimal solution by choosing arbitrarily either option 2) or
option 3).

Finally, if two pairs of the regions overlap while the other
is disjoint, i.e., A ∩B 
= ∅ but A ∩ C = ∅ and B ∩ C = ∅, the
analysis is similar to the third subcase. �

B. Register Placement

In this section, we discuss how registers are actually placed
using the topology tree that is yielded from the algorithm
TopTree(). Since some parts of the chip are occupied, we need
to know where on the chip a register can be placed. To tackle
this problem, we divide the chip into a mesh of m× n grids. For
each grid gij , we keep track of its center coordinates (xgij

, ygij
)

and the size of the free space in the grid F (gij).
Given a topology tree ΥN , choose arbitrarily an internal node

f to be the root of ΥN , and direct the edges of ΥN away
from f . Starting from root f , we choose a grid whose center
is contained in D(f), i.e., the candidate region for placing
register f , and it has the largest free space available. We denote
this grid as g(f). If F (g(f)) ≥ z, where z denotes the size
of a register, we take the center of g(f) as the position of
register f . Otherwise, we allow a controlled degree of in-
accuracy by extending D(f) one grid width further, i.e.,
R+gw(D(f)), where gw represents the width of a grid, by

Fig. 12. Topology tree ΥN of a three-pin net where f1 and f2 are two shared
registers.

Fig. 13. Illustration of the register placement procedure.

repeating the same process with R+gw(D(f)) instead of D(f)
in searching for a feasible grid for placing register f . If no
such grid is found, the placement of this register is reported
as unsuccessful. This could happen because the register counts
may increase greatly after retiming.

Let q1, . . . , qm be the set of nodes that are the children of f
in the topology tree ΥN . After fixing the position of f , register
qj , for 1 ≤ j ≤ m, is placed arbitrarily in its candidate region
D(qj), provided that it is at distance T or less units from f .
After visiting all the internal nodes of ΥN , the position of each
register is fixed.

Suppose that we have a three-pin net N(s,D,L) and its
topology tree ΥN is shown in Fig. 12. The topology tree ΥN

shows that the two driven gates d1 and d2 will share two
registers that are represented by internal nodes f1 and f2. In
this example, we assume that T = 3 units. Consider a 5 ×
5 mesh, as shown in Fig. 13, where driving gate s and two
driven gates d1 and d2 are assumed to be at the centers of the
grids containing them correspondingly, i.e., gate s is located
at (4, 0), gate d1 is located at (0, 4), and gate d2 is located
at (2, 4). Supposing that ΥN is rooted at node f1 and the
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TABLE I
EXPERIMENTAL RESULTS OF REGISTER PLACEMENT WITH CLOCK PRESERVATION

algorithm has fixed its position at (1, 0), let us examine how the
position of f2 is determined. The candidate region D(f2) of f2

covers the centers of grids g03, g04, g12, g13, g14, g23, and g24.
Then, starting from the position of f1, the algorithm expands a
rectangle of distance T from it, which is denoted by R+T (f1),
as shown. Next, the algorithm will find that D(f2) ∩R+T (f1)
is not empty and covers the center of grid g12 and g13–the
candidate positions of register f2. Assuming that the free space
of g12 is greater than that of g13, i.e., F (g12) ≥ F (g13) ≥ z, the
algorithm will then assign the center of g12 as the position of f2.

V. EXPERIMENTAL RESULT

We performed retiming and topology optimization on the
ISCAS89 benchmark suite. The program was implemented in
C language and runs on a 1.5-GHz Intel Pentium IV processor
with 256 KB cache and 512 MB RAM. In our experiments,
we implemented the circuits using a 0.35-µm complementary
metal–oxide–semiconductor standard cell library from Austria
Micro Systems, and Silicon Ensemble was used to layout the
design with a setting of 50% row utilization. Gate delays
were referenced from the data book, while wire lengths were
estimated using the shortest Manhattan distance between the
connected cells. We scaled the wire delay according to [34] in
which a 1-mm wire was assumed to have a delay of 150 ps
approximately. The size of a grid was set to be twice as large
as a D-type flip flop. During the placement of a register, we
allowed an error of one-grid width, i.e., the width of a D-type
flip flop.

The results are shown in Table I. The first column indicates
the names of the circuits, and the numbers shown in brackets
are the total numbers of gates in the circuits cell_no. The
second column shows the numbers of logical registers ffold

in the retiming graph model after retiming, and the numbers
shown in brackets are the numbers of registers in the original
input circuits before retiming. The number of registers had
increased after retiming for most of the circuits because the
retiming method that we used did not minimize the number
of registers as one of its objectives. In the third column, the
minimum possible numbers of registers required after sharing

are shown, i.e., assuming that every net could be realized using
the best topology. The fourth column shows the numbers of
registers ffnew that have actually been inserted after the flop
topology optimization step. It can be observed that the numbers
in the fourth column are the same as those in the third column,
except for circuits s3271 and s4863. This observation showed
that almost all the nets in our test cases could have their
registers inserted using the best topology, showing that our
proposed algorithm can very often find a near-optimal solution
for register insertion. The fifth column shows the percentage
reduction in area due to the topology optimization step. This
is calculated as (ffold − ffnew)X/cell_no where X is the
average ratio of the size of a register to the size of a simple
gate. We can see from the fifth column that the reduction in
area is about 8.1X% on average. Since the size of a register
is usually several times larger than that of a simple gate, the
reduction in area is significant for most of the circuits. The sixth
column shows the statistics of the numbers of nets containing
four or fewer edges with registers, whereas the seventh column
shows the numbers of nets having five or more edges with
registers. The eighth column shows the numbers of registers
that are placed within their candidate regions, while the ninth
column shows the numbers of registers that are placed outside
their candidate regions but with a controlled error range (one
grid size). As we can see, all the registers are placed in their
candidate regions successfully in all the test cases. Finally, the
central processing unit runtime is shown in the last column.

In this set of experiments, the topology optimization step
is performed on top of a retiming solution with minimum
delay. For a min-area retiming solution, the circuit is retimed
to minimize the total number of registers. The benefit of this
topology optimization step might be less in that case since the
registers will tend to be moved toward the fan-ins or the fan-
outs of a gate depending on whichever is smaller in number
in a min-area retiming solution, and the number of possible
sharings achieved in the topology optimization step might be
reduced. However, different from the min-area retiming that it
minimizes the number of registers by retiming, the topology
optimization step tries to reduce the register count by sharing
the registers along the fan-out connections of a gate physically.
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TABLE II
RUNTIME OF THE RETIMING ALGORITHMS AND THE CLOCK PERIODS OBTAINED

Therefore, it will still be beneficial to perform the optimization
step on top of a min-area retiming solution.

Another set of experiments was performed to study the
optimal and near-optimal retiming algorithms. In these exper-
iments, the circuits were layout by Silicon Ensemble, and wire
delays (shortest Manhattan distance) were then extracted. The
lower and upper bounds of the binary search were set to 0
and 100 ns, respectively. In the near-optimal approach, we
performed the procedure I-Retiming() with an error bound
of 1%. After assigning the registers that were aretimed into a
gate to the appropriate wires, a linear program was set up to
relocate the registers on the wires to get the smallest possible
clock period T ∗. In the optimal approach, binary search was
performed until an error bound of 0.01% was obtained. We call
the resulting clock period Topt. Notice that we do not need
to obtain a very accurate result from I-Retiming() because
the solution is optimized by the linear program afterward. On
average, the number of binary search iterations is 9.6 for the
near-optimal approach and 16.5 for the optimal approach.

The results are shown in Table II. The second and third
columns give the numbers of nodes and the numbers of edges
in graph G, respectively. Notice that all circuits are not strongly
connected. The numbers of nodes and edges that are listed are
those after the addition of the source node, the target node,
and the associated edges. The fourth and fifth columns show
the numbers of nodes and the numbers of edges in the reduced
graph H , respectively. These two values are dependent on the
node that was chosen as the root in the depth-first traversal.
In our current implementation, we always pick the additional
node s as the root. We notice that using other nodes as the
root does not change the result significantly. The speedup of
the Bellman–Ford algorithm by the graph reduction approach
in Section III-B1 is (|V ||E|)/(|Vb||EH |), which is given in
the sixth column. The graph reduction approach is faster in all
circuits. On average, it is faster by 19.15 times. However, the
speedup is less for larger circuits. The reason is that |EH | is
roughly quadratic in |Vb|. For the circuits in Table II, the ratio
of |EH | to |Vb|2 is from 0.21 to 0.86, with an average of 0.55.
Therefore, the graph reduction approach may not be useful for
large circuits. We can avoid a slowdown of the Bellman–Ford
algorithm by determining whether to use G or H based on
the ratio (|V ||E|)/(|Vb||EH |). |Vb| and |EH | can be found in
O(|Vb||E|) time. We only need to perform this checking once
for each circuit. Hence, the runtime overhead is insignificant
compared with the total runtime. The seventh, eighth, and ninth
columns show the runtime of the I-Retiming() procedure,

which is the time that is taken to solve the linear program and
the total runtime, respectively. The tenth column shows the run-
time for the optimal approach. We can see that the near-optimal
approach is much more efficient than the optimal approach (par-
ticularly for large circuits). The eleventh and twelfth columns
show the clock periods T ∗ and Topt that were obtained by the
near-optimal approach and the optimal approach, respectively.
The last column is the percentage increase of T ∗ over Topt. The
clock period that was produced by the near-optimal approach
is only 0.06% more than that by the optimal approach on
average.

VI. CONCLUSION

In this paper, we propose an algorithm to retime a circuit
with both gate and interconnect delay and then realize the
retimed circuit physically to achieve the optimal clock period.
The proposed algorithm can preserve the target clock period
that is obtained by retiming with a controlled error using as
few registers as possible. In addition, the algorithm is proven
to be giving the optimal topology for nets with four or fewer
pins. Since this type of nets makes up for about 90% of the
nets in a sequential circuit, on average, the algorithm performs
very well and effectively under most situations. For the circuit
retiming problem, we presented two elegant approaches to
perform retiming on sequential circuits with both interconnect
and gate delay. Our first approach is extended from the MILP
approach in [3] and can solve the problem optimally. Our
second approach is an improvement over the first one in terms
of practical applicability. The main idea is to transform the
problem into a single-source longest path problem in a reduced
graph. Experimental results show that the second approach
gives solutions that are only 0.06% larger than the optimal on
average but in a much shorter runtime. Together with this pow-
erful retiming method, our proposed algorithm can be applied
to pipeline-long global interconnects. This is particularly useful
in today’s designs in which multiple clock cycles are required
to propagate a signal across a global wire.
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