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Nonrectangular Shaping and Sizing of Soft Modules
for Floorplan-Design Improvement

Chris C. N. Chu and Evangeline F. Y. Young

Abstract—Many previous works on floorplanning with nonrect-
angular modules [1]–[12] assume that the modules are predesig-
nated to have particular nonrectangular shapes, e.g., L-shaped,
T-shaped, etc. However, this is not common in practice because
rectangular shapes are more preferable in many designing steps.
Those nonrectangular shapes are actually generated during floor-
planning in order to further optimize the solution. In this paper,
we study this problem of changing the shapes and dimensions of
the flexible modules to fill up the unused area of a preliminary
floorplan, while keeping the relative positions between the mod-
ules unchanged. This feature will also be useful in fixing small in-
cremental changes during engineering change order modifications.
We formulate the problem as a mathematical program. The formu-
lation is such that the dimensions of all of the rectangular and non-
rectangular modules can be computed by closed-form equations
in ( ) time in each corresponding Lagrangian relaxation sub-
problem (LRS) where is the total number of edges in the con-
straint graphs. As a result, the total time for the whole shaping and
sizing process is ( ), where is the number of iterations on
the LRS. Experimental results show that the amount of area reused
is 3.7% on average, while the total wirelength can be reduced by
0.43% on average because of the more compacted result packing.

Index Terms—Floorplanning, Lagrangian relaxation, physical
design, rectilinear modules, shaping, sizing.

I. INTRODUCTION

ALOT OF previous works have reported on floorplanning
with nonrectangular blocks [2]–[13]. The papers [6], [14]

extend the Polish expression representation for slicing floor-
plans to handle L- and T-shaped modules. The works on non-
slicing floorplans are mostly based on the bounded sliceline grid
(BSG) structure [3], [4], [7]–[9] or the sequence pair (SP) rep-
resentation [5], [10]–[12]. Most of these works explore the rules
to restrict the placement of the rectangular subblocks of a rec-
tilinear module, so that these subblocks will be placed adjacent
to one another in an appropriate way to get back to its original
rectilinear shape in the final packing. However, in all of these
previous works, it is assumed that some modules are predesig-
nated to have particular nonrectangular shapes, e.g., T-shaped or
L-shaped, etc., but this is not common in practice since rectan-
gular shapes are more preferable in many designing steps. They
are easier to be managed not only in floorplanning, but also
in downstream pin assignment, placement, routing and timing
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analysis. Nonrectangular shapes are often considered only when
their shapes can improve the floorplan solution.

We can perform a preliminary floorplan design with all of the
soft-blocks in rectangular shapes at the beginning. After a pre-
liminary floorplan is obtained based on the important criteria
like interconnect delay, routing congestion and area, etc., we can
allow the flexible modules to change in shapes and dimensions
slightly to further improve the floorplan solution as a postpro-
cessing step, while keeping the relative spatial relationships be-
tween the modules unchanged. By keeping the adjacency and
closeness relationship between the modules unchanged, the ef-
fect of this step on the original optimization in interconnect is
little, while the area usage can be improved by allowing the flex-
ible modules to change in shapes in the best fit way to fill up
the unused area. The total interconnect length can usually be
reduced by this postprocessing step because of the more com-
pacted result packing. It is true that reusing all of the empty
space may not be good sometimes because some empty space
will be useful for buffer insertion or for other routing purposes.
However, the selection of soft modules and empty space can be
made by the users according to their needs and our method al-
lows the users to further optimize a floorplan solution in a flex-
ible way. This technique will also be useful in fixing small and
incremental changes during engineering change order (ECO)
modifications. For example, during the later stages of the de-
sign process, the implementations of some modules may have
changed and new empty space is created. We can make use of
this method to slightly modify the shapes of the soft modules in
the surrounding of the new empty space to further optimize the
design while maintaining the original relative positions between
the modules unchanged.

In this paper, we formulate the problem as a mathematical
program. Moh et al. [15] has also formulated the floorplanning
problem as a geometric program and found the global minimum
using some standard convex optimization techniques. Murata
et al. [16] extend the work of [15] to nonslicing floorplan with
soft and preplaced blocks, and try to reduce the number of vari-
ables and functions in the formulation to improve the efficiency.
However, the execution time of their method to find an exact so-
lution is still quite long, and they consider rectangular modules
only. In our formulation, all of the flexible modules can change
in dimension under their area and aspect ratio (width to height
ratio) constraints. Those lying in the neighborhood of an empty
space can change in shape (to become nonrectangular) to fill
up the unused area in the best fit way. We use the Lagrangian
relaxation technique [17], [18] to solve the problem. The formu-
lation is such that the dimensions of all of the rectangular and
nonrectangular modules can be computed by closed-form equa-
tions in time in each of the corresponding Lagrangian
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Fig. 1. Simple example of changing the shapes and dimensions of flexible modules to fill up empty space.

relaxation subproblem (LRS), where is the total number of
edges in the constraint graphs. As a result, the total time for the
whole shaping and sizing process is , where is the
number of iterations on the LRS.

We tested our method using some Microelectronics Center
of North Carolina (MCNC) benchmarks. For each data set, a
preliminary floorplan is first generated with an objective to op-
timize both the interconnect cost and total chip area. We then
apply our mathematical programming technique to change the
flexible modules in shapes and dimensions to fill up the empty
space.

The rest of this paper is organized as follows. We will define
the problem in the next section. Section III will give an overview
of our approach and our formulation of the problem as a mathe-
matical program. We will explain in detail of the Lagrangian re-
laxation technique and the optimality conditions to help solving
the problem efficiently in Section IV. Experimental results will
be shown in Section V, and remarks and the conclusion will be
given in the last section.

II. PROBLEM DEFINITION

In this problem, we are given a preliminary floorplan design,
and our goal is to change the shapes and dimensions of some
flexible modules to fill up the empty space, while keeping the
module areas constant and the original spatial relationships be-
tween the modules unchanged. A simple example is shown in
Fig. 1. In this example, the packing on the left is a given pre-
liminary floorplan and our goal is to change the shapes and di-
mensions of the flexible modules to fill up the empty space.
One possible final packing is shown on the right in which mod-
ules 2 and 7 become L-shaped after this postprocessing step.
There are two kinds of input modules: hard and soft modules.
A hard module is a module whose dimension is fixed. A soft
module is one whose area is fixed, but its shape and dimen-
sions can be changed as long as its aspect ratio (and the as-
pect ratios of its subblocks, if there is any) is within a given
range. We are given modules of areas , their
aspect ratio bounds and their initial

dimensions. (In case of a hard module, its minimum and max-
imum aspect ratio will be the same.) We are also given the netlist
information: and the relative positions of
the I/O pins along the boundary of the chip. For
each net where , we are given its weight, the
I/O pins, and the set of modules it is connected to.

A packing of a set of modules is a nonoverlap placement of
the modules. We measure the area of a packing as the area of
the smallest rectangle enclosing all of the modules. A feasible
packing is a packing in which the widths and heights of all of
the modules and their subblocks (if there is any) satisfy their
aspect ratio constraints and their area constraints. For example,
if a soft module is L-shaped, the dimensions of its two sub-
blocks can be changed as long as their aspect ratios are within
the given bounds and their total area is equal to . A prelimi-
nary floorplan is given in the form of a pair of vertical and hor-
izontal constraint graphs. Our objective is to change the shapes
and dimensions of the soft modules to fill up the unused area,
while keeping the relative positions between the modules as de-
scribed by the constraint graphs unchanged. (Notice that if a
module becomes nonrectangular in shape, its spatial relation-
ship with the other modules will be measured with respect to its
main block, i.e., its largest subblock.) The problem is defined
formally as follows.

Problem Floorplanning With Shaping and Sizing
(FP/SS) Given a preliminary floorplan design in the form
of a pair of horizontal and vertical constraint graphs,
and a set of hard and soft modules with their initial
dimensions and their area and aspect ratio constraints,
change the shapes (from rectangular to nonrectangular)
and dimensions of the soft modules to reduce the total area
of the floorplan such that the relative positions between
the modules (as described by the constraint graphs) are
maintained and all of the area and aspect ratio constraints
are satisfied.

III. OVERVIEW OF OUR APPROACH

We are given a preliminary floorplan of a set of mod-
ules with areas , respectively.
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Fig. 2. Modules A and B are selected to be eligible to become nonrectangular in shape to fill up the empty space.

Fig. 3. Modify the constraint graphs to include the new subblocks and their
associated edges.

For each module , the minimum and maximum aspect
ratios are and , respectively. The preliminary floorplan is
given as a pair of constraint graphs and , together with
the initial dimensions of the modules. From this information,
we can determine the packing, the positions of the unused area
and the positions of the modules. We will then select some soft
modules that lie in the neighborhood of some empty space into
a set . These selected modules are eligible to become nonrect-
angular in shape. An example is shown in Fig. 2. In this ex-
ample, modules and are selected, and they can be changed
to nonrectangular in shape to fill up the unused space [Fig. 2(b)].
Every module in this set will have one additional subblock of
variable size. The constraint graphs and will also be up-
dated (becoming and ) to include these new subblocks.
New edges will be added to the constraint graphs to restrict the
positions of these subblocks so that they will fill up the empty
space and will abut with their corresponding main blocks. Fig. 3
shows the changes made to the constraint graphs for the example
in Fig. 2. Notice that every selected module will have
one subblock , but the area of the subblock may become zero
at the end and the selected module will then remain rectangular
if this can optimize the design better.

After selecting a set of modules into and modifying the
constraint graphs correspondingly, we can treat the subblocks
as individual soft modules. (They will automatically abut

with their main blocks because of the constraint edges added
into the constraint graphs.) Let the size of be , i.e.,
modules are selected to be possibly changed to nonrectangular
in shape. Without loss of generality, we assume that module

are in and their corresponding subblocks
are . Let denote this set of sub-
blocks. Now, we have a new set of total modules

. Consider the packing topology described by
the constraint graphs and . Let denote the smallest
position of the lower left corner of module satisfying all of
the horizontal constraints in the horizontal constraint graph .
Similarly, denotes the smallest position of the lower left
corner of module satisfying all of the vertical constraints
in the vertical constraint graph . Then, for each edge
from to in , we have the following constraint:

where is the width of . Similarly, for each edge
from to in , we have the following constraint:

For each module , i.e., a rectangular module, the
following relationship between and holds:

For each module , i.e., a nonrectangular module, we
have a constraint on the total area of and its subblock

In the horizontal constraint graph , we denote the set of
sources and sinks by and , respectively, where a source
is a vertex without any incoming edge and a sink is a vertex
without any outgoing edge. Similarly, we use and to
denote the set of sources and sinks in , respectively. Then,
for each in and in

For simplicity, we add one dummy vertex labeled to each
of and . The dummy vertices in and represent
the right-most and top-most boundary of the chip, respectively.
Edge with weight is added to , for each

because the right-most chip boundary should be at a distance
of at least from each module . Similarly,
with weight is added to for each . From now on,
we assume that the constraint graphs and contain these
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additional vertices and edges. The problem can be formulated
as the following mathematical program Primal Problem (PP):

Minimize

Subject to (A)

(B)

(C)

(D)

(E)

(F)

IV. SOLVING THE PROBLEM BY LAGRANGIAN RELAXATION

We will apply the Lagrangian relaxation technique [17] to
solve the PP. Lagrangian relaxation is a general technique for
solving constrained optimization problems. Constraints that are
difficult to handle are “relaxed” and incorporated into the ob-
jective function by multiplying each constraint with a constant
called Lagrange multipler. To solve the problem PP, we relax
the constraints (A) and (B). Let denote the multiplier for the
constraint in (A), and denotes the multiplier
for the constraint in (B). Let and be vectors
of all of the Lagrange multipliers introduced. Then, the LRS as-
sociated with the multipliers and , denoted by ,
becomes:

Minimize

Subject to

Let denote the optimal value of the problem
. We define the Lagrangian dual problem LDP of

PP as follows:

Minimize

Subject to and

A. Simplification of the LRS

can be greatly simplified by the Kuhn-Tucker
conditions [17], [18]. Consider the Lagrangian of PP [17]

terms independent of and

The Kuhn-Tucker conditions imply that and
for all at the optimal solution.

Therefore, in searching for the multipliers to optimize LDP, we
only need to consider those multipliers, such that

and hold for all . We obtain the
following conditions by rearranging the terms in and taking
derivatives:

(1)

(2)

for all , and

(3)

(4)

We use to denote the set of satisfying the above re-
lationships (1)–(4) for the given pair of horizontal and vertical
constraint graphs and . When , the objective
function of becomes

where

is a constant for a fixed pair of and . Let
and , for .

Then can be simplified to

Minimize

Subject to

To solve this simplified LRS, we first write down its Lagrangian

where , , , , , and denote the
Lagrangian multipliers for the constraints in (C)–(F), respec-
tively. According to the Kuhn-Tucker conditions [17], the first-
order optimality conditions for are as follows:

for all (5)

for all (6)

for all (7)

for all (8)

for all (9)

for all (10)
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B. Solutions for Rectangular Blocks

Consider a module where , i.e., a rectan-
gular module. Conditions (5)-(10) can be written as

(11)

(12)

(13)

(14)

(15)

There are three cases for the values of and , according
to the values of and .

Case 1) and . From (11), . From
(12), . Eliminating , .
Substituting into (15), . Therefore,

.
Case 2) and . Equation (13) implies that

. Substituting into (15), .
Case 3) and . Equation (14) implies that

. Substituting into (15), .
Note that and is impossible since (13) and (14)
cannot be satisfied simultaneously.

By combining the three cases, it is not difficult to see that

Once is found, is given by .

C. Solutions for Nonrectangular Modules

Consider a module where , i.e., a module
that can possibly become nonrectangular in shape. Conditions
(5)-(10) can be written as

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

For a given pair of and , , , , and are known.
Therefore, we need to solve a system of nine nonlinear equa-
tions with nine unknowns ( , , , , , , , ,
and ). Fortunately, they can be solved by closed-form equa-
tions as described in the following.

There are three cases for the values of and according to
the values of and .

Case 1) and . This case occurs when
. From (16) and (17)

Case 2) and . This case occurs when
. From (16), (17), and (20)

Case 3) and . This case occurs when
. From (16), (17), and (21)

Note that and is impossible since (20) and (21)
cannot be satisfied simultaneously. Similarly, we can write
and in terms of , , , , and according
to the values of and .

Case 1) and . This case occurs when
. From (18) and (19)

Case 2) and . This case occurs when
. From (18), (19), and (22).

Case 3) and . This case occurs when
. From (18), (19), and (23)

Similarly, and is impossible, since (22)
and (23) cannot be satisfied simultaneously. Therefore, in any
combination of the above cases, we can write , , , and

in terms of . (Note that , , , , , , ,
and are known.) We can substitute these expressions into
(24) and solve . Finally, we will substitute back the value of

into the expressions for , , , and and compute
their values.

D. Solving LRS

The algorithm LRS below outlines the steps to solve the LRS
given a pair of and satisfying the optimality

condition (1)–(4).

Algorithm LRS
This algorithm solves given

a pair of

Input: Areas
Lower bounds on aspect ratios

Upper bounds of aspect ratios

Constraint graphs and
Lagrange multipliers

Output: ,

1)
2)
3)

4)
5)
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6)
7)
8)
9)
10)
11)
12)
13) , , , and

from the values of , , and
according to the cases de-

scribed in Section IV-C.

E. Solving LDP

As explained above, we will only consider those
in the LDP problem. We used a subgradient optimization

method to search for these pairs of and . Starting from an ar-
bitrary in step , we will move to a new pair
by following the subgradient direction:

where

if
if

and is a step size such that and
. After updating and , we will project back to the

nearest point in using a 2-norm measure and solve
the LRS again using the algorithm LRS. These
steps are repeated until the solution converges. The following
algorithm summarizes the steps to solve the LDP problem.

Algorithm LDP
This algorithm solves the LDP problem

optimally.

Input:
Areas
Lower bounds on aspect ratios

Upper bounds on aspect ratios

Constraint graphs and
Output: ,

1)
2)

3)
4)
5)
6)
7)

8)

TABLE I
TESTING DATA SETS

TABLE II
SHAPING AND SIZING RESULTS

9)

10)

11)
12)
13)

F. Time Complexity

In each iteration of LRS, we need to look at and a
constant number of times for each edge in and .
Therefore, the runtime for each LRS is , where is total
number of edges in the constraint graphs. Let be the number
of iterations on LRS invoked by the LDP algorithm. The total
runtime of the whole process is .

V. EXPERIMENTAL RESULTS

We tested our method using the MCNC benchmarks. The size
of each benchmark data is shown in Table I. In each experi-
ment, we first generated a preliminary floorplan using a simu-
lated annealing method. In this initial floorplanning step, equal
weighting were given to the area term and the wirelength term
in the cost function, where the wirelength is computed using the
half-perimeter estimation method assuming that the pins are lo-
cated at the center of the module. After obtaining a preliminary
floorplan, we selected some soft modules lying in the neighbor-
hood of some large empty space into the set . These were the
modules that would possibly become nonrectangular in shape to
fill up the space. In our current implementation, we would se-
lect those modules which were also lying on the critical paths of
the constraint graphs. The constraint graphs were then modified
to include the new subblocks of the selected modules and to re-
strict their positions so that they would fill up the empty space
and abut with their corresponding main blocks. After these pre-
processing steps, we performed shaping and sizing on the mod-
ules using the Lagrangian relaxation technique as described in
Section IV.

In all of the experiments, the minimum and maximum aspect
ratios of the soft modules were 0.5 and 2.0, respectively, while
those for the subblocks were 0.1 and 10.0, respectively. We lim-



CHU AND YOUNG: NONRECTANGULAR SHAPING AND SIZING OF SOFT MODULES FOR FLOORPLAN-DESIGN IMPROVEMENT 77

Fig. 4. Data set xerox (3). (a) Preliminary floorplan. Deadspace = 6:38%. (b) After sizing and shaping. Deadspace = 0:60%.

Fig. 5. Data set hp (1). (a) Preliminary floorplan. Deadspace = 2:80%. (b) After sizing and shaping. Deadspace = 1:50%.

Fig. 6. Data set ami33 (3). (a) Preliminary floorplan. Deadspace = 5:21%. (b) After sizing and shaping. Deadspace = 2:40%.

ited the aspect ratio of the final packing to the range of 0.9 to
1.1. All of the results were generated using a 600 MHz Pentium
III processor, and were shown in Table II. Notice that each re-
sult is obtained by taking the average of performing the experi-

ment five times. Experimental results show that our shaping and
sizing technique is useful in reusing empty space by changing
some soft modules to nonrectangular in shape, while keeping
the relative positions between the modules unchanged. We can
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Fig. 7. Data set ami49 (1). (a) Preliminary floorplan. Deadspace = 6:48%. (b) After sizing and shaping. Deadspace = 1:72%.

Fig. 8. Data set ami33 with hard modules and boundary constraints. (a) Preliminary floorplan. Deadspace = 8:99%. Module 3, 15, 23 and 25 are hard blocks
with boundary constraint. (b) After sizing and shaping. Deadspace = 5:77%.

see that the total wirelength is reduced on average because of
the more compacted result packing. Notice that after shaping
and sizing, the pins of an L-shaped module are assumed to be lo-
cated at the center of the main subblock. Figs. 4–7 show the pre-
liminary floorplans and the floorplans after shaping and sizing
for some of the experiments. Fig. 8 shows an example in which
modules 3, 15, 23, and 25 are hard modules with boundary con-
straint. They are, thus, placed along the boundary in the prelim-
inary floorplan. During the shaping and sizing process, the di-
mensions of the hard modules remain unchanged and those soft
modules lying close to the boundary can be changed to recti-
linear shape to fill up the empty space formed between the hard
modules.

VI. REMARKS

In this paper, we only handle the case when the nonrectan-
gular modules have, at most, two rectangular subblocks. How-
ever, our approach can be extended to more than two subblocks
directly. If each nonrectangular module has up to rectangular
subblocks, the system of equations will have un-
knowns in nonlinear equations, and can still be solved
by closed-form equations by considering three possible cases
for the size of each rectangular subblock.

VII. CONCLUSION

We presented an efficient method to postprocess a floorplan
solution to further optimize its area usage by changing some soft
modules to nonrectangular in shape to fill up the empty space.
The total wirelength can also be reduced because of the more
compacted result packing. This technique will also be useful
in fixing small incremental changes during ECO modifications.
Our approach is based on an elegant closed-form solution to
a mathematical program using the Lagrangian relaxation tech-
nique. Experimental results on the MCNC benchmarks have
demonstrated its effectiveness in postprocessing a floorplan so-
lution in a very flexible way.
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