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Temporal Logic Replication for Dynamically
Reconfigurable FPGA Partitioning

Wai-Kei Mak and Evangeline F. Y. Young

Abstract—In this paper, we propose the idea of temporal logic replication
in dynamically reconfigurable field-programmable gate array partitioning
to reduce the communication cost. We show that this is a very effective
means to reduce the communication cost by taking advantage of the slack
logic capacity available. Given a -stage temporal partition, the min-area
min-cut replication problem is defined and we present an optimal algorithm
to solve it. We also present a flow-based replication heuristic which is ap-
plicable when there is a tight area bound that limits the amount of pos-
sible replication. In addition, we show a correct network flow model for
partitioning sequential circuits temporally and propose a new hierarchical
flow-based performance-driven partitioner for computing initial partitions
without replication.

Index Terms—Dynamically reconfigurable FPGAs, field-programmable
gate arrays, logic replication, reconfigurable computing, temporal parti-
tioning.

I. INTRODUCTION

Dynamically reconfigurable field-programmable gate array
(DRFPGA) is an important research topic for reconfigurable com-
puting because it has the potential to dramatically improve the
logic density by time-sharing logic. Several such devices have been
proposed over the years which include [2], [3], [8], [9], [12], [17],
and [20]. However, they require an application to be partitioned tem-
porally subject to some new conditions not present in the traditional
spatial partitioning problem. In this paper, we address the temporal
partitioning problem for DRFPGA with temporal logic replication for
communication cost reduction.

DRFPGAs with multiple on-chip configurations allow dynamic
reuse of the logic blocks and wire segments by employing more
than one on-chip SRAM/DRAM bit to control them (Fig. 1). The
time it takes to reconfigure the logic blocks and wire segments of
the entire FPGA from the on-chip SRAM/DRAM is on the order of
nanoseconds instead of milliseconds as required by reconfiguration
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Fig. 1. Conceptual model of a DRFPGA.

Fig. 2. Partitioning a circuit temporally into four stages.

Fig. 3. Communication cost.

from off-chip. This fast on-chip reconfiguration time is critical for
throughput driven applications. DRFPGAs have the advantage of
much higher logic density over conventional FPGAs. For example, an
eight-context DRFPGA fabricated by NEC [9] can accommodate eight
times more logic with only a 35% increase in area due to multiplexing.
In addition, the prototype DRFPGA has been evaluated in various
media/communication applications [9], [10], [18], [23] for recon-
figurable processing of some numerically intensive algorithms, and
showed both performance and energy consumption improvement over
conventional microprocessors by more than an order of magnitude.

To implement an application on a DRFPGA, it has to be parti-
tioned into multiple stages. The configuration of the DRFPGA will
be switched continuously to implement each stage one by one in
order to perform the functions of the original circuit. Fig. 2 shows a
circuit partitioned into stages 1 to 4, the execution sequence will be
1,2,3,4,1,2,3,4,. . . To ensure that all computations will be performed
correctly when the circuit is divided into stages, certain temporal
constraints must be satisfied. For example, to partition a combinational
circuit for implementation on a DRFPGA, each logic node must be
assigned to a stage no later than any of the nodes that receive input
from it to ensure the correctness of the computation of those nodes.

In temporal partitioning, each signal generated in a stage must be
buffered until the stage it is last needed. We define the communication
cost at a stage as the number of signals that need to be buffered at the
end of that stage. An example is shown in Fig. 3. The output of node
a has to be buffered at the end of stage 2 and has to remain buffered
until stage 4. It is known that the storage needed for buffering signals
creates a considerable overhead [4]. Hence, an objective in temporal
partitioning is to minimize the communication cost.

0278-0070/03$17.00 © 2003 IEEE
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Since there is almost always some slack logic capacity in a stage,
we consider how to take advantage of it to optimize the communica-
tion cost. In spatial partitioning, it is known that logic replication can be
performed to reduce the number of interconnections between compo-
nents [11], [13], [14], [25]. However, replicating logic temporally has
never been suggested or investigated before. In this paper, we propose
to use temporal logic replication to effectively exploit the slack logic
capacity of a stage to reduce the communication cost. We note that
though this paper focuses on temporal logic replication for DRFPGA,
the idea can also be used in other formulations such as scheduling in
high-level synthesis for optimizing register usage and bus usage [7].

A. Related Works

A number of heuristic algorithms have been proposed for temporal
partitioning. They include a list-scheduling-based algorithm in [21], a
force-directed scheduling algorithm in [4], [5], a network-flow-based
algorithm in [15], and a probability-based iterative-improvement algo-
rithm in [6]. Recently, an exact integer linear programming formulation
of the problem was given in [22]. We note that the integer linear pro-
gramming approach can achieve better results at the expense of much
larger runtime, and is feasible only for small circuit size. But none of
these works consider temporal logic replication. Here, we propose to
apply temporal logic replication after a prepartition is found, hence,
it is compatible with all previously proposed temporal partitioning al-
gorithms. Nevertheless, we also designed a new efficient hierarchical
flow-based algorithm for computing prepartitions without replication
in this paper. We show that our hierarchical flow-based algorithm com-
pares favorably with the previously proposed algorithms. A prelimi-
nary version of this work was presented at ISPD’02 [16].

B. Paper Organization

The rest of the paper is organized as follows. In Section II, we give
the formulation of the temporal partitioning problem for DRFPGA.
In Section III, we present a hierarchical flow-based method to com-
pute a performance-driven temporal partition by careful net modeling
for temporal constraint satisfaction and buffer requirement counting.
In Section IV, we define the min-area min-cut replication problem to
optimally reduce the communication cost given aK-stage temporal
partition satisfying all temporal constraints. We present an optimal al-
gorithm to solve the min-area min-cut replication problem. We also
present a flow-based replication heuristic in case that there is a tight
area bound that limits the amount of replication. The experimental re-
sults are reported in Section V. We conclude the paper in Section VI.

II. PROBLEM FORMULATION

Different architectures have been proposed for DRFPGA [8], [9],
[17], [20]. The constraints imposed on partitioning are slightly different
with different architectures. In this paper, we target our problem formu-
lation on the Xilinx model [20]. However, we emphasize that one can
easily modify the formulation and the algorithms to be presented in the
subsequent sections for other architectures.

We follow the formulation and notation used in [6], [15] for tem-
poral partitioning under the Xilinx model. Auser cycleis a cycle that
passes through all stages once (see Fig. 2). Given a circuit, we distin-
guish between two types of nodes in the circuit:combinational nodes
(C-nodes)and flip-flop nodes (FF-nodes). Note that a combinational
circuit has combinational nodes only but a sequential circuit has both
combinational nodes and flip-flop nodes. The following rules are given
in [21] which must be followed when a circuit is partitioned for imple-
mentation on a DRFPGA to ensure the correctness of computation in
the Xilinx model.

Fig. 4. (a) Storage required by a C-type net. (b) Storage required by an FF-type
net.

1) Each combinational node must be scheduled in a stage no earlier
than any of its fanin combinational nodes.

2) Each flip-flop node must be scheduled in a stage no earlier than
any of its fanin combinational nodes.

3) Each flip-flop node must be scheduled in a stage no earlier than
any of its fanout nodes. (This guarantees that all nodes that use
the value of the flip-flop will use the value computed in the pre-
vious user cycle.)

The above rules can be summarized into two constraints as follows.
Letu � v denote the temporal constraint that nodeumust be scheduled
no later than nodev. For all netn = (v1; fv2; . . . ; vpg), wherev1 is
the source terminal of the net, we have

� if v1 is a C-node, thenv1 � vj for 2 � j � p (1)

� if v1 is an FF-node, thenvj � v1; for 2 � j � p: (2)

If the source terminalv1 of a net is a C-node, we call the net aC-type
net. If the source terminalv1 of a net is an FF-node, we call the net an
FF-type net. For a C-type net, its datum will be used in the same user
cycle that it is generated. It has to be buffered from the stage where its
source terminal is assigned to till the last stage any of its other terminals
is assigned to. See Fig. 4(a) for an example. For an FF-type net, its
datum will be used in the next user cycle after its generation. Hence,
it must be buffered in the current user cycle from the stage where its
source terminal is assigned to all the way to the end of the current user
cycle, and must remain buffered at the final stage of the current user
cycle, and then in the next user cycle, it must be buffered from the first
stage till the last stage that any of its other terminals is assigned to. [See
Fig. 4(b) for an example.]

The total communication cost at the end of a stage is counted as
follows. For a C-type net(v1; fv2; . . . ; vpg), it incurs a communi-
cation cost of 1 at the end of each stagei such thats(v1) � i <

max2�j�p s(vj), wheres(v) denotes the stage that nodev is assigned
to. For an FF-type net(v1; fv2; . . . ; vpg), it incurs a communication
cost of 1 at the end of each stagei such thats(v1) � i � K or
1 � i < max2�j�p s(vj), whereK is the final stage. We note that the
total communication cost at the end of stageK is always equal to the
total number of FF-nodes in the circuit.

III. H IERARCHICAL FLOW-BASED TEMPORAL PARTITIONING

A K-stage temporal partition can be obtained by bipartitioning a cir-
cuit recursively. An approach using network flow computation was first
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Fig. 5. Net modeling in [15].

used by Liu and Wong [15]. However, there is a pitfall in the modeling
of an FF-type net in [15] that though it correctly enforces the temporal
constraints, it will lead to an incorrect estimation of the communication
cost when the circuit is partitioned. We explain this problem in this sec-
tion and give a correct modeling which ensures that the communication
cost at each stage will be counted correctly during partitioning. In ad-
dition, instead of performing the bipartitionings in asequentialmanner
as in [15], we propose to perform the bipartitionings in ahierarchical
manner. Finally, we consider how to compute a performance-driven
temporal partition.

A. Net Modeling

A network-flow-based approach is a simple attractive approach to
solve the temporal partitioning problem because it can easily handle
temporal constraints by suitable network modeling. If there exists a
temporal constraintsu � v, meaning that nodeu has to be sched-
uled to a stage no later than that of nodev, we can model this con-
straint by introducing a directed arc(v; u) from v to u with infinite
cost in the flow network. Recall that for a weighted directed graph, the
cost of a (unidirectional) cut(X; �X) (X \ �X = � andX [ �X =
vertex set of the graph) is the sum of the weights of all edges going
from X to �X [1]. So for any finite cut(X; �X) computed in the net-
work, either we have (i)u; v 2 X, (ii) u; v 2 �X , or (iii) u 2 X and
v 2 �X , but we will never havev 2 X andu 2 �X (otherwise, the cut
would have an infinite cost due to arc(v; u)).

The net modeling used in [15] is shown in Fig. 5. Though the mod-
eling correctly enforces the temporal constraints [(1) and (2) in Sec-
tion II] for both C- and FF-type nets, it does not account for the com-
munication cost due to FF-type nets correctly. This is illustrated by
the following example. Fig. 6(a) shows a sequential circuit with two
flip-flop nodes. It is clear that the execution of the circuit takes three
user clock cycles. A possible temporal partitioning of the circuit is
shown in Fig. 6(b). Note that the output of flip-flopd at the first user
cycle will be buffered and read bye at the second user cycle, and the
output of flip-flope at the second user cycle will be buffered and read
byf at the third user cycle. It can be seen that the communication costs
at the end of stages 1, 2, 3, and 4 are 3, 2, 2, and 2, respectively. How-
ever, if we use the net modeling shown in Fig. 5, the communication
costs will be incorrectly computed as 1, 2, 2, and 0, respectively, as
shown in Fig. 7(a).

Here, we present a new and correct modeling for FF-type net.
Consider an FF-type netn = (v1; fv2; . . . ; vpg). There are two
possible conditions for which the net will incur a communication cost
in cut(i; i + 1)(i = 1; 2; . . . ; K). First, if the source terminalv1 is
on the left hand side of cut(i; i + 1), netn will incur a cost of 1 in
cut(i; i + 1) since its signal must be buffered at the end of stagei.
(For example, the FF-net in Fig. 4(b) incurs a cost of 1 in both cut(3,4)

Fig. 6. Simple sequential circuit and a possible temporal partitioning of the
circuit. (C-type net:( ). FF-type nets:( ), ( ).).

Fig. 7. (a) Cut sizes determined with the net model shown in Fig. 5. (b) Cut
sizes determined with the corrected net model in Fig. 8.

Fig. 8. Correct modeling of an FF-type net.

and cut(4,1).) Second, if some terminalvj(2 � j � p) is on the right
hand side of cut(i; i + 1), netn will incur a cost of 1 in cut(i; i + 1)
since its signal must be buffered at the end of stagei. (For example,
the FF-net in Fig. 4(b) incurs a cost of 1 in cut(1,2).) Fig. 8 shows
our modeling for FF-type net. We make use of two artificial nodes
s andt which we designate as the source node and the sink node of
the flow network, respectively. Our modeling ensures that the size of
cut(i; i + 1) is correctly increased by 1 when the source terminalv1

is assigned to the left of cut(i; i + 1) [see Fig. 9(a)], or when some
vj(2 � j � p) is assigned to the right of cut(i; i+ 1) [see Fig. 9(b)],
but is not affected by the net otherwise [see Fig. 9(c)]. Fig. 7(b) shows
the size of each cut corresponding to the partition in Fig. 6(b) using
this modeling. It can be seen that the cut sizes in Fig. 7(b) exactly
match the communication costs in Fig. 6(b).
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Fig. 9. Three cases for the cutting of an FF-type net( . . . ).
(a) If is on the LHS of cut( +1), it increases the size of cut( +1) by
1. (b) If some ( = 2 . . . ) is on the RHS of cut( +1), it increases
the size of cut( +1) by 1. (c) If is on the RHS of cut( +1) and
is on the LHS of cut( +1) for all = 2 . . . , the size of cut( +1)
is not affected by the net.

B. Area-Balanced Partitions

With the correct net modeling, we can bipartition a circuit by biparti-
tioning its corresponding directed network using a heuristic algorithm,
FBB, proposed by Yang and Wong [24]. It is an efficient max-flow
min-cut heuristic that repeatedly cuts the oversized side with gradu-
ally increased cut sizes until the ratio of the areas of the two sides is
within a desired range. The FBB algorithm is given in Fig. 10. In the
algorithm,w(X) denote the area of sideX. It was shown in [24] that
the repeated max-flow min-cut process can be implemented efficiently
using incremental flow computation so that it has the same asymptotic
time complexity as just one max-flow computation, i.e.,O(jV kEj).

Note that in the original FBB algorithm in [24], two circuit nodes
are picked randomly as the source nodes and the sink nodet so as to
bipartition the circuit into two partsX and �X such thats 2 X and
t 2 �X, but here we do something different to compute a temporal
partitioning. As explained in Section III-A, for temporal partitioning,
we add two extra nodes as the source nodes and sink nodet, and
connect them with the terminals of every FF-type net in a specific way.
Moreover, as we will explain later in Section III-D, we will collapse all
nodes preassigned to any stage between 1 toi into nodes and collapse
all nodes preassigned to any stage betweeni + 1 to K into nodet
when we compute cut(i; i+1) in order to obtain a performance-driven
temporal partition.

C. Hierarchical Versus Sequential Bipartitioning

There are two possible ways to obtain aK-stage temporal partition
by recursive bipartitioning. One possibility is to first bipartition the cir-
cuit into two parts of roughly equal sizes, then the two subcircuits are
recursively bipartitioned in the same way until each subcircuit can fit
into a stage. Another possibility is to apply the first bipartitioning to
determine the first stage, then the rest of the circuit is recursively bi-
partitioned to obtain the second stage, the third stage, etc., in sequen-
tial order. We refer to the former ashierarchical bipartitioningand the
latter assequential bipartitioning.

We adopt the hierarchical bipartitioning approach even though
the sequential bipartitioning approach was used in [15]. Our
choice is motivated by an observation of the close relationship
between the minimum communication temporal partitioning
problem and the minimum cut linear arrangement problem. The
minimum cut linear arrangement problem is described as follows.
Given an undirected graphG = (V;E) with n vertices, find a
one-to-one mappings : V ! f1; 2; . . . ; ng so as to minimize

Fig. 10. The FBB algorithm for partitioning.

maxi=1;2;...;n�1( e2S
c(e)), whereSi denote the set of edges in

E of the form(u; v) such thats(u) � i < s(v), andc(e) denotes
the cost of edgee. It is known that, if we have a�-approximation
algorithm for graph bipartitioning, it can be applied hierarchically
to derive a divide-and-conquerO(� logn)-approximation algorithm
for the minimum cut linear arrangement problem [19]. On the other
hand, if the�-approximation graph bipartitioning algorithm is applied
in a sequential manner, anO(�n)-approximation algorithm for the
minimum cut linear arrangement problem will result. Now note that
the minimum cut linear arrangement problem can be considered as
a special case of the minimum communication temporal partitioning
problem where the input hypergraph is a graph, the precedence
constraint set is empty, and the number of stages isn.

D. Performance-Driven Temporal Partitioning

The period of a user cycle determines how fast an application can run
on a DRFPGA. And the period of a user cycle depends on the temporal
partitioning. The period of a user cycle is equal toK � E, whereK is
the number of stages andE is the execution time of each stage. Since
the number of stagesK is fixed and is determined by the size of the
circuit and the size of the device, we should target to compute aK-stage
temporal partition that minimizesE. We note thatE is determined by
the stage with the maximum width, i.e., the stage with the maximum
number of levels of combinational nodes. Thus,E is minimized when
the widths of all stages are balanced.

So, when we bipartition a circuit for the first time, the lengths of
the two halves of a combinational path on both sides should be upper
bounded bydD=2e1 whereD is the length of the longest combinational
path in the circuit. Let�O(v) denote the maximum distance from com-
binational nodev to a primary output or a flip-flop without passing
through any other flip-flop. Let�I(v) denote the maximum distance
from a primary input or a flip-flop to combinational nodev without
passing through any other flip-flop. When we first bipartition the cir-
cuit into (X; �X), any combinational nodev with �I(v) > dD=2e
must be assigned to�X, otherwise there would be more thandD=2e
levels of node delay inX. Similarly, any combinational nodev with

1This upper bound can be relaxed minimally if there does not exist an area-
balanced bipartition under the original bound.
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Fig. 11. Replication for communication cost reduction. (a) Before replicating
node . (b) After replicating node . (C-type nets:( ), ( ),
( ), ( ), ( ), ( ), ( ), ( ).
FF-type net:( )).

�O(v) > dD=2e must be assigned toX, otherwise there would be
more thandD=2e levels of node delay in�X.

In general, we will preassign a subset of nodes to their proper stages
before partitioning for timing optimization. When we perform biparti-
tioning to compute cut(i; i+1), all nodes that are preassigned to stages
1 to i are collapsed to the source nodes of the network, and all nodes
that are preassigned to stagesi+1 toK are collapsed to the sink node
t of the network. We note that this does not only guarantee the timing
performance of the computed solution, it also reduces the running time
of the partitioning process.

IV. TEMPORAL REPLICATION

Temporal logic replication exploits the slack logic capacity of a stage
to reduce the communication cost. The degree of communication cost
reduction by temporal replication depends on the amount of replication
allowed, which in turn depends on the gate utilization per stage of the
initial partition on the DRFPGA. We assume that aK-stage temporal
partition without replication has been computed. The communication
cost at the end of stagei is equal to the size of cut(i; i + 1). We can
reduce the cut size by carefully replicating some nodes in stagei to
stagei + 1. For example, Fig. 11(a) shows a four-stage temporal par-
tition without replication, the communication cost at the end of stage
2 can be reduced from 4 to 3 by replicating nodej to stage 3 as shown
in Fig. 11(b). Note that since we start with an original partition that al-
ready satisfies every temporal constraint, we do not have to worry about
the temporal constraints when we perform replication. For example, in
Fig. 11(b), the replica of nodej in stage 3 does not need to precede
nodel because nodel can get its correct input from the original copy
of nodej in stage 2.

Below, we define the min-cut replication problem and the min-area
min-cut replication problem. Since there is an upper bound on the area
of each stage in practice, it is desirable to minimize the amount of repli-
cation. We show that the min-area min-cut replication problem can be
solved optimally by a flow-based algorithm. In case where the stage
area bound is sufficiently large, it suffices to solve the min-area min-cut

Fig. 12. Net modeling in network for replication set computation.

Fig. 13. Network for computing a replication set for stage 2 of the partition in
Fig. 11(a).

replication problem. In case where it is not, we present a heuristic al-
gorithm to compute a replication set to effectively reduce the commu-
nication cost without exceeding the stage area bound.

Min-Cut Replication Problem:Compute a subset of nodes in stage
i for replication into stagei+1 such that, after replication, the commu-
nication cost at stagei is maximally reduced(i = 1; 2; . . . ; K � 1).2

Min-Area Min-Cut Replication Problem:Compute a minimum
subset of nodes in stagei for replication into stagei+1 such that after
replication the communication cost at stagei is maximally reduced
(i = 1; 2; . . . ; K � 1).

We consider the min-area min-cut replication problem. LetVi denote
the set of nodes in stagei in the original partition before replication. Let
Ri denote the set of nodes replicated from stagei to stagei+1. Observe
that by replicatingRi into stagei + 1, the original buffers required
for buffering any output signals ofRi for stagei + 1 can be removed
(becauseRi will also be in stagei+1 after replication), but new buffers
are required to buffer any output signals ofVi � Ri that are used by
Ri in stagei + 1. Hence, the min-area min-cut replication problem
is equivalent to the problem of computing a minimum cut (Vi � Ri,
Ri) such thatjRij is minimized. We can solve this problem by using a
flow-based method in a networkG0

i = (V 0

i ; E
0

i).Vi = Vi[Bi[fs; tg
whereBi is the set of original buffers required at the end of stagei, and
s andt are the source and sink nodes added for flow computation. Each
net(v1; fv2; . . . ; vpg) in stagei is modeled by a set of arcs in the form
of a star3 as shown in Fig. 12 so that the cut size is increased by 1
whenever the source terminalv1 is inVi�Ri but some other terminal
of the net is inRi. There is an infinite capacity arc(b; t) for each node
b 2 Bi. Finally, there is an infinite capacity arc(s; v) for each node
v 2 Vi that is a primary input [e.g., noded in Fig. 11(a)] or a node
that receives any buffered input from the previous stage [e.g., nodesb
andi in Fig. 11(a)]. (This is to avoid getting the trivial minimum cut
solution(Vi�Ri; Ri), whereRi = Vi.) Fig. 13 shows the network for
computing a replication set for stage 2 of the partition in Fig. 11(a).
A maximum flow from s to t can be computed for the constructed
networkG0

i. Taking Ri = fv 2 Vi : 9 an augmenting path fromv

2Note that the number of buffers required at the end of stageis always
equal to the number of flip-flop nodes in the circuit and cannot be reduced by
replication.

3Note that temporal constraints can be safely ignored in the replication
process.
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Fig. 14. The replication algorithm.

Fig. 15. Procedure for reducing the communication cost of a-stage
temporal partition by temporal replication.

to t in G0

ig, we get a minimum cut(Vi � Ri; Ri) such thatjRij is
minimized [25]. In other words, we get a minimum replication setRi

such that the communication cost at stagei is maximally reduced.
If the stage area bound is sufficiently large, it suffices to solve the

min-area min-cut replication problem as described above. If not, we
can use the solution of the min-area min-cut replication problem as
the starting point. SupposeRi is the replication set computed for the
min-area min-cut replication problem andjVi+1j + jRij exceeds the
stage area bound. We can adapt the repeated max-flow min-cut process
described in Section III-B to repeatedly cut the oversized replication set
Ri to obtain smaller replication sets with gradually increased cut sizes
until jVi+1j+jRij is within the required size. Our replication algorithm
is shown in Fig. 14. It can be applied by the procedure in Fig. 15 to re-
duce the communication cost of any givenK-stage temporal partition.

V. EXPERIMENTAL RESULTS AND DISCUSSION

We implemented our flow-based replication algorithm for commu-
nication-cost reduction. We also implemented the hierarchical flow-
based temporal partitioning algorithm for computing initial partitions
without replication. We performed a number of experiments.

First, we performed a set of experiments to compare the per-
formance of our hierarchical flow-based approach with two of the
best heuristics reported in the literature [6], [15]. The first heuristic
is FBP-m [15] which uses a sequential flow-based approach, and
the second is probability-based algorithm for time-multiplied field
programmable gate array (PAT) [6] which uses a probability-based
iterative-improvement approach. As in [15] and [6], we applied our
hierarchical flow-based temporal partitioning algorithm for balanced
partitioning into eight stages such that the size of each stage is
betweenb0:95n=8c and d1:05n=8e where n is the total number
of nodes in the circuit. The same set of Microelectronics Center

TABLE I
BENCHMARK CIRCUIT CHARACTERISTICS

TABLE II
RESULTS FOREIGHT-STAGE PARTITIONING WITHOUT REPLICATION

of North Carolina Partitioning’93 benchmark circuits were used as
in [15] and [6]. The characteristics of the circuits are shown in
Table I. The comparisons of the communication costs obtained by the
three partitioning algorithms are shown in Table II. Our hierarchical
flow-based partitioner outperformed FBP-m, a similar flow-based
partitioner but carries out bipartitionings in a sequential manner,
for all benchmark circuits but c3540. We have examined why the
hierarchical flow-based partitioner did not produce a better result
for c3540. When the hierarchical flow-based partitioner first divided
c3540 into two subcircuits with the size of each subcircuit constrained
to be between4�b0:95n=8c and4�d1:05n=8e, it turned out that
the best cut computed has4� b0:95n=8c nodes on one side and
4� d1:05n=8e � 2 nodes on the other. Hence, it limited the flexi-
bility in the subsequent recursive bipartitioning process. Compared
with PAT which is a completely different approach for the NP-hard
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TABLE III
COMMUNICATION COST REDUCTION BY REPLICATION. (C = MAXIMUM COMMUNICATION COST, %IMP = PERCENT OFIMPROVEMENT, %REP =

PERCENT OFNODESREPLICATED)

temporal partition problem,4 we are able to obtain better results
for ten out of 13 benchmark circuits.

As pointed out at the beginning of Section IV, the degree of commu-
nication cost reduction by temporal logic replication depends on the
gate utilization per stage of the initial partition on the DRFPGA. For
experimental purposes, we simply assume that the area of each stage
after replication can be increased tod�n=8e for � = 1:1 and� = 1:2.
The results are shown in Table III. All of the initial partitions were com-
puted by our hierarchical flow-based partitioner such that each stage
contains betweenb0:95n=8c andd1:05n=8e of the nodes. The running
times are shown inside parentheses along with the maximum commu-
nication costs. Note that, in general, the running time of our replication
algorithm reduces when� becomes larger. When the stage area bound
is loosened, the repeated max-flow min-cut process is expected to reach
the stage area bound earlier. The fifth column and the eighth column
of Table III show the percentage of nodes that are actually replicated
for � = 1:1 and� = 1:2, respectively. For� = 1:1, on average the
communication cost was reduced by 7.79% with only 2.36% of nodes
replicated. For� = 1:2, on average the communication cost was re-
duced by 11.14% with only 4.62% of nodes replicated. This confirms
that temporal logic replication is an effective means to reduce the com-
munication cost.

We have a few remarks about the flip-flop nodes. First, we note that
intuitively it is favorable to assign an FF-nodev to or close to the final
stage. For the FF-type net with source terminalv, it always has to be
buffered from the stage wherev is assigned to until the final stage ir-
respective of where its other terminals are assigned (see Section II).
Our experiments confirmed that the majority of FF-nodes are assigned
to the final stage in the computed initial partitions without replication.
Second, we note that if an FF-nodev in stagei is found to be in the
replication setRi for replication from stagei to stagei+1 by the tem-
poral replication algorithm in Section IV, then we may safely delete the
copy of nodev from stagei after replicating it to stagei+1. The reason

4Temporal partitioning is NP-hard because the general partitioning problem
is a special case with the precedence constraint set being empty, and it
is known that the general partitioning problem is NP-hard.

is that we know that the output ofv is not used by any other node in
stagei directly (recall that the output of an FF-node will only be used in
the next user cycle). In our experiments, such a scenario occurred only
very infrequently. A few FF-nodes were found to be in the replication
sets computed for circuits s35932 and s38417.

VI. CONCLUSION

In this paper, we introduced the concept of temporal logic replication
for DRFPGA partitioning. We considered using temporal logic replica-
tion to effectively exploit the slack logic capacity of a stage to reduce
the communication cost. We formulated the min-area min-cut repli-
cation problem and presented an optimal algorithm to solve it. For the
case that there is a tight area bound that limits the amount of replication,
we presented a flow-based replication heuristic. In addition, we showed
a correct network flow model for partitioning sequential circuits tempo-
rally and proposed a new hierarchical flow-based performance-driven
partitioner for computing initial partitions without replication.
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[14] R. Kužnar, F. Brglez, and B. Zajc, “A unified cost model for min-cut
partitioning with replication applied to optimization of large heteroge-
neous FPGA partitions,” inProc. ACM Eur. Design Automation Conf.,
1994, pp. 271–276.

[15] H. Liu and D. F. Wong, “Network flow based circuit partitioning for
time-multiplexed FPGAs,” inProc. IEEE/ACM Int. Conf. Computer-
Aided Design, 1998, pp. 497–504.

[16] W. K. Mak and E. F. Y. Young, “Temporal logic replication for dynami-
cally reconfigurable FPGA partitioning,” inProc. ACM Int. Symp. Phys-
ical Design, 2002, pp. 190–195.

[17] M. Motomura, Y. Aimoto, A. Shibayama, Y. Yabe, and M. Yamashina,
“An embedded DRAM-FPGA chip with instantaneous logic reconfigu-
ration,” in Proc. Symp. VLSI Circuits, 1997, pp. 55–56.

[18] T. Nishitani, “An approach to a multimedia system on a chip,” inProc.
IEEE Workshop Signal Processing Syst., 1999, pp. 13–22.

[19] D. B. Shmoys, “Cut problems and their application to divide-and-con-
quer,” in Approximation Algorithms for NP-hard Problems, D. S.
Hochbaum, Ed. Boston, MA: PWS, 1997, pp. 192–235.

[20] S. Trimberger, “A time-multiplexed FPGA,” inProc. IEEE Symp. Field-
Programmable Custom Comput. Mach., 1997, pp. 22–28.

[21] , “Scheduling designs into a time-multiplexed FPGA,” inProc.
ACM Int. Symp. FPGA, 1998, pp. 153–160.

[22] G. M. Wu, J. M. Lin, and Y. W. Chang, “Generic ILP-based approaches
for time-multiplexed FPGA partitioning,”IEEE Trans. Computer-Aided
Design, vol. 20, pp. 1266–11 274, Oct. 2001.

[23] M. Yamashina and M. Motomura, “Reconfigurable computing: its con-
cept and a practical embodiment using newly developed dynamically
reconfigurable logic (DRL) LSI,” inProc. Asia South Pacific Design
Automation Conf., 2000, pp. 329–332.

[24] H. Yang and D. F. Wong, “Efficient network flow based min-cut
balanced partitioning,” inProc. IEEE/ACM Int. Conf. Computer-Aided
Design, 1994, pp. 50–55.

[25] , “New algorithms for min-cut replication in partitioned circuits,”
in Proc. IEEE/ACM Int. Conf. Computer-Aided Design, 1995, pp.
216–222.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


