
652 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 5, MAY 2003

the cluster(v) if the area ofcluster(v) [group(u; w)
does not exceed the area constraintM . However,u 2
Gv � cluster(v) implies that the area ofcluster(v) [
group(u;w) exceedsM . Whenu 2 Cv and the area of
cluster(v) [group(u;w) is greater thanM , there must
exist an edge(f; g) such thatf 2 group(u;w), g 2
group(u;w), f 2 (Gv � Cv) andg 2 Cv . The situation
is depicted in Fig. 4(b). Based on the induction hypothesis,
delay(f)+�(g; v)+D � l(f)+�(g; v)+D. Then, by
P3 of Lemma 1,delay(v) � delay(f) + �(g; v) +D �
l(f) + �(g; v) + D > l(u) + �(w; v) + D = l(v) >
delay(v) which is impossible.

c) If (cluster(v)� Cv) 6= � , we can dividecluster(v) into
two disjoint subsetscluster(v)�Cv andcluster(v)\Cv .
By Corollary 1, there exists an edge(s; t) such that
s 2 (cluster(v) � Cv) andt 2 cluster(v) \ Cv while
l(s) + �(s; t) + D = l00(s; t) � l2(v) = l(v). This
is depicted in Fig. 4(c). Since we knowdelay(v) �
delay(s) + �(s; t) + D, due to the induction hypothesis
thatdelay(s) + �(s; t) + D � l(s) + �(s; t) + D, we
have

delay(v) �delay(s) + �(s; t) +D

�l(s) + �(s; t) +D � l(v)

which contradicts the assumptiondelay(v) < l(v). As a
result, the statement is also true for vertexv.

Lemma 4: In our algorithm, for any vertexv in the clusteringS
generated by the clustering phase (lines 13–19), the path delay atv is
less than or equal tol(v).

Proof: Our delay model is different from that in [1], but the clus-
tering phase in our algorithm is the same as that of [1], so the proof is
the same. Details can be found in [1].

Based on Lemma 3 and Lemma 4, we can easily derive the following
theorem.

Theorem 1: The clusteringS generated in our algorithm is an op-
timal clustering for any instance of the problem described in Section II.

Proof: In Lemma 3, it is shown that for each vertexv, the label
l(v) in our algorithm is less than or equal to the path delay at vertexv

in any optimal clustering; Lemma 4 states that our algorithm is able to
generate a clustering with the path delay atv less than or equal tol(v)
which is the lower bound of the path delay at vertexv in any optimal
clustering. Together with Lemma 1 in [1], the clusteringS generated
by our algorithm is an optimal clustering.

We analyze the complexity of our algorithm. InGrouping(),
Group vertex() would run at mostjV j times, so the time complexity
of the WHILE loop isO(jV kEj). In Circuit clustering(), finding
the maximum delay matrix� takesO(jV j(jV j + jEj)), finding
a topological order in line 4 takesO(jV j + jEj) time, the sorting
in line 11 takes timeO(jEjlg(jEj)), and Labeling() takes only
O(jEj) time. So, the first WHILE loop ofCircuit clustering()
takesO(jV j(jEjlg(jEj) + jV kEj)) time. Clustering phase (lines
13–19) takes timeO(jV j + jEj). So the overall time complexity is
O(jV j(jEjlg(jEj) + jV kEj)) = O(jV j2jEj).

Remarks: In fact, our algorithm can also handle the case where the
intercluster delayD is a variable value (sayD(x; y); 8(x; y) 2 E).
It is because the calculation ofl00(x; y) = l(x) + D + �(y; r) in-
cludes the value ofD such that ifD becomes a variableD(x; y), the
calculation becomesl00(x; y) = l(x) + D(x; y) + �(y; r), and still
correctly represents the situation when(x; y) becomes an intercluster

edge. Besides, the optimality of the algorithm still holds because all the
theoretical results remain true and can be proved similarly.

VII. CONCLUSION

In this paper, we have introduced a new delay model which is more
general and practical than the general delay model [3]. Under our new
delay model, a circuit clustering algorithm based on a novel vertex
grouping technique is proposed and is proved to optimally solve the
area-constrained combinational circuit clustering problem for delay
minimization in polynomial time.

REFERENCES

[1] R. Rajaraman and D. F. Wong, “Optimum clustering for delay minimiza-
tion,” IEEE Trans. Computer-Aided Design, vol. 14, pp. 1490–1495,
Dec. 1995.

[2] H. Yang and D. F. Wong, “Circuit clustering for delay minimization
under area and pin constraints,”IEEE Trans. Computer-Aided Design,
vol. 16, pp. 976–986, Sept. 1997.

[3] R. Murgai, R. K. Brayton, and A. Sangiovanni-Vincentelli, “On clus-
tering for minimum delay/area,” inProc. IEEE Int. Conf. Computer-
Aided Design, 1991, pp. 6–9.

[4] E. Lawler, K. Levitt, and J. Turner, “Module clustering to minimize delay
in digital networks,”IEEE Trans. Comput., vol. C-18, pp. 47–57, Jan.
1966.

Slicing Floorplan With Clustering Constraint

W. S. Yuen and Evangeline F. Y. Young

Abstract—In floorplan design, it is useful to allow users to specify some
placement constraints in the final packing. Clustering constraint is a pop-
ular type of placement constraint in which a given set of modules are re-
stricted to be placed adjacent to one another. The wiring cost can be re-
duced by placing modules with a lot of interconnections closely together.
Designers may also need this type of constraint to restrict the positions of
some modules according to their functionalities. In this paper, a method
addressing clustering constraint in slicing floorplan will be presented. We
devised a linear time algorithm to locate neighboring modules in a nor-
malized Polish expression and to rearrange them to satisfy the given con-
straints. Experiments were performed on some benchmarks and the results
are very promising.

Index Terms—Clustering constraint, design floorplanning, floorplan-
ning, physical design, very large scale integrated computer-aided design
(VLSI CAD).

I. INTRODUCTION

Floorplan design is the problem of planning the positions and shapes
of a set of modules on a chip in order to optimize the circuit perfor-
mance at a very early designing stage. During this floorplanning phase,
circuit performance like layout area, interconnect cost, heat dissipation
and power consumption, etc., should be taken into consideration.

Manuscript received December 3, 2001; revised May 17, 2002. This paper
was recommended by Associate Editor T. Yoshimura.

The authors are with the Department of Computer Science and Engineering,
Chinese University of Hong Kong, Shatin, New Territories, Hong Kong (e-mail:
fyyoung@cse.cuhk.edu.hk).

Digital Object Identifier 10.1109/TCAD.2003.810738

0278-0070/03$17.00 © 2003 IEEE

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 5, MAY 2003 653

There are three kinds of floorplans: slicing, nonslicing, and mosaic
floorplan. A slicing floorplan is one that can be obtained by recur-
sively partitioning a rectangle in two by either a vertical or a hori-
zontal line. The advantages of using slicing floorplan are that it has
simple representations such as slicing tree and Polish expression [7],
[8], and optimal module shaping can be done efficiently. However,
slicing floorplan is only a small subset of all feasible packings and is not
general enough. A nonslicing floorplan is not necessarily slicing, and
can represent any kind of packing. Several methods, sequence-pair [5],
bound-sliceline-grid (BSG) [6], O-tree [2], B*-tree [1], and transitive
closure graph [4], have been proposed for representation of nonslicing
floorplan. The paper [3] proposes a new type of floorplan called mo-
saic floorplan that is similar to general nonslicing floorplan except that
it does not have any unoccupied rooms. A representation called corner
block list can be used to represent mosaic floorplan.

A floorplanning algorithm has to deal with several essential issues,
including module shaping, routability, area and delay, in order to op-
timize the circuit performance. With the scaling down of the IC tech-
nology, the number of transistors that can be built into a standard size
chip has increased rapidly, and it has become increasingly important
to consider the circuit performance as early as possible in the floor-
planning stage. Placement constraints in floorplan design are useful
for restricting the relative positions between the modules according to
their functionalities in order to improve the circuit performance like in-
terconnect cost and delay, etc. Some previous works on preplace con-
straint and range constraint in slicing floorplan [12], [11] have been
done. Clustering constraint is another popular type of constraint in
which a given set of modules are restricted to be placed adjacent to one
another. The wiring cost can be reduced by placing modules with a lot
of interconnections closely together. Designers may also need this type
of constraint to restrict the positions of some modules according to their
functionalities. The paper [9] proposed a hybrid floorplanning method
using partial clustering and module restructuring. Their method re-
stricts clusters to be placed in rectangular regions (subtrees in a slicing
tree). Since constrained modules are restricted to be placed in rectan-
gular regions, the packing topology is limited and the deadspace of
the final floorplan is usually large. The paper [10] proposed a unified
method to handle different kinds of placement constraints in general
floorplan. However, their method does not handle the clustering con-
straint as defined here.

In this paper, clustering constraint is considered in which some mod-
ules are required to be placed next to each other. The cost of routing
can be reduced by imposing clustering constraints to those modules
which are heavily connected. The method we used will determine the
surrounding positions of a target module in a Polish expression and
swap the constrained modules into those positions in order to satisfy
the constraints. Our method can also be extended to handle more than
one cluster in a floorplan. This paper is organized as follows. We will
define the problem in Section II. In Section III, a slicing floorplanner
on which our method is based will be described. In Section IV, de-
tailed descriptions of the clustering method will be given. Results will
be shown in Section V.

II. PROBLEM DEFINITION

A floorplan withn modules (1; 2; . . . ; n) is an enveloping rectangle
R subdivided by horizontal and vertical line segments inton nonover-
lapping rectilinear regions such that each regionRi must be large
enough to accommodate the corresponding modulei.

In most iterative methods, a floorplan is evaluated by a functionA+
�W , whereA is the area of the floorplan andW is the total wire length.
The aspect ratio of each module will be limited so that the delay inside
each module will not be too long. For each rectangular modulei, there

Fig. 1. Example of clustering constraint.

Fig. 2. Slicing tree.

are three input valuesAi, ri andsi. Ai is the area of the module, and
ri andsi are the minimum and maximum aspect ratio of the module
respectively. Letwi andhi be the width and height of the module, then
Ai = wihi andri � hi=wi � si. The overall aspect ratio of the
floorplan is also required to be within a given range.

In this paper, clustering constraint is considered in floorplan design.
Given a set of modules� and a subset of modules� � �, we want to
pack the modules in� such that the modules in� will be adjacent to
each other. Fig. 1 shows an example of clustering constraint. Modules
E,F , andH are the subset of modules to be clustered and they have to
be placed adjacent to each other in the final packing. The floorplanning
problem with clustering constraints is defined as follows.

A. Problem FP/CC

Given a set ofn modules� = fm1;m2; . . . ; mng and mi =
(Ai; ri; si) for i = 1; . . . ; n whereAi is the area of modulei, and
ri andsi are the minimum and maximum aspect ratio of modulei re-
spectively. Let� be a subset of the modules in�, pack the modules
in � to minimize the total area and interconnect cost such that the fol-
lowing three conditions are satisfied.

1) The modules in� will form a cluster (lying adjacent to each
other) in the final packing.

2) Each module satisfies its area and aspect ratio constraint.
3) The aspect ratio of the whole packing is within a given range

[r, s].

III. B ASIC SLICING FLOORPLANNER

Our work is based on a well-known slicing floorplanner [8]. A slicing
floorplan can be represented by a binary tree. The leaf nodes of the tree
are the basic modules and the internal nodes are labeled either with a
+ or a * operator to represent a horizontal or a vertical cut, respec-
tively. An example is shown in Fig. 2. Reading the tree in postorder, a
Polish expression will be obtained that is used to represent the floorplan
structure in the algorithm. A normalized Polish expression is a Polish
expression with no consecutive identical operators.

Simulated annealing is used to optimize the total area and intercon-
nect cost of the floorplan. The cost is computed asA+�W whereA is

654 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 5, MAY 2003

the total area andW is the wire length. Normalized Polish expression is
used to represent a solution packing during the annealing process. The
neighbors of each solution have to be defined such that the optimal so-
lution is reachable. Three types of moves M1, M2, and M3 are used.
M1 swaps two adjacent operands in the expression, M2 interchanges
the operators in a chain (a chain is a substring of operators in the Polish
expression) and M3 swaps two adjacent operand and operator.

IV. FLOORPLANNING WITH CLUSTERING CONSTRAINT

In this paper, we consider clustering constraint in slicing floorplan.
A simple method to solve this problem is by adding a term in the cost
function of the annealing process as a penalty for violating the con-
straint. This method was tested but the results are poor and the con-
straints will usually be violated in the final packing. In our approach,
clusters are maintained throughout the whole annealing process.

We devised a method to locate the surrounding positions of a target
module. A target moduleMt is picked randomly from the subset�
given by the user. A set ofMt ’s surrounding modules�t in the packing
is then obtained. For eachMi 2 �t, if Mi =2 �, we will swapMi with
someMj whereMj 2 �n�t. This algorithm will maintain the cluster
in the floorplan throughout the whole annealing process. An overview
of the algorithm is given below:

Main Program
begin
Initialize temperature
While do
begin
Move by either M1, M2, or M3
Call procedure Clustering
Compute Cost
If Cost is reduced
Accept the move

Else

where = change in cost, k=constant
If Random then
Accept the move

Else
Reject the move

end
end

A. Locating Surrounding Modules

An algorithm is devised to locate the surrounding positions of a
target module in a normalized Polish expression. We define thesur-
rounding setof a moduleMi as

Definition: Given a moduleMi in a slicing floorplanF , the sur-
rounding set�i ofMi is a set of modules inF such that a moduleMj

is in�i if and only if (1)Mj is above (below)Mi and there is no module
Mk in F whereMk is above (below)Mi andMj is above (below)Mk,
or (2)Mj is on the right (left) ofMi and there is no moduleMk in F
whereMk is on the right (left) ofMi andMj is on the right (left) of
Mk.

Note that we can locate the modules in the surrounding set of a given
module in linear time by just looking at the Polish expression and no
real packing is needed. A target moduleMt 2 � is selected randomly.
A set�t is found such thatMt is surrounded by the modules in�t in
the packing. An example is shown in Fig. 3. In this exampleMt = F
and�t = fA;B;C;E;G;Hg.

Fig. 3. Example of the surrounding modules ofF .

For each moduleMt in the slicing floorplan,Mt is surrounded by
at most four cuts which correspond to four operators in the normal-
ized Polish expression. If those four operators are located in the Polish
expression, the set of modules�t of Mt can be found. For a Polish
expression� = �1 �2; . . . ; �n, we define avalid subexpression� =
�k �k+1; . . . ; �k+m wherek � 1 andn � k+m as a subexpression
in � such that�k must be an operand and the number of operands is
equal to the number of operators plus one in�. A valid subexpression
indeed represents a subtree in the whole slicing tree.

The two operators, + and *, correspond to cuts of different orienta-
tions. Let�, �, and be valid subexpressions in a Polish expression.
Some terms are defined as follows:

i) below(�; �) () = ��+
ii) above(�; �) () = ��+
iii) left(�; �) () = ���
iv) right(�; �) () = ���.
Given a target moduleMt, the algorithmFind_Surroundingwill

find four valid subexpressionsa, b, c, andd such thatbelow(�1; a),
above(�2; b), left(�3; c), andright(�4; d), and�i for i = 1; . . . ; 4 is
the smallest valid subexpression containingMt and satisfying the cor-
responding relationship.

Algorithm :
Input: is a Polish ex-
pression of the original packing.

is the index of the target module.
Output: Valid subexpressions , , , and

such that , , ,
and , and for is the
shortest valid subexpression containing

and satisfying the above relation-
ship.

1
2 While (, , , are not all found) and
() and ()

3 begin
4 If end is an operator
5 begin
6 Find such that
7 first first first

8 is the shortest valid subexpression
9 If () and (is not found yet)
10
11 Else if () and (is not found
yet)

12
13 ;
14 end
15 Else
16 begin
17 Find such that
18
19 is the shortest valid subexpression

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 5, MAY 2003 655

Fig. 4. Example to illustrate the algorithm Find_Surrounding.

20 If () and (is not
found yet)

21
22 Else if () and (is not
found yet)

23
24
25 end
26 end

The complexity of this algorithm isO(n). Fig. 4 illustrates the steps
of the algorithm. The expressionsa, b, c, andd are valid subexpres-
sions representing subtrees in the slicing tree. For the example in Fig. 3,
Mt = F , a = G, b = BC �ED+�, c = A, andd = H . The shortest
valid subexpression can be obtained by counting the number of opera-
tors and operands. Note that not all the basic modules ina, b, c, andd
belong to the surrounding set�t of Mt. For example, the subexpres-
sionb is lying aboveMt and only the modules lying at the bottom of the
supermodule corresponding tob belong to�t. Fig. 5 shows an example
in whichb = BC �ED+ � butD does not belong to�t. A recursive

procedure can be used to find�t efficiently givena, b, c, andd. The
following procedure is for finding the modules in�t from the subex-
pression lying below the target module, i.e., from the subexpressiona.
Procedures for the other three subexpressions can be constructed sim-
ilarly.

Procedure :
Input: is the first index of the valid
subexpression .

is the last index of and .
Output: is the set of modules lying at
the top of the supermodule represented by
.

1 If
2
3 Else
4 begin
5 Find such that
is the shortest valid subexpression

6 If ()

656 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 5, MAY 2003

Fig. 5. D does not belong to� whereM is F .

7
8
9 Else if ()
10
11 end

B. Constraint Satisfaction

In the annealing process, all the given constraints have to be satisfied
in order to make the floorplan feasible. Modules in the constraint set�

will be swapped with the surrounding set�t until the condition� �
fMtg [�t is satisfied.

In the first iteration,Mt is randomly selected from�. An intersec-
tion set� is defined to be� \ �t. If j�j > j�j + 1, swapping is
needed to satisfy the clustering constraints. Ifj�j > j�tj + 1, there
is not enough room for swapping, and the whole process will be re-
peated recursively by selecting another module that is already in the
cluster as the new target module until all the constraints are satisfied.
All three moves in the simulated annealing process can affect the neigh-
boring structure and may lead to infeasible packings. However we will
swap operands in the Polish expression to maintain a feasible solution
throughout the whole annealing process. There is only one case in move
M1 that does not affect the feasibility of the packing, i.e., if two adja-
cent operands to be swapped are both in� or both in� � �. Modi-
fication is not required in this case and the clustering constraints will
not be violated after the move.

The following algorithm describes the strategy to ensure that all the
clustering constraints are satisfied throughout the annealing process.

Algorithm :
Input: is a Polish ex-
pression of the packing.

is the set of modules having clus-
tering constraint.

Output: Modified that represents a fea-
sible floorplan satisfying the given
clustering constraint

1
2 =
3 While
4 begin
5 For each
6 begin
7 Find by:
8 Initialize as empty
9 Call

10 Call .
11 Call .
12 Call .
13 Call
14
15 If
16 All clustering constraints are sat-
isfied.

17 Return
18 end
19 Take where is maximum and

is not marked
20 If , put
21 Add the modules in to
22 If
23 begin
24 For each
25 Find
26
27
28 end
29 Else
30 begin
31 For each
32 Find and
33
34 Add to
35
36 end
37 Mark
38 end

If j�ij < j�j�1 (lines 30–36), the number of positions in�i is not
enough for accommodating all the constrained modules. Other target
modules will be selected and the process will be repeated until all the
constraints are satisfied. The algorithm can handle even large cluster
size.

C. Multiclustering Extension

Multiclustering constraint allows users to have more than one
cluster in the final packing. The algorithm described above handles
only one cluster. Multiclustering constraint can be handled by invoking
the above algorithm several times. However, the major problem is that
the surrounding sets of the target modules in different clusters can
overlap. Infeasible packing will be resulted if modules are swapped
randomly. For example, given two clustering sets�1 and�2, a target
moduleMt andMt is picked from each clustering set. Let�t and
�t be the surrounding sets ofMt andMt , respectively. If a module
Mk exists such thatMk 2 �t andMk 2 �t , this moduleMk

should be removed from either�t or �t . Otherwise, the swapping
space provided byMk may be used twice.

D. Cost Function

The cost function is computed asA + �W + �C whereA is the
total area of the packing,W is the half perimeter estimation of the
wire length, andC is a penalty term for the clustering constraint. The
penalty termC is the sum of squares of the center to center distances
between every pair of modules in the same cluster. The penalty term
helps in generating a packing in which the constrained modules will be
placed as close to each other as possible. The parameters� and� are
constants that control the relative importance of the three terms.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 5, MAY 2003 657

TABLE I
RESULTS OF THECONTROL EXPERIMENTS

TABLE II
RESULTS OF TESTING WITH ONE CLUSTER

FOR THEMCNC EXAMPLES

V. EXPERIMENTAL RESULTS

We tested our method with three Microelectronics Center of North
Carolina (MCNC) building blocks examples (ami33, ami49 and
playout). Ami33 has 33 modules and 123 nets. Ami49 has 49 modules
and 408 nets. Playout has 62 modules and 1161 nets. A control
experiment without any clustering constraint was performed for each
data set and the results are shown in Table I. The temperature was
decreased at a constant rate (0.9), and the number of iterations at
each temperature step was one hundred times the number of modules.
All experiments were performed on an UltraSPARC-II 400-MHz
processor.

In the first set of experiments, 20% of the modules in each bench-
mark were selected randomly to have clustering constraint. (Ami33,
ami49, and playout have 7, 10, and 12 constrained modules, respec-
tively.) For each benchmark, we repeated the experiment three times
by selecting different modules into the constraint set. The results are
shown in Table II. We can see that the clustering constraint can be sat-
isfied in all the experiments with only a small increase in total area and
execution time. This has demonstrated the effectiveness of our method
in handling a single cluster in slicing floorplan.

In the second set of experiments, we tested our method with mul-
ticlustering constraints. In each benchmark problem, we picked three,
four, and five clusters, each having 2–7 modules. The results are shown
in Table III. If we compare Table III with Table II, we can see that our

TABLE III
RESULTS OF TESTING WITH MULTICLUSTERS

FOR THEMCNC EXAMPLES

Fig. 6. Result packing of ami33 with three clusters (C :5,7,11,13;
C :14,27,30;C :19,22,25,29).

method can be extended to handle more than one cluster successfully
without imposing much penalty in the floorplan quality and the exe-
cution time. Figs. 6 and 7 show a result packing of ami33 with three
clusters and a result packing of ami49 with four clusters, respectively.

Figs. 8 and 9 show the improvement in interconnection by imposing
clustering constraints. We observed from the data set ami33 that mod-
ules 15, 18, 19, 20, 21, 24, and 25 are heavily connected with each
other, so we imposed a clustering constraint between them. Figs. 8 and
9 show the result packings with and without the clustering constraint.
One can see that the interconnect cost in Fig. 8 is much smaller than
that in Fig. 9. This example demonstrated that with careful selection
of the clustering constraints, our method can be used to reduce the in-
terconnect cost of a floorplan by constraining those strongly connected
modules in a cluster.

658 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 5, MAY 2003

Fig. 7. Result packing of ami49 with four clusters (C :6,7,8,9;
C :10,11,12,13;C :15,16,17,18;C :18,19,20,21).

Fig. 8. Result packing showing the improvement in interconnection by
imposing clustering constraints (wire length= 0:1472� 10 units).

VI. CONCLUSION

We have devised and implemented an efficient method to handle
clustering constraint in slicing floorplan. Experimental results showed
that our method can handle clustering constraint effectively without im-
posing much penalty in the quality of the floorplan and the execution
time. In addition, this method can be extended to handle multiclusters.
We have also demonstrated how the method can be used to reduce inter-
connect cost by imposing clustering constraint between those modules
that are strongly connected with one another.

Fig. 9. Result packing of the same problem in Fig. 8 without imposing any
clustering constraint (wire length= 0:1596� 10 units).

REFERENCES

[1] Y. C. Chang, Y. W. Chang, G. M. Wu, and S. W. Wu, “B*-trees: A new
representation for nonslicing floorplans,” inProc. 37th ACM/IEEE De-
sign Automation Conf., 2000, pp. 458–463.

[2] P. N. Guo, C. K. Cheng, and T. Yoshimura, “An O-tree representation
of nonslicing floorplan and its applications,” inProc. 36th ACM/IEEE
Design Automation Conf., 1999, pp. 268–273.

[3] X. Hong, G. Huang, Y. Cai, J. Gu, S. Dong, C.-K. Cheng, and J. Gu,
“Corner block list: An effective and efficient topological representation
of nonslicing floorplan,” inProc. IEEE/ACM Int. Conf. Computer-Aided
Design, 2000, pp. 8–12.

[4] J.-M. Lin and Y.-W. Chang, “TCG: A transitive closure graph-based rep-
resentation for nonslicing floorplans,” inProc. 19th ACM/IEEE Design
Automation Conf., 2001, pp. 764–769.

[5] H. Murata, K. Fujiyoshi, and M. Kaneko, “VLSI/PCB placement with
obstacles based on sequence-pair,”IEEE Trans. Computer-Aided De-
sign, vol. 17, pp. 60–68, Jan. 1998.

[6] S. Nakatake, K. Fujiyoshi, H. Murata, and Y. Kajitani, “Module place-
ment on BSG-structure and IC layout applications,” inProc. IEEE/ACM
Int. Conf. Computer-Aided Design, Nov. 1996, pp. 484–493.

[7] R. H. J. M. Otten, “Automatic floorplan design,” inProc. 19th
IEEE/ACM Int. Conf. Computer-Aided Design, 1982, pp. 261–267.

[8] D. F. Wong and C. L. Liu, “A new algorithm for floorplan design,”
in Proc. 23rd ACM/IEEE Design Automation Conf., June 1986, pp.
101–107.

[9] T. Yamanouchi, K. Tamakashi, and T. Kambe, “Hybrid floorplanning
based on partial clustering and module restructuring,” inProc. Int. Conf.
Computer-Aided Design, 1996, pp. 478–483.

[10] E. F. Y. Young, C. C. N. Chu, and M. L. Ho, “A unified method to handle
different kinds of placement constraints in floorplan design,” inProc.
7th Asia South Pacific Design Automation Conf./15th Int. Conf. VLSI
Design, 2002, pp. 661–667.

[11] F. Y. Young and D. F. Wong, “Slicing floorplans with boundary con-
straints,” inProc. IEEE Asia South Pacific Design Automation Conf.,
1999, pp. 17–20.

[12] , “Slicing floorplans with range constraints,” inProc. Int. Symp.
Physical Design, 1999, pp. 97–102.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

