
470 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 4, APRIL 2003

Routability-Driven Floorplanner With
Buffer Block Planning

Chiu-Wing Sham and Evangeline F. Y. Young

Abstract—In traditional floorplanners, area minimization is an
important issue. However, due to the recent advances in very large
scale integration technology, the number of transistors in a design
are increasing rapidly and so are their switching speeds. This has
increased the importance of interconnect delay and routability in
the overall performance of a circuit. We should consider intercon-
nect planning, buffer planning, and routability as early as pos-
sible. In this paper, we study and implement a routability-driven
floorplanner with congestion estimation and buffer planning. Our
method is based on a simulated annealing approach that is divided
into two phases: the area optimization and congestion optimiza-
tion phases. In the area optimization phase, modules are roughly
placed according to the total area and wirelength. In the congestion
optimization phase, a floorplan will be evaluated by its area, wire-
length, congestion, and routability. We assume that buffers should
be inserted at flexible intervals from each other for long enough
wires and probabilistic analysis is performed to compute the con-
gestion information taken into account the constraints in buffer
locations. Our approach is able to reduce the average number of
wires at the congested areas and allow more feasible insertions
of buffers to satisfy the delay constraints without having much
penalty in increasing the area of the floorplan.

Index Terms—Buffer planning, computer-aided design, floor
planning, interconnect-driven, physical design, very large scale
integration (VLSI).

I. INTRODUCTION

A. Motivation

F LOORPLANNING plays an important role in the phys-
ical design of very large scale integration circuits. It plans

the shapes and locations of the modules on a chip, the result
of which will greatly affect the overall performance of the final
circuit. In the past, area minimization was the major concern in
floorplan design. Advances in the deep submicrontechnology
have brought many changes and challenges to this. As tech-
nology continues to scale down, the sizes of transistors are get-
ting smaller and a significant portion of circuit delay is coming
from interconnects. In some advanced systems today, as much
as 80% of the clock cycle is consumed by interconnects [2].
Area minimization is less important while routability and delay

Manuscript receivedJune 1,2002; revisedSeptember 3,2002andDecember8,
2002. The work described in theis paper was substantially supported by a grant
from the the Research Grants Council of the Hong Kong Special Administrative
Region (Project no. CUHK4231/OIE). This paper was recommended by Guest
Editor C. J. Alpert.

C.-W. Sham and E. F. Y. Young are with the Department of Computer Science
and Engineering, Chinese University of Hong Kong, Shatin, N.T., Hong Kong
(e-mail: fyyoung@cse.cuhk.hk).

Digital Object Identifier 10.1109/TCAD.2003.809649

has become the major concern in floorplanning and many other
designing steps.

Traditional floorplanners have not paid enough attention to
interconnect optimization. This results in a large expansion in
area, or even in an unroutable design failing to achieve timing
closure after detailed routing. Buffer insertion is one of the most
popular and effective techniques to achieve timing closure. It
was projected that over 700 K repeaters will be inserted on a
single chip in the 70-nm technology [3]. In current practices,
buffers are inserted after routing. However buffers also take up
silicon resources (40 to 200 minimum inverter size [5]) and
cannot be inserted wherever we want. A good planning of the
module positions during the floorplanning stage so that buffers
can be inserted wherever needed in the later routing stages will
be very useful. Besides, buffers also contribute delay and area,
and their locations should be carefully planned.

B. Previous Works

There are several previous works addressing the interconnect
issues in floorplan design. In [2], a floorplan is divided into grids
and congestion is estimated at each grid, assuming that each
wire is routed in either an L- or Z-shape. They use a simple
and fast method to estimate congestion but buffer insertion is
not considered. Conget al.define in their paper [4] the termfea-
sible regionof a net, that is, the largest polygon in which a buffer
can be inserted such that the timing constraint can be satisfied.
The locations of these feasible regions can be computed and
buffers are clustered into blocks in these feasible regions along
the channel areas. Sarkaret al. [11] add the notion of indepen-
dence to feasible regions so that the feasible regions of different
buffers on a net can be computed independently. They also try to
improve routability by considering congestion in their objective
function. Tang and Wong [12] propose an optimal algorithm to
assign buffers to buffer blocks assuming that only one buffer is
needed per net. In [13], a realistic global router is used to eval-
uate the congestion information of each candidate placement
solution. Draganet al. [5] use a multicommodity flow-based
approach to allocate buffers to some pre-existing buffer blocks
such that the required upper and lower bounds on buffer inter-
vals can be satisfied as much as possible. Alpertet al. [1] make
use of tile graph and dynamic programming to perform buffer
block planning. They propose that buffers should be allowed to
be inserted inside macro blocks and their method will distribute
buffer sites throughout the layout. Finally, Louet al. [9] apply
probabilistic analysis to estimate congestion and routability, and
they show that their estimations correlate well with postroute

0278-0070/03$17.00 © 2003 IEEE

SHAM AND YOUNG: ROUTABILITY-DRIVEN FLOORPLANNER WITH BUFFER BLOCK PLANNING 471

congestion. However, their congestion model does not take into
account buffer insertions.

C. Our Contributions

In order to address the interconnect issues in floorplan design,
we propose to use a probabilistic method to estimate congestion
and routability with buffer insertions. Probabilistic analysis can
address the problem in a more global way and can thus give a
more accurate estimation. In our model, we assume that buffers
are constrained to be inserted for long enough wires such that
the distance between adjacent buffers is lying within a range
[low, up] given by the user. We call this thevariable interval
buffer insertion constraint[1], [5]. For example, according to
[8], global repeater rules for a high-end microprocessor design
in the 0.25- m CMOS technology require repeaters at inter-
vals of at most 4500 m, and we can model this situation by
assigning thelow andup appropriately. In our floorplanner, we
will divide a floorplan into a two-dimensional grid structure and
will estimate congestion at each grid subjecting to the given
buffer insertion constraint. Notice that the congestion at each
location is dependent on the routes of the wires while the route
of a wire is, in turn, dependent on the availability of buffer re-
sources along the route. This availability of buffer resources can
be estimated from the amount of empty space and the number of
possible buffer insertions at that location. We compute the con-
gestion information assuming that every route is equally likely
to be used as long as the buffer insertion constraint can be sat-
isfied. The computation can be performed efficiently by using
dynamic programming and a table lookup approach. Besides,
we have used a two stage simulated annealing method to speed
up the whole floorplanning process. In order to verify the use-
fulness of our method, we have implemented a simple global
router for testing and the experimental results can demonstrate
the effectiveness and efficiency of our floorplanner.

This paper is divided into eight sections. In Section II, an
overview of our floorplanner will be given. In Sections III–VII,
the ideas and the implementation details including buffer plan-
ning, congestion estimation, and the two-phase simulated an-
nealing process will be described and explained. Finally, exper-
imental results and comparisons between our floorplanner and
a traditional floorplanner will be shown in Section VIII.

II. OVERVIEW OF OUR FLOORPLANNER

In this section, we will give a brief overview of our
routability-driven floorplanner. We assume that wires are
routed over-the-cell and multibend routing is used. We divide a
floorplan into grids and the size of the deadspace in each grid
is computed for estimation of the amount of buffer resources.
Given a set of nets and a set of modules where each
module has an area , we want to obtain a nonoverlapping
packing of these modules such that the area of the packing, the
interconnect and congestion costs are small, every net satisfies
its buffer insertion constraint, and every module satisfies its
area and aspect ratio constraint.

In our floorplanner, given a candidate floorplan solution,
we will first estimate the buffer usage of each netat each
grid, then we can estimate the total buffer usage at each grid,

Fig. 1. Commonly used congestion model.

usage . We assume that buffers should be inserted at
flexible intervals from each other for long enough wires. By
making use of usage and the estimation on the amount
of buffer resources space space is estimated
from the size of the deadspace at we can estimate
the probability of successful buffer insertionsuccess
at each grid. We can then make use of this information to
estimate congestion, congestion . In order to improve
the routability of the design output, our floorplanner will try
to reduce the routing congestion at different locations of the
layout and to increase the number of nets with successful buffer
insertions.

III. CONGESTIONMODEL

In order to improve the routability of the floorplan solution,
a congestion model is used to estimate the wiring information
of a candidate solution. By using a good congestion model,
the intermediate floorplan solutions can be evaluated accurately
with respect to their congestion and routability. The paper [9]
shows that their probabilistic congestion model correlates well
to postroute results but their work does not consider buffer lo-
cations. This motivates us to use a probabilistic approach in
our floorplanner. Nevertheless, as clock frequencies reach and
exceed the gigahertz level, each top level global net must un-
dergo buffer insertion to maintain signal integrity and reason-
able signal delay. The number of buffer insertions is large, but
buffers cannot be inserted wherever we want. Buffer planning
in the early designing stage is very important and the rest of the
design flow will be benefited by a proper planning and usage
of the buffer resources. In this section, we assume that all wires
are two-pin and we will discuss how we handle multipin nets in
Section VII.

A commonly used congestion model is shown in Fig. 1. We
can see that the probability for each possible route of a wire
is equal. However, if the probabilities of successful buffer inser-
tion (dependent on the amount of buffer resources) are different
at different grids, the probabilities of some routes will be higher
if they run through those locations with higher probabilities of
successful buffer insertion.

In our approach, we try to address the buffer-insertion issue
with a new congestion model. In this model, adjacent buffers
are required to be inserted at a distance from each
other wherelow and up are the lower and upper bounds of the
buffer insertion constraint aregiven by the users. In Fig. 2, we
assume that both the upper and lower bounds of the buffer inser-
tion constraint is equal to two, i.e., buffers should be inserted at
an interval of two grid units from each other. We can see that the
probabilities of the routes and with successful buffer

472 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 4, APRIL 2003

Fig. 2. Simple example of our congestion model.

insertion are only 0.5. Therefore, the total number of feasible
routes for this wire is reduced from six to four where the number
of feasible routes is computed as the summation of the probabil-
ities of all the possible routes with successful buffer insertion.
As a result, the probability of wire passing through each grid
will be different from that computed in Fig. 1. The probabilities
of some routes become higher if they run through those loca-
tions with higher chances of successful buffer insertion.

In order to compute the congestion information using this
model, we need estimates ofusage and success
at each grid . Note that usage is used to compute

success . In this section, we will show the computation
of the congestion information, assuming thatsuccess is
given for each grid . We will show how we can estimate

success in Section IV.

A. Probabilistic Model With Variable Interval Buffer
Insertion Constraint

Given the information on the amount of buffer resources at
each grid, we want to calculate the probabilitysuccess that
a route can be routed successfully from the source to the sink
without violating any buffer insertion constraint. In the example
of Fig. 3, the wirelength is six and the upper and lower bounds
of the buffer insertion constraint is three and two, respectively.
Consequently, there are two feasible ways of buffer insertion
for each route. They are shown at the top right corner of Fig. 3
by straightening out a path to one-dimension. We assume
that the routes have equal probability of being selected. The
probability of the first feasible way of buffer insertion is equal
to success success where and

are two and four grid units from the source, respec-
tively, and that of the second one is equal tosuccess
where is three grid units from the source. Given the
probability of successful buffer insertion at each grid, the
probability of route 1 satisfying the buffer insertion constraint

success can be computed as .
Similarly, we can calculate success for all the other routes

.

Fig. 3. Example of computingr success(l).

Thus, the total number of feasible routes for a wireis equal
to success where is the set of all routes for wire

, and the number of feasible routes passing through the grid
is equal to success where is the

set of all routes for wire passing through the grid at . For
the example in Fig. 3, success is equal to

. Consider the grid at , routes
1–5 will pass through this grid, so the total number of feasible
routes passing through this grid is equal to

, i.e., 1.3. Consider the grid at ; only route 6 will
pass through this grid. Thus, the total number of feasible routes
passing through this grid is equal tosuccess , i.e., 0.25.

Consequently, the congestion information at grid
for wire can be calculated as

success

success

SHAM AND YOUNG: ROUTABILITY-DRIVEN FLOORPLANNER WITH BUFFER BLOCK PLANNING 473

where is the probability of wire passing through the
grid at . For example, we can compute

and . We can see that
is equal to one because the

routes of wire must pass through either the grid at
or . Finally, the expected number of wires passing
through a grid at is computed as

congestion

In order to calculate efficiently, we use dynamic
programming. At the beginning, we are given the probability
of successful buffer insertion at each grid. We will then create
an array at each grid with size equals one
plus the upper bound of the buffer insertion constraint,up.
Assuming that wire starts from grid and ends at
grid where and , we will initialize

to one and the remaining values of the
array to zero. The value of represents the
total number of feasible routes for wire from the source
to such that the previous buffer is inserted at a grid of
distance units in front of . We can look at the example
in Fig. 3 to illustrate the meaning of this notation. If we
consider the fourth grid in the second row, i.e., and

, and . Only routes 3–6 will pass through this
grid, and each route has two feasible ways of buffer insertion.
Since , we only consider those with the previous buffer
inserted at a distance of two grid units in front. There are
only four of them with probabilities 1.0, 1.0, 0.0, and 0.0,
respectively. Therefore, . The
value of the array at each grid can be computed dynamically
row by row according to the recursive equation (1), found at
the bottom of the page.

Consequently, the value can be obtained
which represents the total number of feasible routes for wire
from the source to the sink . Then, we will repeat
the same steps from the sink to the source to
calculate for with (2), found at
the bottom of the page.

Thus, the total number of feasible routes passing through a
grid at and a buffer is inserted at and can be com-
puted as

In addition, the total number of feasible routes passing
through a grid at and no buffers is inserted at can
be computed as

where and low

Finally, as the total number of feasible routes running from the
source to the sink is or

(note that is equal
to), the probability that wire will pass
through the grid at can be computed as

Consider the example in Fig. 3 again: we can compute
and for by

(1) and (2). The results are shown in Figs. 4 and 5, respectively.
In this case, can be calculated as follows:

From the example, we can see that the result of
obtained by dynamic programming is the same as that obtained

for

for (1)

for

for (2)

474 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 4, APRIL 2003

Fig. 4. Results ofg (x; y; k):prob[i] for 0 � i � up.

Fig. 5. Results ofg (x; y; k):prob[i] for 0 � i � up.

by counting the routes from Fig. 3. As a result, we can compute
effectively.

In this section, success is calculated assuming that all
possible ways of buffer insertion are equally likely to be used.
However, it is also reasonable to select the route with the highest
probability of successful buffer insertion. To achieve this, we
can simply replace (1) and (2) with (3) and (4).

B. Time Complexity

According to this congestion estimation model, we need to
scan the array at each grid from the source to the destination for
each net. Therefore, the time complexity is
where is the number of grids scanned for each net,is the
number of nets, and is the upper bound of the buffer inser-
tion constraint. If the floorplan is divided into grids,
we need to scan at most grids for each net. Moreover, the
upper bound in the buffer insertion constraint is also bounded by
the length of the wires (2). Therefore, the time complexity of
this congestion estimation method is . However, the
value of , though upper bounded by 2, is much smaller than
2 (four to ten grids) even when the floorplan is very large. As
a result, the method is efficient in practice.

IV. BUFFERPLANNING

In this section, we will show how we can estimate the amount
of buffer usage usage and the probability of successful
buffer insertion success at each grid . Such infor-
mation will be used in the calculation of the congestion infor-
mation as discussed in Section III.

A. Estimation of Buffer Usage

According to the variable interval buffer insertion constraint,
buffers can be inserted at flexible locations as long as adjacent
buffers are at a distance from each other. There
are, thus, several feasible ways of buffer insertion satisfying the
constraint for each route. The probability that a routeof wire

will insert a buffer at a grid , , should
be calculated in order to estimate the amount of buffer usage

. Given a possible routeof wire with source
and sink and the buffer insertion constraint , the

total number of feasible ways of buffer insertion can be
obtained. We assume that all feasible ways of buffer insertion
are equally likely to be used in the routing stage. The probability
that a grid is required to have a buffer inserted for a route

of wire can be calculated as

where is the Manhattan distance of the grid from the
source , is the total number of feasible ways of buffer
insertion for , and is the number of feasible ways
of buffer insertion for route that will insert a buffer at a grid of
distance from the source .

In the example of Fig. 6, there are four feasible ways of buffer
insertion satisfying the buffer insertion constraint, so is
equal to four. Consider the grid , its distance from
the source is equal to four, so . There is only one feasible
way of buffer insertion for routethat will insert a buffer at the
grid of distance four from the source, so is equal
to one and the probability that grid is required to
have a buffer inserted can be computed as

We can compute by calculating
where is the number of feasible ways of buffer inser-
tion between two grids of distanceapart such that buffers are
inserted at both ends. The probability of requiring a buffer at a
grid of distance from the source in routecan be calcu-
lated as

where is the distance from the sourceto the sink
of route , computes the number of feasible ways of
buffer insertion from the source to grid ,

computes the number of feasible ways of buffer insertion
from grid to the sink and computes the total

for
for

(3)

for
for

(4)

SHAM AND YOUNG: ROUTABILITY-DRIVEN FLOORPLANNER WITH BUFFER BLOCK PLANNING 475

Fig. 6. Example of calculating the probability of buffer insertion at each grid.

Fig. 7. Example of the forward recursive method.

number of feasible ways of buffer insertion from the source to
the sink.

In order to compute the probability of buffer insertion
at each grid for every route and wire

efficiently, two methods based on dynamic programming
are used. In both methods, s are calculated, saved
and reused. They are the forward recursive method and the
backward recursive method as described below.

1) Forward recursive method:The forward recursive
method works by searching and counting the number of
feasible ways of buffer insertion satisfying the buffer insertion
constraint. For each successful way of buffer insertion found,
the number accumulated will be increased by one. Finally,
the total number of feasible ways of buffer insertion between
two points of distance apart will be obtained. In general, the
function will be called recursive until all feasible ways of buffer
insertion are found. An example is shown in Fig. 7.

For the example in Fig. 7, is equal to eight and the upper
and lower bounds of the buffer insertion constraint are three and
two, respectively (and). At the beginning, the
function is called. We will then try to insert the first
buffer at the grid which is at a distance from
the source . The function is then called recursively.
(Note that after the return of the call , will
be called because we can also insert the first buffer at the grid

which is at a distance of three from the source.)
When is called, we will try to insert the second buffer
at the grid which is at a distancelow from the first
buffer. The function is then called recursively again.
This process will be repeated until is called and a “1”

will be returned because the final value of is lying
betweenlow andup. In general, the function will be
called recursively until all the feasible ways of buffer insertion
are found. The formula is shown below

if up

if

if .

By dynamic programming, i.e., calculating
iteratively, the time

complexity to compute by this forward
recursive method is .

2) Backward recursive method:The backward recursive
method is a faster method but it has a limitation that the lower
bound in the buffer insertion constraint must be one. It counts
the number of infeasible ways of buffer insertion by looking at
the first position where a violation occurs. Finally, it computes
the total number of infeasible ways of buffer insertion,total.
Since the total number of ways of buffer insertion is , the
total number of successful buffer insertion satisfying the buffer
insertion constraint total, can be calculated as total.
An example is shown in Fig. 8.

For the example in Fig. 8, is equal to eight and the upper
and lower bounds of the buffer insertion constraint are three and
one, respectively (and). At the beginning,

is called. We will first count the number of ways of
buffer insertion such that the first violation occurs at the leftmost
possible grid. This occurs when the first buffer is inserted after

476 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 4, APRIL 2003

Fig. 8. Example of the backward recursive method.

the grid because the interval between the source
and the first buffer is greater than and the buffer insertion

constraint is violated. All of the possible ways of inserting the
remaining buffers are infeasible. As a result, the total number
of infeasible ways of buffer insertion in this case is equal to

, i.e., . If the first violation occurs at the grid
, the total number of infeasible ways of buffer insertion is

equal to , i.e., . Notice that since
the first violation occurs at the grid , those insertions
in front must be correct and we have made use of the recursive
call to count those feasible insertions in front. In this
way, the function will be called recursively to obtain .
The general formula is shown as

if

if .

By dynamic programming, i.e., calculating
iteratively, the time

complexity to compute by this backward
recursive method is .

Assuming that the time required for each recursive call is sim-
ilar for the two methods, we find that the backward recursive
method is faster than the forward one when . As a re-
sult, we can combine the two methods to find the total number
of feasible ways of buffer insertion satisfying the buffer inser-
tion constraint efficiently. The combined method is shown as
follows:

Combined method:
Input: Distance between two target grids,

Output:
If and
Backward recursive method

else
Forward recursive method

Return.

According to the combined method, given the total length
of a route of a wire running from a source to a sink

and the distance from the source to a grid at , we can

compute the total number of feasible ways of buffer insertion
from to such that a buffer is inserted at as

Therefore, the probability that a buffer is required at grid
for route of wire is

Note that these values can be computed, saved, and reused for
wires of the same length.

B. Estimation of Buffer Resources

In order to obtain the congestion information, we need to
compute the probability of buffer insertion at each grid. We have
shown in the above section the computation of the probability
that a route of wire will require a buffer at a grid , i.e.,

. The total number of buffer requirements at
grid , , can then be calculated as

We use dynamic programming to calculate . Since we
need to compute at each grid from the source to the
destination (which has at most grids) for each two-pin net,
the time complexity is . The probability of buffer
insertion at grid , , can then be calculated
as

where is the maximum number of buffers that
can be inserted at grid and is dependent on the amount
of empty space in grid . From the equation, we can see
that if the amount of empty space at grid is large enough
to accommodate all the possible buffer insertions, the value
of is equal to one. Otherwise, it is equal to

.
In order to ensure that every wire contributes equally to buffer

usage, we can normalize the probabilities such that the contri-
bution to from any wire is always equal
to one, even if multiple routes are available for wire.

SHAM AND YOUNG: ROUTABILITY-DRIVEN FLOORPLANNER WITH BUFFER BLOCK PLANNING 477

V. TWO-PHASE SIMULATED ANNEALING

In our floorplanner, we will use sequence pair to represent the
packings and apply simulated annealing for optimization. Simu-
lated annealing is an iterative and nondeterministic optimization
technique. In simulated annealing, all the moves that result in a
decrease in cost will be accepted. The moves that result in an
increase in cost are accepted with a probability that decreases
over the iterations. We have used the same set of moves as in
[10]. The algorithm is shown as

Simulated Annealing

while do
while do

if or

In our design, the simulated annealing process is divided into
two phases. They are the area optimization phase and the con-
gestion optimization phase. In the area optimization phase, the
congestion information is less meaningful because the locations
of the modules are still far from their final positions. Thus, the
cost function used in this phase does not include the congestion
cost nor the buffer insertion cost. The cost function is

where is the area of the floorplan and is the total
wirelength (its computation will be discussed in Section VI) and

is the weight.
In the congestion optimization phase, the cost function is

where is the area of the floorplan, Wire is the total wire-
length, is the average number of wires in the top 4%
most congested grids, andand are the weights.

In the transitional period from the area optimization phase to
the congestion optimization phase, we need to recalculate the
temperature because the order of magnitude of the costs might
change a lot and the acceptance rate could drop or rise unex-
pectedly, if we did not adjust the temperature. As a result, we
need to use a new temperature to maintain the acceptance rate.
To achieve this, we will first obtain the mean value of
from a number of random walks using the old cost function, and
obtain the mean value of from a number of random
walks using the new cost function. The new temperature
can then be computed as

Fig. 9. Intersection-to-intersection estimation.

By using , the acceptance rate can be maintained and
the change in cost function can be performed smoothly.

VI. WIRELENGTH ESTIMATION

In the floorplanning stage, the positions of the input/output
(I/O) pins in the modules are not yet fixed. Since a module will
usually cover a number of grids, the assumption on the locations
of the I/O pins will affect the results significantly. We need to
reasonably estimate the positions of the I/O pins in order to ac-
curately compute the interconnect and congestion costs.

In traditional floorplanners, half-perimeter estimation using
the center of a module as the location of that module is most
commonly used. However, if we consider congestion and buffer
insertion, center-to-center estimation is difficult to be applied.
It is because, if a module is large, center-to-center estima-
tion will increase the congestion estimation at the center of
significantly. Congestion may be overestimated and this will re-
duce the accuracy of the whole method. In addition, buffer may
be required to be inserted at the grids covered by. There-
fore, many routes will become impossible as buffers cannot be
inserted on macro blocks. As a result, we adopt a more appro-
priate method for estimating the positions of the I/O pins on a
module that can be used in our routability-driven floorplanner.

In order to distribute the I/O pins into the grids appropriately,
intersection-to-intersection method is used. Consider a net con-
necting two modules and , we will first draw a line from
the center of one module to another. The two intersecting points
will be found on the edges of the modules and the I/O pins will
be placed at the grids containing the intersecting points as in
Fig. 9.

This is an appropriate method for our floorplanner since the
estimated positions of the I/O pins will be similar to those in
the final design and the buffer locations can be estimated more
accurately.

VII. H ANDLING MULTIPIN NETS

In order to handle multipin nets, we need to decompose a mul-
tipin net into a set of two-pin nets. There are several methods
to decompose a multipin net into two-pin nets such as using the
minimum spanning tree (MST) method, or the rectilinear steiner
tree (RST) method. MST runs faster but it may overestimate the
congestion because of the overlapping net segments. However,
this conservative estimation will not affect the resultant packing

478 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 4, APRIL 2003

significantly because the total length of an MST can be reduced
at most by 6%–9% by removing all the overlapping net seg-
ments to obtain a corresponding RST [7]. Since the runtime of
an RST algorithm is usually much slower than that of an MST
algorithm, MST is a better choice for estimation purpose in the
early floorplanning stage. As a result, we apply MST to handle
multipin nets in our floorplanner.

VIII. SIMPLE GLOBAL ROUTER FOREVALUATION

We have implemented a simple global router to evaluate the
performance of the floorplanner. Given a floorplan input, the
router will divide the floorplan into a grid structure. Multipin
nets are decomposed into two-pin nets by using the MST
method and the two-pin nets will be routed one after another
by dynamic programming based on the following criteria in
decreasing order of priority:

• a route passing through less-congested grids;
• a route requiring less buffers to be inserted;
• a route passing through grids with more empty space left

such that buffers can still be inserted for other wires.
In the dynamic programming, when a wireis required to be

routed from the grid to the grid where
and , must pass through either the grid
or if shortest Manhattan distance is used. If the
route from to is better than the route from

to based on our routing criteria above,
will pass through rather than . We can,
thus, choose the better one between these two to form part of
the best route from to . In this way, we can find
the best route from the source to each grid dynamically row by
row by comparing the routes coming from the grid above and
the route coming from the grid on the left.

However, there are limitations on the number of wires in each
grid (wiring capacity). If a wire can be routed from its source to
its sink in its shortest Manhattan distance without violating the
buffer insertion constraint and the wiring capacity constraint,
the wire is said to beroutable, otherwise, it is called anun-
routablewire. For each routable net, we will try to minimize
the maximum congestion along its route, minimize the number
of buffers used, and maximize the amount of remaining buffer
resources. After a net is routed, the information on congestion
and the remaining buffer resources in each grid will be updated
accordingly.

IX. EXPERIMENTAL RESULTS

We have implemented two floorplanners, a traditional floor-
planner based on simulated annealing without considering
congestion or buffer planning and a routability-driven floor-
planner based on the two-phase simulated annealing method
using the probabilistic model discussed in the above sections
for congestion estimation and buffer planning. The floorplan
output is evaluated by the simple global router described in Sec-
tion VIII. The two floorplanners are compared with respect to
the total area, wirelength, congestion and the number of un-
routable wires. Congestion is measured as the average number
of wires passing through the top 4% most congested grids, and
an unroutable wire is a wire that cannot be routed in its shortest

TABLE I
CIRCUIT CHARACTERISTICS ANDPARAMETERSUSED IN THEEXPERIMENTS

Manhattan distance without violating the buffer insertion con-
straint and the wiring capacity constraint of each grid. The data
sets used are , , and . The circuit charac-
teristics and parameters used in the three data sets are shown
in Table I. Each result shown in Tables II and III is an average
value obtained by performing the experiment eight times. The
value of and are estimated analytically as follows:

where unit is the length of a grid, is the buffer resistance,
is the buffer capacitance, is the intrinsic delay of a buffer,
is the unit wire resistance, and is the unit wire capaci-

tance. The above equations are derived from the Elmore delay
model [6] by assuming that and . The
derivation will be shown in Appendix I. Notice that the dimen-
sions of the modules are enlarged by a factor of ten for
and in order to demonstrate the effect of buffer block
planning. In addition, the wiring capacities are chosen such that
unroutable wires will appear in our global routing test of those
data sets.

Table II shows the results of the experiments. We can see
that performs better than in area optimization, but the
differences are very small. On the other hand, can reduce
the total wirelength, congestion and the number of unroutable
wires significantly. This demonstrates the effectiveness of our
probabilistic congestion model in reducing interconnect cost in
floorplan design.

Table III compares the runtime of our routability-driven
floorplanner based on the traditional single-phase and
two-phase simulated annealing approach. We can see that the
runtime can be shortened by 1.5–5 times for these three data
sets. This demonstrates the effectiveness of the two-phase
approach and we can expect this approach to be useful for
solving floorplanning problems of even larger scale. In general,
the runtime can be further reduced if we start the second stage
of the annealing process later.

X. CONCLUSION

In this paper, we presented a new method to compute the con-
gestion information in floorplanning taking into account buffer
planning with variable interval buffer insertion constraint. The
estimations are based on the supply and demand analysis of the

SHAM AND YOUNG: ROUTABILITY-DRIVEN FLOORPLANNER WITH BUFFER BLOCK PLANNING 479

TABLE II
COMPARISONSBETWEENF1 AND F2

Dimensions of the mudules inami33 andplayoutare multiplied by ten. Average number of nets per 10m for the top 4%

most congested grids.Experiments are performed using Pentium IV 1.2 GHz with 512 MB of memory.

TABLE III
COMPARING THE RUNTIME OF THE SINGLE-PHASE

AND TWO-PHASE FLOORPLANNER

routing and buffer resources, where the supply is determined
by the floorplan solution (the amount of empty space) and the
demand is determined by the interconnect structure. Computa-
tions of the congestion information in our model are quite com-
plicated but they can be performed efficiently by dynamic pro-
gramming. Experimental results show that our floorplanner can
reduce the interconnect cost efficiently without having much
penalty in area. In addition, the runtime can be improved sig-
nificantly without degradation in performance by the two-phase
simulated annealing approach.

APPENDIX

According to the Elmore delay model [6], we can compute
the delay when no buffer is inserted and the delay when
a buffer is inserted at the middle of the wire by the fol-
lowing equations:

where is the driver resistance, is the load capacitance,
is the buffer resistance, is the buffer capacitance, is

the buffer delay, is the wire width, is the wirelength, and ,
, and are unit wire resistance, unit wire capacitance, and

unit fringing capacitance, respectively.
In order to compute the upper bound, we assume that

and . Buffer is needed when .
By rewriting the above equations, we have

Since a buffer will be inserted if the wire segment is longer than
, we can put

We compute as half of

REFERENCES

[1] C. J. Alpert, J. Hu, S. S. Sapatnekar, and P. G. Villarrubia, “A practical
methodology for early buffer and wire resource allocation,” inProc. 38th
ACM/IEEE Design Automation Conf., 2001, pp. 189–194.

480 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 4, APRIL 2003

[2] H. M. Chen, H. Zhou, F. Y. Young, D. Wong, H. H. Yang, and N. Sher-
wani, “Integrated floorplanning and interconnect planning,” inProc.
IEEE Int. Conf. Computer-Aided Design, 1999, pp. 354–357.

[3] J. Cong, “Challenges and opportunities for design innovations in
nanometer technologies,” in Frontiers in Semiconductor Research: A
Collection of SRC Working Papers, 1997.

[4] J. Cong, T. Kong, and D. Z. Pan, “Buffer block planning for interconnect
driven floorplanning,” inDig. Tech. Papers, IEEE Int. Conf. Computer-
Aided Design, 1999, pp. 358–363.

[5] F. E. Dragan, A. B. Kahng, S. Muddu, and A. Zelikovsky, “Provably
good global buffering using an available buffer block plan,” inProc.
IEEE Int. Conf. Computer-Aided Design, 2000, pp. 104–109.

[6] W. C. Elmore, “The transient response of damped linear network with
particular regard to wide band amplifiers,”J. Appl. Physics, vol. 19, pp.
55–63, 1948.

[7] J. M. Ho, G. Vijayan, and C. K. Wong, “A new approach to the recti-
linear steiner tree problem,” inProc. 26th ACM/IEEE Design Automa-
tion Conf., 1989, pp. 161–166.

[8] A. B. Kahng, S. Muddu, E. Sarto, and R. Sharma, “Interconect tuning
strategies for high performance ICS,” inProc. Desig, Automation, Test
Eur. Conf. Exhib., 1998, pp. 471–478.

[9] J. Lou, S. Krishnamoorthy, and H. S. Sheng, “Estimating routing con-
gestion using probabilistic analysis,” inProc. Int. Symp. Physical De-
sign, 2001, pp. 112–117.

[10] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, “Rec-
tangle-packing- based module placement,” inProc. IEEE Int. Conf.
Computer-Aided Design, 1995, pp. 472–479.

[11] P. Sarkar, V. Sundararaman, and C. K. Koh, “Routability-driven repeater
block planning for interconnect-centric floorplanning,” inProc. Int.
Symp. Physical Design, 2000, pp. 186–191.

[12] X. P. Tang and D. E. Wong, “Planning buffer locations by network
flows,” in Proc. Int. Symp. Physical Design, 2000, pp. 186–191.

[13] M. Wang and M. Sarrafzadeh, “Modeling and minimization of routing
congestion,” inProc. ASP-ACM/IEEE Design Automation Conf., 2000,
pp. 185–190.

Chiu-Wing Sham received the B.Eng.(Hons.) and
M.Phil. degrees in computer engineering, in 2000 and
2002, respectively, from the Chinese University of
Hong Kong, Shatin, N.T., Hong Kong, where he is
currently pursuing the Ph.D. degree in computer en-
gineering.

His research interests include interconnect-driven
floorplanning, floorplan representations, and flexible
objects placement problems.

Evangeline F. Y. Young received the B.Sc. and
M.Phil. degrees in computer science from the
Chinese University of Hong Kong, Shatin, N.T.,
Hong Kong, in 1991 and 1993, respectively, and the
Ph.D. degree from the University of Texas, Austin,
in 1999.

Currently, she is an Assistant Professor with the
Department of Computer Science and Engineering,
Chinese University of Hong Kong. Her research in-
terests include algorithms and computer-aided design
of very large scale intregation circuits. She is now

working actively on floorplan design optimization, circuit partitioning, circuit
retiming, and packing representation.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

